modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
textattack/distilbert-base-uncased-SST-2
6fea14f6264ea28d8405573dac228b3e11137643
2020-06-09T16:48:10.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/distilbert-base-uncased-SST-2
19
null
transformers
8,600
Entry not found
tupleblog/generate-thai-lyrics
e1a1c4732f79938fdfbd3934563f685540532b91
2021-08-09T23:06:14.000Z
[ "pytorch", "gpt2", "text-generation", "th", "transformers" ]
text-generation
false
tupleblog
null
tupleblog/generate-thai-lyrics
19
1
transformers
8,601
--- language: - th widget: - text: "ความรัก" - text: "อยากรู้" - text: "ไหนว่า" --- # Generate Thai Lyrics (แต่งเพลงไทยด้วย GPT-2) GPT-2 for Thai lyrics generation. We use [GPT-2 base Thai](https://huggingface.co/flax-community/gpt2-base-thai) as a pre-trained model for [Siamzone lyrics](https://www.siamzone.com/music/thailyric/) เราเทรนโมเดล GPT-2 สำหรับใช้แต่งเนื้อเพลงไทยด้วยเนื้อเพลงจากเว็บไซต์ Siamzone ## Example use ``` py from transformers import pipeline from transformers import GPT2Model, GPT2TokenizerFast, AutoModelForCausalLM, AutoTokenizer model_name = "tupleblog/generate-thai-lyrics" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model.config.pad_token_id = model.config.eos_token_id nlp = pipeline( "text-generation", model=model, tokenizer=tokenizer ) text = "ความรัก" nlp(text, max_length=100, top_k=40, temperature=0.8) # varying the temperature and top-k produce different output ```
vinko/shitposting-AI
3e0c5e065c6dac5d2b8acf25fcdb186091e36166
2022-07-12T09:33:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
vinko
null
vinko/shitposting-AI
19
1
transformers
8,602
Entry not found
yhavinga/mt5-base-cnn-nl
b2764d1d7d0eb947d650e1ff006fcf67ca91d1cb
2021-03-05T07:48:08.000Z
[ "pytorch", "mt5", "text2text-generation", "dutch", "dataset:cnn_dm_nl", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
yhavinga
null
yhavinga/mt5-base-cnn-nl
19
null
transformers
8,603
--- tags: - summarization language: - dutch datasets: - cnn_dm_nl widget: - text: "(CNN) Skywatchers in West-Noord-Amerika zijn in voor een traktatie: een bijna vijf minuten totale maansverduistering vanmorgen. Hier is hoe het zich ontvouwt:. Het begon om 3:16 a.m. Pacific Daylight Tijd, toen de maan begon te bewegen in de schaduw van de Aarde. Voor het volgende uur en 45 minuten, die schaduw zal bewegen over de maan en verzwolgen het om 4:58 a.m. Pacific Time. De totale verduistering zal slechts vier minuten en 43 seconden duren, en NASA zegt dat maakt het de kortste van de eeuw. Kijken live op NASA TV. Terwijl mensen ten westen van de Mississippi River zal het beste uitzicht hebben, ten minste een gedeeltelijke verduistering zal zichtbaar zijn over de hele natie. Maar zonsopgang zal de show te onderbreken op de Oostkust. Delen van Zuid-Amerika, India, China en China Een maansverduistering gebeurt wanneer de zon, de aarde en de maan een rechte lijn vormen in de ruimte, met de aarde in het midden. De zon schijnt op de Aarde en creëert een schaduw. Als de maan dieper in die schaduw beweegt, lijkt het donker te worden en lijkt zelfs een roodachtige kleur te zijn. Waarom rood? Omdat de atmosfeer van de Aarde het grootste deel van het blauwe licht filtert. Sommige mensen hebben het effect van de \"bloedmaan\" bijgenaamd. NASA zegt dat maansverduisteringen meestal ten minste twee keer per jaar plaatsvinden, maar deze verduistering is de derde in een reeks van vier op een rij, bekend als een \"tetrad.\" De eerste was op 15 april 2014. De tweede was in september 2014, de volgende is zaterdag en er zal er een meer zijn, op 28 september. Als je meer wilt weten over de verduistering, NASA astronoom Mitzi Adam. Deel uw foto's met CNN iReport." - text: "(CNN) Filipino's worden gewaarschuwd om op wacht te staan voor flash overstromingen en aardverschuivingen als tropische storm Maysak benaderde de Aziatische eiland natie zaterdag. Slechts een paar dagen geleden, Maysak kreeg super tyfoon status dankzij zijn aanhoudende 150 km/h winden. Het heeft sindsdien verloren veel stoom als het naar het westen in de Stille Oceaan heeft gedraaid. Het is nu geclassificeerd als een tropische storm, volgens de Filipijnse nationale weerdienst, die noemt het een andere naam, Chedeng. Het heeft stabiele winden van meer dan 70 km/h (115 km/h) en gusts tot 90 km/h vanaf 17.00 uur (5 uur ET) Zaterdag. Toch, dat betekent niet dat Maysak zal geen pak een wallop. Autoriteiten nam preventieve stappen om mensen veilig te houden zoals barring outdoor activiteiten zoals zwemmen, surfen, di. Gabriel Llave, een ramp ambtenaar, vertelde PNA dat toeristen die aankomen zaterdag in en rond de kustplaats van Aurora \"zal niet worden geaccepteerd door de eigenaren van hotels, resorts, herbergen en dergelijke... en zal worden geadviseerd om terug te keren naar hun respectievelijke plaatsen.\" Aldczar Aurelio, een meteoroloog met de Filippijnse Atmosferische, Geofysische en Astronomische Diensten Administratie (PAGASA), zei dat de storm was gecentreerd 200 mijl ten zuidwesten van de provincie Aurora vanaf 5 uur (5 uur ET) en richting het westen op een 12.5 mph clip. Het is verwacht dat landval zondagochtend maken op de zuidoostelijke kust van de provincie Isabela en zijn uit de Filippijnen tegen maandag. Ahead van de storm. Isabela Gov. Faustino Dry III waarschuwde zaterdag dat bewoners moet handelen als deze zal maken landfall zondagochtend op de zuidoostelijke kust van de provincie Isabela en zijn uit de Filippijnen voor maandag." --- # mt5-base-cnn-nl mt5-base finetuned on CNN DM translated to nl (Dutch). * Learning rate 1e-3 * Trained for 1 epoch * Max source length 1024 * Max target length 142 * rouge1 31.1766 * rouge2 8.4538 * rougeL 17.8674
wietsedv/xlm-roberta-base-ft-udpos28-pt
904fe6c9b3641c0a77ac9dcd37e6466ed59c1c04
2022-02-25T09:59:14.000Z
[ "pytorch", "xlm-roberta", "token-classification", "pt", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-pt
19
null
transformers
8,604
--- language: - pt license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-pt results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 87.1 - type: accuracy name: Dutch Test accuracy value: 87.5 - type: accuracy name: German Test accuracy value: 80.5 - type: accuracy name: Italian Test accuracy value: 88.7 - type: accuracy name: French Test accuracy value: 89.7 - type: accuracy name: Spanish Test accuracy value: 91.8 - type: accuracy name: Russian Test accuracy value: 88.6 - type: accuracy name: Swedish Test accuracy value: 87.7 - type: accuracy name: Norwegian Test accuracy value: 82.5 - type: accuracy name: Danish Test accuracy value: 88.6 - type: accuracy name: Low Saxon Test accuracy value: 54.8 - type: accuracy name: Akkadian Test accuracy value: 36.5 - type: accuracy name: Armenian Test accuracy value: 83.9 - type: accuracy name: Welsh Test accuracy value: 64.8 - type: accuracy name: Old East Slavic Test accuracy value: 77.4 - type: accuracy name: Albanian Test accuracy value: 77.8 - type: accuracy name: Slovenian Test accuracy value: 78.3 - type: accuracy name: Guajajara Test accuracy value: 26.3 - type: accuracy name: Kurmanji Test accuracy value: 76.9 - type: accuracy name: Turkish Test accuracy value: 77.2 - type: accuracy name: Finnish Test accuracy value: 82.8 - type: accuracy name: Indonesian Test accuracy value: 85.3 - type: accuracy name: Ukrainian Test accuracy value: 85.4 - type: accuracy name: Polish Test accuracy value: 85.7 - type: accuracy name: Portuguese Test accuracy value: 94.2 - type: accuracy name: Kazakh Test accuracy value: 81.4 - type: accuracy name: Latin Test accuracy value: 77.9 - type: accuracy name: Old French Test accuracy value: 64.7 - type: accuracy name: Buryat Test accuracy value: 59.9 - type: accuracy name: Kaapor Test accuracy value: 22.5 - type: accuracy name: Korean Test accuracy value: 60.8 - type: accuracy name: Estonian Test accuracy value: 84.5 - type: accuracy name: Croatian Test accuracy value: 86.3 - type: accuracy name: Gothic Test accuracy value: 30.9 - type: accuracy name: Swiss German Test accuracy value: 45.7 - type: accuracy name: Assyrian Test accuracy value: 16.1 - type: accuracy name: North Sami Test accuracy value: 40.7 - type: accuracy name: Naija Test accuracy value: 41.6 - type: accuracy name: Latvian Test accuracy value: 85.1 - type: accuracy name: Chinese Test accuracy value: 31.0 - type: accuracy name: Tagalog Test accuracy value: 72.0 - type: accuracy name: Bambara Test accuracy value: 32.3 - type: accuracy name: Lithuanian Test accuracy value: 83.5 - type: accuracy name: Galician Test accuracy value: 88.0 - type: accuracy name: Vietnamese Test accuracy value: 64.4 - type: accuracy name: Greek Test accuracy value: 83.8 - type: accuracy name: Catalan Test accuracy value: 91.7 - type: accuracy name: Czech Test accuracy value: 87.3 - type: accuracy name: Erzya Test accuracy value: 47.9 - type: accuracy name: Bhojpuri Test accuracy value: 51.4 - type: accuracy name: Thai Test accuracy value: 44.9 - type: accuracy name: Marathi Test accuracy value: 85.9 - type: accuracy name: Basque Test accuracy value: 75.7 - type: accuracy name: Slovak Test accuracy value: 88.8 - type: accuracy name: Kiche Test accuracy value: 35.6 - type: accuracy name: Yoruba Test accuracy value: 29.2 - type: accuracy name: Warlpiri Test accuracy value: 33.6 - type: accuracy name: Tamil Test accuracy value: 83.7 - type: accuracy name: Maltese Test accuracy value: 31.1 - type: accuracy name: Ancient Greek Test accuracy value: 62.6 - type: accuracy name: Icelandic Test accuracy value: 80.6 - type: accuracy name: Mbya Guarani Test accuracy value: 32.7 - type: accuracy name: Urdu Test accuracy value: 66.6 - type: accuracy name: Romanian Test accuracy value: 84.8 - type: accuracy name: Persian Test accuracy value: 75.2 - type: accuracy name: Apurina Test accuracy value: 40.8 - type: accuracy name: Japanese Test accuracy value: 16.5 - type: accuracy name: Hungarian Test accuracy value: 84.5 - type: accuracy name: Hindi Test accuracy value: 73.0 - type: accuracy name: Classical Chinese Test accuracy value: 22.7 - type: accuracy name: Komi Permyak Test accuracy value: 51.0 - type: accuracy name: Faroese Test accuracy value: 77.3 - type: accuracy name: Sanskrit Test accuracy value: 36.3 - type: accuracy name: Livvi Test accuracy value: 63.2 - type: accuracy name: Arabic Test accuracy value: 78.7 - type: accuracy name: Wolof Test accuracy value: 38.6 - type: accuracy name: Bulgarian Test accuracy value: 88.5 - type: accuracy name: Akuntsu Test accuracy value: 29.8 - type: accuracy name: Makurap Test accuracy value: 17.1 - type: accuracy name: Kangri Test accuracy value: 46.0 - type: accuracy name: Breton Test accuracy value: 65.4 - type: accuracy name: Telugu Test accuracy value: 83.2 - type: accuracy name: Cantonese Test accuracy value: 37.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 57.9 - type: accuracy name: Karelian Test accuracy value: 71.7 - type: accuracy name: Upper Sorbian Test accuracy value: 76.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 65.8 - type: accuracy name: Komi Zyrian Test accuracy value: 43.2 - type: accuracy name: Irish Test accuracy value: 69.0 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 19.9 - type: accuracy name: Manx Test accuracy value: 36.1 - type: accuracy name: Skolt Sami Test accuracy value: 38.3 - type: accuracy name: Afrikaans Test accuracy value: 82.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 32.1 - type: accuracy name: Belarusian Test accuracy value: 86.6 - type: accuracy name: Serbian Test accuracy value: 87.9 - type: accuracy name: Moksha Test accuracy value: 44.4 - type: accuracy name: Western Armenian Test accuracy value: 79.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 58.1 - type: accuracy name: Khunsari Test accuracy value: 50.0 - type: accuracy name: Hebrew Test accuracy value: 93.8 - type: accuracy name: Uyghur Test accuracy value: 75.2 - type: accuracy name: Chukchi Test accuracy value: 34.9 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Portuguese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-pt") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-pt") ```
cnicu/t5-small-booksum
0169a67dc4873b529ca3612bdc9d79365632816a
2022-02-26T21:32:52.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:kmfoda/booksum", "transformers", "summarization", "summary", "license:mit", "autotrain_compatible" ]
summarization
false
cnicu
null
cnicu/t5-small-booksum
19
2
transformers
8,605
--- license: mit tags: - summarization - summary datasets: - kmfoda/booksum ---
ali2066/distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57
ae34543efff9a179fa156e6d8f681753fbf9783c
2022-03-01T14:18:30.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57
19
null
transformers
8,606
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_16_57 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5923 - Precision: 0.0039 - Recall: 0.0212 - F1: 0.0066 - Accuracy: 0.7084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.6673 | 0.0476 | 0.0128 | 0.0202 | 0.6652 | | No log | 2.0 | 20 | 0.6211 | 0.0 | 0.0 | 0.0 | 0.6707 | | No log | 3.0 | 30 | 0.6880 | 0.0038 | 0.0128 | 0.0058 | 0.6703 | | No log | 4.0 | 40 | 0.6566 | 0.0030 | 0.0128 | 0.0049 | 0.6690 | | No log | 5.0 | 50 | 0.6036 | 0.0 | 0.0 | 0.0 | 0.6868 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35
50bdc5dc06be09ed566294504a84e088e4b141b5
2022-03-01T14:20:06.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35
19
null
transformers
8,607
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_essays_01_03_2022-15_18_35 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1832 - Precision: 0.6138 - Recall: 0.7169 - F1: 0.6613 - Accuracy: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.2740 | 0.4554 | 0.5460 | 0.4966 | 0.8943 | | No log | 2.0 | 22 | 0.2189 | 0.5470 | 0.6558 | 0.5965 | 0.9193 | | No log | 3.0 | 33 | 0.2039 | 0.5256 | 0.6706 | 0.5893 | 0.9198 | | No log | 4.0 | 44 | 0.2097 | 0.5401 | 0.6795 | 0.6018 | 0.9237 | | No log | 5.0 | 55 | 0.2255 | 0.6117 | 0.6825 | 0.6452 | 0.9223 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12
085586cf4b9e6c2bf87b0319d7ce43dcbe75a066
2022-03-01T14:22:08.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12
19
null
transformers
8,608
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_editorials_01_03_2022-15_20_12 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1290 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0733 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 2.0 | 30 | 0.0732 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 3.0 | 45 | 0.0731 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 4.0 | 60 | 0.0716 | 0.04 | 0.0055 | 0.0097 | 0.9861 | | No log | 5.0 | 75 | 0.0635 | 0.04 | 0.0055 | 0.0097 | 0.9861 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
1f213dc717ec7c1f89c834cfc69e74e115249d60
2022-03-01T14:25:30.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
19
null
transformers
8,609
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2811 - Precision: 0.3231 - Recall: 0.5151 - F1: 0.3971 - Accuracy: 0.8913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.2881 | 0.2089 | 0.3621 | 0.2650 | 0.8715 | | No log | 2.0 | 60 | 0.2500 | 0.2619 | 0.3842 | 0.3115 | 0.8845 | | No log | 3.0 | 90 | 0.2571 | 0.2327 | 0.4338 | 0.3030 | 0.8809 | | No log | 4.0 | 120 | 0.2479 | 0.3051 | 0.4761 | 0.3719 | 0.8949 | | No log | 5.0 | 150 | 0.2783 | 0.3287 | 0.4761 | 0.3889 | 0.8936 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
2bb02fe596c6b533fa3d5f1b609a6363c313f212
2022-03-01T14:48:43.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
19
null
transformers
8,610
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6542 - Precision: 0.0092 - Recall: 0.0403 - F1: 0.0150 - Accuracy: 0.7291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.5856 | 0.0012 | 0.0125 | 0.0022 | 0.6950 | | No log | 2.0 | 20 | 0.5933 | 0.0 | 0.0 | 0.0 | 0.7282 | | No log | 3.0 | 30 | 0.5729 | 0.0051 | 0.025 | 0.0085 | 0.7155 | | No log | 4.0 | 40 | 0.6178 | 0.0029 | 0.0125 | 0.0047 | 0.7143 | | No log | 5.0 | 50 | 0.6707 | 0.0110 | 0.0375 | 0.0170 | 0.7178 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
781dd9df4e4f5f7ab9df50cb60f5176f7936e52b
2022-03-01T14:50:16.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
19
null
transformers
8,611
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1801 - Precision: 0.6153 - Recall: 0.7301 - F1: 0.6678 - Accuracy: 0.9346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.2746 | 0.4586 | 0.5922 | 0.5169 | 0.9031 | | No log | 2.0 | 22 | 0.2223 | 0.5233 | 0.6181 | 0.5668 | 0.9148 | | No log | 3.0 | 33 | 0.2162 | 0.5335 | 0.6699 | 0.5940 | 0.9274 | | No log | 4.0 | 44 | 0.2053 | 0.5989 | 0.7055 | 0.6478 | 0.9237 | | No log | 5.0 | 55 | 0.2123 | 0.5671 | 0.7249 | 0.6364 | 0.9267 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
fbb89199322aeef09e41d7f54fd344bd9730f06f
2022-03-01T14:52:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
19
null
transformers
8,612
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1059 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.1103 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 2.0 | 30 | 0.0842 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 3.0 | 45 | 0.0767 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 4.0 | 60 | 0.0754 | 0.12 | 0.0135 | 0.0243 | 0.9772 | | No log | 5.0 | 75 | 0.0735 | 0.12 | 0.0135 | 0.0243 | 0.9772 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
b27ac23d47951eabb2ed2f33b72a6a0912bb7f9f
2022-03-01T14:55:36.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
19
null
transformers
8,613
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2711 - Precision: 0.3373 - Recall: 0.5670 - F1: 0.4230 - Accuracy: 0.8943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3783 | 0.1833 | 0.3975 | 0.2509 | 0.8413 | | No log | 2.0 | 60 | 0.3021 | 0.3280 | 0.4820 | 0.3904 | 0.8876 | | No log | 3.0 | 90 | 0.3196 | 0.3504 | 0.5036 | 0.4133 | 0.8918 | | No log | 4.0 | 120 | 0.3645 | 0.3434 | 0.5306 | 0.4170 | 0.8759 | | No log | 5.0 | 150 | 0.4027 | 0.3217 | 0.5486 | 0.4056 | 0.8797 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
be4rr/xlm-roberta-base-finetuned-panx-de
432fa9c8d8a752f3377262ca3782e3cb45d02669
2022-03-05T06:37:26.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
be4rr
null
be4rr/xlm-roberta-base-finetuned-panx-de
19
null
transformers
8,614
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.862669465085938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1374 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2596 | 1.0 | 525 | 0.1571 | 0.8302 | | 0.1292 | 2.0 | 1050 | 0.1416 | 0.8455 | | 0.0809 | 3.0 | 1575 | 0.1374 | 0.8627 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
peterhsu/mt5-small-finetuned-amazon-en-zh_TW
e8ac447be45995697e1828b1084d08d591d51f74
2022-03-10T07:05:34.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
peterhsu
null
peterhsu/mt5-small-finetuned-amazon-en-zh_TW
19
null
transformers
8,615
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-zh_TW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-zh_TW This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2408 - Rouge1: 15.8831 - Rouge2: 7.1676 - Rougel: 15.5523 - Rougelsum: 15.4954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.5388 | 1.0 | 838 | 3.5888 | 12.6081 | 5.3611 | 12.3495 | 12.2926 | | 4.0043 | 2.0 | 1676 | 3.4038 | 13.8517 | 6.3417 | 13.4755 | 13.4913 | | 3.6776 | 3.0 | 2514 | 3.3294 | 15.1519 | 7.3842 | 14.8844 | 14.8458 | | 3.4929 | 4.0 | 3352 | 3.2668 | 15.6067 | 7.4016 | 15.3715 | 15.2908 | | 3.387 | 5.0 | 4190 | 3.2855 | 15.0546 | 7.3065 | 14.8271 | 14.7755 | | 3.302 | 6.0 | 5028 | 3.2457 | 15.0213 | 6.6597 | 14.6131 | 14.5641 | | 3.2806 | 7.0 | 5866 | 3.2408 | 15.8831 | 7.1676 | 15.5523 | 15.4954 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
mitiku/AmharicCacoPostag
b1cf0a2d0953f500e97e68dead4da9c00b18d6e4
2022-03-20T10:11:18.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
mitiku
null
mitiku/AmharicCacoPostag
19
null
transformers
8,616
--- tags: - generated_from_trainer model-index: - name: AmharicCacoPostag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicCacoPostag This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ccdv/lsg-distilbert-base-uncased-4096
686895e1d6a2c7a7d8972c6b20b71760dd143be5
2022-07-25T16:35:33.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "transformers", "long context", "autotrain_compatible" ]
fill-mask
false
ccdv
null
ccdv/lsg-distilbert-base-uncased-4096
19
null
transformers
8,617
--- language: en tags: - long context --- # LSG model **Transformers >= 4.18.0**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model is adapted from [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) without additional pretraining yet. It uses the same number of parameters/layers and the same tokenizer This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ Support encoder-decoder and causal masking but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 5 different sparse selection patterns. The best type is task dependent. \ Note that for sequences with length < 2*block_size, the type has no effect. * sparsity_type="norm", select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="pooling", use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * sparsity_type="stride", use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * sparsity_type="block_stride", use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") SENTENCES = ["Paris is the <mask> of France.", "The goal of life is <mask>."] pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES, top_k=1) output = [o[0]["sequence"] for o in output] > ['Paris is the capital of France.', 'The goal of life is happiness.'] ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ```
ukr-models/xlm-roberta-base-uk
6cf5dfdf6fdcd44c81e22dd98e1c0340898d1558
2022-03-12T08:15:16.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "uk", "transformers", "ukrainian", "license:mit", "autotrain_compatible" ]
fill-mask
false
ukr-models
null
ukr-models/xlm-roberta-base-uk
19
2
transformers
8,618
--- language: - uk tags: - ukrainian widget: - text: "Тарас Шевченко – великий український <mask>." license: mit --- This is a smaller version of the [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) model with only Ukrainian and some English embeddings left. * The original model has 470M parameters, with 384M of them being input and output embeddings. * After shrinking the `sentencepiece` vocabulary from 250K to 31K (top 25K Ukrainian tokens and top English tokens) the number of model parameters reduced to 134M parameters, and model size reduced from 1GB to 400MB.
nikolamilosevic/distil_bert_uncased-finetuned-relations
f34ec890eacef9d6f1c3f79e20f352e4ccbd9215
2022-06-19T13:28:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
nikolamilosevic
null
nikolamilosevic/distil_bert_uncased-finetuned-relations
19
null
transformers
8,619
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - recall - f1 model-index: - name: distil_bert_uncased-finetuned-relations results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil_bert_uncased-finetuned-relations This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4191 - Accuracy: 0.8866 - Prec: 0.8771 - Recall: 0.8866 - F1: 0.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Prec | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:| | 1.1823 | 1.0 | 232 | 0.5940 | 0.8413 | 0.8273 | 0.8413 | 0.8224 | | 0.4591 | 2.0 | 464 | 0.4600 | 0.8607 | 0.8539 | 0.8607 | 0.8555 | | 0.3106 | 3.0 | 696 | 0.4160 | 0.8812 | 0.8763 | 0.8812 | 0.8785 | | 0.246 | 4.0 | 928 | 0.4113 | 0.8834 | 0.8766 | 0.8834 | 0.8796 | | 0.2013 | 5.0 | 1160 | 0.4191 | 0.8866 | 0.8771 | 0.8866 | 0.8808 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.13.0.dev20220614 - Datasets 2.2.2 - Tokenizers 0.11.6
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_EN
3728d8cd2666a51d430fba1ebb588eeef086d7a6
2022-03-17T14:51:01.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_EN
19
null
transformers
8,620
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_EN This model is a fine-tuned version of [StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN) on the CRAFTone dataset. It achieves the following results on the evaluation set: - Loss: 0.2213 - Precision: 0.8528 - Recall: 0.8617 - F1: 0.8572 - Accuracy: 0.9709 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN) as a base model, I finetuned once more on the original CRAFT dataset in English. Biobert --> Augmented CRAFT --> CRAFT ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0106 | 1.0 | 1360 | 0.1866 | 0.8343 | 0.8661 | 0.8499 | 0.9698 | | 0.0063 | 2.0 | 2720 | 0.2100 | 0.8536 | 0.8537 | 0.8537 | 0.9701 | | 0.0031 | 3.0 | 4080 | 0.2133 | 0.8506 | 0.8578 | 0.8542 | 0.9705 | | 0.0008 | 4.0 | 5440 | 0.2213 | 0.8528 | 0.8617 | 0.8572 | 0.9709 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_ES
772c128b62e7913f0d4f9a957c62c02cf1e3c533
2022-03-17T14:51:33.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_ES
19
null
transformers
8,621
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_ES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-CRAFT_AugmentedTransfer_ES This model is a fine-tuned version of [StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES](https://huggingface.co/StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Precision: 0.8535 - Recall: 0.8476 - F1: 0.8505 - Accuracy: 0.9705 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish (MT translated) and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Three datasets (original, augmented, MT translated CRAFT) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES](https://huggingface.co/StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES) as a base model, I finetuned once more on the original CRAFT dataset in English. Biobert --> Augmented CRAFT --> CRAFT ES (MT translated) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0177 | 1.0 | 1360 | 0.2318 | 0.8510 | 0.8275 | 0.8391 | 0.9684 | | 0.0102 | 2.0 | 2720 | 0.2253 | 0.8322 | 0.8455 | 0.8388 | 0.9683 | | 0.0039 | 3.0 | 4080 | 0.2193 | 0.8383 | 0.8451 | 0.8416 | 0.9689 | | 0.002 | 4.0 | 5440 | 0.2298 | 0.8535 | 0.8476 | 0.8505 | 0.9705 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
saattrupdan/job-listing-filtering-model
5e178873916413a84ed8a750161b789b3026c668
2022-03-22T18:21:05.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
saattrupdan
null
saattrupdan/job-listing-filtering-model
19
null
transformers
8,622
--- license: mit tags: - generated_from_trainer model-index: - name: job-listing-filtering-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # job-listing-filtering-model This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4639 | 1.55 | 50 | 0.4343 | | 0.407 | 3.12 | 100 | 0.3589 | | 0.3459 | 4.68 | 150 | 0.3110 | | 0.2871 | 6.25 | 200 | 0.2604 | | 0.1966 | 7.8 | 250 | 0.2004 | | 0.0994 | 9.37 | 300 | 0.1766 | | 0.0961 | 10.92 | 350 | 0.2007 | | 0.0954 | 12.49 | 400 | 0.1716 | | 0.0498 | 14.06 | 450 | 0.1642 | | 0.0419 | 15.62 | 500 | 0.1811 | | 0.0232 | 17.18 | 550 | 0.1872 | | 0.0146 | 18.74 | 600 | 0.1789 | | 0.0356 | 20.31 | 650 | 0.1984 | | 0.0325 | 21.86 | 700 | 0.1845 | | 0.0381 | 23.43 | 750 | 0.1994 | | 0.0063 | 24.98 | 800 | 0.1992 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
asafaya/hubert-base-turkish
4fcd01cfe986a1a3817233e3b89ddb77c2ce65e2
2022-03-29T19:08:55.000Z
[ "pytorch", "hubert", "feature-extraction", "transformers", "license:cc-by-nc-4.0" ]
feature-extraction
false
asafaya
null
asafaya/hubert-base-turkish
19
null
transformers
8,623
--- license: cc-by-nc-4.0 ---
nqcccccc/phobert-vlsp-absa-qab
a254bc07bc0b2fd5b810b6d91b240456a4909d5b
2022-04-02T17:08:50.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/phobert-vlsp-absa-qab
19
null
transformers
8,624
Entry not found
palakagl/distilbert_MultiClass_TextClassification
0c50f39087b2f9263b3c26d4a63ddb3efeb5fd6e
2022-04-07T17:12:15.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:palakagl/autotrain-data-PersonalAssitant", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
palakagl
null
palakagl/distilbert_MultiClass_TextClassification
19
null
transformers
8,625
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - palakagl/autotrain-data-PersonalAssitant co2_eq_emissions: 2.258363491829382 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 717221781 - CO2 Emissions (in grams): 2.258363491829382 ## Validation Metrics - Loss: 0.38660314679145813 - Accuracy: 0.9042081949058693 - Macro F1: 0.9079200295131094 - Micro F1: 0.9042081949058692 - Weighted F1: 0.9052766730963512 - Macro Precision: 0.9116101664087508 - Micro Precision: 0.9042081949058693 - Weighted Precision: 0.9097680514456175 - Macro Recall: 0.9080246002936301 - Micro Recall: 0.9042081949058693 - Weighted Recall: 0.9042081949058693 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/palakagl/autotrain-PersonalAssitant-717221781 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("palakagl/autotrain-PersonalAssitant-717221781", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("palakagl/autotrain-PersonalAssitant-717221781", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BigSalmon/GPT2Neo1.3BPoints2
5d3d912d44abc0be66d3ab8e7fb8a731a7178d48
2022-04-12T19:20:21.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/GPT2Neo1.3BPoints2
19
null
transformers
8,626
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPT2Neo1.3BPoints2") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints2") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence.
Wogiger/roberta-food
0614d95efac62c8f5b818d6e3ea4ee8ee4b3fa69
2022-04-15T08:46:08.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wogiger
null
Wogiger/roberta-food
19
null
transformers
8,627
Entry not found
Helsinki-NLP/opus-mt-tc-big-lv-en
6a72922634efb08f24d49149300122ef84e313e6
2022-06-01T13:00:52.000Z
[ "pytorch", "marian", "text2text-generation", "en", "lv", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-lv-en
19
null
transformers
8,628
--- language: - en - lv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-lv-en results: - task: name: Translation lav-eng type: translation args: lav-eng dataset: name: flores101-devtest type: flores_101 args: lav eng devtest metrics: - name: BLEU type: bleu value: 37.2 - task: name: Translation lav-eng type: translation args: lav-eng dataset: name: newsdev2017 type: newsdev2017 args: lav-eng metrics: - name: BLEU type: bleu value: 30.8 - task: name: Translation lav-eng type: translation args: lav-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: lav-eng metrics: - name: BLEU type: bleu value: 59.2 - task: name: Translation lav-eng type: translation args: lav-eng dataset: name: newstest2017 type: wmt-2017-news args: lav-eng metrics: - name: BLEU type: bleu value: 21.8 --- # opus-mt-tc-big-lv-en Neural machine translation model for translating from Latvian (lv) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-13 * source language(s): lav * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/lav-eng/opusTCv20210807+bt_transformer-big_2022-03-13.zip) * more information released models: [OPUS-MT lav-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lav-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Dienai ir divdesmit četras stundas.", "Jys lobs advokats." ] model_name = "pytorch-models/opus-mt-tc-big-lv-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # The day has twenty-four hours. # Jys lobs lawyer. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-lv-en") print(pipe("Dienai ir divdesmit četras stundas.")) # expected output: The day has twenty-four hours. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lav-eng/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lav-eng/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | lav-eng | tatoeba-test-v2021-08-07 | 0.73884 | 59.2 | 1631 | 11213 | | lav-eng | flores101-devtest | 0.64246 | 37.2 | 1012 | 24721 | | lav-eng | newsdev2017 | 0.55467 | 30.8 | 2003 | 48175 | | lav-eng | newstest2017 | 0.48769 | 21.8 | 2001 | 47511 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 19:46:50 EEST 2022 * port machine: LM0-400-22516.local
schhwmn/mbart-large-50-finetuned-ukr-gec
799924f48e2aaa2f2609e8181e8b64b3dd01f85d
2022-04-21T11:33:45.000Z
[ "pytorch", "mbart", "text2text-generation", "uk", "arxiv:2103.16997", "transformers", "gec", "mbart-50", "autotrain_compatible" ]
text2text-generation
false
schhwmn
null
schhwmn/mbart-large-50-finetuned-ukr-gec
19
null
transformers
8,629
--- language: uk tags: - gec - mbart-50 widget: - text: "я й не думав що комп'ютерна лінгвістика це легкоо." --- This model was finetuned on errorful sentences from the `train` subset of [UA-GEC](https://github.com/grammarly/ua-gec) corpus, introduced in [UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language](https://arxiv.org/abs/2103.16997) paper. Only sentences containing errors were used; 8,874 sentences for training and 987 sentences for validation. The training arguments were defined as follows: ``` batch_size = 4 num_train_epochs = 3 learning_rate=5e-5 weight_decay=0.01 optim = "adamw_hf" ```
eslamxm/AraT5-base-title-generation-finetuned-ar-wikilingua
9137f2a54721e97c0aa5dbb241d5fcf7ef7407d3
2022-04-20T04:35:31.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/AraT5-base-title-generation-finetuned-ar-wikilingua
19
null
transformers
8,630
--- tags: - summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: AraT5-base-title-generation-finetuned-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraT5-base-title-generation-finetuned-ar-xlsum This model is a fine-tuned version of [UBC-NLP/AraT5-base-title-generation](https://huggingface.co/UBC-NLP/AraT5-base-title-generation) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.8120 - Rouge-1: 23.29 - Rouge-2: 8.44 - Rouge-l: 20.74 - Gen Len: 18.16 - Bertscore: 70.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 6.1002 | 1.0 | 5111 | 5.2917 | 18.95 | 5.84 | 17.01 | 17.9 | 68.69 | | 5.4427 | 2.0 | 10222 | 5.0877 | 20.61 | 6.73 | 18.58 | 17.14 | 69.69 | | 5.1876 | 3.0 | 15333 | 4.9631 | 21.27 | 7.17 | 19.09 | 17.69 | 69.82 | | 5.0256 | 4.0 | 20444 | 4.8984 | 21.7 | 7.53 | 19.55 | 17.56 | 70.18 | | 4.9104 | 5.0 | 25555 | 4.8538 | 22.23 | 7.54 | 19.79 | 17.6 | 70.33 | | 4.8251 | 6.0 | 30666 | 4.8309 | 22.35 | 7.6 | 19.96 | 17.64 | 70.51 | | 4.7666 | 7.0 | 35777 | 4.8168 | 22.45 | 7.81 | 20.15 | 17.47 | 70.61 | | 4.7275 | 8.0 | 40888 | 4.8120 | 22.67 | 7.83 | 20.34 | 17.56 | 70.66 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
vivianhuang88/bert_twitter_hashtag
41881997709e9403b6b73dd4cedced5fdeaf05e4
2022-04-19T06:13:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
vivianhuang88
null
vivianhuang88/bert_twitter_hashtag
19
null
transformers
8,631
--- license: afl-3.0 --- # Overview This model is based on [bert-base-uncased](https://huggingface.co/bert-base-uncased) model and trained on more than 30k tweets that scraped from Twitter. By inputing some sentences with a '[MASK]' indicating the location you would like to fill in with a hashtag, our model can generate potential related trending topics according to your tweet context. # Define a list of trending topics ```python trending_topics = [Your choice of topics] ``` # Download the model ```python from transformers import pipeline, BertTokenizer import numpy as np MODEL = "vivianhuang88/bert_twitter_hashtag" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = BertTokenizer.from_pretrained(MODEL, additional_special_tokens=trending_topics) ``` # Get the output ```python def print_candidates(text, candidates): for i in range(5): token = tokenizer.decode(candidates[i]['token']) topic = ''.join(token.split()) output = text.replace("[MASK]", topic) print(output) text = "Bruce has an electric guitar set in [MASK]. " candidates = fill_mask(text, targets = trending_topics) print_candidates(text, candidates) ```
emilylearning/finetuned_cgp_added_birth_place__female_weight_1.5__test_run_False__p_dataset_100
2e1240eebf9911c7ebdb49cccf2d9270d0c4332e
2022-04-21T22:13:54.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_added_birth_place__female_weight_1.5__test_run_False__p_dataset_100
19
null
transformers
8,632
Entry not found
emilylearning/finetuned_cgp_add_birth_date__f_weight_5__p_dataset_100__test_False
463a352f13b612bf36d961d093e1a493c7d6ad92
2022-04-25T08:11:31.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_add_birth_date__f_weight_5__p_dataset_100__test_False
19
null
transformers
8,633
Entry not found
emilylearning/finetuned_cgp_add_birth_place__f_weight_5__p_dataset_100__test_False
beac4c8e8f8d5f5517bc6e75e0037347c84bf89f
2022-04-24T21:06:12.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_add_birth_place__f_weight_5__p_dataset_100__test_False
19
null
transformers
8,634
Entry not found
Lucifermorningstar011/autotrain-final-784824206
97489bd4366239eba7bc9f9b4c3b5222e4e4029f
2022-04-25T18:46:51.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Lucifermorningstar011
null
Lucifermorningstar011/autotrain-final-784824206
19
null
transformers
8,635
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 354.21745907505175 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824206 - CO2 Emissions (in grams): 354.21745907505175 ## Validation Metrics - Loss: 0.1393078863620758 - Accuracy: 0.9785765909606228 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824206 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824206", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824206", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Lucifermorningstar011/autotrain-final-784824213
327013fea91dfbde55328555aa776401beb7ecfb
2022-04-25T19:24:43.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Lucifermorningstar011
null
Lucifermorningstar011/autotrain-final-784824213
19
null
transformers
8,636
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 443.62532415086787 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824213 - CO2 Emissions (in grams): 443.62532415086787 ## Validation Metrics - Loss: 0.12777526676654816 - Accuracy: 0.9823625038850627 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824213 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824213", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824213", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
yihsuan/best_model_0426_base
e16b7d1bbeaa94f2dedbda63a2da20efd7b11dfc
2022-04-28T01:44:27.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "zh", "transformers", "summarization", "mT5", "autotrain_compatible" ]
summarization
false
yihsuan
null
yihsuan/best_model_0426_base
19
null
transformers
8,637
--- tags: - summarization - mT5 language: - zh widget: - text: "專家稱維康桑格研究所(Wellcome Sanger Institute)的上述研究發現「令人震驚」而且「發人深省」。基因變異指關於我們身體成長和管理的相關指令,也就是DNA當中發生的變化。長期以來,變異一直被當作癌症的根源,但是數十年來關於變異是否對衰老有重要影響一直存在爭論。桑格研究所的研究人員說他們得到了「第一個試驗性證據」,證明了兩者的關係。他們分析了預期壽命各異的物種基因變異的不同速度。研究人員分析了貓、黑白疣猴、狗、雪貂、長頸鹿、馬、人、獅子、裸鼴鼠、兔子、老鼠、環尾狐猴和老虎等十幾種動物的DNA。發表在《自然》雜誌上的研究顯示,老鼠在短暫的生命當中每年經歷了將近800次變異,老鼠的壽命一般不到4年。" inference: parameters: max_length: 50 ---
Lilya/distilbert-base-uncased-finetuned-ner-TRANS
587367aa304f568002e426e2162f72485244aa86
2022-04-28T07:00:58.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Lilya
null
Lilya/distilbert-base-uncased-finetuned-ner-TRANS
19
null
transformers
8,638
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner-TRANS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner-TRANS This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1053 - Precision: 0.7911 - Recall: 0.8114 - F1: 0.8011 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.077 | 1.0 | 3762 | 0.0724 | 0.7096 | 0.7472 | 0.7279 | 0.9741 | | 0.0538 | 2.0 | 7524 | 0.0652 | 0.7308 | 0.7687 | 0.7493 | 0.9766 | | 0.0412 | 3.0 | 11286 | 0.0643 | 0.7672 | 0.7875 | 0.7772 | 0.9788 | | 0.0315 | 4.0 | 15048 | 0.0735 | 0.7646 | 0.7966 | 0.7803 | 0.9793 | | 0.0249 | 5.0 | 18810 | 0.0772 | 0.7805 | 0.7981 | 0.7892 | 0.9801 | | 0.0213 | 6.0 | 22572 | 0.0783 | 0.7829 | 0.8063 | 0.7944 | 0.9805 | | 0.0187 | 7.0 | 26334 | 0.0858 | 0.7821 | 0.8010 | 0.7914 | 0.9809 | | 0.0157 | 8.0 | 30096 | 0.0860 | 0.7837 | 0.8120 | 0.7976 | 0.9812 | | 0.0122 | 9.0 | 33858 | 0.0963 | 0.7857 | 0.8129 | 0.7990 | 0.9813 | | 0.0107 | 10.0 | 37620 | 0.0993 | 0.7934 | 0.8089 | 0.8010 | 0.9812 | | 0.0091 | 11.0 | 41382 | 0.1031 | 0.7882 | 0.8123 | 0.8001 | 0.9814 | | 0.0083 | 12.0 | 45144 | 0.1053 | 0.7911 | 0.8114 | 0.8011 | 0.9815 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.0.0 - Tokenizers 0.10.3
cassiepowell/msmarco-RoBERTa-for-similarity
831764faebb3d2b211d3e3cc65e1114f6f336faa
2022-04-28T17:46:46.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
cassiepowell
null
cassiepowell/msmarco-RoBERTa-for-similarity
19
null
transformers
8,639
Entry not found
HiTZ/A2T_RoBERTa_SMFA_ACE-arg
6cb7fc2c69aea176c58e379c6ffdf8d63b1e61e4
2022-05-08T23:09:14.000Z
[ "pytorch", "roberta", "text-classification", "dataset:snli", "dataset:anli", "dataset:multi_nli", "dataset:multi_nli_mismatch", "dataset:fever", "arxiv:2104.14690", "arxiv:2203.13602", "transformers", "zero-shot-classification" ]
zero-shot-classification
false
HiTZ
null
HiTZ/A2T_RoBERTa_SMFA_ACE-arg
19
null
transformers
8,640
--- pipeline_tag: zero-shot-classification datasets: - snli - anli - multi_nli - multi_nli_mismatch - fever --- # A2T Entailment model **Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers). Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format. For more information please, take a look to the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library or the following published papers: - [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/) - [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]() ## About the model The model name describes the configuration used for training as follows: <!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ --> <h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3> - `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>. - `NLI_datasets`: The NLI datasets used for pivot training. - `S`: Standford Natural Language Inference (SNLI) dataset. - `M`: Multi Natural Language Inference (MNLI) dataset. - `F`: Fever-nli dataset. - `A`: Adversarial Natural Language Inference (ANLI) dataset. - `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg. Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results. ## Cite If you use this model, consider citing the following publications: ```bibtex @inproceedings{sainz-etal-2021-label, title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction", author = "Sainz, Oscar and Lopez de Lacalle, Oier and Labaka, Gorka and Barrena, Ander and Agirre, Eneko", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.92", doi = "10.18653/v1/2021.emnlp-main.92", pages = "1199--1212", } ```
Philip-Jan/finetuning-sentiment-model-3000-samples
966415e9322c814a22dd40b18e59f855459d4455
2022-07-13T20:44:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Philip-Jan
null
Philip-Jan/finetuning-sentiment-model-3000-samples
19
null
transformers
8,641
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8646864686468646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3328 - Accuracy: 0.8633 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
jerryKakooza/language-detection-fine-tuned-on-xlm-roberta-base
b4fa3b7f65a428f5f94f62640ad8bb391deae434
2022-05-03T09:31:18.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:common_language", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jerryKakooza
null
jerryKakooza/language-detection-fine-tuned-on-xlm-roberta-base
19
null
transformers
8,642
--- license: mit tags: - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: language-detection-fine-tuned-on-xlm-roberta-base results: - task: name: Text Classification type: text-classification dataset: name: common_language type: common_language args: full metrics: - name: Accuracy type: accuracy value: 0.9760187824920342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-fine-tuned-on-xlm-roberta-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0725 | 1.0 | 22194 | 0.1642 | 0.9760 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
emilylearning/finetuned_cgp_added_birth_date__test_run_False__p_dataset_100
fcf11285a2f0ea8472f731dcff339d127c5231a2
2022-05-06T07:27:24.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_added_birth_date__test_run_False__p_dataset_100
19
null
transformers
8,643
Entry not found
theojolliffe/bart-large-cnn-finetuned-pubmed
9ed6b95cc8ade42a8398d70dba8f629e0fc9ca09
2022-05-07T10:50:06.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-pubmed
19
null
transformers
8,644
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: pubmed metrics: - name: Rouge1 type: rouge value: 36.3093 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-pubmed This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.0113 - Rouge1: 36.3093 - Rouge2: 14.7358 - Rougel: 22.2752 - Rougelsum: 32.8168 - Gen Len: 137.6193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.1664 | 1.0 | 3748 | 2.0113 | 36.3093 | 14.7358 | 22.2752 | 32.8168 | 137.6193 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
RobertoMCA97/bert-finetuned-inspec
37995bb66779d7b7929fcd7c4b21ec7baf3ad63e
2022-05-07T16:35:01.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:inspec", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
RobertoMCA97
null
RobertoMCA97/bert-finetuned-inspec
19
null
transformers
8,645
--- license: apache-2.0 tags: - generated_from_trainer datasets: - inspec metrics: - f1 model-index: - name: bert-finetuned-inspec results: - task: name: Token Classification type: token-classification dataset: name: inspec type: inspec args: extraction metrics: - name: F1 type: f1 value: 0.30353331752430635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-inspec This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the inspec dataset. It achieves the following results on the evaluation set: - Loss: 0.3055 - F1: 0.3035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3323 | 1.0 | 125 | 0.2799 | 0.1521 | | 0.2563 | 2.0 | 250 | 0.2638 | 0.2230 | | 0.2179 | 3.0 | 375 | 0.2689 | 0.2607 | | 0.1809 | 4.0 | 500 | 0.2807 | 0.3122 | | 0.1545 | 5.0 | 625 | 0.3055 | 0.3035 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
pile-of-law/distilbert-base-uncased-finetuned-eoir_privacy
f85c0f418a24db8a0146b739688cc7824b2b29c8
2022-07-04T07:27:19.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:eoir_privacy", "arxiv:2207.00220", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pile-of-law
null
pile-of-law/distilbert-base-uncased-finetuned-eoir_privacy
19
2
transformers
8,646
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eoir_privacy metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-eoir_privacy results: - task: name: Text Classification type: text-classification dataset: name: eoir_privacy type: eoir_privacy args: all metrics: - name: Accuracy type: accuracy value: 0.9052835051546392 - name: F1 type: f1 value: 0.8088426527958388 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-eoir_privacy This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the eoir_privacy dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Accuracy: 0.9053 - F1: 0.8088 ## Model description Model predicts whether to mask names as pseudonyms in any text. Input format should be a paragraph with names masked. It will then output whether to use a pseudonym because the EOIR courts would not allow such private/sensitive information to become public unmasked. ## Intended uses & limitations This is a minimal privacy standard and will likely not work on out-of-distribution data. ## Training and evaluation data We train on the EOIR Privacy dataset and evaluate further using sensitivity analyses. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 395 | 0.3053 | 0.8789 | 0.7432 | | 0.3562 | 2.0 | 790 | 0.2857 | 0.8976 | 0.7883 | | 0.2217 | 3.0 | 1185 | 0.3358 | 0.8905 | 0.7550 | | 0.1509 | 4.0 | 1580 | 0.3505 | 0.9040 | 0.8077 | | 0.1509 | 5.0 | 1975 | 0.3681 | 0.9053 | 0.8088 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation ``` @misc{hendersonkrass2022pileoflaw, url = {https://arxiv.org/abs/2207.00220}, author = {Henderson*, Peter and Krass*, Mark S. and Zheng, Lucia and Guha, Neel and Manning, Christopher D. and Jurafsky, Dan and Ho, Daniel E.}, title = {Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset}, publisher = {arXiv}, year = {2022} } ```
eslamxm/mt5-base-arabic
16fa82f4facb900388ce38930cf304ced4c6702c
2022-06-14T18:08:07.000Z
[ "pytorch", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "arabic", "ar", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-arabic
19
null
transformers
8,647
--- license: apache-2.0 tags: - summarization - arabic - ar - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-arabic This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on arabic subset on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2742 - Rouge-1: 22.86 - Rouge-2: 10.31 - Rouge-l: 20.85 - Gen Len: 19.0 - Bertscore: 71.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.2331 | 1.0 | 1172 | 3.5051 | 18.54 | 6.63 | 16.77 | 19.0 | 70.28 | | 3.7075 | 2.0 | 2344 | 3.3737 | 19.99 | 7.94 | 18.19 | 19.0 | 70.79 | | 3.5132 | 3.0 | 3516 | 3.3171 | 20.76 | 8.57 | 18.96 | 19.0 | 70.95 | | 3.3859 | 4.0 | 4688 | 3.2811 | 21.49 | 8.99 | 19.51 | 19.0 | 71.19 | | 3.3012 | 5.0 | 5860 | 3.2742 | 21.79 | 9.18 | 19.77 | 19.0 | 71.25 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Jiexing/spider_relation_t5_3b-4160
00eec8beeed64edaf1563426c58303017c3c7859
2022-05-09T16:42:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Jiexing
null
Jiexing/spider_relation_t5_3b-4160
19
null
transformers
8,648
Entry not found
CEBaB/lstm.CEBaB.sa.3-class.exclusive.seed_42
11c79f55bdfb5b351a2e150d710df7742877a1b8
2022-05-10T23:37:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.sa.3-class.exclusive.seed_42
19
null
transformers
8,649
Entry not found
Xiaoman/NER-CoNLL2003-V3
1c6a91de55dd52137ba787de590778fdab365217
2022-05-14T18:42:17.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Xiaoman
null
Xiaoman/NER-CoNLL2003-V3
19
null
transformers
8,650
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NER-CoNLL2003-V3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-CoNLL2003-V3 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.961395091713594e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 27 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
paust/pko-t5-small
c89bdaf7e9b562fec1b73bffb6d83c608d24657b
2022-05-21T06:38:51.000Z
[ "pytorch", "t5", "text2text-generation", "ko", "arxiv:2105.09680", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
paust
null
paust/pko-t5-small
19
1
transformers
8,651
--- language: ko license: cc-by-4.0 --- # pko-t5-small [Source Code](https://github.com/paust-team/pko-t5) pko-t5 는 한국어 전용 데이터로 학습한 [t5 v1.1 모델](https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/released_checkpoints.md)입니다. 한국어를 tokenize 하기 위해서 sentencepiece 대신 OOV 가 없는 BBPE 를 사용했으며 한국어 데이터 (나무위키, 위키피디아, 모두의말뭉치 등..) 를 T5 의 span corruption task 를 사용해서 unsupervised learning 만 적용하여 학습을 진행했습니다. pko-t5 를 사용하실 때는 대상 task 에 파인튜닝하여 사용하시기 바랍니다. ## Usage transformers 의 API 를 사용하여 접근 가능합니다. tokenizer 를 사용할때는 `T5Tokenizer` 가 아니라 `T5TokenizerFast` 를 사용해주십시오. model 은 T5ForConditionalGeneration 를 그대로 활용하시면 됩니다. ### Example ```python from transformers import T5TokenizerFast, T5ForConditionalGeneration tokenizer = T5TokenizerFast.from_pretrained('paust/pko-t5-small') model = T5ForConditionalGeneration.from_pretrained('paust/pko-t5-small') input_ids = tokenizer(["qa question: 당신의 이름은 무엇인가요?"]).input_ids labels = tokenizer(["T5 입니다."]).input_ids outputs = model(input_ids, labels) print(f"loss={outputs.loss} logits={outputs.logits}") ``` ## Klue 평가 (dev) | | Model | ynat (macro F1) | sts (pearsonr/F1) | nli (acc) | ner (entity-level F1) | re (micro F1) | dp (LAS) | mrc (EM/F1) | | --- | --- |-----------------| --- | --- | --- | --- | --- | --- | | | Baseline | **87.30** | **93.20/86.13** | **89.50** | 86.06 | 71.06 | 87.93 | 75.26/- | | FT | [pko-t5-small](https://huggingface.co/paust/pko-t5-small) (77M) | 86.21 | 77.99/77.01 | 69.20 | 82.60 | 62.95 | 93.15 | 43.81/46.58 | | FT | [pko-t5-base](https://huggingface.co/paust/pko-t5-base) (250M) | 87.29 | 90.25/83.43 | 79.73 | 87.80 | 72.94 | 97.28 | 61.53/64.74 | | FT | [pko-t5-large](https://huggingface.co/paust/pko-t5-large) (800M) | 87.12 | 92.05/85.24 | 84.96 | **88.18** | 72.26 | 97.60 | 68.01/71.44 | | MT | pko-t5-small | 85.85 | 79.12/77.81 | 66.8 | 81.53 | 67.93 | 91.38 | 44.97/48.07 | | MT | pko-t5-base | 86.86 | 87.61/81.42 | 75.46 | 86.85 | 71.85 | 96.32 | 61.95/65.06 | | MT | pko-t5-large | 87.25 | 91.05/84.58 | 82.16 | 87.63 | **74.78** | **97.33** | **69.18/71.92** | - FT: 싱글태스크 파인튜닝 / MT: 멀티태스크 파인튜닝 - [Baseline](https://arxiv.org/abs/2105.09680): KLUE 논문에서 소개된 dev set 에 대한 SOTA 점수 ## License PAUST에서 만든 pko-t5는 [MIT license](https://github.com/paust-team/pko-t5/blob/main/LICENSE) 하에 공개되어 있습니다.
RobertoMCA97/bert-finetuned-inspec-3-epochs
2023362bda4b17d9e2bdce2f984c51c36d79f1d7
2022-05-17T17:27:13.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:inspec", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
RobertoMCA97
null
RobertoMCA97/bert-finetuned-inspec-3-epochs
19
null
transformers
8,652
--- license: apache-2.0 tags: - generated_from_trainer datasets: - inspec metrics: - f1 - precision - recall model-index: - name: bert-finetuned-inspec-3-epochs results: - task: name: Token Classification type: token-classification dataset: name: inspec type: inspec args: extraction metrics: - name: F1 type: f1 value: 0.28328008519701814 - name: Precision type: precision value: 0.26594090202177295 - name: Recall type: recall value: 0.3030379746835443 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-inspec-3-epochs This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the inspec dataset. It achieves the following results on the evaluation set: - Loss: 0.2728 - F1: 0.2833 - Precision: 0.2659 - Recall: 0.3030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.3338 | 1.0 | 125 | 0.2837 | 0.1401 | 0.1510 | 0.1306 | | 0.2575 | 2.0 | 250 | 0.2658 | 0.2183 | 0.2519 | 0.1927 | | 0.2259 | 3.0 | 375 | 0.2728 | 0.2833 | 0.2659 | 0.3030 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
ibm/qcpg-questions
4b7b17212dbc6fbc5af2189184bc42d15efb5d47
2022-05-18T11:03:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ibm
null
ibm/qcpg-questions
19
null
transformers
8,653
Details can be found [here](https://github.com/IBM/quality-controlled-paraphrase-generation)
priyamm/autotrain-KeywordExtraction-882328335
4538e66824ddbb94c4486ee0b4041b4d273690e7
2022-05-18T20:40:08.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:priyamm/autotrain-data-KeywordExtraction", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
priyamm
null
priyamm/autotrain-KeywordExtraction-882328335
19
null
transformers
8,654
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - priyamm/autotrain-data-KeywordExtraction co2_eq_emissions: 0.21373468108000182 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 882328335 - CO2 Emissions (in grams): 0.21373468108000182 ## Validation Metrics - Loss: 0.2641160488128662 - Accuracy: 0.9128 - Precision: 0.9444444444444444 - Recall: 0.8772 - AUC: 0.9709556000000001 - F1: 0.9095810866860223 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/priyamm/autotrain-KeywordExtraction-882328335 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("priyamm/autotrain-KeywordExtraction-882328335", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("priyamm/autotrain-KeywordExtraction-882328335", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
d4niel92/t5-reddit
b819bdcaaab7056584c7249005177f003484b205
2022-07-03T07:48:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
d4niel92
null
d4niel92/t5-reddit
19
null
transformers
8,655
This T5 small model finetuned on Reddit data. It has two subtasks: title generation tag classification
emilylearning/cond_ft_birth_date_on_wiki_bio__prcnt_na__test_run_True
3548ef90be69dd06cbff4864879435270a2c0a56
2022-05-25T02:55:08.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_birth_date_on_wiki_bio__prcnt_na__test_run_True
19
null
transformers
8,656
Entry not found
SalamaThanks/SalamaThanksTransformer_en2fil_v3
a7543a82b9a251db339ca0c27e97d35043817ad3
2022-06-06T11:19:24.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SalamaThanks
null
SalamaThanks/SalamaThanksTransformer_en2fil_v3
19
null
transformers
8,657
Entry not found
plncmm/roberta-clinical-wl-es
c0ddaa11193d5ed9d6b454d43dab8f4cd2092828
2022-06-07T23:00:56.000Z
[ "pytorch", "roberta", "fill-mask", "es", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
plncmm
null
plncmm/roberta-clinical-wl-es
19
null
transformers
8,658
--- license: apache-2.0 language: - es widget: - text: "Periodontitis <mask> generalizada severa." - text: "Caries dentinaria <mask>." - text: "Movilidad aumentada en pza <mask>." - text: "Pcte con dm en tto con <mask>." - text: "Pcte con erc en tto con <mask>." tags: - generated_from_trainer model-index: - name: roberta-clinical-wl-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plncmm/roberta-clinical-wl-es This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the Chilean waiting list dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
samba/samba-large-bert-fine-tuned
ae44968f00c6e36388aca3825078bf70c3f6299a
2022-06-13T02:18:56.000Z
[ "pytorch", "roberta", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
samba
null
samba/samba-large-bert-fine-tuned
19
null
transformers
8,659
--- license: apache-2.0 ---
Aneela/bert-finetuned-ner
f10642157d77675160047c97eb7527563108236f
2022-06-19T13:57:08.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Aneela
null
Aneela/bert-finetuned-ner
19
null
transformers
8,660
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9355265333112911 - name: Recall type: recall value: 0.9523729384045776 - name: F1 type: f1 value: 0.9438745725961137 - name: Accuracy type: accuracy value: 0.986210042974039 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0627 - Precision: 0.9355 - Recall: 0.9524 - F1: 0.9439 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0842 | 1.0 | 1756 | 0.0662 | 0.9195 | 0.9396 | 0.9294 | 0.9839 | | 0.0384 | 2.0 | 3512 | 0.0581 | 0.9340 | 0.9504 | 0.9421 | 0.9862 | | 0.0182 | 3.0 | 5268 | 0.0627 | 0.9355 | 0.9524 | 0.9439 | 0.9862 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.10.3
chkla/parlbert-topic-german
6db3aeb6bb3122f8e117f266ea6c6bfe7be3a44d
2022-06-20T09:45:18.000Z
[ "pytorch", "bert", "text-classification", "german", "transformers" ]
text-classification
false
chkla
null
chkla/parlbert-topic-german
19
null
transformers
8,661
--- language: german --- ### Welcome to ParlBERT-Topic-German! 🏷 **Model description** This model was trained on \~10k manually annotated interpellations (📚 [Breunig/ Schnatterer 2019](https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198835332.001.0001/oso-9780198835332)) with topics from the [Comparative Agendas Project](https://www.comparativeagendas.net/datasets_codebooks) to classify text into one of twenty labels (annotation codebook). _Note: "Interpellation is a formal request of a parliament to the respective government."([Wikipedia](https://en.wikipedia.org/wiki/Interpellation_(politics)))_ 🗃 **Dataset** | party | speeches | tokens | |----|----|----| | CDU/CSU | 7,635 | 4,862,654 | | SPD | 5,321 | 3,158,315 | | AfD | 3,465 | 1,844,707 | | FDP | 3,067 | 1,593,108 | | The Greens | 2,866 | 1,522,305 | | The Left | 2,671 | 1,394,089 | | cross-bencher | 200 | 86,170 | 🏃🏼‍♂️**Model training** **ParlBERT-Topic-German** was fine-tuned on a domain adapted model (GermanBERT fine-tuned on [DeuParl](https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2889?show=full)) for topic modeling with an interpellations dataset (📚 [Breunig/ Schnatterer 2019](https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198835332.001.0001/oso-9780198835332)) from the [Comparative Agendas Project](https://www.comparativeagendas.net/datasets_codebooks). 🤖 **Use** ```python from transformers import pipeline pipeline_classification_topics = pipeline("text-classification", model="chkla/parlbert-topics-german", tokenizer="bert-base-german-cased", return_all_scores=False) text = "Sachgebiet Ausschließliche Gesetzgebungskompetenz des Bundes über die Zusammenarbeit des Bundes und der Länder zum Schutze der freiheitlichen demokratischen Grundordnung, des Bestandes und der Sicherheit des Bundes oder eines Landes Wir fragen die Bundesregierung" pipeline_classification_topics(text) # Government ``` 📊 **Evaluation** The model was evaluated on an evaluation set (20%): | Label | F1 | support | |----|----|----| | International | 80.0 | 1,126 | | Defense | 85.0 | 1,099 | | Government | 71.3 | 989 | | Civil Rights | 76.5 | 978 | | Environment | 76.6 | 845 | | Transportation | 86.0 | 800 | | Law & Crime | 67.1 | 492 | | Energy | 78.6 | 424 | | Health | 78.2 | 418 | | Domestic Com. | 64.4 | 382 | | Immigration | 81.0 | 376 | | Labor | 69.1 | 344 | | Macroeconom. | 62.8 | 339 | | Agriculture | 76.3 | 292 | | Social Welfare | 49.2 | 253 | | Technology | 63.0 | 252 | | Education | 71.6 | 183 | | Housing | 79.6 | 178 | | Foreign Trade | 61.5 | 139 | | Culture | 54.6 | 69 | | Public Lands | 45.4 | 55 | ⚠️ **Limitations** Models are often highly topic dependent. Therefore, the model may perform less well on different topics and text types not included in the training set. 👥 **Cite** ``` @article{klamm2022frameast, title={FrameASt: A Framework for Second-level Agenda Setting in Parliamentary Debates through the Lense of Comparative Agenda Topics}, author={Klamm, Christopher and Rehbein, Ines and Ponzetto, Simone}, journal={ParlaCLARIN III at LREC2022}, year={2022} } ``` 🐦 Twitter: [@chklamm](http://twitter.com/chklamm)
bousejin/distilbert-base-uncased-finetuned-emotion
84d53d10aace685a7571d97cbed6b7e34f964801
2022-07-13T12:53:50.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
bousejin
null
bousejin/distilbert-base-uncased-finetuned-emotion
19
null
transformers
8,662
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.925169929474641 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8419 | 1.0 | 250 | 0.3236 | 0.9025 | 0.8999 | | 0.258 | 2.0 | 500 | 0.2202 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
abhishek/autotrain_fashion_mnist_vit_base
7aa1c5cbc6c320e84d15026792d600ed28dd23ac
2022-06-23T13:48:56.000Z
[ "pytorch", "vit", "image-classification", "dataset:abhishek/autotrain-data-vision_877913e77fb94b7abd4dafc5ebf830b0", "dataset:fashion_mnist", "transformers", "autotrain", "model-index", "co2_eq_emissions" ]
image-classification
false
abhishek
null
abhishek/autotrain_fashion_mnist_vit_base
19
null
transformers
8,663
--- tags: autotrain datasets: - abhishek/autotrain-data-vision_877913e77fb94b7abd4dafc5ebf830b0 - fashion_mnist co2_eq_emissions: 0.2438639401641305 model-index: - name: autotrain_fashion_mnist_vit_base results: - task: name: Image Classification type: image-classification dataset: name: fashion_mnist type: fashion_mnist metrics: - name: Accuracy type: accuracy value: 0.9473 - task: type: image-classification name: Image Classification dataset: name: fashion_mnist type: fashion_mnist config: fashion_mnist split: test metrics: - name: Accuracy type: accuracy value: 0.9431 verified: true - name: Precision Macro type: precision value: 0.9435374485262068 verified: true - name: Precision Micro type: precision value: 0.9431 verified: true - name: Precision Weighted type: precision value: 0.9435374485262069 verified: true - name: Recall Macro type: recall value: 0.9430999999999999 verified: true - name: Recall Micro type: recall value: 0.9431 verified: true - name: Recall Weighted type: recall value: 0.9431 verified: true - name: F1 Macro type: f1 value: 0.9431357840300738 verified: true - name: F1 Micro type: f1 value: 0.9431 verified: true - name: F1 Weighted type: f1 value: 0.9431357840300738 verified: true - name: loss type: loss value: 0.17352284491062164 verified: true --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 7024732 - CO2 Emissions (in grams): 0.2438639401641305 ## Validation Metrics - Loss: 0.16775867342948914 - Accuracy: 0.9473333333333334 - Macro F1: 0.9473921270228505 - Micro F1: 0.9473333333333334 - Weighted F1: 0.9473921270228505 - Macro Precision: 0.9478705813419325 - Micro Precision: 0.9473333333333334 - Weighted Precision: 0.9478705813419323 - Macro Recall: 0.9473333333333332 - Micro Recall: 0.9473333333333334 - Weighted Recall: 0.9473333333333334
mgfrantz/deberta_v3_finetuned_predicting_effective_arguments
18cc8c463d8cdb69c925bd574c2c31f80b66fdb9
2022-07-26T23:17:01.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
mgfrantz
null
mgfrantz/deberta_v3_finetuned_predicting_effective_arguments
19
null
transformers
8,664
Entry not found
annahaz/xlm-roberta-base-finetuned-misogyny-en-it-hi-beng
3139e31f1d45fb39e9a5b9eb70dce82c4eb7cad1
2022-06-30T20:47:09.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-finetuned-misogyny-en-it-hi-beng
19
null
transformers
8,665
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-finetuned-misogyny-en-it-hi-beng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny-en-it-hi-beng This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0140 - Accuracy: 0.9970 - F1: 0.9969 - Precision: 0.9937 - Recall: 1.0 - Mae: 0.0030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3131 | 1.0 | 1759 | 0.4655 | 0.7820 | 0.7682 | 0.7855 | 0.7516 | 0.2180 | | 0.2644 | 2.0 | 3518 | 0.3231 | 0.8619 | 0.8665 | 0.8091 | 0.9326 | 0.1381 | | 0.2408 | 3.0 | 5277 | 0.3515 | 0.8801 | 0.8877 | 0.8071 | 0.9863 | 0.1199 | | 0.1927 | 4.0 | 7036 | 0.1428 | 0.9514 | 0.9512 | 0.9194 | 0.9853 | 0.0486 | | 0.1333 | 5.0 | 8795 | 0.1186 | 0.9712 | 0.9707 | 0.9478 | 0.9947 | 0.0288 | | 0.1163 | 6.0 | 10554 | 0.0546 | 0.9879 | 0.9875 | 0.9803 | 0.9947 | 0.0121 | | 0.0854 | 7.0 | 12313 | 0.0412 | 0.9899 | 0.9896 | 0.9804 | 0.9989 | 0.0101 | | 0.086 | 8.0 | 14072 | 0.0252 | 0.9949 | 0.9948 | 0.9896 | 1.0 | 0.0051 | | 0.0395 | 9.0 | 15831 | 0.0179 | 0.9965 | 0.9963 | 0.9927 | 1.0 | 0.0035 | | 0.0343 | 10.0 | 17590 | 0.0140 | 0.9970 | 0.9969 | 0.9937 | 1.0 | 0.0030 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
anahitapld/robera-base-dbd
c1f6bf7c5dff38150dffba3ee10c3edd0976cd53
2022-06-29T08:53:27.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
anahitapld
null
anahitapld/robera-base-dbd
19
null
transformers
8,666
--- license: apache-2.0 ---
JHart96/finetuning-sentiment-model-3000-samples
69ce08ed13517dee4611d53707c0d625feea4201
2022-06-29T18:20:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JHart96
null
JHart96/finetuning-sentiment-model-3000-samples
19
null
transformers
8,667
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8627450980392156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3300 - Accuracy: 0.86 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ychenNLP/arabic-ner-ace
2ea8baa63841c8f8bec9a1d8204589b951cc7455
2022-07-12T20:02:24.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "en", "dataset:ACE2005", "transformers", "BERT", "token-classification", "sequence-tagger-model", "license:mit" ]
text-classification
false
ychenNLP
null
ychenNLP/arabic-ner-ace
19
1
transformers
8,668
--- tags: - BERT - token-classification - sequence-tagger-model language: - ar - en license: mit datasets: - ACE2005 --- # Arabic NER Model - [Github repo](https://github.com/edchengg/GigaBERT) - NER BIO tagging model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English). - ACE2005 Training data: English + Arabic - [NER tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf) including: PER, VEH, GPE, WEA, ORG, LOC, FAC ## Hyperparameters - learning_rate=2e-5 - num_train_epochs=10 - weight_decay=0.01 ## ACE2005 Evaluation results (F1) | Language | Arabic | English | |:----:|:-----------:|:----:| | | 89.4 | 88.8 | ## How to use ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace") >>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) >>> output = ner_pip('Protests break out across the US after Supreme Court overturns.') >>> print(output) [{'entity_group': 'GPE', 'score': 0.9979881, 'word': 'us', 'start': 30, 'end': 32}, {'entity_group': 'ORG', 'score': 0.99898684, 'word': 'supreme court', 'start': 39, 'end': 52}] >>> output = ner_pip('قال وزير العدل التركي بكير بوزداغ إن أنقرة تريد 12 مشتبهاً بهم من فنلندا و 21 من السويد') >>> print(output) [{'entity_group': 'PER', 'score': 0.9996214, 'word': 'وزير', 'start': 4, 'end': 8}, {'entity_group': 'ORG', 'score': 0.9952383, 'word': 'العدل', 'start': 9, 'end': 14}, {'entity_group': 'GPE', 'score': 0.9996675, 'word': 'التركي', 'start': 15, 'end': 21}, {'entity_group': 'PER', 'score': 0.9978992, 'word': 'بكير بوزداغ', 'start': 22, 'end': 33}, {'entity_group': 'GPE', 'score': 0.9997154, 'word': 'انقرة', 'start': 37, 'end': 42}, {'entity_group': 'PER', 'score': 0.9946885, 'word': 'مشتبها بهم', 'start': 51, 'end': 62}, {'entity_group': 'GPE', 'score': 0.99967396, 'word': 'فنلندا', 'start': 66, 'end': 72}, {'entity_group': 'PER', 'score': 0.99694425, 'word': '21', 'start': 75, 'end': 77}, {'entity_group': 'GPE', 'score': 0.99963355, 'word': 'السويد', 'start': 81, 'end': 87}] ``` ### BibTeX entry and citation info ```bibtex @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ```
projecte-aina/roberta-base-ca-v2-cased-pos
a7a8a3a5ff15e239233ed1543cd6f52f24cd2652
2022-07-25T06:58:29.000Z
[ "pytorch", "roberta", "token-classification", "ca", "dataset:universal_dependencies", "arxiv:1907.11692", "transformers", "catalan", "part of speech tagging", "pos", "CaText", "Catalan Textual Corpus", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
projecte-aina
null
projecte-aina/roberta-base-ca-v2-cased-pos
19
null
transformers
8,669
--- language: - ca license: apache-2.0 tags: - "catalan" - "part of speech tagging" - "pos" - "CaText" - "Catalan Textual Corpus" datasets: - "universal_dependencies" metrics: - f1 inference: parameters: aggregation_strategy: "first" model-index: - name: roberta-base-ca-v2-cased-pos results: - task: type: token-classification dataset: type: universal_dependencies name: Ancora-ca-POS metrics: - name: F1 type: f1 value: 0.9909 widget: - text: "Em dic Lluïsa i visc a Santa Maria del Camí." - text: "L'Aina, la Berta i la Norma són molt amigues." - text: "El Martí llegeix el Cavall Fort." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Part-of-speech-tagging (POS) ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-uses-and-limitations) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Funding](#funding) - [Contributions](#contributions) ## Model description The **roberta-base-ca-v2-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). ## Intended Uses and Limitations **roberta-base-ca-v2-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to Use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("token-classification", model="projecte-aina/roberta-base-ca-v2-cased-pos") example = "Em dic Lluïsa i visc a Santa Maria del Camí." pos_results = nlp(example) pprint(pos_results) ``` ## Training ### Training data We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation. ### Training Procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and Metrics This model was finetuned maximizing F1 score. ## Evaluation results We evaluated the _roberta-base-ca-v2-cased-pos_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines: | Model | Ancora-ca-pos (F1) | | ------------|:-------------| | roberta-base-ca-v2-cased-pos |99.09 | | roberta-base-ca-cased-pos | **99.10** | | mBERT | 98.98 | | XLM-RoBERTa | 99.03 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Contributions [N/A]
Skelebor/book-descriptions
f94925b929bfd285ee4292bd1d3e517fbbc7449e
2022-06-30T17:22:25.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
Skelebor
null
Skelebor/book-descriptions
19
null
transformers
8,670
Entry not found
emilys/twitter-roberta-base-WNUT
e1907bac65d89100aa6c2c1e4b86cec6cbbfd9e6
2022-07-02T01:11:49.000Z
[ "pytorch", "roberta", "token-classification", "dataset:wnut_17", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
emilys
null
emilys/twitter-roberta-base-WNUT
19
null
transformers
8,671
--- tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: twitter-roberta-base-WNUT results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.7045454545454546 - name: Recall type: recall value: 0.6303827751196173 - name: F1 type: f1 value: 0.6654040404040403 - name: Accuracy type: accuracy value: 0.9639611008707811 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-WNUT This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.1938 - Precision: 0.7045 - Recall: 0.6304 - F1: 0.6654 - Accuracy: 0.9640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 1024 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.46 | 25 | 0.3912 | 0.0 | 0.0 | 0.0 | 0.9205 | | No log | 0.93 | 50 | 0.2847 | 0.25 | 0.0024 | 0.0047 | 0.9209 | | No log | 1.39 | 75 | 0.2449 | 0.5451 | 0.3469 | 0.4240 | 0.9426 | | No log | 1.85 | 100 | 0.1946 | 0.6517 | 0.4856 | 0.5565 | 0.9492 | | No log | 2.31 | 125 | 0.1851 | 0.6921 | 0.5646 | 0.6219 | 0.9581 | | No log | 2.78 | 150 | 0.1672 | 0.6867 | 0.5873 | 0.6331 | 0.9594 | | No log | 3.24 | 175 | 0.1675 | 0.6787 | 0.5837 | 0.6277 | 0.9615 | | No log | 3.7 | 200 | 0.1644 | 0.6765 | 0.6328 | 0.6539 | 0.9638 | | No log | 4.17 | 225 | 0.1672 | 0.6997 | 0.6495 | 0.6737 | 0.9640 | | No log | 4.63 | 250 | 0.1652 | 0.6915 | 0.6435 | 0.6667 | 0.9649 | | No log | 5.09 | 275 | 0.1882 | 0.7067 | 0.6053 | 0.6521 | 0.9629 | | No log | 5.56 | 300 | 0.1783 | 0.7128 | 0.6352 | 0.6717 | 0.9645 | | No log | 6.02 | 325 | 0.1813 | 0.7011 | 0.6172 | 0.6565 | 0.9639 | | No log | 6.48 | 350 | 0.1804 | 0.7139 | 0.6447 | 0.6776 | 0.9647 | | No log | 6.94 | 375 | 0.1902 | 0.7218 | 0.6268 | 0.6709 | 0.9641 | | No log | 7.41 | 400 | 0.1883 | 0.7106 | 0.6316 | 0.6688 | 0.9641 | | No log | 7.87 | 425 | 0.1862 | 0.7067 | 0.6340 | 0.6683 | 0.9643 | | No log | 8.33 | 450 | 0.1882 | 0.7053 | 0.6328 | 0.6671 | 0.9639 | | No log | 8.8 | 475 | 0.1919 | 0.7055 | 0.6304 | 0.6658 | 0.9638 | | 0.1175 | 9.26 | 500 | 0.1938 | 0.7045 | 0.6304 | 0.6654 | 0.9640 | | 0.1175 | 9.72 | 525 | 0.1880 | 0.7025 | 0.6411 | 0.6704 | 0.9646 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
haritzpuerto/distilroberta-squad_1.1
583aaaed1bf76cf0f31b3086c8028c316bc29e78
2022-07-03T21:51:19.000Z
[ "pytorch", "roberta", "question-answering", "en", "dataset:squad", "transformers", "QA", "Question Answering", "SQuAD", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
haritzpuerto
null
haritzpuerto/distilroberta-squad_1.1
19
null
transformers
8,672
--- language: - en tags: - QA - Question Answering - SQuAD license: "mit" datasets: - squad metrics: - squad model-index: - name: distilroberta-base results: - task: type: question-answering # Required. Example: automatic-speech-recognition name: Question Answering # Optional. Example: Speech Recognition dataset: type: squad # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: SQuAD # Required. A pretty name for the dataset. Example: Common Voice (French) split: validation # Optional. Example: test metrics: - type: squad # Required. Example: wer. Use metric id from https://hf.co/metrics value: 76.37653736991486 # Required. Example: 20.90 name: SQuAD EM # Optional. Example: Test WER config: exact_match # Optional. The name of the metric configuration used in `load_metric()`. Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations - type: squad # Required. Example: wer. Use metric id from https://hf.co/metrics value: 84.5528918750732 # Required. Example: 20.90 name: SQuAD F1 # Optional. Example: Test WER config: F1 --- distilroberta-base fined-tuned on SQuAD (https://huggingface.co/datasets/squad) Hyperparameters: - epochs: 1 - lr: 1e-5 - train batch sie: 16 - optimizer: adamW - lr_scheduler: linear - num warming steps: 0 - max_length: 512 Results on the dev set: - 'exact_match': 76.37653736991486 - 'f1': 84.5528918750732 It took 1h 20 min to train on Colab.
Morfeo/it5-base-news-summarization-finetuned-it-sum
07501c4a7c2de4725aa7c2731e9212ed959db873
2022-07-04T22:02:07.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
Morfeo
null
Morfeo/it5-base-news-summarization-finetuned-it-sum
19
null
transformers
8,673
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: it5-base-news-summarization-finetuned-it-sum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # it5-base-news-summarization-finetuned-it-sum This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 11.4506 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 12.4005 | 1.0 | 1000 | 12.3517 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.2597 | 2.0 | 2000 | 12.1695 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.0478 | 3.0 | 3000 | 11.9578 | 0.0 | 0.0 | 0.0 | 0.0 | | 11.8364 | 4.0 | 4000 | 11.7834 | 0.0 | 0.0 | 0.0 | 0.0 | | 11.6736 | 5.0 | 5000 | 11.6447 | 0.0 | 0.0 | 0.0 | 0.0 | | 11.5498 | 6.0 | 6000 | 11.5447 | 0.0 | 0.0 | 0.0 | 0.0 | | 11.4664 | 7.0 | 7000 | 11.4797 | 0.0 | 0.0 | 0.0 | 0.0 | | 11.4209 | 8.0 | 8000 | 11.4506 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
BlazeLlama/piwpaw_medium
1583a63fd1f8c353016131be8c7ee11b95126d2e
2022-07-13T13:21:54.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BlazeLlama
null
BlazeLlama/piwpaw_medium
19
null
transformers
8,674
Entry not found
tanapatentlm/patentdeberta_large_spec_512_pwi
a0954d01996eb5fca536f5a438c2e687aa78475d
2022-07-07T04:46:35.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tanapatentlm
null
tanapatentlm/patentdeberta_large_spec_512_pwi
19
null
transformers
8,675
Entry not found
Aktsvigun/bart-base_aeslc_3198548
7996a33124518469016c21e99deeb49829f74b39
2022-07-07T15:29:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_3198548
19
null
transformers
8,676
Entry not found
andy-0v0/fancy-animales
f3130cd17610217f8897c6edb37b58f9b9f0603d
2022-07-12T15:30:18.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
andy-0v0
null
andy-0v0/fancy-animales
19
null
transformers
8,677
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: fancy-animales results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9464285969734192 --- # fancy-animales Just for fun and to test the template! Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chow chow ![chow chow](images/chow_chow.jpg) #### panda ![panda](images/panda.jpg) #### penguin ![penguin](images/penguin.jpg) #### sloth ![sloth](images/sloth.jpg) #### wombat ![wombat](images/wombat.jpg)
KoichiYasuoka/bert-ancient-chinese-base-ud-head
92e420b6f6e062ef0205727460510dcdb79571fa
2022-07-20T03:51:30.000Z
[ "pytorch", "bert", "question-answering", "lzh", "dataset:universal_dependencies", "transformers", "classical chinese", "literary chinese", "ancient chinese", "dependency-parsing", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/bert-ancient-chinese-base-ud-head
19
null
transformers
8,678
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "question-answering" widget: - text: "穴" context: "不入虎穴不得虎子" - text: "子" context: "不入虎穴不得虎子" - text: "不" context: "[MASK]入虎穴不得虎子" --- # bert-ancient-chinese-base-ud-head ## Model Description This is a BERT model pre-trained on Classical Chinese texts for dependency-parsing (head-detection on Universal Dependencies) as question-answering, derived from [bert-ancient-chinese](https://huggingface.co/Jihuai/bert-ancient-chinese) and [UD_Classical_Chinese-Kyoto](https://github.com/UniversalDependencies/UD_Classical_Chinese-Kyoto). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-ancient-chinese-base-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/bert-ancient-chinese-base-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model) print(qap(question="穴",context="不入虎穴不得虎子")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/bert-ancient-chinese-base-ud-head") print(nlp("不入虎穴不得虎子")) ```
jonatasgrosman/exp_w2v2t_ja_wavlm_s729
34b1e881d63b949842c3f5292860b708ad1b48ca
2022-07-08T16:56:04.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_ja_wavlm_s729
19
1
transformers
8,679
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_wavlm_s729 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Dithya/Text_simplify
46c6ddf32748ebc93783ee8f26bc39fb719c48d9
2022-07-10T14:56:10.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Dithya
null
Dithya/Text_simplify
19
null
transformers
8,680
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5849 - Rouge1: 90.2463 - Rouge2: 83.7826 - Rougel: 89.3909 - Rougelsum: 89.6832 - Gen Len: 41.5878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
heoji/koelectra_senti_1
cac8e255516046b39b8a0e656d05107b8f368abb
2022-07-11T06:27:28.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
heoji
null
heoji/koelectra_senti_1
19
null
transformers
8,681
Entry not found
Shaier/medqa_fine_tuned_generic_bert
85b80c88a58f5039fced4993e02bafbc1091133b
2022-07-12T20:33:17.000Z
[ "pytorch", "bert", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
Shaier
null
Shaier/medqa_fine_tuned_generic_bert
19
null
transformers
8,682
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medqa_fine_tuned_generic_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medqa_fine_tuned_generic_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Accuracy: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3851 | 0.2594 | | 1.3896 | 2.0 | 636 | 1.3805 | 0.2807 | | 1.3896 | 3.0 | 954 | 1.3852 | 0.2948 | | 1.3629 | 4.0 | 1272 | 1.3996 | 0.2980 | | 1.3068 | 5.0 | 1590 | 1.4239 | 0.2869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
casasdorjunior/t5-small-finetuned-cc-news-es-titles
ed34c8ab22668164d6f00dc2d7e8e9ac8489debc
2022-07-13T08:52:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cc-news-es-titles", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
casasdorjunior
null
casasdorjunior/t5-small-finetuned-cc-news-es-titles
19
null
transformers
8,683
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cc-news-es-titles metrics: - rouge model-index: - name: t5-small-finetuned-cc-news-es-titles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cc-news-es-titles type: cc-news-es-titles args: default metrics: - name: Rouge1 type: rouge value: 16.701 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cc-news-es-titles This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cc-news-es-titles dataset. It achieves the following results on the evaluation set: - Loss: 2.6383 - Rouge1: 16.701 - Rouge2: 4.1265 - Rougel: 14.8175 - Rougelsum: 14.8193 - Gen Len: 18.9159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 2.8439 | 1.0 | 23133 | 2.6383 | 16.701 | 4.1265 | 14.8175 | 14.8193 | 18.9159 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KeLiu/QETRA_JavaScript
67060f63684f778d913985213046cfc1e6fb2f9b
2022-07-13T14:33:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KeLiu
null
KeLiu/QETRA_JavaScript
19
null
transformers
8,684
Entry not found
nakamura196/trocr-small-hi
c29f5f6f73bcea19c20755c04546b42bd676d1e7
2022-07-15T19:35:38.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
nakamura196
null
nakamura196/trocr-small-hi
19
null
transformers
8,685
Entry not found
Team-PIXEL/pixel-base-finetuned-stsb
42e8f936183c00950a09d09cfeb5bc23cf719332
2022-07-15T03:04:45.000Z
[ "pytorch", "pixel", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-stsb
19
null
transformers
8,686
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-stsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-stsb This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE STSB dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 15000 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
sagawa/t5-demo
80e4a27faee00724c42b4d2c1c31287c1a08bc58
2022-07-16T10:06:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "chemistry", "autotrain_compatible" ]
text2text-generation
false
sagawa
null
sagawa/t5-demo
19
null
transformers
8,687
--- tags: - chemistry --- # Chemt5: t5 trained on ZINC data. This is a demo of Chemt5.
ipvikas/distilbert-base-uncased-finetuned-imdb
d1477d1bb61e6b02a5864e16a71de8b59f33efe6
2022-07-16T11:06:52.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ipvikas
null
ipvikas/distilbert-base-uncased-finetuned-imdb
19
null
transformers
8,688
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pnr-svc/ConvBert-Sentiment-Analysis-Turkish
44a653e655d3190de204856d36964c42f09a106d
2022-07-20T21:37:09.000Z
[ "pytorch", "convbert", "text-classification", "dataset:pnr-svc/Turkish-Multiclass-Dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pnr-svc
null
pnr-svc/ConvBert-Sentiment-Analysis-Turkish
19
null
transformers
8,689
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pnr-svc/Turkish-Multiclass-Dataset metrics: - accuracy model-index: - name: multi-class-classification results: - task: name: Text Classification type: text-classification dataset: name: pnr-svc/Turkish-Multiclass-Dataset type: pnr-svc/Turkish-Multiclass-Dataset args: TurkishMulticlassDataset metrics: - name: Accuracy type: accuracy value: 0.859 - task: type: text-classification name: Text Classification dataset: name: pnr-svc/Turkish-Multiclass-Dataset type: pnr-svc/Turkish-Multiclass-Dataset config: TurkishMulticlassDataset split: test metrics: - name: Accuracy type: accuracy value: 0.859 verified: true - name: loss type: loss value: 0.4957726299762726 verified: true --- # multi-class-classification This model is a fine-tuned version of [dbmdz/convbert-base-turkish-cased](https://huggingface.co/dbmdz/convbert-base-turkish-cased) on the pnr-svc/Turkish-Multiclass-Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.495773 - Accuracy: 0.859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-5 - train_batch_size: 16 - eval_batch_size: 16 - num_epochs:6 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:---------------:|:--------:| | 0.495773 | 6.0 | 0.4957 | 0.859 |
rsuwaileh/IDRISI-LMR-EN-timebased-typeless
517eb71a8e48f9fc962c437db6f912256c717ae1
2022-07-20T14:59:47.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
rsuwaileh
null
rsuwaileh/IDRISI-LMR-EN-timebased-typeless
19
null
transformers
8,690
--- license: apache-2.0 --- This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model identifies the toponyms' spans in the text without predicting their location types. The model is trained using the training splits of all events from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the `Type-less` LMR mode and using the `Time-based` version of the data. You can download this data in `BILOU` format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-timebased-bilou/). All Location types in the data were normalized to the `LOC` tag. More details about the models are available [here](https://github.com/rsuwaileh/IDRISI/tree/main/models). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) * Arabic models are also available: - [rsuwaileh/IDRISI-LMR-AR-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typeless/) - [rsuwaileh/IDRISI-LMR-AR-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typebased/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typebased/) To cite the models: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
pritoms/opt-350m-finetuned-stack
bcab1dd7e2ba9d897977460f0f24975402d71468
2022-07-18T11:14:18.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-generation
false
pritoms
null
pritoms/opt-350m-finetuned-stack
19
null
transformers
8,691
--- license: other tags: - generated_from_trainer model-index: - name: opt-350m-finetuned-stack results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-finetuned-stack This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ClassCat/roberta-small-greek
f311409a1f248c3b18a6b73b9de744fc35bedfe1
2022-07-21T11:01:55.000Z
[ "pytorch", "roberta", "fill-mask", "el", "dataset:cc100", "dataset:oscar", "dataset:wikipedia", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ClassCat
null
ClassCat/roberta-small-greek
19
1
transformers
8,692
--- language: el license: cc-by-sa-4.0 datasets: - cc100 - oscar - wikipedia widget: - text: "Δεν την έχω <mask> ποτέ." - text: "Έχει πολύ καιρό που δεν έχουμε <mask>." - text: "Ευχαριστώ για το <mask> σου." - text: "Αυτό είναι <mask>." - text: "Ανοιξα <mask>." - text: "Ευχαριστώ για <mask>." - text: "Έχει πολύ καιρό που δεν <mask>." --- ## RoBERTa Greek small model (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses approximately half the size of RoBERTa base model parameters. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * Subset of [CC-100/el](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data * Subset of [oscar](https://huggingface.co/datasets/oscar) * [wiki40b/el](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bel) (Greek Wikipedia) ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-small-greek') unmasker("Έχει πολύ καιρό που δεν <mask>.") ```
nyorain/xtremedistil-l12-h384-uncased-natural-questions
ed706ec743a2c9607d9eb0b661f88c63a3f1b9b9
2022-07-22T21:31:38.000Z
[ "pytorch", "bert", "question-answering", "en", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
nyorain
null
nyorain/xtremedistil-l12-h384-uncased-natural-questions
19
null
transformers
8,693
--- language: en tags: - question-answering license: mit --- xtremedistil-l12-h384-uncased model trained on a subset of "Natural Questions Short". Done for the "Deep Learning for Natural Language Processing" course at TU Darmstadt. Group 69. Squad metric: - 'exact_match': 40.217 - 'f1': 62.3873
huggingtweets/vgdunkey-vgdunkeybot
409603618ac868cf2b0006e7b0d3cca7e841a283
2022-07-23T21:18:37.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/vgdunkey-vgdunkeybot
19
null
transformers
8,694
--- language: en thumbnail: http://www.huggingtweets.com/vgdunkey-vgdunkeybot/1658611112335/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/676614171849453568/AZd1Bh-s_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/727879199931944961/vkkeC6d2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">dunkey & dunkey bot</div> <div style="text-align: center; font-size: 14px;">@vgdunkey-vgdunkeybot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from dunkey & dunkey bot. | Data | dunkey | dunkey bot | | --- | --- | --- | | Tweets downloaded | 1282 | 3200 | | Retweets | 147 | 0 | | Short tweets | 327 | 526 | | Tweets kept | 808 | 2674 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/208r9p27/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vgdunkey-vgdunkeybot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m3it0jfs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m3it0jfs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vgdunkey-vgdunkeybot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
onon214/transformer-NLP
6812c81f88d22b05b5eebfb3332b5589bbfaeb2b
2022-07-24T09:41:22.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
onon214
null
onon214/transformer-NLP
19
null
transformers
8,695
--- tags: - generated_from_trainer model-index: - name: transformer-NLP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # transformer-NLP This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.4503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.8223 | 1.0 | 21 | 9.4635 | | 9.4003 | 2.0 | 42 | 9.2399 | | 9.1754 | 3.0 | 63 | 9.0618 | | 8.9665 | 4.0 | 84 | 8.8478 | | 8.8297 | 5.0 | 105 | 8.7369 | | 8.6993 | 6.0 | 126 | 8.6474 | | 8.6372 | 7.0 | 147 | 8.5848 | | 8.5375 | 8.0 | 168 | 8.4988 | | 8.5175 | 9.0 | 189 | 8.4400 | | 8.4955 | 10.0 | 210 | 8.4503 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP9
9639384a87c117aaf66717d2465d7e8a1be74b1c
2022-07-28T11:28:05.000Z
[ "pytorch", "longt5", "text2text-generation", "dataset:kmfoda/booksum", "transformers", "summarization", "summary", "booksum", "long-document", "long-form", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
pszemraj
null
pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP9
19
null
transformers
8,696
--- tags: - summarization - summary - booksum - long-document - long-form license: apache-2.0 datasets: - kmfoda/booksum metrics: - rouge inference: false model-index: - name: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP9 results: - task: type: summarization name: Summarization dataset: name: kmfoda/booksum type: kmfoda/booksum config: kmfoda--booksum split: test metrics: - name: ROUGE-1 type: rouge value: 35.9969 verified: true - name: ROUGE-2 type: rouge value: 5.9272 verified: true - name: ROUGE-L type: rouge value: 16.0136 verified: true - name: ROUGE-LSUM type: rouge value: 32.941 verified: true - name: loss type: loss value: 2.9339466094970703 verified: true - name: gen_len type: gen_len value: 283.7198 verified: true --- # README - long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP9 - latest version, testing metrics here - created 2022-07-26_21-46-01
dminiotas05/distilbert-base-uncased-finetuned-ft750_reg1
c0a35062be873c1bb645d854a032cd8dfbadf08f
2022-07-27T09:38:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dminiotas05
null
dminiotas05/distilbert-base-uncased-finetuned-ft750_reg1
19
null
transformers
8,697
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-ft750_reg1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft750_reg1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1787 | 1.0 | 188 | 1.4769 | | 0.7256 | 2.0 | 376 | 1.0639 | | 0.5268 | 3.0 | 564 | 0.9304 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
korca/roberta-base-lkm
0ad1f72d82eccc9fefb56ada727a34b3ddf18376
2022-07-28T18:56:28.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/roberta-base-lkm
19
null
transformers
8,698
Entry not found
AccurateIsaiah/DialoGPT-small-mozarkv2
d3fa28c051bb64abb44690bdaa44d11321cd43b3
2021-11-23T21:49:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AccurateIsaiah
null
AccurateIsaiah/DialoGPT-small-mozarkv2
18
null
transformers
8,699
--- tags: - conversational --- # Mozark's Brain Uploaded to Hugging Face but v2