modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Helsinki-NLP/opus-mt-es-eo
328750dfd8c4f2e8e6d7479e87f05ae2f4f95ba8
2021-09-09T21:42:09.000Z
[ "pytorch", "marian", "text2text-generation", "es", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-eo
19
null
transformers
8,500
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-eo * source languages: es * target languages: eo * OPUS readme: [es-eo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-eo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-eo/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-eo/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-eo/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.eo | 44.7 | 0.657 |
Helsinki-NLP/opus-mt-es-pap
9bf9bd9f49dcd2195d87c7ed9a23f77757b2aa5f
2021-09-09T21:44:05.000Z
[ "pytorch", "marian", "text2text-generation", "es", "pap", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-pap
19
null
transformers
8,501
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-pap * source languages: es * target languages: pap * OPUS readme: [es-pap](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-pap/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-pap/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pap/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pap/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.pap | 28.2 | 0.486 |
Helsinki-NLP/opus-mt-kg-en
2ae3fc0fcb26dd12365e7f258811e2e428eb4dcc
2021-09-10T13:53:38.000Z
[ "pytorch", "marian", "text2text-generation", "kg", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-kg-en
19
null
transformers
8,502
--- tags: - translation license: apache-2.0 --- ### opus-mt-kg-en * source languages: kg * target languages: en * OPUS readme: [kg-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kg-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/kg-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kg-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kg-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kg.en | 35.4 | 0.508 |
Helsinki-NLP/opus-mt-kj-en
45173abc2325ee785dba5f13d0b2187821c5dbba
2021-09-10T13:53:53.000Z
[ "pytorch", "marian", "text2text-generation", "kj", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-kj-en
19
null
transformers
8,503
--- tags: - translation license: apache-2.0 --- ### opus-mt-kj-en * source languages: kj * target languages: en * OPUS readme: [kj-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kj-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/kj-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kj-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kj-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kj.en | 30.3 | 0.477 |
Helsinki-NLP/opus-mt-lt-es
3b6375db9c99783dcf81185d7ec195e1c042287a
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "lt", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lt-es
19
1
transformers
8,504
--- language: - lt - es tags: - translation license: apache-2.0 --- ### lit-spa * source group: Lithuanian * target group: Spanish * OPUS readme: [lit-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-spa/README.md) * model: transformer-align * source language(s): lit * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.lit.spa | 50.5 | 0.680 | ### System Info: - hf_name: lit-spa - source_languages: lit - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lt', 'es'] - src_constituents: {'lit'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-spa/opus-2020-06-17.test.txt - src_alpha3: lit - tgt_alpha3: spa - short_pair: lt-es - chrF2_score: 0.68 - bleu: 50.5 - brevity_penalty: 0.963 - ref_len: 2738.0 - src_name: Lithuanian - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: lt - tgt_alpha2: es - prefer_old: False - long_pair: lit-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-no-es
86129a9d93281a20e0b866f623b16069db6de89c
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "no", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-no-es
19
null
transformers
8,505
--- language: - no - es tags: - translation license: apache-2.0 --- ### nor-spa * source group: Norwegian * target group: Spanish * OPUS readme: [nor-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-spa/README.md) * model: transformer-align * source language(s): nno nob * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.nor.spa | 34.2 | 0.565 | ### System Info: - hf_name: nor-spa - source_languages: nor - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['no', 'es'] - src_constituents: {'nob', 'nno'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-spa/opus-2020-06-17.test.txt - src_alpha3: nor - tgt_alpha3: spa - short_pair: no-es - chrF2_score: 0.565 - bleu: 34.2 - brevity_penalty: 0.997 - ref_len: 7311.0 - src_name: Norwegian - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: no - tgt_alpha2: es - prefer_old: False - long_pair: nor-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-pis-en
f52fc9014a82ce8e4bd5fedc3999f81d21ec348a
2021-09-10T14:00:52.000Z
[ "pytorch", "marian", "text2text-generation", "pis", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pis-en
19
null
transformers
8,506
--- tags: - translation license: apache-2.0 --- ### opus-mt-pis-en * source languages: pis * target languages: en * OPUS readme: [pis-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pis-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pis-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pis.en | 33.3 | 0.493 |
Helsinki-NLP/opus-mt-pqe-en
2a3bb445918ac990acf6f8e396ad64596ffed886
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "fj", "mi", "ty", "to", "na", "sm", "mh", "pqe", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pqe-en
19
null
transformers
8,507
--- language: - fj - mi - ty - to - na - sm - mh - pqe - en tags: - translation license: apache-2.0 --- ### pqe-eng * source group: Eastern Malayo-Polynesian languages * target group: English * OPUS readme: [pqe-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pqe-eng/README.md) * model: transformer * source language(s): fij gil haw mah mri nau niu rap smo tah ton tvl * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/pqe-eng/opus-2020-06-28.zip) * test set translations: [opus-2020-06-28.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pqe-eng/opus-2020-06-28.test.txt) * test set scores: [opus-2020-06-28.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pqe-eng/opus-2020-06-28.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fij-eng.fij.eng | 26.9 | 0.361 | | Tatoeba-test.gil-eng.gil.eng | 49.0 | 0.618 | | Tatoeba-test.haw-eng.haw.eng | 1.6 | 0.126 | | Tatoeba-test.mah-eng.mah.eng | 13.7 | 0.257 | | Tatoeba-test.mri-eng.mri.eng | 7.4 | 0.250 | | Tatoeba-test.multi.eng | 12.6 | 0.268 | | Tatoeba-test.nau-eng.nau.eng | 2.3 | 0.125 | | Tatoeba-test.niu-eng.niu.eng | 34.4 | 0.471 | | Tatoeba-test.rap-eng.rap.eng | 10.3 | 0.215 | | Tatoeba-test.smo-eng.smo.eng | 28.5 | 0.413 | | Tatoeba-test.tah-eng.tah.eng | 12.1 | 0.199 | | Tatoeba-test.ton-eng.ton.eng | 41.8 | 0.517 | | Tatoeba-test.tvl-eng.tvl.eng | 42.9 | 0.540 | ### System Info: - hf_name: pqe-eng - source_languages: pqe - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pqe-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fj', 'mi', 'ty', 'to', 'na', 'sm', 'mh', 'pqe', 'en'] - src_constituents: {'haw', 'gil', 'rap', 'fij', 'tvl', 'mri', 'tah', 'niu', 'ton', 'nau', 'smo', 'mah'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/pqe-eng/opus-2020-06-28.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/pqe-eng/opus-2020-06-28.test.txt - src_alpha3: pqe - tgt_alpha3: eng - short_pair: pqe-en - chrF2_score: 0.268 - bleu: 12.6 - brevity_penalty: 1.0 - ref_len: 4568.0 - src_name: Eastern Malayo-Polynesian languages - tgt_name: English - train_date: 2020-06-28 - src_alpha2: pqe - tgt_alpha2: en - prefer_old: False - long_pair: pqe-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-rnd-en
a0592c9da10200300f038ee7e916eed2e0fbd246
2021-09-10T14:01:52.000Z
[ "pytorch", "marian", "text2text-generation", "rnd", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-rnd-en
19
null
transformers
8,508
--- tags: - translation license: apache-2.0 --- ### opus-mt-rnd-en * source languages: rnd * target languages: en * OPUS readme: [rnd-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/rnd-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/rnd-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/rnd-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/rnd-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.rnd.en | 37.8 | 0.531 |
Helsinki-NLP/opus-mt-tl-es
a802dd67efb503718fa025a2c4e91fd026a5c1e9
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "tl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tl-es
19
null
transformers
8,509
--- language: - tl - es tags: - translation license: apache-2.0 --- ### tgl-spa * source group: Tagalog * target group: Spanish * OPUS readme: [tgl-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tgl-spa/README.md) * model: transformer-align * source language(s): tgl_Latn * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.tgl.spa | 31.6 | 0.531 | ### System Info: - hf_name: tgl-spa - source_languages: tgl - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tgl-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['tl', 'es'] - src_constituents: {'tgl_Latn'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/tgl-spa/opus-2020-06-17.test.txt - src_alpha3: tgl - tgt_alpha3: spa - short_pair: tl-es - chrF2_score: 0.531 - bleu: 31.6 - brevity_penalty: 0.997 - ref_len: 4327.0 - src_name: Tagalog - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: tl - tgt_alpha2: es - prefer_old: False - long_pair: tgl-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-tll-en
a8f4fe293754493a9385669a126f0f737efa5cf8
2021-09-11T10:48:19.000Z
[ "pytorch", "marian", "text2text-generation", "tll", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tll-en
19
null
transformers
8,510
--- tags: - translation license: apache-2.0 --- ### opus-mt-tll-en * source languages: tll * target languages: en * OPUS readme: [tll-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tll-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tll-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tll-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tll-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tll.en | 34.5 | 0.500 |
Helsinki-NLP/opus-mt-tpi-en
9d106deeef1145ca9e034cb4ebae8d0545e98e7d
2021-09-11T10:49:28.000Z
[ "pytorch", "marian", "text2text-generation", "tpi", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tpi-en
19
null
transformers
8,511
--- tags: - translation license: apache-2.0 --- ### opus-mt-tpi-en * source languages: tpi * target languages: en * OPUS readme: [tpi-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tpi-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tpi-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tpi-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tpi-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tpi.en | 29.1 | 0.448 |
Holako/NER_CAMELBERT
b48ec7ee4d4655ef43cb611dcdd61a60db7411e7
2022-02-23T17:22:41.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Holako
null
Holako/NER_CAMELBERT
19
null
transformers
8,512
Testing NER
JorgeSarry/est5base-simplify
cea9bbfa31d3993e411ac058d39b8eeede2c5997
2021-09-20T08:42:39.000Z
[ "pytorch", "mt5", "text2text-generation", "es", "transformers", "autotrain_compatible" ]
text2text-generation
false
JorgeSarry
null
JorgeSarry/est5base-simplify
19
null
transformers
8,513
--- language: es --- This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish WikiEdits for sentence simplification. You can use it with the command "simplify:"
Jorgeutd/sagemaker-roberta-base-emotion
08d5c624b85f453bdf779fa2ebff3029d63c11c5
2021-12-06T16:57:21.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:emotion", "transformers", "sagemaker", "roberta-base", "text classification", "license:apache-2.0", "model-index" ]
text-classification
false
Jorgeutd
null
Jorgeutd/sagemaker-roberta-base-emotion
19
null
transformers
8,514
--- language: en widget: - text: "I am really upset that I have to call up to three times to the number on the back of my insurance card for my call to be answer" tags: - sagemaker - roberta-base - text classification license: apache-2.0 datasets: - emotion model-index: - name: sagemaker-roberta-base-emotion results: - task: name: Multi Class Text Classification type: text-classification dataset: name: "emotion" type: emotion metrics: - name: Validation Accuracy type: accuracy value: 94.1 - name: Validation F1 type: f1 value: 94.13 --- ## roberta-base This model is a fine-tuned model that was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. - Problem type: Multi Class Text Classification (emotion detection). It achieves the following results on the evaluation set: - Loss: 0.1613253802061081 - f1: 0.9413321705151999 ## Hyperparameters ```json { "epochs": 10, "train_batch_size": 16, "learning_rate": 3e-5, "weight_decay":0.01, "load_best_model_at_end": true, "model_name":"roberta-base", "do_eval": True, "load_best_model_at_end":True } ``` ## Validation Metrics | key | value | | --- | ----- | | eval_accuracy | 0.941 | | eval_f1 | 0.9413321705151999 | | eval_loss | 0.1613253802061081| | eval_recall | 0.941 | | eval_precision | 0.9419519436781406 |
Littlemilk/autobiography-generator
9342dd04520234a2502b65e3cc74f23d9fd59d3a
2022-01-09T17:15:14.000Z
[ "pytorch", "gpt2", "text-generation", "zh", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index" ]
text-generation
false
Littlemilk
null
Littlemilk/autobiography-generator
19
2
transformers
8,515
--- language: - zh license: gpl-3.0 tags: - generated_from_trainer model-index: - name: clm-total results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clm-total This model is a fine-tuned version of [ckiplab/gpt2-base-chinese](https://huggingface.co/ckiplab/gpt2-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
Luciano/bertimbau-large-lener_br
867c6fe10f58d8394213e349917e6aaaf5baa85c
2022-06-28T11:42:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "pt", "dataset:lener_br", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Luciano
null
Luciano/bertimbau-large-lener_br
19
1
transformers
8,516
--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model_index: - name: bertimbau-large-lener_br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br args: lener_br metric: name: Accuracy type: accuracy value: 0.9801301293674859 model-index: - name: Luciano/bertimbau-large-lener_br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: test metrics: - name: Accuracy type: accuracy value: 0.9840898731012984 verified: true - name: Precision type: precision value: 0.9895415357344292 verified: true - name: Recall type: recall value: 0.9885856878370763 verified: true - name: F1 type: f1 value: 0.9890633808488363 verified: true - name: loss type: loss value: 0.10151929408311844 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertimbau-large-lener_br This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1271 - Precision: 0.8965 - Recall: 0.9198 - F1: 0.9080 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0674 | 1.0 | 1957 | 0.1349 | 0.7617 | 0.8710 | 0.8127 | 0.9594 | | 0.0443 | 2.0 | 3914 | 0.1867 | 0.6862 | 0.9194 | 0.7858 | 0.9575 | | 0.0283 | 3.0 | 5871 | 0.1185 | 0.8206 | 0.8766 | 0.8477 | 0.9678 | | 0.0226 | 4.0 | 7828 | 0.1405 | 0.8072 | 0.8978 | 0.8501 | 0.9708 | | 0.0141 | 5.0 | 9785 | 0.1898 | 0.7224 | 0.9194 | 0.8090 | 0.9629 | | 0.01 | 6.0 | 11742 | 0.1655 | 0.9062 | 0.8856 | 0.8958 | 0.9741 | | 0.012 | 7.0 | 13699 | 0.1271 | 0.8965 | 0.9198 | 0.9080 | 0.9801 | | 0.0091 | 8.0 | 15656 | 0.1919 | 0.8890 | 0.8886 | 0.8888 | 0.9719 | | 0.0042 | 9.0 | 17613 | 0.1725 | 0.8977 | 0.8985 | 0.8981 | 0.9744 | | 0.0043 | 10.0 | 19570 | 0.1530 | 0.8878 | 0.9034 | 0.8955 | 0.9761 | | 0.0042 | 11.0 | 21527 | 0.1635 | 0.8792 | 0.9108 | 0.8947 | 0.9774 | | 0.0033 | 12.0 | 23484 | 0.2009 | 0.8155 | 0.9138 | 0.8619 | 0.9719 | | 0.0008 | 13.0 | 25441 | 0.1766 | 0.8737 | 0.9135 | 0.8932 | 0.9755 | | 0.0005 | 14.0 | 27398 | 0.1868 | 0.8616 | 0.9129 | 0.8865 | 0.9743 | | 0.0014 | 15.0 | 29355 | 0.1910 | 0.8694 | 0.9101 | 0.8893 | 0.9746 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
Mary222/SBERBANK_RUS
c085a557fc5d571a451ea68f25af2d2233d7436d
2021-11-04T16:30:38.000Z
[ "pytorch", "gpt2", "text-generation", "ru", "transformers" ]
text-generation
false
Mary222
null
Mary222/SBERBANK_RUS
19
1
transformers
8,517
--- language: ru tags: - text-generation --- # GPT2 - RUS
MohamedZaitoon/T5-CNN
bbcacff360925f67c7cf991f25ee7d0268cfcc6c
2021-06-12T14:56:25.000Z
[ "pytorch", "dataset:CNN/Daily-mail", "summarization" ]
summarization
false
MohamedZaitoon
null
MohamedZaitoon/T5-CNN
19
null
null
8,518
--- tags: - summarization datasets: - CNN/Daily-mail metrics: - ROUGE ---
MrBananaHuman/kogpt_6b_fp16
6838fe6947a0f18817273922bd61280ac33f4e33
2021-11-19T06:23:58.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
MrBananaHuman
null
MrBananaHuman/kogpt_6b_fp16
19
4
transformers
8,519
kakao brain에서 공개한 kogpt 6b model('kakaobrain/kogpt')을 fp16으로 저장한 모델입니다. ### 카카오브레인 모델을 fp16으로 로드하는 방법 ```python import torch from transformers import GPTJForCausalLM model = GPTJForCausalLM.from_pretrained('kakaobrain/kogpt', cache_dir='./my_dir', revision='KoGPT6B-ryan1.5b', torch_dtype=torch.float16) ``` ### fp16 모델 로드 후 문장 생성 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1_rLDzhGohJPbOD5I_eTIOdx4aOTp43uK?usp=sharing) ```python import torch from transformers import GPTJForCausalLM, AutoTokenizer model = GPTJForCausalLM.from_pretrained('MrBananaHuman/kogpt_6b_fp16', low_cpu_mem_usage=True)) model.to('cuda') tokenizer = AutoTokenizer.from_pretrained('MrBananaHuman/kogpt_6b_fp16') input_text = '이순신은' input_ids = tokenizer(input_text, return_tensors='pt').input_ids.to('cuda') output = model.generate(input_ids, max_length=64) print(tokenizer.decode(output[0])) >>> 이순신은 우리에게 무엇인가? 1. 머리말 이글은 임진왜란 당시 이순인이 보여준 ``` ### 참고 링크 https://github.com/kakaobrain/kogpt/issues/6?fbclid=IwAR1KpWhuHnevQvEWV18o16k2z9TLgrXkbWTkKqzL-NDXHfDnWcIq7I4SJXM
NYTK/sentiment-hts2-xlm-roberta-hungarian
9e78df9fa3fe207531cd8eaf27a80a23fcf3d9e4
2022-01-26T13:20:37.000Z
[ "pytorch", "roberta", "text-classification", "hu", "transformers", "license:gpl" ]
text-classification
false
NYTK
null
NYTK/sentiment-hts2-xlm-roberta-hungarian
19
null
transformers
8,520
--- language: - hu tags: - text-classification license: gpl metrics: - accuracy widget: - text: "Jó reggelt! majd küldöm az élményhozókat :)." --- # Hungarian Sentence-level Sentiment Analysis model with XLM-RoBERTa For further models, scripts and details, see [our repository](https://github.com/nytud/sentiment-analysis) or [our demo site](https://juniper.nytud.hu/demo/nlp). - Pretrained model used: XLM-RoBERTa base - Finetuned on Hungarian Twitter Sentiment (HTS) Corpus - Labels: 1, 2 ## Limitations - max_seq_length = 128 ## Results | Model | HTS2 | HTS5 | | ------------- | ------------- | ------------- | | huBERT | 85.55 | 68.99 | | XLM-RoBERTa| **85.56** | 85.56 | ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-bart, title = {Improving Performance of Sentence-level Sentiment Analysis with Data Augmentation Methods}, booktitle = {Proceedings of 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021)}, year = {2021}, publisher = {IEEE}, address = {Online}, author = {{Laki, László and Yang, Zijian Győző}} pages = {417--422} } ```
Nehc/gpt2_lovecraft_ru
28364a75e604ebfcebdc7d6aa595b0a476c96262
2021-10-27T11:30:26.000Z
[ "pytorch", "gpt2", "text-generation", "ru", "transformers" ]
text-generation
false
Nehc
null
Nehc/gpt2_lovecraft_ru
19
1
transformers
8,521
--- language: - ru widget: - text: "Немыслимо, " metrics: - loss: 3.3 - perplexity: 25.7528 --- Start from sberbank-ai/rugpt3small_based_on_gpt2 and finetuning on Govard Phillips Lovecraft texts (russian). On this moment - only 1 epoch (perplexity falls reasons) on progress...
Nehc/gpt2_priest_ru
cb134d4f4c652f0ec2f36b1dada8c8acbba5b364
2022-06-20T18:13:09.000Z
[ "pytorch", "gpt2", "text-generation", "ru", "transformers" ]
text-generation
false
Nehc
null
Nehc/gpt2_priest_ru
19
null
transformers
8,522
--- language: - ru widget: - text: "Бог, это " metrics: - loss: 3.3 - perplexity: 25.7528 --- Start from sberbank-ai/rugpt3small_based_on_gpt2 and finetuning on Biblie & preaching (russian). On this moment - only 1 epoch, 1650 seq length on progress...
Shahm/bert-german
688e0f9406e51bf801cc3aef317c74b8d2874ac9
2021-12-21T12:18:05.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "dataset:mlsum", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Shahm
null
Shahm/bert-german
19
null
transformers
8,523
--- license: mit tags: - generated_from_trainer datasets: - mlsum model-index: - name: plus-bert-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plus-bert-german This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.2791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Smone55/autonlp-au_topics-452311620
2fe19dd4076459eaf5d0260086b54233229da2bb
2021-12-28T01:56:22.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:Smone55/autonlp-data-au_topics", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Smone55
null
Smone55/autonlp-au_topics-452311620
19
null
transformers
8,524
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Smone55/autonlp-data-au_topics co2_eq_emissions: 208.0823957145878 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 452311620 - CO2 Emissions (in grams): 208.0823957145878 ## Validation Metrics - Loss: 0.5259971022605896 - Accuracy: 0.8767479025169796 - Macro F1: 0.8618813750734912 - Micro F1: 0.8767479025169796 - Weighted F1: 0.8742964006840133 - Macro Precision: 0.8627700506991158 - Micro Precision: 0.8767479025169796 - Weighted Precision: 0.8755603985289852 - Macro Recall: 0.8662183006750934 - Micro Recall: 0.8767479025169796 - Weighted Recall: 0.8767479025169796 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Smone55/autonlp-au_topics-452311620 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Smone55/autonlp-au_topics-452311620", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Smone55/autonlp-au_topics-452311620", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Tahsin/BERT-finetuned-conll2003-POS
6a560e8c993723738099bcc52c86eb12c059a5da
2022-01-05T21:04:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Tahsin
null
Tahsin/BERT-finetuned-conll2003-POS
19
null
transformers
8,525
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-pos results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276736387541917 - name: Recall type: recall value: 0.9329402916272412 - name: F1 type: f1 value: 0.9302995112982049 - name: Accuracy type: accuracy value: 0.933154765408842 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-pos This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Precision: 0.9277 - Recall: 0.9329 - F1: 0.9303 - Accuracy: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2791 | 1.0 | 1756 | 0.3125 | 0.9212 | 0.9263 | 0.9237 | 0.9272 | | 0.1853 | 2.0 | 3512 | 0.3038 | 0.9241 | 0.9309 | 0.9275 | 0.9307 | | 0.1501 | 3.0 | 5268 | 0.3009 | 0.9277 | 0.9329 | 0.9303 | 0.9332 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Yehor/wav2vec2-xls-r-300m-uk-with-lm
1cb4e3d5bc12e65deb8e9f0d38a6266b581048dc
2022-07-30T07:01:36.000Z
[ "pytorch", "wav2vec2", "pretraining", "uk", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Yehor
null
Yehor/wav2vec2-xls-r-300m-uk-with-lm
19
3
transformers
8,526
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - uk datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-300m-uk-with-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: uk metrics: - name: Test WER type: wer value: 26.47 - name: Test CER type: cer value: 2.90 --- # Ukrainian STT model (with Language Model) 🇺🇦 Join Ukrainian Speech Recognition Community - https://t.me/speech_recognition_uk ⭐ See other Ukrainian models - https://github.com/egorsmkv/speech-recognition-uk - Have a look on an updated 300m model: https://huggingface.co/Yehor/wav2vec2-xls-r-300m-uk-with-small-lm - Have a look on a better model with more parameters: https://huggingface.co/Yehor/wav2vec2-xls-r-1b-uk-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.3015 - Wer: 0.3377 - Cer: 0.0708 The above results present evaluation without the language model. ## Model description On 100 test example the model shows the following results: Without LM: - WER: 0.2647 - CER: 0.0469 With LM: - WER: 0.1568 - CER: 0.0289 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.0255 | 7.93 | 500 | 2.5514 | 0.9921 | 0.9047 | | 1.3809 | 15.86 | 1000 | 0.4065 | 0.5361 | 0.1201 | | 1.2355 | 23.8 | 1500 | 0.3474 | 0.4618 | 0.1033 | | 1.1956 | 31.74 | 2000 | 0.3617 | 0.4580 | 0.1005 | | 1.1416 | 39.67 | 2500 | 0.3182 | 0.4074 | 0.0891 | | 1.0996 | 47.61 | 3000 | 0.3166 | 0.3985 | 0.0875 | | 1.0427 | 55.55 | 3500 | 0.3116 | 0.3835 | 0.0828 | | 0.9961 | 63.49 | 4000 | 0.3137 | 0.3757 | 0.0807 | | 0.9575 | 71.42 | 4500 | 0.2992 | 0.3632 | 0.0771 | | 0.9154 | 79.36 | 5000 | 0.3015 | 0.3502 | 0.0740 | | 0.8994 | 87.3 | 5500 | 0.3004 | 0.3425 | 0.0723 | | 0.871 | 95.24 | 6000 | 0.3016 | 0.3394 | 0.0713 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
aditi2222/t5-paraphrase
378e0760e04a8361ea3cf68314f5bc73c083ef5f
2021-11-28T07:35:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
aditi2222
null
aditi2222/t5-paraphrase
19
null
transformers
8,527
T5 model This is a sentence-transformers mode
airKlizz/mt5-base-wikinewssum-italian
fc245cdb64505430b8a898fb274b8461d71845f4
2021-12-29T10:55:47.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-italian
19
null
transformers
8,528
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-italian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-italian This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 10.5739 - Rouge1: 2.1728 - Rouge2: 0.1516 - Rougel: 2.0846 - Rougelsum: 2.0515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 8 | 16.6193 | 2.4011 | 0.3829 | 2.1505 | 2.2161 | | No log | 2.0 | 16 | 15.8909 | 2.5165 | 0.2799 | 2.3403 | 2.3523 | | No log | 3.0 | 24 | 15.4843 | 2.2794 | 0.2252 | 2.1849 | 2.1382 | | 17.2559 | 4.0 | 32 | 13.0850 | 2.2448 | 0.1516 | 2.1426 | 2.0859 | | 17.2559 | 5.0 | 40 | 11.7838 | 2.2448 | 0.1516 | 2.1426 | 2.0859 | | 17.2559 | 6.0 | 48 | 11.3207 | 2.2424 | 0.1516 | 2.1423 | 2.1171 | | 17.2559 | 7.0 | 56 | 10.7871 | 2.1081 | 0.1516 | 2.0227 | 1.9838 | | 14.6026 | 8.0 | 64 | 10.5739 | 2.1728 | 0.1516 | 2.0846 | 2.0515 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/mt5-base-wikinewssum-polish
910dd53cd7227da0c3bb03087b0686dbe0e9eacb
2021-12-27T00:24:41.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-polish
19
null
transformers
8,529
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-polish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-polish This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3179 - Rouge1: 7.911 - Rouge2: 3.2189 - Rougel: 6.7856 - Rougelsum: 7.4485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 315 | 2.5391 | 5.9874 | 2.3594 | 5.1303 | 5.6116 | | No log | 2.0 | 630 | 2.4446 | 7.7294 | 3.0152 | 6.6024 | 7.2757 | | No log | 3.0 | 945 | 2.3912 | 7.6451 | 2.9785 | 6.5714 | 7.2011 | | 3.5311 | 4.0 | 1260 | 2.3720 | 7.8007 | 3.0913 | 6.7067 | 7.3451 | | 3.5311 | 5.0 | 1575 | 2.3411 | 7.8374 | 3.1208 | 6.7288 | 7.3459 | | 3.5311 | 6.0 | 1890 | 2.3354 | 7.8664 | 3.1655 | 6.762 | 7.4364 | | 3.5311 | 7.0 | 2205 | 2.3175 | 7.9529 | 3.2225 | 6.8438 | 7.4904 | | 2.692 | 8.0 | 2520 | 2.3179 | 7.911 | 3.2189 | 6.7856 | 7.4485 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
algoprog/mimics-query-facet-encoder-mpnet-base
d818d848bf14777655687dc8dedfa522e4df78b5
2022-02-24T02:03:36.000Z
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
false
algoprog
null
algoprog/mimics-query-facet-encoder-mpnet-base
19
null
transformers
8,530
Entry not found
aliosm/ComVE-gpt2
488b7b14eeb44ddcce8098356c698dc89b928da9
2021-05-21T13:19:25.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:ComVE", "transformers", "exbert", "commonsense", "semeval2020", "comve", "license:mit" ]
text-generation
false
aliosm
null
aliosm/ComVE-gpt2
19
null
transformers
8,531
--- language: "en" tags: - exbert - commonsense - semeval2020 - comve license: "mit" datasets: - ComVE metrics: - bleu widget: - text: "Chicken can swim in water. <|continue|>" --- # ComVE-gpt2 ## Model description Finetuned model on Commonsense Validation and Explanation (ComVE) dataset introduced in [SemEval2020 Task4](https://competitions.codalab.org/competitions/21080) using a causal language modeling (CLM) objective. The model is able to generate a reason why a given natural language statement is against commonsense. ## Intended uses & limitations You can use the raw model for text generation to generate reasons why natural language statements are against commonsense. #### How to use You can use this model directly to generate reasons why the given statement is against commonsense using [`generate.sh`](https://github.com/AliOsm/SemEval2020-Task4-ComVE/tree/master/TaskC-Generation) script. *Note:* make sure that you are using version `2.4.1` of `transformers` package. Newer versions has some issue in text generation and the model repeats the last token generated again and again. #### Limitations and bias The model biased to negate the entered sentence usually instead of producing a factual reason. ## Training data The model is initialized from the [gpt2](https://github.com/huggingface/transformers/blob/master/model_cards/gpt2-README.md) model and finetuned using [ComVE](https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation) dataset which contains 10K against commonsense sentences, each of them is paired with three reference reasons. ## Training procedure Each natural language statement that against commonsense is concatenated with its reference reason with `<|continue|>` as a separator, then the model finetuned using CLM objective. The model trained on Nvidia Tesla P100 GPU from Google Colab platform with 5e-5 learning rate, 5 epochs, 128 maximum sequence length and 64 batch size. <center> <img src="https://i.imgur.com/xKbrwBC.png"> </center> ## Eval results The model achieved 14.0547/13.6534 BLEU scores on SemEval2020 Task4: Commonsense Validation and Explanation development and testing dataset. ### BibTeX entry and citation info ```bibtex @article{fadel2020justers, title={JUSTers at SemEval-2020 Task 4: Evaluating Transformer Models Against Commonsense Validation and Explanation}, author={Fadel, Ali and Al-Ayyoub, Mahmoud and Cambria, Erik}, year={2020} } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ComVE-gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
allenai/dsp_roberta_base_dapt_biomed_tapt_chemprot_4169
38a508ccc10ecf87b96e4daa0e14dcbb9aacf642
2021-05-20T13:04:19.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_dapt_biomed_tapt_chemprot_4169
19
null
transformers
8,532
Entry not found
amazon-sagemaker-community/encoder_decoder_es
ec64a48d1cdca70ba4cee82bd39873b73caf1fe6
2021-11-20T05:44:01.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "dataset:cc_news_es_titles", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
amazon-sagemaker-community
null
amazon-sagemaker-community/encoder_decoder_es
19
null
transformers
8,533
--- tags: - generated_from_trainer datasets: - cc_news_es_titles model-index: - name: encoder_decoder_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # encoder_decoder_es This model is a fine-tuned version of [](https://huggingface.co/) on the cc_news_es_titles dataset. It achieves the following results on the evaluation set: - Loss: 7.8773 - Rouge2 Precision: 0.002 - Rouge2 Recall: 0.0116 - Rouge2 Fmeasure: 0.0034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 7.8807 | 1.0 | 5784 | 7.8976 | 0.0023 | 0.012 | 0.0038 | | 7.8771 | 2.0 | 11568 | 7.8873 | 0.0018 | 0.0099 | 0.003 | | 7.8588 | 3.0 | 17352 | 7.8819 | 0.0015 | 0.0085 | 0.0025 | | 7.8507 | 4.0 | 23136 | 7.8773 | 0.002 | 0.0116 | 0.0034 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
andi611/bert-base-cased-ner-conll2003
6eabad03cbfe119d6ad72ef45fb38dd4f419718a
2021-07-03T15:02:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
andi611
null
andi611/bert-base-cased-ner-conll2003
19
null
transformers
8,534
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: bert-base-cased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9860628716077 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9406 - Recall: 0.9463 - F1: 0.9434 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5855 | 1.0 | 878 | 0.0848 | 0.8965 | 0.8980 | 0.8973 | 0.9760 | | 0.058 | 2.0 | 1756 | 0.0607 | 0.9357 | 0.9379 | 0.9368 | 0.9840 | | 0.0282 | 3.0 | 2634 | 0.0604 | 0.9354 | 0.9420 | 0.9387 | 0.9852 | | 0.0148 | 4.0 | 3512 | 0.0606 | 0.9386 | 0.9485 | 0.9435 | 0.9861 | | 0.0101 | 5.0 | 4390 | 0.0620 | 0.9406 | 0.9463 | 0.9434 | 0.9861 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
anirudh21/albert-large-v2-finetuned-rte
584617ae506f0d620b7393cb7eab4b7961663bf6
2022-01-27T18:29:58.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/albert-large-v2-finetuned-rte
19
null
transformers
8,535
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: albert-large-v2-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.5487364620938628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-finetuned-rte This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6827 - Accuracy: 0.5487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 18 | 0.6954 | 0.5271 | | No log | 2.0 | 36 | 0.6860 | 0.5379 | | No log | 3.0 | 54 | 0.6827 | 0.5487 | | No log | 4.0 | 72 | 0.7179 | 0.5235 | | No log | 5.0 | 90 | 0.7504 | 0.5379 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
anton-l/wav2vec2-large-xlsr-53-lithuanian
d3bb59b7d33cda19411f924baa399994bc1a2aa9
2021-07-05T20:06:38.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-lithuanian
19
null
transformers
8,536
--- language: lt datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Lithuanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lt type: common_voice args: lt metrics: - name: Test WER type: wer value: 49.00 --- # Wav2Vec2-Large-XLSR-53-Lithuanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Lithuanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Lithuanian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lt.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lt/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/lt/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 49.00 % ## Training The Common Voice `train` and `validation` datasets were used for training.
appleternity/scibert-uncased-finetuned-coda19
df32a287d131248505494244dd35ba2354984751
2021-05-19T00:01:52.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
appleternity
null
appleternity/scibert-uncased-finetuned-coda19
19
null
transformers
8,537
Entry not found
tner/xlm-roberta-large-panx-dataset-ja
b902fe0d6f1293e0a656eea6348e31d0b27cbc91
2021-02-13T00:11:28.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-panx-dataset-ja
19
null
transformers
8,538
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ja") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ja") ```
bertin-project/bertin-base-xnli-es
8b7c57c0e25e18a04411a98083924b07609779bd
2021-09-23T13:42:09.000Z
[ "pytorch", "roberta", "text-classification", "es", "transformers", "spanish", "xnli", "license:cc-by-4.0" ]
text-classification
false
bertin-project
null
bertin-project/bertin-base-xnli-es
19
1
transformers
8,539
--- language: es license: cc-by-4.0 tags: - spanish - roberta - xnli --- This checkpoint has been trained for the XNLI dataset. This checkpoint was created from **Bertin Gaussian 512**, which is a **RoBERTa-base** model trained from scratch in Spanish. Information on this base model may be found at [its own card](https://huggingface.co/bertin-project/bertin-base-gaussian-exp-512seqlen) and at deeper detail on [the main project card](https://huggingface.co/bertin-project/bertin-roberta-base-spanish). The training dataset for the base model is [mc4](https://huggingface.co/datasets/bertin-project/mc4-es-sampled ) subsampling documents to a total of about 50 million examples. Sampling is biased towards average perplexity values (using a Gaussian function), discarding more often documents with very large values (poor quality) of very small values (short, repetitive texts). This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team members - Eduardo González ([edugp](https://huggingface.co/edugp)) - Javier de la Rosa ([versae](https://huggingface.co/versae)) - Manu Romero ([mrm8488](https://huggingface.co/)) - María Grandury ([mariagrandury](https://huggingface.co/)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Paulo Villegas ([paulo](https://huggingface.co/paulo))
bettertextapp/bart_large_paraphrase_generator_en_de_v2
eb1b263b3a60f45b73af239d002faba8f918fc00
2022-02-21T21:11:51.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
bettertextapp
null
bettertextapp/bart_large_paraphrase_generator_en_de_v2
19
null
transformers
8,540
--- tags: - generated_from_trainer model-index: - name: bart_large_paraphrase_generator_en_de_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_large_paraphrase_generator_en_de_v2 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed {'eval_loss': 0.9200083613395691, 'eval_score': 49.97448884411352, 'eval_counts': [100712, 72963, 57055, 41578], 'eval_totals': [133837, 130839, 127841, 124843], 'eval_precisions': [75.24974409169363, 55.76548276889918, 44.6296571522438, 33.30423011302196], 'eval_bp': 1.0, 'eval_sys_len': 133837, 'eval_ref_len': 130883, 'eval_runtime': 138.6871, 'eval_samples_per_second': 21.617, 'eval_steps_per_second': 0.678} More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 1.18.3 - Tokenizers 0.11.0
beyhan/bert-base-turkish-ner-cased-pretrained
a463a0cb156e2c384f851a4667a559bb701e9070
2021-05-19T12:37:40.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
beyhan
null
beyhan/bert-base-turkish-ner-cased-pretrained
19
null
transformers
8,541
Entry not found
boychaboy/MNLI_albert-base-v2
116b85250bbdbd945ab7bd486a252f05c84617e5
2021-05-14T01:54:43.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_albert-base-v2
19
null
transformers
8,542
Entry not found
celtics1863/env-bert-cls-chinese
24dc5f6707bf2fe3b33005949a89c7058a775bec
2021-10-30T09:27:10.000Z
[ "pytorch", "bert", "text-classification", "zh", "transformers", "environment", "multi-class", "classification" ]
text-classification
false
celtics1863
null
celtics1863/env-bert-cls-chinese
19
null
transformers
8,543
--- language: - zh tags: - bert - pytorch - environment - multi-class - classification --- 中文环境文本分类模型,1.6M的数据集,在env-bert-chinese上进行fine-tuning。 分为环境影响评价与控制、碳排放控制、水污染控制、大气污染控制、土壤污染控制、环境生态、固体废物、环境毒理与健康、环境微生物、环境政策与经济10类。 项目正在进行中,后续会陆续更新相关内容。 清华大学环境学院课题组 有相关需求、建议,联系[email protected]
chitra/finetune-paraphrase-model
ed3e3bf7811f33bdf5237013d235483f924fe34c
2022-01-19T04:40:57.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
chitra
null
chitra/finetune-paraphrase-model
19
null
transformers
8,544
--- tags: - generated_from_trainer model-index: - name: finetune-paraphrase-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-paraphrase-model This model is a fine-tuned version of [coderpotter/adversarial-paraphrasing-detector](https://huggingface.co/coderpotter/adversarial-paraphrasing-detector) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.1 | 200 | 3.0116 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
chujiezheng/blenderbot-400M-distill-ESC
ac35a26ae42087e7f0ccc5cdcc97d8cda6fa4b69
2022-05-22T23:44:57.000Z
[ "pytorch", "blenderbot", "text2text-generation", "arxiv:2106.01144", "transformers", "autotrain_compatible" ]
text2text-generation
false
chujiezheng
null
chujiezheng/blenderbot-400M-distill-ESC
19
1
transformers
8,545
[blenderbot-400M-distill](https://huggingface.co/facebook/blenderbot-400M-distill) fine-tuned on [Emotional Support Conversation](https://arxiv.org/pdf/2106.01144.pdf) dataset
danyaljj/opengpt2_pytorch_backward
4c14fe78590bfc5f4358cc7c29a6ee8b63a6b96a
2021-06-16T20:29:52.000Z
[ "pytorch", "transformers" ]
null
false
danyaljj
null
danyaljj/opengpt2_pytorch_backward
19
null
transformers
8,546
West et al.'s model from their "reflective decoding" paper. Sample usage: ```python import torch from modeling_opengpt2 import OpenGPT2LMHeadModel from padded_encoder import Encoder path_to_backward = 'danyaljj/opengpt2_pytorch_backward' encoder = Encoder() model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_backward) input = "until she finally won." input_ids = encoder.encode(input) input_ids = torch.tensor([input_ids[::-1] ], dtype=torch.int) print(input_ids) output = model_backward.generate(input_ids) output_text = encoder.decode(output.tolist()[0][::-1]) print(output_text) ``` Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
dpalominop/bert-large-cased-finetuned-ner
d5315d714523389b206e30fdbc9457a131bd6aba
2021-05-19T16:06:38.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dpalominop
null
dpalominop/bert-large-cased-finetuned-ner
19
null
transformers
8,547
Entry not found
edugp/data2vec-nlp-base
07514a15d71f8cb624fd36aa22300061e27c9677
2022-02-03T23:23:15.000Z
[ "pytorch", "data2vec", "fill-mask", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
edugp
null
edugp/data2vec-nlp-base
19
null
transformers
8,548
--- license: apache-2.0 tags: model-index: - name: data2vec-nlp-base results: [] --- # Data2Vec NLP Base This model was converted from `fairseq`. The original weights can be found in https://dl.fbaipublicfiles.com/fairseq/data2vec/nlp_base.pt Example usage: ```python from transformers import RobertaTokenizer, Data2VecForSequenceClassification, Data2VecConfig import torch tokenizer = RobertaTokenizer.from_pretrained("roberta-large") config = Data2VecConfig.from_pretrained("edugp/data2vec-nlp-base") model = Data2VecForSequenceClassification.from_pretrained("edugp/data2vec-nlp-base", config=config) # Fine-tune this model inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) prediction_logits = outputs.logits ```
fav-kky/FERNET-News
dd5d3ec15f0ab34b9bbf1c8f9f67447524b3d362
2021-07-26T21:05:10.000Z
[ "pytorch", "tf", "roberta", "fill-mask", "cs", "arxiv:2107.10042", "transformers", "Czech", "KKY", "FAV", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
fav-kky
null
fav-kky/FERNET-News
19
null
transformers
8,549
--- language: "cs" tags: - Czech - KKY - FAV license: "cc-by-nc-sa-4.0" --- # FERNET-News FERNET-News is a monolingual Czech RoBERTa-base model pre-trained from 20.5GB of thoroughly cleaned Czech news corpus. Preprint of our paper is available at https://arxiv.org/abs/2107.10042.
gchhablani/bert-base-cased-finetuned-rte
7e5be8e895f03887545da0172f91beffa92442c1
2021-09-20T09:08:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "en", "dataset:glue", "arxiv:2105.03824", "transformers", "generated_from_trainer", "fnet-bert-base-comparison", "license:apache-2.0", "model-index" ]
text-classification
false
gchhablani
null
gchhablani/bert-base-cased-finetuned-rte
19
null
transformers
8,550
--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - glue metrics: - accuracy model-index: - name: bert-base-cased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6714801444043321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-rte This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7260 - Accuracy: 0.6715 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name rte \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-rte \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6915 | 1.0 | 156 | 0.6491 | 0.6606 | | 0.55 | 2.0 | 312 | 0.6737 | 0.6570 | | 0.3955 | 3.0 | 468 | 0.7260 | 0.6715 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
giganticode/StackOBERTflow-comments-small-v1
fab1947828858dd1ac1a69cb422b47a9444c7500
2021-05-20T16:33:56.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
giganticode
null
giganticode/StackOBERTflow-comments-small-v1
19
null
transformers
8,551
# StackOBERTflow-comments-small StackOBERTflow is a RoBERTa model trained on StackOverflow comments. A Byte-level BPE tokenizer with dropout was used (using the `tokenizers` package). The model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. The model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus. ## Quick start: masked language modeling prediction ```python from transformers import pipeline from pprint import pprint COMMENT = "You really should not do it this way, I would use <mask> instead." fill_mask = pipeline( "fill-mask", model="giganticode/StackOBERTflow-comments-small-v1", tokenizer="giganticode/StackOBERTflow-comments-small-v1" ) pprint(fill_mask(COMMENT)) # [{'score': 0.019997311756014824, # 'sequence': '<s> You really should not do it this way, I would use jQuery instead.</s>', # 'token': 1738}, # {'score': 0.01693696901202202, # 'sequence': '<s> You really should not do it this way, I would use arrays instead.</s>', # 'token': 2844}, # {'score': 0.013411642983555794, # 'sequence': '<s> You really should not do it this way, I would use CSS instead.</s>', # 'token': 2254}, # {'score': 0.013224546797573566, # 'sequence': '<s> You really should not do it this way, I would use it instead.</s>', # 'token': 300}, # {'score': 0.011984303593635559, # 'sequence': '<s> You really should not do it this way, I would use classes instead.</s>', # 'token': 1779}] ```
google/tapas-medium-finetuned-tabfact
d75f8445e8df10f8b3bc6dd54d819acadecd9551
2021-11-29T13:09:54.000Z
[ "pytorch", "tf", "tapas", "text-classification", "en", "dataset:tab_fact", "arxiv:2010.00571", "arxiv:2004.02349", "transformers", "sequence-classification", "license:apache-2.0" ]
text-classification
false
google
null
google/tapas-medium-finetuned-tabfact
19
null
transformers
8,552
--- language: en tags: - tapas - sequence-classification license: apache-2.0 datasets: - tab_fact --- # TAPAS medium model fine-tuned on Tabular Fact Checking (TabFact) This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_tabfact_inter_masklm_medium_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [TabFact](https://github.com/wenhuchen/Table-Fact-Checking). It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `no_reset`, which corresponds to `tapas_tabfact_inter_masklm_medium` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a classification head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on TabFact. ## Intended uses & limitations You can use this model for classifying whether a sentence is supported or refuted by the contents of a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 80,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 14 hours. The optimizer used is Adam with a learning rate of 2e-5, and a warmup ratio of 0.05. See the [paper](https://arxiv.org/abs/2010.00571) for more details (appendix A2). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @inproceedings{2019TabFactA, title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, booktitle = {International Conference on Learning Representations (ICLR)}, address = {Addis Ababa, Ethiopia}, month = {April}, year = {2020} } ```
hakurei/lit-6B-8bit
e2e9d5beafb3dddd58409d9b6288cec36bad6673
2022-02-19T01:30:48.000Z
[ "pytorch", "en", "causal-lm", "license:mit" ]
null
false
hakurei
null
hakurei/lit-6B-8bit
19
2
null
8,553
--- language: - en tags: - pytorch - causal-lm license: mit --- # Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax), which is a 6 billion parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/). ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-6B') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-6B') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler comes to an unknown region, his thoughts turn inevitably towards the old gods and legends which cluster around its appearance. It is not that he believes in them or suspects their reality—but merely because they are present somewhere else in creation just as truly as himself, and so belong of necessity in any landscape whose features cannot be altogether strange to him. Moreover, man has been prone from ancient times to brood over those things most connected with the places where he dwells. Thus the Olympian deities who ruled Hyper ``` ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the [TPU Research Cloud](https://sites.research.google/trc/) - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
hectorcotelo/autonlp-spanish_songs-202661
c10b626c922ee2610ea41ec314440ddd45af4273
2021-05-19T11:38:11.000Z
[ "pytorch", "bert", "text-classification", "es", "dataset:hectorcotelo/autonlp-data-spanish_songs", "transformers", "autonlp" ]
text-classification
false
hectorcotelo
null
hectorcotelo/autonlp-spanish_songs-202661
19
null
transformers
8,554
--- tags: autonlp language: es widget: - text: "Y si me tomo una cerveza Vuelves a mi cabeza Y empiezo a recordarte Es que me gusta cómo besas Con tu delicadeza Puede ser que Tú y yo, somos el uno para el otro Que no dejo de pensarte Quise olvidarte y tomé un poco Y resultó extrañarte, yeah" datasets: - hectorcotelo/autonlp-data-spanish_songs --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 202661 ## Validation Metrics - Loss: 1.5369086265563965 - Accuracy: 0.30762817840766987 - Macro F1: 0.28034259092597485 - Micro F1: 0.30762817840766987 - Weighted F1: 0.28072818168048186 - Macro Precision: 0.3113843896292072 - Micro Precision: 0.30762817840766987 - Weighted Precision: 0.3128459166476807 - Macro Recall: 0.3071652685939504 - Micro Recall: 0.30762817840766987 - Weighted Recall: 0.30762817840766987 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/hectorcotelo/autonlp-spanish_songs-202661 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hectorcotelo/autonlp-spanish_songs-202661", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hectorcotelo/autonlp-spanish_songs-202661", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
howey/electra-base-mnli
814f68846e1d987803f51bfe76eb1bfb4e27416e
2022-03-08T18:08:21.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-base-mnli
19
null
transformers
8,555
Entry not found
huggingartists/drake
940b328a923569df57a4c843de83674c9b88bc9c
2022-07-07T14:26:57.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/drake", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/drake
19
null
transformers
8,556
--- language: en datasets: - huggingartists/drake tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/631b206379b60df5e1da90e84d35fdbe.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Drake</div> <a href="https://genius.com/artists/drake"> <div style="text-align: center; font-size: 14px;">@drake</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Drake. Dataset is available [here](https://huggingface.co/datasets/huggingartists/drake). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/drake") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2e42ok17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Drake's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2xe72oq3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2xe72oq3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/drake') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/drake") model = AutoModelWithLMHead.from_pretrained("huggingartists/drake") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/queen
7f2c5a89d3c5e793e875bbe4b5eca67d0f64a5c1
2022-07-13T06:52:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/queen", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/queen
19
null
transformers
8,557
--- language: en datasets: - huggingartists/queen tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/97bcb5755cb9780d76b37726a0ce4bef.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Queen</div> <a href="https://genius.com/artists/queen"> <div style="text-align: center; font-size: 14px;">@queen</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Queen. Dataset is available [here](https://huggingface.co/datasets/huggingartists/queen). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/queen") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1jdprwq2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Queen's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2lvkoamo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2lvkoamo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/queen') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/queen") model = AutoModelWithLMHead.from_pretrained("huggingartists/queen") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/alvarouribevel
3bec5573ba32597f5dc23e14384f0fef6af999b8
2021-06-11T16:26:27.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alvarouribevel
19
null
transformers
8,558
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/479052171837984768/mlO43FWa_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Álvaro Uribe Vélez</div> <div style="text-align: center; font-size: 14px;">@alvarouribevel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Álvaro Uribe Vélez. | Data | Álvaro Uribe Vélez | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 1335 | | Short tweets | 228 | | Tweets kept | 1677 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1439yxv6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alvarouribevel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ly70v6r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ly70v6r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alvarouribevel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cavidaga-elonmusk
090a6b9de6773578c6a74da254d20de8df0531e5
2021-07-31T08:35:25.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cavidaga-elonmusk
19
null
transformers
8,559
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416443682157473795/dGtFbtht_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420013003483852810/Rsl-fb7i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Cavid Ağa</div> <div style="text-align: center; font-size: 14px;">@cavidaga-elonmusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Cavid Ağa. | Data | Elon Musk | Cavid Ağa | | --- | --- | --- | | Tweets downloaded | 830 | 3221 | | Retweets | 48 | 483 | | Short tweets | 237 | 263 | | Tweets kept | 545 | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ydwi0ay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cavidaga-elonmusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mxx9rsu8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mxx9rsu8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cavidaga-elonmusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deontologistics
444df11ff2855d856bbf162cbee351b154506454
2021-05-22T01:22:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deontologistics
19
null
transformers
8,560
--- language: en thumbnail: https://www.huggingtweets.com/deontologistics/1616689045190/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357656503566622720/PGCAnBgE_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">pete wolfendale 🤖 AI Bot </div> <div style="font-size: 15px">@deontologistics bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@deontologistics's tweets](https://twitter.com/deontologistics). | Data | Quantity | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 590 | | Short tweets | 187 | | Tweets kept | 2453 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ahwv4uv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deontologistics's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dpgq6x6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dpgq6x6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deontologistics') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fesshole
6fb16c8dda3c55c000bd2516189201d4fd8c51ec
2022-07-07T10:39:01.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fesshole
19
null
transformers
8,561
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1172580448662372353/SwJNqDQl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fesshole 🧻</div> <div style="text-align: center; font-size: 14px;">@fesshole</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fesshole 🧻. | Data | Fesshole 🧻 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 14 | | Short tweets | 1 | | Tweets kept | 3235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3473th10/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fesshole's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wz2ncbz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wz2ncbz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fesshole') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/leehsienloong
8c52c7843baeb3d6629f34fe311b087454e83b1a
2021-05-22T11:47:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/leehsienloong
19
null
transformers
8,562
--- language: en thumbnail: https://www.huggingtweets.com/leehsienloong/1602584946584/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292656123422498817/KsNLC4Uc_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">leehsienloong 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@leehsienloong bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@leehsienloong's tweets](https://twitter.com/leehsienloong). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3195</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>36</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>39</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3120</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/bodl1o36/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leehsienloong's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/7ajjl7j0) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/7ajjl7j0/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/leehsienloong'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/seocamp
abd95279c1d95ba9f19805124691fa1c794bc4dc
2021-05-22T22:29:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/seocamp
19
null
transformers
8,563
--- language: en thumbnail: https://www.huggingtweets.com/seocamp/1600856567422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/557135313558970369/0rA33HGL_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">SEO Camp 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@seocamp bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@seocamp's tweets](https://twitter.com/seocamp). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3238</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>849</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>53</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2336</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2g3bq1ht/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @seocamp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2725jswm) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2725jswm/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/seocamp'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/tweeting691
10eb60257e4dd91759097012fdf22dc8ada2ac24
2021-05-23T03:02:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tweeting691
19
null
transformers
8,564
--- language: en thumbnail: https://www.huggingtweets.com/tweeting691/1609406697752/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344038435204562951/gw-6-9w9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">dr. jesus 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@tweeting691 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@tweeting691's tweets](https://twitter.com/tweeting691). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>185</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>23</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>161</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3a553tjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tweeting691's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15gnpyl6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15gnpyl6/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/tweeting691'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/twomad
1e8b9194867ac12fd3bada03554a338cad617e40
2021-05-23T03:07:13.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/twomad
19
null
transformers
8,565
--- language: en thumbnail: https://www.huggingtweets.com/twomad/1618363135274/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375541353564700672/Ocxb3A5u_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">twomad⁉️ 🤖 AI Bot </div> <div style="font-size: 15px">@twomad bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@twomad's tweets](https://twitter.com/twomad). | Data | Quantity | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 39 | | Short tweets | 1769 | | Tweets kept | 1441 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mxyoi4m2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @twomad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rwdxqqe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rwdxqqe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/twomad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jcblaise/electra-tagalog-small-uncased-discriminator-newsphnli
f992b7265be1297a03f9c6f81c9e00d8bb6c85bb
2020-12-08T10:24:28.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
false
jcblaise
null
jcblaise/electra-tagalog-small-uncased-discriminator-newsphnli
19
null
transformers
8,566
Entry not found
joelito/bert-base-uncased-sem_eval_2010_task_8
1bc05a5cc0032845237919a2b85332917eb2260c
2021-05-19T20:50:51.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
joelito
null
joelito/bert-base-uncased-sem_eval_2010_task_8
19
null
transformers
8,567
# bert-base-uncased-sem_eval_2010_task_8 Task: sem_eval_2010_task_8 Base Model: bert-base-uncased Trained for 3 epochs Batch-size: 6 Seed: 42 Test F1-Score: 0.8
kwang2049/TSDAE-askubuntu2nli_stsb
cd3499a85bb9242fb995726ed8d00988b51d1c81
2021-10-25T16:13:34.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-askubuntu2nli_stsb
19
null
transformers
8,568
# kwang2049/TSDAE-askubuntu2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain AskUbuntu. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on AskUbuntu with the TSDAE objective; 3. Supervised training on the NLI data with cross-entropy loss; 4. Supervised training on the STSb data with MSE loss. The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'askubuntu' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'askubuntu' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
laboro-ai/distilbert-base-japanese-finetuned-livedoor
1918b65a2cd7e007ebe156fb5374d80d381d085a
2020-12-18T03:09:54.000Z
[ "pytorch", "distilbert", "text-classification", "ja", "transformers", "license:cc-by-nc-4.0" ]
text-classification
false
laboro-ai
null
laboro-ai/distilbert-base-japanese-finetuned-livedoor
19
null
transformers
8,569
--- language: ja tags: - distilbert license: cc-by-nc-4.0 ---
liaad/srl-pt_mbert-base
8134ee989df4975f4993ca7e627410ddfdb8e791
2021-09-22T08:56:31.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "transformers", "bert-base-multilingual-cased", "semantic role labeling", "finetuned", "license:apache-2.0" ]
feature-extraction
false
liaad
null
liaad/srl-pt_mbert-base
19
null
transformers
8,570
--- language: - multilingual - pt tags: - bert-base-multilingual-cased - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # mBERT fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_mbert-base") model = AutoModel.from_pretrained("liaad/srl-pt_mbert-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lucio/xls-r-kyrgiz-cv8
9b2212ed46efc01ecf8524f579ec910758e82a1d
2022-03-23T18:34:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ky", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lucio
null
lucio/xls-r-kyrgiz-cv8
19
null
transformers
8,571
--- language: - ky license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M Kyrgiz CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ky metrics: - name: Test WER (with LM) type: wer value: 19.01 - name: Test CER (with LM) type: cer value: 5.38 - name: Test WER (no LM) type: wer value: 31.28 - name: Test CER (no LM) type: cer value: 7.66 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M Kyrgiz CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KY dataset. It achieves the following results on the validation set: - Loss: 0.5497 - Wer: 0.2945 - Cer: 0.0791 ## Model description For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) The model vocabulary consists of the cyrillic alphabet with punctuation removed. The kenlm language model is built using the text of the train and invalidated corpus splits. ## Intended uses & limitations This model is expected to be of some utility for low-fidelity use cases such as: - Draft video captions - Indexing of recorded broadcasts The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers. ## Training and evaluation data The combination of `train`, `dev` and `other` of common voice official splits were used as training data. The half of the official `test` split was used as validation data, as and the full `test` set was used for final evaluation. ## Training procedure The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Kyrgiz CV8 example sentences. A ramped learning rate is used with an initial warmup phase of 500 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 8100 steps (300 epochs). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 300.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 3.1079 | 18.51 | 500 | 2.6795 | 0.9996 | 0.9825 | | 0.8506 | 37.04 | 1000 | 0.4323 | 0.3718 | 0.0961 | | 0.6821 | 55.55 | 1500 | 0.4105 | 0.3311 | 0.0878 | | 0.6091 | 74.07 | 2000 | 0.4281 | 0.3168 | 0.0851 | | 0.5429 | 92.58 | 2500 | 0.4525 | 0.3147 | 0.0842 | | 0.5063 | 111.11 | 3000 | 0.4619 | 0.3144 | 0.0839 | | 0.4661 | 129.62 | 3500 | 0.4660 | 0.3039 | 0.0818 | | 0.4353 | 148.15 | 4000 | 0.4695 | 0.3083 | 0.0820 | | 0.4048 | 166.65 | 4500 | 0.4909 | 0.3085 | 0.0824 | | 0.3852 | 185.18 | 5000 | 0.5074 | 0.3048 | 0.0812 | | 0.3567 | 203.69 | 5500 | 0.5111 | 0.3012 | 0.0810 | | 0.3451 | 222.22 | 6000 | 0.5225 | 0.2982 | 0.0804 | | 0.325 | 240.73 | 6500 | 0.5270 | 0.2955 | 0.0796 | | 0.3089 | 259.25 | 7000 | 0.5381 | 0.2929 | 0.0793 | | 0.2941 | 277.76 | 7500 | 0.5565 | 0.2923 | 0.0794 | | 0.2945 | 296.29 | 8000 | 0.5495 | 0.2951 | 0.0789 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
luiz826/roberta-to-music-genre
2e10604ea9c0bfaee4b50467c11f46ebfa7c720e
2021-12-12T16:36:12.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
luiz826
null
luiz826/roberta-to-music-genre
19
null
transformers
8,572
This model was made for a project in the NLP group of the Technology and Artificial Intelligence League (TAIL). We try to predict a music genre from the lyrics.
m3hrdadfi/albert-fa-base-v2-sentiment-binary
f257e9f5fce378e4b287173361ef45470ffcbcb8
2020-12-26T08:46:58.000Z
[ "pytorch", "tf", "albert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
m3hrdadfi
null
m3hrdadfi/albert-fa-base-v2-sentiment-binary
19
1
transformers
8,573
--- language: fa license: apache-2.0 --- # ALBERT Persian A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language > میتونی بهش بگی برت_کوچولو [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) is the first attempt on ALBERT for the Persian Language. The model was trained based on Google's ALBERT BASE Version 2.0 over various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 3.9M documents, 73M sentences, and 1.3B words, like the way we did for ParsBERT. Please follow the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo for the latest information about previous and current models. ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers] It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types. ## Results The model obtained an F1 score of 87.56% for a composition of all three datasets into a binary-labels `Negative` and `Positive`. ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @misc{ALBERTPersian, author = {Mehrdad Farahani}, title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}}, } @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo.
malay-huggingface/bert-tiny-bahasa-cased
6b30b65ba47d921d7f5716f733ac4211185d4bf1
2021-09-11T16:15:36.000Z
[ "pytorch", "bert", "fill-mask", "ms", "transformers", "autotrain_compatible" ]
fill-mask
false
malay-huggingface
null
malay-huggingface/bert-tiny-bahasa-cased
19
null
transformers
8,574
--- language: ms --- # bert-tiny-bahasa-cased Pretrained BERT tiny language model for Malay. ## Pretraining Corpus `bert-tiny-bahasa-cased` model was pretrained on ~1.4 Billion words. Below is list of data we trained on, 1. [cleaned local texts](https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean). 2. [translated The Pile](https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile). ## Pretraining details - All steps can reproduce from here, [Malaya/pretrained-model/bert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/bert). ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import BertTokenizer, BertModel model = BertModel.from_pretrained('malay-huggingface/bert-tiny-bahasa-cased') tokenizer = BertTokenizer.from_pretrained( 'malay-huggingface/bert-tiny-bahasa-cased', do_lower_case = False, ) ``` ## Example using AutoModelWithLMHead ```python from transformers import BertTokenizer, BertForMaskedLM, pipeline model = BertForMaskedLM.from_pretrained('malay-huggingface/bert-tiny-bahasa-cased') tokenizer = BertTokenizer.from_pretrained( 'malay-huggingface/bert-tiny-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan [MASK] .') ``` Output is, ```text [{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.', 'score': 0.09178723394870758, 'token': 1957, 'token_str': 'M a l a y s i a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.', 'score': 0.053524162620306015, 'token': 2134, 'token_str': 'n e g a r a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan dikemukakan.', 'score': 0.031137527897953987, 'token': 9383, 'token_str': 'd i k e m u k a k a n'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan 1MDB.', 'score': 0.02826082520186901, 'token': 13838, 'token_str': '1 M D B'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ditolak.', 'score': 0.026568090543150902, 'token': 11465, 'token_str': 'd i t o l a k'}] ```
manueldeprada/t5-cord19-paraphrase-paws-msrp-opinosis
0a5da286d393e31526c58b537c941fc4d6a8fa1e
2021-06-23T12:34:22.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
manueldeprada
null
manueldeprada/t5-cord19-paraphrase-paws-msrp-opinosis
19
null
transformers
8,575
# T5-Paraphrase pretrained using the CORD-19 dataset. The base model is manueldeprada/t5-cord19, which has been pretrained with the text and abstracts from the CORD-19 dataset. It has been finetuned in paraphrasing text like ceshine/t5-paraphrase-paws-msrp-opinosis, using the scripts from [ceshine/finetuning-t5 Github repo](https://github.com/ceshine/finetuning-t5/tree/master/paraphrase). It does the same paraphrasing but the CORD-19 pretraining allows this model to perform well in COVID-19 related text.
mattchurgin/xls-r-eng
148cffc40d176e85145d5f90a8a65c405f030f01
2022-01-23T17:31:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mattchurgin
null
mattchurgin/xls-r-eng
19
null
transformers
8,576
--- language: - ab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [patrickvonplaten/wav2vec2_tiny_random_robust](https://huggingface.co/patrickvonplaten/wav2vec2_tiny_random_robust) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
midas/gupshup_e2e_t5
8a9f367c92827964c12573889b5177e0b00105e5
2021-11-14T02:08:01.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:1910.04073", "transformers", "autotrain_compatible" ]
text2text-generation
false
midas
null
midas/gupshup_e2e_t5
19
null
transformers
8,577
# Gupshup GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021 Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf) Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup) ### Dataset Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0). Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts. ## Models All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts. Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below. **1. Hinglish Dialogues to English Summary (h2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) | | PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) | | T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) | | T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) | | BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) | | GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) | **2. English Dialogues to English Summary (e2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) | | PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) | | T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) | | T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) | | BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) | | GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) | ## Inference ### Using command line 1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using ``` git clone https://github.com/midas-research/gupshup.git pip install -r requirements.txt ``` 2. run_eval script has the following arguments. * **model_name** : Path or alias to one of our models available on Huggingface as listed above. * **input_path** : Source file or path to file containing conversations, which will be summarized. * **save_path** : File path where to save summaries generated by the model. * **reference_path** : Target file or path to file containing summaries, used to calculate matrices. * **score_path** : File path where to save scores. * **bs** : Batch size * **device**: Cuda devices to use. Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command ``` python run_eval.py \ --model_name midas/gupshup_h2e_mbart \ --input_path data/h2e/test.source \ --save_path generated_summary.txt \ --reference_path data/h2e/test.target \ --score_path scores.txt \ --bs 8 ``` Another example, to generate English summaries from English dialogues using the Pegasus model ``` python run_eval.py \ --model_name midas/gupshup_e2e_pegasus \ --input_path data/e2e/test.source \ --save_path generated_summary.txt \ --reference_path data/e2e/test.target \ --score_path scores.txt \ --bs 8 ``` Please create an issue if you are facing any difficulties in replicating the results. ### References Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful. [1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf) ``` @inproceedings{mehnaz2021gupshup, title={GupShup: Summarizing Open-Domain Code-Switched Conversations}, author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={6177--6192}, year={2021} } ```
mrm8488/t5-base-finetuned-AESLC-summarization
ac192f3ee2f086d7d87693bae073c9603ff0dd69
2021-06-23T12:40:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-AESLC-summarization
19
null
transformers
8,578
Entry not found
nbouali/flaubert-base-uncased-finetuned-cooking
c21d936fe58805bd72b49ad5333f4ad79b3890bb
2021-04-28T16:02:59.000Z
[ "pytorch", "flaubert", "text-classification", "fr", "transformers", "french", "flaubert-base-uncased" ]
text-classification
false
nbouali
null
nbouali/flaubert-base-uncased-finetuned-cooking
19
null
transformers
8,579
--- language: fr tags: - text-classification - flaubert - french - flaubert-base-uncased widget: - text: "Lasagnes à la bolognaise" --- # FlauBERT finetuned on French cooking recipes This model is finetuned on a sequence classification task that associates each sequence with the appropriate recipe category. ### How to use it? ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import TextClassificationPipeline loaded_tokenizer = AutoTokenizer.from_pretrained("nbouali/flaubert-base-uncased-finetuned-cooking") loaded_model = AutoModelForSequenceClassification.from_pretrained("nbouali/flaubert-base-uncased-finetuned-cooking") nlp = TextClassificationPipeline(model=loaded_model,tokenizer=loaded_tokenizer,task="Recipe classification") print(nlp("Lasagnes à la bolognaise")) ``` ``` [{'label': 'LABEL_6', 'score': 0.9921900033950806}] ``` ### Label encoding: | label | Recipe Category | |:------:|:--------------:| | 0 |'Accompagnement' | | 1 | 'Amuse-gueule' | | 2 | 'Boisson' | | 3 | 'Confiserie' | | 4 | 'Dessert'| | 5 | 'Entrée' | | 6 |'Plat principal' | | 7 | 'Sauce' | <br/> <br/> > If you would like to know more about this model you can refer to [our blog post](https://medium.com/unify-data-office/a-cooking-language-model-fine-tuned-on-dozens-of-thousands-of-french-recipes-bcdb8e560571)
nielsr/codet5-small-code-summarization-ruby
522d18fcc9e7ecaf9283c3c83637ac423423d591
2021-11-07T17:37:12.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:code_x_glue_ct_code_to_text", "transformers", "codet5", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
nielsr
null
nielsr/codet5-small-code-summarization-ruby
19
2
transformers
8,580
--- license: apache-2.0 tags: - codet5 datasets: - code_x_glue_ct_code_to_text widget: - text: 'def pad(tensor, paddings, mode: "CONSTANT", name: nil) _op(:pad, tensor, paddings, mode: mode, name: name) end </s>' --- # Description CodeT5-small model, fine-tuned on the code summarization subtask of CodeXGLUE (Ruby programming language). This model can generate a docstring of a given function written in Ruby. # Notebook The notebook that I used to fine-tune CodeT5 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/T5/Fine_tune_CodeT5_for_generating_docstrings_from_Ruby_code.ipynb). # Usage Here's how to use this model: ```python from transformers import RobertaTokenizer, T5ForConditionalGeneration model_name = "nielsr/codet5-small-code-summarization-ruby" tokenizer = RobertaTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) code = """ def update_with_file_contents(digest, filename) File.open(filename) do |io| while (chunk = io.read(1024 * 8)) digest.update(chunk) end end end """ input_ids = tokenizer(code, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # Update the digest with the contents of the given file ```
osanseviero/full-sentence-distillroberta2
4551c4b36ec3f2057243b92abea3218feec23f4c
2021-08-06T08:37:57.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
feature-extraction
false
osanseviero
null
osanseviero/full-sentence-distillroberta2
19
null
sentence-transformers
8,581
--- tags: - sentence-transformers - sentence-similarity --- ## Testing Sentence Transformer
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo
0cc299a461e1a1972944829fc97788f88b25d18c
2021-10-19T14:00:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo
19
0
transformers
8,582
## XLSR-Wav2Vec2 Fine-Tuned on Turkish Common Voice dataset The model was fine-tuned in a google colab for demonstration purposes. Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information about the model.
persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing
b21c620f16d3b1306e349fb8543ad09493f5d3d1
2021-09-23T16:20:38.000Z
[ "pytorch", "t5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "dataset:qqp", "transformers", "query-paraphrasing", "mt5", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing
19
null
transformers
8,583
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - query-paraphrasing - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - qqp metrics: - accuracy --- # Detection of Paraphrased Queries (تشخصیص سوالات هم‌معنی) This is a model for detection of paraphrased queries. Here is an example of how you can run this model: ```python from transformers import MT5Config, MT5ForConditionalGeneration, MT5Tokenizer model_name = "persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(q1, q2, **generator_args): input_ids = tokenizer.encode(f"{q1}<sep>{q2}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("چه چیزی باعث پوکی استخوان می شود؟", "چه چیزی باعث مقاومت استخوان در برابر ضربه می شود؟") run_model("من دارم به این فکر میکنم چرا ساعت هفت نمیشه؟", "چرا من ساده فکر میکردم به عشقت پابندی؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("شناسنامه در چه سالی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") run_model("سیب زمینی چه زمانی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
pierreguillou/byt5-small-qa-squad-v1.1-portuguese
04363d2c3adfae5ec68828147b5826b17c13e3f1
2021-12-05T15:42:20.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:squad", "arxiv:1907.06292", "arxiv:2105.13626", "transformers", "byt5", "qa", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
pierreguillou
null
pierreguillou/byt5-small-qa-squad-v1.1-portuguese
19
2
transformers
8,584
--- language: pt license: apache-2.0 tags: - text2text-generation - byt5 - pytorch - qa datasets: squad metrics: squad widget: - text: 'question: "Quando começou a pandemia de Covid-19 no mundo?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano."' - text: 'question: "Onde foi descoberta a Covid-19?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano."' --- # ByT5 small finetuned for Question Answering (QA) on SQUaD v1.1 Portuguese ![Exemple of what can do the Portuguese ByT5 small QA (Question Answering), finetuned on SQUAD v1.1](https://miro.medium.com/max/2000/1*te5MmdesAHCmg4KmK8zD3g.png) Check our other QA models in Portuguese finetuned on SQUAD v1.1: - [Portuguese BERT base cased QA](https://huggingface.co/pierreguillou/bert-base-cased-squad-v1.1-portuguese) - [Portuguese BERT large cased QA](https://huggingface.co/pierreguillou/bert-large-cased-squad-v1.1-portuguese) - [Portuguese T5 base QA](https://huggingface.co/pierreguillou/t5-base-qa-squad-v1.1-portuguese) ## Introduction The model was trained on the dataset SQUAD v1.1 in portuguese from the [Deep Learning Brasil group](http://www.deeplearningbrasil.com.br/) on Google Colab from the language model [ByT5 small](https://huggingface.co/google/byt5-small) of Google. ## About ByT5 ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) ## Informations on the method used All the informations are in the blog post : ... ## Notebooks in Google Colab & GitHub - Google Colab: ... - GitHub: ... ## Performance The results obtained are the following: ``` f1 = ... exact match = ... ``` ## How to use the model... with Pipeline ```python import transformers from transformers import pipeline model_name = 'pierreguillou/byt5-small-qa-squad-v1.1-portuguese' nlp = pipeline("text2text-generation", model=model_name) # source: https://pt.wikipedia.org/wiki/Pandemia_de_COVID-19 input_text = r""" question: "Quando começou a pandemia de Covid-19 no mundo?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano." """ input_text = input_text.replace('\n','') input_text # question: "Quando começou a pandemia de Covid-19 no mundo?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano." result = nlp(input_text) result # [{'generated_text': '1 de dezembro de 2019'}] ``` ## How to use the model... with the Auto classes ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = 'pierreguillou/byt5-small-qa-squad-v1.1-portuguese' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # source: https://pt.wikipedia.org/wiki/Pandemia_de_COVID-19 input_text = r""" question: "Quando começou a pandemia de Covid-19 no mundo?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano." """ input_text = input_text.replace('\n','') input_text # question: "Quando começou a pandemia de Covid-19 no mundo?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano." input_ids = tokenizer(input_text, return_tensors='pt').input_ids outputs = model.generate( input_ids, max_length=64, num_beams=1 ) result = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) result # 1 de dezembro de 2019 ``` ## Limitations and bias The training data used for this model come from Portuguese SQUAD. It could contain a lot of unfiltered content, which is far from neutral, and biases. ## Author Portuguese ByT5 small QA (Question Answering), finetuned on SQUAD v1.1 was trained and evaluated by [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/) thanks to the Open Source code, platforms and advices of many organizations. In particular: [Google AI](https://huggingface.co/google), [Hugging Face](https://huggingface.co/), [Deep Learning Brasil group](http://www.deeplearningbrasil.com.br/) and [Google Colab](https://colab.research.google.com/). ## Citation If you use our work, please cite: ```bibtex @inproceedings{pierreguillou2021byt5smallsquadv11portuguese, title={Portuguese ByT5 small QA (Question Answering), finetuned on SQUAD v1.1}, author={Pierre Guillou}, year={2021} } ```
princeton-nlp/densephrases-multi
e842d544599752023df27be816b5f4e6e8d1263e
2021-09-20T15:27:15.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi
19
null
transformers
8,585
Entry not found
priyank/Generate_instructions_t5
312e714332f0c11fb802696b79a6c68d926a4548
2021-05-13T14:28:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
priyank
null
priyank/Generate_instructions_t5
19
null
transformers
8,586
``` import torch from transformers import T5ForConditionalGeneration,T5Tokenizer def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) set_seed(42) model = T5ForConditionalGeneration.from_pretrained("priyank/Generate_instructions_t5") tokenizer = T5Tokenizer.from_pretrained("priyank/Generate_instructions_t5") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) sentence = "ask user to provide his date of birth" text = "paraphrase: " + sentence + " </s>" max_len = 256 encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) # set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3 beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=256, top_k=120, top_p=0.98, early_stopping=True, num_return_sequences=10 ) print ("\\ Apprentice Query ::") print (sentence) print ("\\ Auto Generated Instruction ::") final_outputs =[] for beam_output in beam_outputs: sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) if sent.lower() != sentence.lower() and sent not in final_outputs: final_outputs.append(sent) for i, final_output in enumerate(final_outputs): print("{}: {}".format(i, final_output)) Apprentice Query :: if balance is greater than $100, then tell the user he needs more balance Auto Generated Instruction :: 0: IF (assert(user.balance > $100)) THEN (say you need more balance) ``` Reference: https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-
pszemraj/GPT-Converse-1pt3B-Neo-WoW-DD-17
ee4db57ced86ad96683fe8078171a9396e502e41
2022-01-19T01:22:11.000Z
[ "pytorch", "gpt_neo", "text-generation", "en", "dataset:natural questions", "transformers", "gpt2", "gpt", "license:mit" ]
text-generation
false
pszemraj
null
pszemraj/GPT-Converse-1pt3B-Neo-WoW-DD-17
19
null
transformers
8,587
--- language: - en tags: - text-generation - gpt2 - gpt license: mit datasets: - natural questions widget: - text: "hi, how are you doing bruh?\nperson beta:\n\n" example_title: "greeting" - text: "Can you actually take me for dinner somewhere nice this time?\nperson beta:\n\n" example_title: "dinner" - text: "Honey, I have clogged the toilet for the third time this month.. sorry..\nperson beta:\n\n" example_title: "overflow" - text: "A man pushes his car to a hotel and tells the owner he’s bankrupt. Why?\nperson beta:\n\n" example_title: "brain teaser" inference: parameters: min_length: 2 max_length: 64 length_penalty: 0.7 no_repeat_ngram_size: 3 do_sample: True top_p: 0.85 top_k: 10 repetition_penalty: 2.1 --- # GPT-Neo 1.3 B Conversational - 17 total epochs - trained on the Wizard of Wikipedia parl.ai dataset + Daily Dialogues dataset - 13 on WoW 4 on Daily Dialogues - the aim is to use the model as a customizable chatbot with the personID labels as pseudo-SOT/EOT tokens, i.e. ending the prompt with `person beta:` means that it is extremely likely that _person beta:_ responds, as opposed to the entered prompt being added on to. - a link to the project repo that details how to effectively use such a trained model is [here](https://github.com/pszemraj/ai-msgbot)
r2d2/stsb-bertweet-base-v0
138d1944346ccb7ab2e2eae5d4d2827bce568a95
2022-02-18T14:53:45.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
r2d2
null
r2d2/stsb-bertweet-base-v0
19
null
sentence-transformers
8,588
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # r2d2/stsb-bertweet-base-v0 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('r2d2/stsb-bertweet-base-v0') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('r2d2/stsb-bertweet-base-v0') model = AutoModel.from_pretrained('r2d2/stsb-bertweet-base-v0') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=r2d2/stsb-bertweet-base-v0) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rohanrajpal/bert-base-en-es-codemix-cased
58341c89159c26603beab1ae726bf9528e6cc52c
2021-05-19T00:26:38.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "es", "en", "dataset:SAIL 2017", "transformers", "codemix", "license:apache-2.0" ]
text-classification
false
rohanrajpal
null
rohanrajpal/bert-base-en-es-codemix-cased
19
null
transformers
8,589
--- language: - es - en tags: - es - en - codemix license: "apache-2.0" datasets: - SAIL 2017 metrics: - fscore - accuracy - precision - recall --- # BERT codemixed base model for spanglish (cased) This model was built using [lingualytics](https://github.com/lingualytics/py-lingualytics), an open-source library that supports code-mixed analytics. ## Model description Input for the model: Any codemixed spanglish text Output for the model: Sentiment. (0 - Negative, 1 - Neutral, 2 - Positive) I took a bert-base-multilingual-cased model from Huggingface and finetuned it on [CS-EN-ES-CORPUS](http://www.grupolys.org/software/CS-CORPORA/cs-en-es-corpus-wassa2015.txt) dataset. Performance of this model on the dataset | metric | score | |------------|----------| | acc | 0.718615 | | f1 | 0.71759 | | acc_and_f1 | 0.718103 | | precision | 0.719302 | | recall | 0.718615 | ## Intended uses & limitations Make sure to preprocess your data using [these methods](https://github.com/microsoft/GLUECoS/blob/master/Data/Preprocess_Scripts/preprocess_sent_en_es.py) before using this model. #### How to use Here is how to use this model to get the features of a given text in *PyTorch*: ```python # You can include sample code which will be formatted from transformers import BertTokenizer, BertModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') model = AutoModelForSequenceClassification.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in *TensorFlow*: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') model = TFBertModel.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias Since I dont know spanish, I cant verify the quality of annotations or the dataset itself. This is a very simple transfer learning approach and I'm open to discussions to improve upon this. ## Training data I trained on the dataset on the [bert-base-multilingual-cased model](https://huggingface.co/bert-base-multilingual-cased). ## Training procedure Followed the preprocessing techniques followed [here](https://github.com/microsoft/GLUECoS/blob/master/Data/Preprocess_Scripts/preprocess_sent_en_es.py) ## Eval results ### BibTeX entry and citation info ```bibtex @inproceedings{khanuja-etal-2020-gluecos, title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}", author = "Khanuja, Simran and Dandapat, Sandipan and Srinivasan, Anirudh and Sitaram, Sunayana and Choudhury, Monojit", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.acl-main.329", pages = "3575--3585" } ```
samirt8/wav2vec2-xls-r-1b-fr
742321f4cd1e2d07acaa56332f67088d61ab967c
2022-03-23T14:16:05.000Z
[ "pytorch" ]
null
false
samirt8
null
samirt8/wav2vec2-xls-r-1b-fr
19
1
null
8,590
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - fr - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER (without LM) type: wer value: 15.405483405483405 - name: Test CER (without LM) type: cer value: 4.877303022528913 - name: Test WER (with LM) type: wer value: 12.5 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 24.45 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 25.96 --- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. It achieves the following results on the evaluation set: **Without LM**: - Wer: 0.154 **With LM**: - Wer: 0.125
savasy/mt5-mlsum-turkish-summarization
a32cbb40a2e6d4d923e7c0a54ab4050141fd872b
2022-01-07T08:53:23.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
savasy
null
savasy/mt5-mlsum-turkish-summarization
19
1
transformers
8,591
This checkpoint has been trained with the Turkish part of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) where google/mt5 is the main Pre-trained checkpoint. [SimpleT5](https://github.com/Shivanandroy/simpleT5) library is used for training. Here is the code snippet for training ``` model = SimpleT5() model.from_pretrained("mt5","google/mt5-small") model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & target_text eval_df=validation2, # pandas dataframe with 2 columns: source_text & target_text source_max_token_len = 512, target_max_token_len = 128, batch_size = 8, max_epochs = 5, use_gpu = True, outputdir = "mt5_mlsum_turkish", early_stopping_patience_epochs = 0, precision = 32 ) ```
sdadas/polish-bart-base
0710ce4e41f96e6f7897ecb2e51a9d947f86ef98
2022-02-19T10:34:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:lgpl-3.0", "autotrain_compatible" ]
text2text-generation
false
sdadas
null
sdadas/polish-bart-base
19
null
transformers
8,592
--- license: lgpl-3.0 ---
seduerr/mt5-paraphrases-espanol
e6abf1971cdc792488a42bde65f186681f0331de
2021-06-23T16:37:25.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/mt5-paraphrases-espanol
19
null
transformers
8,593
Entry not found
shtoshni/spanbert_coreference_base
99402ad31ea95a6a33641c2db0e8b164c53e890b
2020-11-08T02:11:42.000Z
[ "pytorch", "transformers" ]
null
false
shtoshni
null
shtoshni/spanbert_coreference_base
19
null
transformers
8,594
Entry not found
sismetanin/xlm_roberta_base-ru-sentiment-rureviews
4da6a56b98bd2af912d7e23e857c27d20040eac7
2021-02-25T23:51:22.000Z
[ "pytorch", "xlm-roberta", "text-classification", "ru", "transformers", "sentiment analysis", "Russian" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_base-ru-sentiment-rureviews
19
null
transformers
8,595
--- language: - ru tags: - sentiment analysis - Russian --- ## XLM-RoBERTa-Base-ru-sentiment-RuReviews XLM-RoBERTa-Base-ru-sentiment-RuReviews is a [XLM-RoBERTa-Base](https://huggingface.co/xlm-roberta-base) model fine-tuned on [RuReviews dataset](https://github.com/sismetanin/rureviews) of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @INPROCEEDINGS{Smetanin2019Sentiment, author={Sergey Smetanin and Michail Komarov}, booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)}, title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks}, year={2019}, volume={01}, pages={482-486}, doi={10.1109/CBI.2019.00062}, ISSN={2378-1963}, month={July} } ```
speech-seq2seq/wav2vec2-2-gpt2-medium-no-adapter-frozen-enc
d2b273a6f537540b5bfa13ab1b9c1b3b39b3bb68
2022-02-17T03:04:18.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
speech-seq2seq
null
speech-seq2seq/wav2vec2-2-gpt2-medium-no-adapter-frozen-enc
19
null
transformers
8,596
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 6.5541 - Wer: 1.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.9364 | 0.28 | 500 | 6.3613 | 1.9833 | | 1.941 | 0.56 | 1000 | 5.6974 | 1.9746 | | 2.3312 | 0.84 | 1500 | 5.6979 | 1.7345 | | 2.8004 | 1.12 | 2000 | 6.0436 | 1.6787 | | 3.0003 | 1.4 | 2500 | 6.0955 | 1.7625 | | 2.9677 | 1.68 | 3000 | 6.2841 | 1.6731 | | 2.2759 | 1.96 | 3500 | 6.3094 | 1.7494 | | 2.2989 | 2.24 | 4000 | 6.9891 | 1.9115 | | 1.8814 | 2.52 | 4500 | 6.9818 | 1.9832 | | 2.658 | 2.8 | 5000 | 6.5541 | 1.9877 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
superb/hubert-large-superb-ic
8da7cdb18a459d147eee99b98f8840c4af619846
2021-09-04T20:48:25.000Z
[ "pytorch", "hubert", "audio-classification", "en", "dataset:superb", "arxiv:2105.01051", "transformers", "speech", "audio", "license:apache-2.0" ]
audio-classification
false
superb
null
superb/hubert-large-superb-ic
19
null
transformers
8,597
--- language: en datasets: - superb tags: - speech - audio - hubert license: apache-2.0 --- # Hubert-Large for Intent Classification ## Model description This is a ported version of [S3PRL's Hubert for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands). The base model is [hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/) dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands). ## Usage examples You can use the model directly like so: ```python import torch import librosa from datasets import load_dataset from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ic", split="test") dataset = dataset.map(map_to_array) model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-ic") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-ic") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits action_ids = torch.argmax(logits[:, :6], dim=-1).tolist() action_labels = [model.config.id2label[_id] for _id in action_ids] object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist() object_labels = [model.config.id2label[_id + 6] for _id in object_ids] location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist() location_labels = [model.config.id2label[_id + 20] for _id in location_ids] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9876` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
superman/testingmodel
907d032474939d8d6cee939ed5524cbc89df2495
2021-09-28T20:21:40.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
superman
null
superman/testingmodel
19
null
transformers
8,598
just to test
symanto/mpnet-base-snli-mnli
f35aedb2691bc05b3b48a170a0f2bad910f638dd
2021-09-30T12:29:12.000Z
[ "pytorch", "mpnet", "text-classification", "en", "dataset:SNLI", "dataset:MNLI", "transformers", "zero-shot-classification" ]
text-classification
false
symanto
null
symanto/mpnet-base-snli-mnli
19
2
transformers
8,599
--- language: - en datasets: - SNLI - MNLI tags: - zero-shot-classification --- A cross-attention NLI model trained for zero-shot and few-shot text classification. The base model is [mpnet-base](https://huggingface.co/microsoft/mpnet-base), trained with the code from [here](https://github.com/facebookresearch/anli); on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/). Usage: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import numpy as np model = AutoModelForSequenceClassification.from_pretrained("symanto/mpnet-base-snli-mnli") tokenizer = AutoTokenizer.from_pretrained("symanto/mpnet-base-snli-mnli") input_pairs = [("I like this pizza.", "The sentence is positive."), ("I like this pizza.", "The sentence is negative.")] inputs = tokenizer(["</s></s>".join(input_pair) for input_pair in input_pairs], return_tensors="pt") logits = model(**inputs).logits probs = torch.softmax(logits, dim=1).tolist() print("probs", probs) np.testing.assert_almost_equal(probs, [[0.86, 0.14, 0.00], [0.16, 0.15, 0.69]], decimal=2) ```