modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
daveni/aesthetic_attribute_classifier
f0e40ce6ccbfd31e1dd3e4ac2bbcc0d6bb2e86a7
2022-04-12T14:11:34.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
daveni
null
daveni/aesthetic_attribute_classifier
20
null
transformers
8,400
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: aesthetic_attribute_classifier results: [] widget: - text: Check your vertical on the main support; it looks a little off. I'd also like to see how it looks with a bit of the sky cropped from the photo --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aesthetic_attribute_classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [PCCD dataset](https://github.com/ivclab/DeepPhotoCritic-ICCV17). It achieves the following results on the evaluation set: - Loss: 0.3976 - Precision: {'precision': 0.877129341279301} - Recall: {'recall': 0.8751381215469614} - F1: {'f1': 0.875529982855803} - Accuracy: {'accuracy': 0.8751381215469614} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:------------------------------:|:--------------------------:|:--------------------------------:| | 0.452 | 1.0 | 1528 | 0.4109 | {'precision': 0.8632779077963935} | {'recall': 0.8615101289134438} | {'f1': 0.8618616182904953} | {'accuracy': 0.8615101289134438} | | 0.3099 | 2.0 | 3056 | 0.3976 | {'precision': 0.877129341279301} | {'recall': 0.8751381215469614} | {'f1': 0.875529982855803} | {'accuracy': 0.8751381215469614} | | 0.227 | 3.0 | 4584 | 0.4320 | {'precision': 0.876211408446225} | {'recall': 0.874401473296501} | {'f1': 0.8747427955387239} | {'accuracy': 0.874401473296501} | | 0.1645 | 4.0 | 6112 | 0.4840 | {'precision': 0.8724641667216837} | {'recall': 0.8714548802946593} | {'f1': 0.8714577820909117} | {'accuracy': 0.8714548802946593} | | 0.1141 | 5.0 | 7640 | 0.5083 | {'precision': 0.8755445355051571} | {'recall': 0.8747697974217311} | {'f1': 0.8748766125899489} | {'accuracy': 0.8747697974217311} | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
Intel/electra-small-discriminator-mrpc
2e5e4c9ba48e5e6ea6a1ff8e62c8ce6092c20a87
2022-04-21T14:33:49.000Z
[ "pytorch", "electra", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Intel
null
Intel/electra-small-discriminator-mrpc
20
null
transformers
8,401
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: electra-small-discriminator-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8529411764705882 - name: F1 type: f1 value: 0.8983050847457628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-mrpc This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Accuracy: 0.8529 - F1: 0.8983 - Combined Score: 0.8756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6
emilylearning/finetuned_cgp_added_birth_date__female_weight_1.5__test_run_False__p_dataset_100
2d0ca5e706ad907c97899755c4a3ce65cbf5de35
2022-04-21T19:20:29.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_added_birth_date__female_weight_1.5__test_run_False__p_dataset_100
20
null
transformers
8,402
Entry not found
emilylearning/finetuned_cgp_added_none__female_weight_1.5__test_run_False__p_dataset_100
c3f2f6ca2d33c53069cf8ffa03a2ca4f48be49d7
2022-04-21T22:08:18.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_added_none__female_weight_1.5__test_run_False__p_dataset_100
20
null
transformers
8,403
Entry not found
emilylearning/finetuned_cgp_added_name__female_weight_1.5__test_run_False__p_dataset_100
4894ac0aba21d5fe469ed8749d00f97ebb8958b0
2022-04-22T02:55:03.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_added_name__female_weight_1.5__test_run_False__p_dataset_100
20
null
transformers
8,404
Entry not found
tosin/dialogpt_mwoz_idioms
55ead19d76a937ed3e7e86dbc1861c4a886b5f32
2022-04-24T16:32:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:multi_woz_v22 and PIE-English idioms corpus", "transformers", "conversational", "license:cc-by-4.0" ]
conversational
false
tosin
null
tosin/dialogpt_mwoz_idioms
20
null
transformers
8,405
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - conversational - transformers datasets: - multi_woz_v22 and PIE-English idioms corpus metrics: - perplexity widget: - text: "Does that mean Jane is off the hook?" --- ## DialoGPT_MWOZ_Idioms This is a fine-tuned model of DialoGPT (medium)-MultiWOZ on the PIE-English idioms corpus. It is intended to be used as an idiom-aware conversational system. The dataset it's trained on is limited in scope, as it covers only 10 classes of idioms ( metaphor, simile, euphemism, parallelism, personification, oxymoron, paradox, hyperbole, irony and literal). The perplexity achieved on the test and validation sets are 160.9 and 160.46, respectively. More information about the original pre-trained model can be found [here](https://huggingface.co/tosin/dialogpt_mwoz) * Generation example from an interactive environment: |Role | Response | |---------|------------| |User | remind her to take it off the hook. | |Bot | the bookie took it on the nod | |User | A lengthy break is in order ; so make sure you keep your nose clean | |Bot | they are under a cloud because of fears about US President's wife Hillary Clinton | |User | Some families breed like rabbits and send us all their male heirs | |Bot | he was out for the count | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_mwoz_idioms") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_mwoz_idioms") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT_MWOZ_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
emilylearning/finetuned_cgp_add_none__f_weight_5__p_dataset_100__test_False
4c028521670a182381d36a3413775b734afd0ab1
2022-04-25T00:06:55.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_add_none__f_weight_5__p_dataset_100__test_False
20
null
transformers
8,406
Entry not found
emilylearning/finetuned_cgp_add_name__f_weight_5__p_dataset_100__test_False
25a393447c1ba0a97e2debd0823d452264b945d4
2022-04-25T00:07:02.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_add_name__f_weight_5__p_dataset_100__test_False
20
null
transformers
8,407
Entry not found
AbhiNaiky/finetuning-sentiment-model-3000-samples
bc46d902f1dec3454375a24bd30688bf87adcf24
2022-04-28T22:34:39.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
AbhiNaiky
null
AbhiNaiky/finetuning-sentiment-model-3000-samples
20
null
transformers
8,408
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3170 - Accuracy: 0.8733 - F1: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
BigSalmon/CoverLetter
2d8e4a1700d5ceec351656112200afafa52a7e09
2022-04-30T01:42:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/CoverLetter
20
null
transformers
8,409
how to do initial prompt: captivated by [Enter Company Name]'s also trained on: https://huggingface.co/BigSalmon/InformalToFormalLincoln40 (so you can use those prompt outlines, too)
h4d35/Translator
83862843027e6a4249bf7c07e75ef1e6fb47dd9f
2022-05-01T19:35:32.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
h4d35
null
h4d35/Translator
20
null
transformers
8,410
Entry not found
SebastianS/bert-finetuned-ner
650f0ce0b40cfc7cecf60289a563293724c97db6
2022-05-01T21:38:30.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
SebastianS
null
SebastianS/bert-finetuned-ner
20
null
transformers
8,411
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Accuracy type: accuracy value: 0.9910634321093416 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0452 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0544 | 1.0 | 1756 | 0.0440 | 0.9892 | | 0.0246 | 2.0 | 3512 | 0.0417 | 0.9906 | | 0.0105 | 3.0 | 5268 | 0.0452 | 0.9911 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
anshr/distilgpt2_reward_model_final
d32c60ac1c319a507174d1121b961a929d0fb6c9
2022-05-02T22:15:34.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
anshr
null
anshr/distilgpt2_reward_model_final
20
null
transformers
8,412
Entry not found
HiTZ/A2T_RoBERTa_SMFA_ACE-arg_WikiEvents-arg
ef1f48f956c26165e1b16baf2c8cf431dff8be34
2022-05-08T23:09:26.000Z
[ "pytorch", "roberta", "text-classification", "dataset:snli", "dataset:anli", "dataset:multi_nli", "dataset:multi_nli_mismatch", "dataset:fever", "arxiv:2104.14690", "arxiv:2203.13602", "transformers", "zero-shot-classification" ]
zero-shot-classification
false
HiTZ
null
HiTZ/A2T_RoBERTa_SMFA_ACE-arg_WikiEvents-arg
20
null
transformers
8,413
--- pipeline_tag: zero-shot-classification datasets: - snli - anli - multi_nli - multi_nli_mismatch - fever --- # A2T Entailment model **Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers). Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format. For more information please, take a look to the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library or the following published papers: - [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/) - [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]() ## About the model The model name describes the configuration used for training as follows: <!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ --> <h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3> - `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>. - `NLI_datasets`: The NLI datasets used for pivot training. - `S`: Standford Natural Language Inference (SNLI) dataset. - `M`: Multi Natural Language Inference (MNLI) dataset. - `F`: Fever-nli dataset. - `A`: Adversarial Natural Language Inference (ANLI) dataset. - `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg. Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results. ## Cite If you use this model, consider citing the following publications: ```bibtex @inproceedings{sainz-etal-2021-label, title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction", author = "Sainz, Oscar and Lopez de Lacalle, Oier and Labaka, Gorka and Barrena, Ander and Agirre, Eneko", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.92", doi = "10.18653/v1/2021.emnlp-main.92", pages = "1199--1212", } ```
sileod/roberta-base-discourse-marker-prediction
43ddf97b2f12eb3299cf1276b5e349b1e37099a0
2022-05-11T13:06:29.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:discovery", "transformers", "discourse-marker-prediction", "discourse-connective-prediction", "discourse-connective", "discourse-marker", "discourse-relation-prediction", "pragmatics", "discourse", "license:apache-2.0" ]
text-classification
false
sileod
null
sileod/roberta-base-discourse-marker-prediction
20
2
transformers
8,414
--- language: - en tags: - discourse-marker-prediction - discourse-connective-prediction - discourse-connective - discourse-marker - discourse-relation-prediction - pragmatics - discourse license: apache-2.0 datasets: - discovery metrics: - accuracy widget: - text: "But no, Amazon selling 3D printers is not new.</s></s>The promise of 3D printing is very great." --- # Discourse marker prediction / discourse connective prediction pretrained model `roberta-base` pretrained on discourse marker prediction on the Discovery dataset with a validation accuracy of 30.93% (majority class is 0.57%) https://github.com/sileod/discovery https://huggingface.co/datasets/discovery This model can also be used as a pretrained model for NLU, pragmatics and discourse tasks ## Citing & Authors ```bibtex @inproceedings{sileo-etal-2019-mining, title = "Mining Discourse Markers for Unsupervised Sentence Representation Learning", author = "Sileo, Damien and Van De Cruys, Tim and Pradel, Camille and Muller, Philippe", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)", month = jun, year = "2019", address = "Minneapolis, Minnesota", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/N19-1351", doi = "10.18653/v1/N19-1351", pages = "3477--3486", } ```
UGARIT/grc-alignment
7ecf8d2f809582a404565c68b2f7f5c7ad4307c4
2022-07-07T08:53:38.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
UGARIT
null
UGARIT/grc-alignment
20
null
transformers
8,415
--- license: cc-by-4.0 --- # Automatic Translation Alignment of Ancient Greek Texts GRC-ALIGNMENT model is an XLM-RoBERTa-based model, fine-tuned for automatic multilingual text alignment at the word level. The model is trained on 12 million monolingual ancient Greek tokens with Masked Language Model (MLM) training objective. Further, the model is fine-tuned on 45k parallel sentences, mainly in ancient Greek-English, Greek-Latin, and Greek-Georgian. ### Multilingual Training Dataset | Languages |Sentences | Source | |:---------------------------------------|:-----------:|:--------------------------------------------------------------------------------| | GRC-ENG | 32.500 | Perseus Digital Library (Iliad, Odyssey, Xenophon, New Testament) | | GRC-LAT | 8.200 | [Digital Fragmenta Historicorum Graecorum project](https://www.dfhg-project.org/) | | GRC-KAT <br>GRC-ENG <br>GRC-LAT<br>GRC-ITA<br>GRC-POR | 4.000 | [UGARIT Translation Alignment Editor](https://ugarit.ialigner.com/ ) | ### Model Performance | Languages | Alignment Error Rate | |:---------:|:--------------------:| | GRC-ENG | 19.73% (IterMax) | | GRC-POR | 23.91% (IterMax) | | GRC-LAT | 10.60% (ArgMax) | The gold standard datasets are available on [Github](https://github.com/UgaritAlignment/Alignment-Gold-Standards). If you use this model, please cite our papers: <pre> @InProceedings{yousef-EtAl:2022:LREC, author = {Yousef, Tariq and Palladino, Chiara and Shamsian, Farnoosh and d’Orange Ferreira, Anise and Ferreira dos Reis, Michel}, title = {An automatic model and Gold Standard for translation alignment of Ancient Greek}, booktitle = {Proceedings of the Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {5894--5905}, url = {https://aclanthology.org/2022.lrec-1.634} } @InProceedings{yousef-EtAl:2022:LT4HALA2022, author = {Yousef, Tariq and Palladino, Chiara and Wright, David J. and Berti, Monica}, title = {Automatic Translation Alignment for Ancient Greek and Latin}, booktitle = {Proceedings of the Second Workshop on Language Technologies for Historical and Ancient Languages}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {101--107}, url = {https://aclanthology.org/2022.lt4hala2022-1.14} } </pre>
LiYuan/Amazon-Cup-Cross-Encoder-Regression
68bac3a580ee111489090067d060eefd8f81475b
2022-05-08T17:45:01.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
LiYuan
null
LiYuan/Amazon-Cup-Cross-Encoder-Regression
20
null
transformers
8,416
--- license: afl-3.0 --- This model is actually very accurate for this rerank products given one query, intuitively inspired by information retrieval techniques. In 2019, Nils Reimers and Iryna Gurevych introduced a new transformers model called Sentence-BERT, Sentence Embeddings using Siamese BERT-Networks. The model is introduced by this paper https://doi.org/10.48550/arxiv.1908.10084. This new Sentence-BERT model is modified on the BERT model by adding a pooling operation to the output of BERT model. In such a way, it can output a fixed size of the sentence embedding to calculate cosine similarity, and so on. To obtain a meaningful sentence embedding in a sentence vector space where similar or pairwise sentence embedding are close, they created a triplet network to modify the BERT model as the architecture below figure. ![1.png](1.png) # Download and Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("LiYuan/Amazon-Cup-Cross-Encoder-Regression") model = AutoModelForSequenceClassification.from_pretrained("LiYuan/Amazon-Cup-Cross-Encoder-Regression") ``` As we can observe from above figure, a pooling layer is added on the top of each BERT Model to obtain the sentence embedding $u$ and $v$. Finally, the cosine similarity between $u$ and $v$ can be computed to compare with the true score or make them semantically meaningful, then the mean square error loss, which is the objective function, can be backpropagated through this BERT network model to update the weights. In our amazon case, the query is sentence A and concatenated product attributes are sentence B. We also stratified split the merged set into **571,223** rows for training, **500** rows for validation, **3,000** rows for test. We limited the output score between 0 and 1. The following scores represent the degree of relevance between the query and the product attributes in light of Amazon KDD Cup website; however, this can be adjusted to improve the model performance. - 1: exact - 0.1: substitute - 0.01: complement - 0: irrelevance For this regression model, we used Pearson correlation coefficient and Spearman's rank correlation coefficient} to measure the model performance. If the correlation coefficient is high, the model performs well. The validation Pearson is \textbf{0.5670} and validation Spearman is \textbf{0.5662}. This is not bad result. We also evaluated the model on the test set. We got **0.5321** for Pearson and **0.5276** for Spearman. These results from the test evaluation have results similar to those of the validation set, suggesting that the model has a good generalization. Finally, once we have this fine-tuned Cross-Encoder Regression model, given a new query and its matched product list, we can feed them into this model to get the output score to rerank them so that this can improve the customer online shopping experience.
nirajsaran/AdTextGenerator
3fbf8f98d7716470d5e0c453514370350add20e1
2022-05-16T21:45:00.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "license:mit" ]
text-generation
false
nirajsaran
null
nirajsaran/AdTextGenerator
20
1
transformers
8,417
--- license: mit inference: parameters: temperature: 0.7 use_cache: false max_length: 200 top_k: 5 top_p: 0.9 widget: - text: "Sony TV" example_title: "Amazon Ad text Electronics" - text: "Apple Watch" example_title: "Amazon Ad text Wearables" - text: "Last minute shopping for Samsung headphones for" example_title: "Ads for shopping deals" - text: "Labor Day discounts for" example_title: "Ads for Holiday deals" metrics: - bleu --- Generates Ad text copy, for ads for Amazon shopping (fine tuned for electronics and wearables). The model is fine tuned on the EleutherAI/gpt-neo-125M model using the Amazon Ads dataset. **Usage Examples:** Select from among the examples in the dropdown or enter your own prompts. You can try entering brand and product names like Samsung Galaxy to see the ad text generator in action. Feel free to play around with native Amazon ads which are product descriptions like: **Sony** BDPS3700 Streaming Blu-Ray Disc Player with Wi-Fi (Black). **AmazonBasics** TV Trolley for 24-43" TVs with Swivel Feature. Or try additional ad formats, similar to other shopping sites for holiday deals, like: **Big savings on the new** Roku Streaming Device **Mothers Day discounts for** Apple Watch Wireless Charger USB Charging Cable **Last minute shopping for Samsung headphones for** **Model Performance:** The model does quite well on the Electronics and Wearables categories on which it has been fine-tuned. There are, however, occasional hallucinations, though the ad copy is mostly coherent. In other domains, it doesn't do quite as well... Halloween Tesla is Honda on sale
SreyanG-NVIDIA/bert-base-cased-finetuned-ner
0ef1c11debe8c6c4821f67e6b0854872dd7e9685
2022-05-10T10:05:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
SreyanG-NVIDIA
null
SreyanG-NVIDIA/bert-base-cased-finetuned-ner
20
null
transformers
8,418
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9325301204819277 - name: Recall type: recall value: 0.9374663556432801 - name: F1 type: f1 value: 0.9349917229654156 - name: Accuracy type: accuracy value: 0.9840466238888562 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0650 - Precision: 0.9325 - Recall: 0.9375 - F1: 0.9350 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2346 | 1.0 | 878 | 0.0722 | 0.9168 | 0.9217 | 0.9192 | 0.9795 | | 0.0483 | 2.0 | 1756 | 0.0618 | 0.9299 | 0.9370 | 0.9335 | 0.9837 | | 0.0262 | 3.0 | 2634 | 0.0650 | 0.9325 | 0.9375 | 0.9350 | 0.9840 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
BK-V/xlm-roberta-base-finetuned-peyma-fa
fd069b61fcae27bff58bf7230573a6d2aaf6331c
2022-06-29T20:59:53.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
BK-V
null
BK-V/xlm-roberta-base-finetuned-peyma-fa
20
null
transformers
8,419
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-peyma-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-peyma-fa This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0937 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1562 | 1.0 | 998 | 0.0691 | 0.8777 | | 0.0638 | 2.0 | 1996 | 0.0703 | 0.8908 | | 0.0457 | 3.0 | 2994 | 0.0645 | 0.8975 | | 0.0281 | 4.0 | 3992 | 0.0842 | 0.8994 | | 0.0206 | 5.0 | 4990 | 0.0651 | 0.9164 | | 0.0139 | 6.0 | 5988 | 0.0787 | 0.9148 | | 0.0083 | 7.0 | 6986 | 0.0838 | 0.9253 | | 0.0052 | 8.0 | 7984 | 0.0833 | 0.9221 | | 0.0031 | 9.0 | 8982 | 0.0947 | 0.9230 | | 0.0028 | 10.0 | 9980 | 0.0937 | 0.9249 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1
CEBaB/roberta-base.CEBaB.sa.2-class.exclusive.seed_42
3e9e0a1ae012c0e41c07232482391768dfcfb4fe
2022-05-10T23:26:16.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.sa.2-class.exclusive.seed_42
20
null
transformers
8,420
Entry not found
binay1999/bert-for-text-classification
cc658f46eba2e97c74fee52e7e2c6d9248934b3f
2022-05-12T04:26:24.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
binay1999
null
binay1999/bert-for-text-classification
20
null
transformers
8,421
Entry not found
Armor/EmergencyNews_BERT_Base
9322ddeba8ce4b97353ef546dd860c0cbb93e61a
2022-05-18T10:45:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Armor
null
Armor/EmergencyNews_BERT_Base
20
null
transformers
8,422
--- license: apache-2.0 ---
fabianmmueller/deep-haiku-gpt-2
7f7b35790f6bfca9051ca716920199fb09c1f42c
2022-05-24T20:42:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
fabianmmueller
null
fabianmmueller/deep-haiku-gpt-2
20
0
transformers
8,423
--- license: mit tags: - generated_from_trainer model-index: - name: deep-haiku-gpt-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-haiku-gpt-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [haiku](https://huggingface.co/datasets/statworx/haiku) dataset. ## Model description The model is a fine-tuned version of GPT-2 for generation of [Haikus](https://en.wikipedia.org/wiki/Haiku). The model, data and training procedure is inspired by a [blog post by Robert A. Gonsalves](https://towardsdatascience.com/deep-haiku-teaching-gpt-j-to-compose-with-syllable-patterns-5234bca9701). Instead of using a 8bit version of GPT-J 6B, we instead used vanilla GPT-2. From what we saw, the model performance comparable but is much easier to fine-tune. We used the same multitask training approach as in der post, but significantly extended the dataset (almost double the size of the original on). A prepared version of the dataset can be found [here](https://huggingface.co/datasets/statworx/haiku). ## Intended uses & limitations The model is intended to generate Haikus. To do so, it was trained using a multitask learning approach (see [Caruana 1997](http://www.cs.cornell.edu/~caruana/mlj97.pdf)) with the following four different tasks: : - topic2graphemes `(keywords = text)` - topic2phonemes `<keyword_phonemes = text_phonemes>` - graphemes2phonemes `[text = text_phonemes]` - phonemes2graphemes `{text_phonemes = text}` To use the model, use an appropriate prompt like `"(dog rain ="` and let the model generate a Haiku given the keyword. ## Training and evaluation data We used a collection of existing haikus for training. Furthermore, all haikus were used in their graphemes version as well as a phonemes version. In addition, we extracted key word for all haikus using [KeyBERT](https://github.com/MaartenGr/KeyBERT) and sorted out haikus with a low text quality according to the [GRUEN score](https://github.com/WanzhengZhu/GRUEN). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
cradle-bio/tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
a19823ec86e6afb7a51cb29a469b8fa792153ea8
2022-05-30T16:24:59.000Z
[ "pytorch", "bert", "text-classification", "dataset:train", "transformers", "protein language model", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cradle-bio
null
cradle-bio/tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
20
null
transformers
8,424
--- license: apache-2.0 tags: - protein language model - generated_from_trainer datasets: - train metrics: - spearmanr model-index: - name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert results: - task: name: Text Classification type: text-classification dataset: name: cradle-bio/tape-fluorescence type: train metrics: - name: Spearmanr type: spearmanr value: 0.5505486770316164 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set: - Loss: 0.3377 - Spearmanr: 0.5505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 2560 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 6.2764 | 0.93 | 7 | 1.9927 | -0.0786 | | 1.1206 | 1.93 | 14 | 0.8223 | -0.1543 | | 0.8054 | 2.93 | 21 | 0.6894 | 0.2050 | | 0.7692 | 3.93 | 28 | 0.8084 | 0.2807 | | 0.7597 | 4.93 | 35 | 0.6613 | 0.4003 | | 0.7416 | 5.93 | 42 | 0.6803 | 0.3829 | | 0.7256 | 6.93 | 49 | 0.6428 | 0.4416 | | 0.6966 | 7.93 | 56 | 0.6086 | 0.4506 | | 0.7603 | 8.93 | 63 | 0.9119 | 0.4697 | | 0.9187 | 9.93 | 70 | 0.6048 | 0.4757 | | 1.0371 | 10.93 | 77 | 2.0742 | 0.4076 | | 1.0947 | 11.93 | 84 | 0.6633 | 0.4522 | | 0.6946 | 12.93 | 91 | 0.6008 | 0.4123 | | 0.6618 | 13.93 | 98 | 0.5931 | 0.4457 | | 0.8635 | 14.93 | 105 | 1.9561 | 0.4331 | | 0.9444 | 15.93 | 112 | 0.5627 | 0.5041 | | 0.5535 | 16.93 | 119 | 0.4348 | 0.4840 | | 0.9059 | 17.93 | 126 | 0.6704 | 0.5123 | | 0.5693 | 18.93 | 133 | 0.4616 | 0.5285 | | 0.6298 | 19.93 | 140 | 0.6915 | 0.5166 | | 0.955 | 20.93 | 147 | 0.6679 | 0.5677 | | 0.7866 | 21.93 | 154 | 0.8136 | 0.5559 | | 0.6687 | 22.93 | 161 | 0.4782 | 0.5561 | | 0.5336 | 23.93 | 168 | 0.4447 | 0.5499 | | 0.4673 | 24.93 | 175 | 0.4258 | 0.5428 | | 0.478 | 25.93 | 182 | 0.3651 | 0.5329 | | 0.4023 | 26.93 | 189 | 0.3688 | 0.5428 | | 0.3961 | 27.93 | 196 | 0.3692 | 0.5509 | | 0.3808 | 28.93 | 203 | 0.3434 | 0.5514 | | 0.3433 | 29.93 | 210 | 0.3377 | 0.5505 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
facebook/mcontriever
c9ea3fd6b5c96290b4741884525afdb40cfa9932
2022-05-29T08:58:37.000Z
[ "pytorch", "bert", "transformers" ]
null
false
facebook
null
facebook/mcontriever
20
1
transformers
8,425
Entry not found
huggingtweets/billieeilish-nakedbibii-unjaded_jade
1fd577347339be0e1c39b324796c436929da246e
2022-05-30T21:39:04.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/billieeilish-nakedbibii-unjaded_jade
20
null
transformers
8,426
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387065127208247299/bni08CVZ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1530362441741217795/jxWqrgn5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1105554414427885569/XkyfcoMJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">billie eilish & BIBI & Jade Bowler</div> <div style="text-align: center; font-size: 14px;">@billieeilish-nakedbibii-unjaded_jade</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from billie eilish & BIBI & Jade Bowler. | Data | billie eilish | BIBI | Jade Bowler | | --- | --- | --- | --- | | Tweets downloaded | 943 | 3230 | 3171 | | Retweets | 260 | 134 | 122 | | Short tweets | 15 | 891 | 120 | | Tweets kept | 668 | 2205 | 2929 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36li8v9h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billieeilish-nakedbibii-unjaded_jade's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2x4m00nv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2x4m00nv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billieeilish-nakedbibii-unjaded_jade') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jakka/segformer-b0-finetuned-warehouse-part-1-V2
8b39725d4360abb046f96bf618ad19a8dbcb6209
2022-05-31T23:31:49.000Z
[ "pytorch", "segformer", "transformers", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
jakka
null
jakka/segformer-b0-finetuned-warehouse-part-1-V2
20
null
transformers
8,427
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-warehouse-part-1-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-warehouse-part-1-V2 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the jakka/warehouse_part1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2737 - Mean Iou: 0.7224 - Mean Accuracy: 0.8119 - Overall Accuracy: 0.9668 - Per Category Iou: [0.0, 0.9392313580983768, 0.9322932027111482, 0.9772249946988713, 0.8749950826812657, 0.9591121585348171, 0.9803780030124933, 0.8554852055380204, 0.9661475962866876, 0.5609089467958914, 0.0, 0.8095003013989066, 0.7113799121381718, 0.8927260044840537, 0.6133653057361015, 0.8420100377966416, 0.33841086205511367, 0.553361761785151, 0.8141592920353983, 0.8270316181708587] - Per Category Accuracy: [nan, 0.9727824725573769, 0.9676994291705018, 0.9882968957337019, 0.9679484011220059, 0.9772700079950366, 0.9882492205666621, 0.9252107983136135, 0.9825945071781523, 0.6062795795494159, 0.0, 0.894776445179671, 0.7968855332344613, 0.9522349792248335, 0.6544510171692397, 0.9276157710790738, 0.42203029817249116, 0.5863404454740788, 0.8963814834175524, 0.9193914381006046] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.7008 | 1.0 | 787 | 0.2473 | 0.5595 | 0.6448 | 0.9325 | [0.0, 0.8572456184869756, 0.8403481284744914, 0.9524827531570127, 0.7992052152702355, 0.9196710216877864, 0.9471503664300267, 0.6193304552041781, 0.9133086982125345, 0.17558267725303728, 0.0, 0.6344520667741999, 0.3360920970752956, 0.7642426437536942, 0.510575871022846, 0.6056988833269157, 0.021209386281588447, 0.27355691497341356, 0.6138181818181818, 0.40645271873846317] | [nan, 0.9155298033269351, 0.9463379226245591, 0.978836265135544, 0.9240214201112357, 0.9448111967681583, 0.9643622308798924, 0.6930912552699579, 0.9497575640760723, 0.18632531152693993, 0.0, 0.7500919033177098, 0.36409599568558715, 0.8900647437729461, 0.5728964730263244, 0.6549871668851026, 0.02166159025328631, 0.2902301645548354, 0.7353197421153511, 0.4694729147312794] | | 0.1321 | 2.0 | 1574 | 0.2331 | 0.6221 | 0.7115 | 0.9457 | [0.0, 0.8970560279823083, 0.8791120244598839, 0.9603620467193393, 0.8160602187615088, 0.934767875213888, 0.9616837752836253, 0.7419391385825133, 0.9351874201394574, 0.26717521084051926, 0.0, 0.6985475965645938, 0.43481867741170893, 0.8134984418163408, 0.5459611126448698, 0.7401712453141447, 0.13175924760380514, 0.355121624272543, 0.7060811650388926, 0.6229231428877693] | [nan, 0.951233770160613, 0.9409053657605947, 0.9843213861494523, 0.9219686102230917, 0.9665968250506056, 0.9829729958024298, 0.8238168094655243, 0.9620596605954946, 0.29986351309033543, 0.0, 0.8030913978494624, 0.49467439665633006, 0.909599171191769, 0.5931253087796156, 0.8208142201834863, 0.14682189804424495, 0.3841705499014086, 0.8251147122030551, 0.70800907664895] | | 0.1085 | 3.0 | 2361 | 0.2457 | 0.6542 | 0.7530 | 0.9521 | [0.0, 0.9079405116712079, 0.8959028018194484, 0.9654330936322201, 0.8358564096747072, 0.942169826126924, 0.967131589172387, 0.7785683188874377, 0.942506044201895, 0.3544242514524058, 0.0, 0.7247706422018348, 0.5044915351836923, 0.8273089178892802, 0.5630444261421442, 0.7399785788281565, 0.21738423517169614, 0.46725284186024263, 0.7218755768875762, 0.7280122150607375] | [nan, 0.9545620491089126, 0.9497321958018098, 0.9837544714508515, 0.9402501375924134, 0.9686463320401577, 0.9809467909731419, 0.8694886440908473, 0.9735407105395524, 0.3936199755387097, 0.0, 0.8558151824280856, 0.5906026695429419, 0.9157369138435157, 0.6097401660523865, 0.8630406290956749, 0.2679143956396281, 0.5182902566913956, 0.8517163268862171, 0.8205229733639949] | | 0.8409 | 4.0 | 3148 | 0.2533 | 0.6749 | 0.7760 | 0.9559 | [0.0, 0.912375840411698, 0.904072054206276, 0.9676067299522242, 0.900289256120933, 0.9448264254043457, 0.9706472863960092, 0.7942658684379895, 0.9498265874428659, 0.5556284571729604, 0.0, 0.743214707471828, 0.529188361408882, 0.7269154778675782, 0.5697874335729916, 0.7702618169892564, 0.2288491765188273, 0.5089612784265519, 0.757448678510892, 0.7646070737475812] | [nan, 0.9601569621727435, 0.9525397945710891, 0.9830820784511696, 0.9462795897530819, 0.9732812778343284, 0.9810361205428978, 0.8895280837753298, 0.9743959070958451, 0.6854951638729194, 0.0, 0.8531327543424317, 0.5823783200755023, 0.9177828280607646, 0.6184135395216047, 0.8657506006989952, 0.26841535748637385, 0.5491586570344761, 0.8759801359121798, 0.8665306184609293] | | 0.0655 | 5.0 | 3935 | 0.2164 | 0.6815 | 0.7909 | 0.9577 | [0.0, 0.9195724102825147, 0.8817887152896982, 0.9692666162636345, 0.90446655617651, 0.9477266300807918, 0.972197851990263, 0.8006212298550464, 0.9526181996158507, 0.48675750740382695, 0.0, 0.7544064333927534, 0.589975775752682, 0.8568833610473964, 0.5739430151581254, 0.7804109001873066, 0.2738491187715644, 0.46180522107696753, 0.7493122891746226, 0.754828899421902] | [nan, 0.9629768162749704, 0.9511904548979574, 0.9855793956741679, 0.9532853326979632, 0.9705567416728694, 0.9856702233410021, 0.9070277437780497, 0.9761803883026475, 0.7497090051817757, 0.0, 0.8653903593419723, 0.689564513954429, 0.9349779882164135, 0.6119830537374903, 0.9072670926168632, 0.3530779095864059, 0.5086786980626564, 0.8741215078120462, 0.8391483788434887] | | 0.0568 | 6.0 | 4722 | 0.2803 | 0.6876 | 0.7839 | 0.9591 | [0.0, 0.9166100071412383, 0.913602419181271, 0.9710201737288663, 0.8563050555469198, 0.9497657746314072, 0.9730697054916811, 0.8143688646719719, 0.9549812903957364, 0.460486150973965, 0.0, 0.7634781269254467, 0.6136748147716002, 0.8542174198928293, 0.5922937831600485, 0.8066394260877113, 0.28399126278134795, 0.5207639813581891, 0.7629174644376197, 0.7438457521999924] | [nan, 0.9601927982852421, 0.9660710264704008, 0.982455068550298, 0.957830657460364, 0.9688535013815731, 0.9819961506837456, 0.893842649258806, 0.9749506995826178, 0.5071640856263331, 0.0, 0.8540977391783844, 0.7091141971147364, 0.9317785850902456, 0.653052819349169, 0.8880378986456968, 0.35953029817249116, 0.553305686470427, 0.862098507289307, 0.8895268263710157] | | 0.8994 | 7.0 | 5509 | 0.2743 | 0.6868 | 0.7764 | 0.9606 | [0.0, 0.92180556388016, 0.9171201062365498, 0.9721111956032598, 0.8587950800137758, 0.9513526631552707, 0.9756092701000854, 0.819792597945916, 0.9576544961199075, 0.4512109977539036, 0.0, 0.7723053199691596, 0.61351217088922, 0.8696959538394335, 0.5947007494875557, 0.8068989910272162, 0.2400942828140323, 0.49048112386556714, 0.772383338067815, 0.7496112574696395] | [nan, 0.9644998510561574, 0.9609472275076806, 0.9854828942497743, 0.9565172529563908, 0.9753485051500238, 0.9840922427646661, 0.8947674418604651, 0.974328764760461, 0.49258184783186704, 0.0, 0.8630410807830162, 0.6660374814615073, 0.9410600831006661, 0.6446391486645419, 0.8876351572739187, 0.2796369028534787, 0.5232773027508334, 0.8685891851077423, 0.8883389427836073] | | 0.0757 | 8.0 | 6296 | 0.2245 | 0.7038 | 0.8009 | 0.9625 | [0.0, 0.9246349181813107, 0.9204571437331909, 0.9735757462990084, 0.8677796689121399, 0.9529629595462734, 0.9762280475446855, 0.8249549577060494, 0.9591099123245741, 0.6276133447390932, 0.0, 0.7755030368136181, 0.6490189248809939, 0.8729206918730364, 0.598100700980074, 0.8000277974172574, 0.27374031814774713, 0.5049971433066432, 0.7770387696167466, 0.7981819415236415] | [nan, 0.964623037692871, 0.9637122903759715, 0.9863849456780516, 0.9537638293913148, 0.974798022498043, 0.985726579790157, 0.9184958520331837, 0.980103295010109, 0.7586190597174544, 0.0, 0.8624896608767576, 0.7536739921801268, 0.9379994558884956, 0.6446181625809385, 0.9037175076452599, 0.32931227957678744, 0.5392729877180727, 0.863477957832375, 0.8959383518876689] | | 0.0638 | 9.0 | 7083 | 0.2660 | 0.7091 | 0.8064 | 0.9632 | [0.0, 0.9247942993361187, 0.9227547653133065, 0.9737952169757659, 0.8675395458562903, 0.954005651357167, 0.9771936329793919, 0.832432130071599, 0.960664758331238, 0.6439555818513429, 0.0, 0.7800093558353167, 0.6503190735050816, 0.8771838558892437, 0.6000063410406786, 0.8135397086825815, 0.29345229389108285, 0.5278915956856804, 0.7979207701237885, 0.7849771726504039] | [nan, 0.9696983271254734, 0.9626331855239437, 0.9865491477141318, 0.9580933383611586, 0.9736782563602464, 0.9877136372491695, 0.9107507139942881, 0.9774734570720269, 0.778129006717992, 0.0, 0.8715651135005974, 0.7419441822839423, 0.9522322311869326, 0.6453719127503574, 0.9070076998689384, 0.36183472266752165, 0.5638987382066087, 0.8882354649474357, 0.8850494190030915] | | 0.1028 | 10.0 | 7870 | 0.2753 | 0.7045 | 0.7986 | 0.9632 | [0.0, 0.9310677916035094, 0.9231154731835156, 0.9742966471140867, 0.8659672807905657, 0.9548025101399095, 0.9761885400996432, 0.8359586760218701, 0.9606324687638941, 0.536304571449891, 0.0, 0.7861687315154533, 0.6648749707875672, 0.8782393648813203, 0.6028230645967004, 0.8034017821150734, 0.2798240884275797, 0.5292981433685788, 0.7976529535864979, 0.7897882016975595] | [nan, 0.9671696414372969, 0.9640722977320454, 0.9864307028133905, 0.9566418983913256, 0.9766712626661613, 0.984078186494131, 0.917516659866721, 0.9804665003157427, 0.5945275248601157, 0.0, 0.8886304108078301, 0.7671565322906836, 0.945889759711566, 0.6500072139662386, 0.9114992900830057, 0.33277893555626803, 0.5621391244374099, 0.8784050647615729, 0.9097665351872439] | | 0.098 | 11.0 | 8657 | 0.2029 | 0.7052 | 0.8014 | 0.9640 | [0.0, 0.9288737885707921, 0.9265083379180753, 0.9747097980123621, 0.8738478537660755, 0.9558379241305062, 0.9781696214462526, 0.8391837240652649, 0.9626716931455067, 0.507780252899168, 0.0, 0.7878061172645057, 0.6769843155893536, 0.8815102118136605, 0.6056046400027283, 0.8269347543218291, 0.3132485690006253, 0.5154277002618235, 0.7927511930865472, 0.7569567975718071] | [nan, 0.9711631282238503, 0.964815472153087, 0.9853689377873769, 0.9652020663968313, 0.9754185940822899, 0.9867780413729902, 0.9206854345165238, 0.9811350296034029, 0.5495104787677182, 0.0, 0.8906350519253745, 0.7681677227989753, 0.9430888220810342, 0.65217140383783, 0.9110078090869376, 0.3914916639948702, 0.5500605696196935, 0.8924609397688331, 0.9267167202229566] | | 0.0734 | 12.0 | 9444 | 0.2171 | 0.7126 | 0.8001 | 0.9648 | [0.0, 0.9309643707918894, 0.9277494647914695, 0.9750904306170505, 0.8777832954332417, 0.9566409475731096, 0.9780693213049435, 0.8436550838167809, 0.9635515941347027, 0.527304314900299, 0.0, 0.7909202018197202, 0.6909584834347133, 0.8836639196984207, 0.6084447805077513, 0.8287813112544289, 0.31069205419260343, 0.5403587067765045, 0.7955642033577429, 0.8211277996631356] | [nan, 0.9680901815771025, 0.9655377799057193, 0.9852963747008175, 0.9662340833391586, 0.9756774116913669, 0.9890014280908129, 0.9132224942200462, 0.9813789993824062, 0.5595195188097869, 0.0, 0.8697959746346843, 0.7887285964675745, 0.9477302580957196, 0.6557731404362482, 0.9149260048055919, 0.374058191728118, 0.5695666398450833, 0.8786809548701865, 0.8983598068927706] | | 0.0839 | 13.0 | 10231 | 0.2606 | 0.7139 | 0.8056 | 0.9651 | [0.0, 0.932934590872574, 0.928599894716927, 0.9759876131918817, 0.8695983139625728, 0.9571779321732448, 0.979228463067019, 0.8446447574729073, 0.9630766038435438, 0.47072541703248466, 0.0, 0.7968195631480623, 0.6967972782731112, 0.8867456411969523, 0.6076684496270689, 0.8274634197517912, 0.3560522933191209, 0.5582305522639651, 0.8036840005319856, 0.8219356251968073] | [nan, 0.970161956830923, 0.9673467595439784, 0.9869340313021197, 0.9654732145230638, 0.9756083312329464, 0.9874815117348184, 0.9121141030871753, 0.9832381474966617, 0.50686275089071, 0.0, 0.8991361088135281, 0.8007954698665228, 0.9482970409127882, 0.6487891466970965, 0.9152673110528615, 0.4551538954793203, 0.5915043371384613, 0.8774612301794738, 0.914289630385453] | | 0.0797 | 14.0 | 11018 | 0.2504 | 0.7153 | 0.8044 | 0.9655 | [0.0, 0.9353593794015038, 0.9288667661318105, 0.9762064564453578, 0.8718886319160292, 0.9576685946960725, 0.9788546612617008, 0.8472608735210976, 0.9642969355331718, 0.5361721760842425, 0.0, 0.8004189668257286, 0.696640611014977, 0.8853084044449696, 0.6099045788314064, 0.8344863725117123, 0.3254310344827586, 0.5323734971095841, 0.8050435956126539, 0.8204823185898129] | [nan, 0.9668112803123117, 0.9681903691382433, 0.9879581433175818, 0.9650443397090228, 0.9762644155033261, 0.9866578405548627, 0.9181626546987625, 0.9814820281384267, 0.5836381147080894, 0.0, 0.8844717856814631, 0.7870432789537549, 0.9470982093785038, 0.6547561898016377, 0.9131239078200087, 0.39335524206476435, 0.5610603662472479, 0.8835162920369403, 0.9243561823249014] | | 0.0606 | 15.0 | 11805 | 0.2363 | 0.7209 | 0.8122 | 0.9661 | [0.0, 0.9354450021238048, 0.9300759788666999, 0.9766100423179009, 0.8739351769905989, 0.9580569741305669, 0.9795622398211299, 0.8496875639431477, 0.9646763306438436, 0.6043151650835981, 0.0, 0.8018012422360249, 0.7004677380666826, 0.889289794511031, 0.610767874342205, 0.8325289843013258, 0.33953698039089414, 0.5566040090865972, 0.7993623498974272, 0.8161583186067531] | [nan, 0.966786642984969, 0.965287953144928, 0.9879603875367537, 0.9664012618135025, 0.9766460508200225, 0.9889968302453108, 0.9177070583435333, 0.9825186826442273, 0.650711681743251, 0.0, 0.8897849462365591, 0.7874477551570715, 0.9497445698771078, 0.655411130494091, 0.9220183486238532, 0.42261141391471624, 0.5914689680174724, 0.8883080676075972, 0.9213864733563804] | | 0.0532 | 16.0 | 12592 | 0.2531 | 0.7201 | 0.8074 | 0.9662 | [0.0, 0.9383203952011292, 0.9288414046194093, 0.9769141389017822, 0.8756205335515858, 0.9582358666094781, 0.979632260873732, 0.8522102747909199, 0.9655114623669192, 0.6115704722763623, 0.0, 0.8053745416448402, 0.7045095417527653, 0.8906375387790608, 0.6007837805741991, 0.8399368744136342, 0.33049747893639037, 0.5151462046865611, 0.8091001625973271, 0.8195206947575124] | [nan, 0.9678438083036752, 0.9684728717259394, 0.9879746009248427, 0.9684402878462824, 0.9766889829923047, 0.9883229174617107, 0.9215762273901809, 0.9820408723178519, 0.6655775287006565, 0.0, 0.8831104677878872, 0.7814480248078738, 0.9439503319629784, 0.6414396453351872, 0.9228033529925732, 0.40323420968259055, 0.5458428019417647, 0.8887436835685659, 0.9025173994487001] | | 0.0862 | 17.0 | 13379 | 0.2458 | 0.7201 | 0.8087 | 0.9665 | [0.0, 0.9368370402512427, 0.9309393106006786, 0.9769932787053442, 0.8747985979138234, 0.95879411739136, 0.9800136137207117, 0.8526248910947767, 0.9651962916423883, 0.5741264468224503, 0.0, 0.8066815029500052, 0.7084107667406031, 0.8910943581653369, 0.6137487567405265, 0.843379759286757, 0.32885159559677446, 0.5243792475829478, 0.8126121336965911, 0.8231331714477782] | [nan, 0.9768073159423666, 0.9678409097683983, 0.9877789798203552, 0.9673405331004518, 0.977145821644341, 0.9876622727465598, 0.9216680266557867, 0.9832398839363699, 0.6213226822336585, 0.0, 0.8952934013417885, 0.7966158824322502, 0.946850198957944, 0.6577528276561605, 0.9188715050240279, 0.4028735171529336, 0.5553570954877843, 0.887857931114596, 0.9137413764220337] | | 0.057 | 18.0 | 14166 | 0.2807 | 0.7169 | 0.8024 | 0.9665 | [0.0, 0.9391255338059006, 0.9316246290236013, 0.9771178536356643, 0.8736374236266327, 0.9587095139235466, 0.9802820999385629, 0.8534991833144867, 0.965491782119557, 0.5173244886677723, 0.0, 0.8079528780010615, 0.7036495460915129, 0.8919428858888571, 0.6128251272343798, 0.8423749359527112, 0.3030539267193167, 0.5387041043962495, 0.8154057368308808, 0.8249477907232359] | [nan, 0.9703254590941974, 0.967385397276143, 0.9883638482723315, 0.9660909281555922, 0.9783173801174915, 0.987878896953218, 0.9238406092751258, 0.9828454227159885, 0.5529433313441302, 0.0, 0.8918872346291701, 0.7785492786841041, 0.9525571866687186, 0.6544903660759959, 0.9202435561380515, 0.3583279897403014, 0.5679750294005819, 0.8882935470755648, 0.9144114645995461] | | 0.27 | 19.0 | 14953 | 0.2799 | 0.7210 | 0.8089 | 0.9668 | [0.0, 0.9392661644355319, 0.932096490765189, 0.9772444850416163, 0.8748583460799624, 0.959030800837604, 0.9803660417493171, 0.8549763601588193, 0.9661359625948338, 0.5489573339508828, 0.0, 0.8082856800928263, 0.707609022556391, 0.8930480213758131, 0.6125057936760998, 0.8439663143164156, 0.3240623821315535, 0.5560068921314832, 0.813374539715939, 0.8289533147998521] | [nan, 0.9703971313191945, 0.9680462515437895, 0.9881404237858805, 0.9683475421909045, 0.9777759016962746, 0.988822374850258, 0.9210152318781449, 0.9816258632275899, 0.588252672130082, 0.0, 0.8922778237294366, 0.7930430093029527, 0.9508458460659089, 0.6517263239814098, 0.9221548711227611, 0.3959802821417121, 0.5906377936742327, 0.8980803856653308, 0.9218433516592297] | | 0.0369 | 20.0 | 15740 | 0.2737 | 0.7224 | 0.8119 | 0.9668 | [0.0, 0.9392313580983768, 0.9322932027111482, 0.9772249946988713, 0.8749950826812657, 0.9591121585348171, 0.9803780030124933, 0.8554852055380204, 0.9661475962866876, 0.5609089467958914, 0.0, 0.8095003013989066, 0.7113799121381718, 0.8927260044840537, 0.6133653057361015, 0.8420100377966416, 0.33841086205511367, 0.553361761785151, 0.8141592920353983, 0.8270316181708587] | [nan, 0.9727824725573769, 0.9676994291705018, 0.9882968957337019, 0.9679484011220059, 0.9772700079950366, 0.9882492205666621, 0.9252107983136135, 0.9825945071781523, 0.6062795795494159, 0.0, 0.894776445179671, 0.7968855332344613, 0.9522349792248335, 0.6544510171692397, 0.9276157710790738, 0.42203029817249116, 0.5863404454740788, 0.8963814834175524, 0.9193914381006046] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
AlexanderPeter/bert-finetuned-ner
c2048fe36cc7093997e70daef7478f7667562259
2022-06-01T19:56:43.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
AlexanderPeter
null
AlexanderPeter/bert-finetuned-ner
20
null
transformers
8,428
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0593 - eval_precision: 0.9293 - eval_recall: 0.9485 - eval_f1: 0.9388 - eval_accuracy: 0.9858 - eval_runtime: 120.5431 - eval_samples_per_second: 26.97 - eval_steps_per_second: 3.376 - epoch: 2.0 - step: 3512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cpu - Datasets 2.2.2 - Tokenizers 0.12.1
ArthurZ/opt-13b
aabe4145fcf3def800c1e2f7b150d7b34a93ef2e
2022-06-21T16:28:07.000Z
[ "pytorch", "opt", "text-generation", "transformers" ]
text-generation
false
ArthurZ
null
ArthurZ/opt-13b
20
null
transformers
8,429
Entry not found
wvangils/GPT2-Beatles-Lyrics-finetuned-newlyrics
41e357049d36f29e8d3ed2d68cbe3d8840271d60
2022-06-17T11:21:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
wvangils
null
wvangils/GPT2-Beatles-Lyrics-finetuned-newlyrics
20
null
transformers
8,430
--- license: mit tags: - generated_from_trainer model-index: - name: GPT2-Beatles-Lyrics-finetuned-newlyrics results: [] --- # GPT2-Beatles-Lyrics-finetuned-newlyrics This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [Cmotions - Beatles lyrics](https://huggingface.co/datasets/cmotions/Beatles_lyrics) dataset. It will complete an input prompt with Beatles-like text. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9259 | 1.0 | 35 | 1.6643 | | 1.9188 | 2.0 | 70 | 1.6643 | | 1.9725 | 3.0 | 105 | 1.6643 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mgfrantz/distilgpt2-finetuned-reddit-tifu
73146d5c8c3195e2233491468ac3f683d3e7c78b
2022-06-05T21:14:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "en", "dataset:reddit_tifu (subset: short)", "transformers", "license:mit" ]
text-generation
false
mgfrantz
null
mgfrantz/distilgpt2-finetuned-reddit-tifu
20
null
transformers
8,431
--- language: - "en" thumbnail: "https://styles.redditmedia.com/t5_2to41/styles/communityIcon_qedoavxzocr61.png?width=256&s=9c7c19b81474c3788279b8d6d6823e791d0524fc" datasets: - "reddit_tifu (subset: short)" widget: - text: "I told my friend" license: mit --- # mgfrantz/distilgpt2-finetuned-reddit-tifu This model was trained to as practice for fine-tuning a causal language model. There was no intended use case for this model besides having some fun seeing how different things might be screwed up. ## Data This model was trained on "short" subset of [`reddit_tifu`](https://huggingface.co/datasets/reddit_tifu) dataset. The data was split into 90% train and 10% validation using `dataset.train_test_split`, with a seed of 0. To prepare the data for training, the `"tldr"` and `"documents"` fields were joined by `"\n\n"`. When multiple items were in the `"tldr"` or `"documents"` fields, only the first item was selected for joining. These joined documents were tokenized using the `"distilgpt2"` tokenizer. Finally, tokenized texts were concatenated end-to-end and split into blocks of 128 tokens. **TODO:** Add a different separation token between documents that can be used to stop generation. ## Training This model was trained in Colab by fine-tuning [`distilgpt2`](https://huggingface.co/distilgpt2) for 174390 steps (3 epochs). Default training arguments were used, except for `learning_rate=2e-5` and `weight_decay=0.01`. At the conclusion of training, a training loss of 3.52 and a validation loss of 3.44 were observed.
intogen/legal-bert-qa
4f56b385f34937568fcb57dd8c64e0e694141972
2022-06-08T19:49:11.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
intogen
null
intogen/legal-bert-qa
20
null
transformers
8,432
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: legal-bert-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legal-bert-qa This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 5.2974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5514 | 1.0 | 625 | 3.2106 | | 1.1372 | 2.0 | 1250 | 4.5593 | | 0.5365 | 3.0 | 1875 | 5.2974 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ehcalabres/distilgpt2-abc-irish-music-generation
5a2a65102a661acde5a44dc6fccf88e55fdf1105
2022-06-08T12:10:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
ehcalabres
null
ehcalabres/distilgpt2-abc-irish-music-generation
20
null
transformers
8,433
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-abc-irish-music-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-abc-irish-music-generation This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_mBERT_cased_fine_tuned
87708927023840cd185a8eebc63f33e86fa4b4c0
2022-06-08T17:00:47.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ajtamayoh
null
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_mBERT_cased_fine_tuned
20
null
transformers
8,434
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_mBERT_cased_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_mBERT_cased_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 - Precision: 0.8961 - Recall: 0.7009 - F1: 0.7865 - Accuracy: 0.9898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 94 | 0.0484 | 0.9002 | 0.6340 | 0.7440 | 0.9876 | | No log | 2.0 | 188 | 0.0436 | 0.9095 | 0.6599 | 0.7649 | 0.9887 | | No log | 3.0 | 282 | 0.0462 | 0.8545 | 0.7043 | 0.7722 | 0.9883 | | No log | 4.0 | 376 | 0.0456 | 0.9058 | 0.6761 | 0.7743 | 0.9894 | | No log | 5.0 | 470 | 0.0447 | 0.9194 | 0.6836 | 0.7841 | 0.9900 | | 0.0426 | 6.0 | 564 | 0.0480 | 0.8917 | 0.7026 | 0.7859 | 0.9897 | | 0.0426 | 7.0 | 658 | 0.0501 | 0.8961 | 0.7009 | 0.7865 | 0.9898 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
G-WOO/model_150mil-CodeBERTa-small-v1
8a760eefef9204c948b8d042c0b8e9c5063ee3d2
2022-06-09T03:25:00.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
G-WOO
null
G-WOO/model_150mil-CodeBERTa-small-v1
20
null
transformers
8,435
Entry not found
ahmeddbahaa/t5-arabic-base-finetuned-xlsum-ar
89bd21d56d67fbe3e2b8c47d8c279f743695b43c
2022-06-11T19:13:08.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "ar", "abstractive summarization", "xlsum", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/t5-arabic-base-finetuned-xlsum-ar
20
null
transformers
8,436
--- license: apache-2.0 tags: - summarization - t5 - ar - abstractive summarization - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: t5-arabic-base-finetuned-xlsum-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-arabic-base-finetuned-xlsum-ar This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.0328 - Rouge-1: 23.72 - Rouge-2: 10.95 - Rouge-l: 21.59 - Gen Len: 19.0 - Bertscore: 71.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
enoriega/rule_learning_margin_1mm_spanpred
cf121f335471aaf3015e0a722850b7b6b87e4843
2022-06-15T00:55:38.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_margin_1mm_spanpred
20
null
transformers
8,437
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm_spanpred results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm_spanpred This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3250 - Margin Accuracy: 0.8518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.5448 | 0.16 | 20 | 0.5229 | 0.7717 | | 0.4571 | 0.32 | 40 | 0.4292 | 0.8109 | | 0.4296 | 0.48 | 60 | 0.4009 | 0.8193 | | 0.4028 | 0.64 | 80 | 0.3855 | 0.8296 | | 0.3878 | 0.8 | 100 | 0.3757 | 0.8334 | | 0.3831 | 0.96 | 120 | 0.3643 | 0.8367 | | 0.3591 | 1.12 | 140 | 0.3582 | 0.8393 | | 0.3598 | 1.28 | 160 | 0.3533 | 0.8401 | | 0.3635 | 1.44 | 180 | 0.3442 | 0.8427 | | 0.3478 | 1.6 | 200 | 0.3406 | 0.8472 | | 0.342 | 1.76 | 220 | 0.3352 | 0.8479 | | 0.3327 | 1.92 | 240 | 0.3352 | 0.8486 | | 0.3487 | 2.08 | 260 | 0.3293 | 0.8487 | | 0.3387 | 2.24 | 280 | 0.3298 | 0.8496 | | 0.3457 | 2.4 | 300 | 0.3279 | 0.8505 | | 0.3483 | 2.56 | 320 | 0.3286 | 0.8510 | | 0.3421 | 2.72 | 340 | 0.3245 | 0.8517 | | 0.3332 | 2.88 | 360 | 0.3252 | 0.8517 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
QCRI/bert-base-cased-pos
be4f4e2ad204c84d793fc236381c7a15021ce26c
2022-06-13T05:50:38.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
token-classification
false
QCRI
null
QCRI/bert-base-cased-pos
20
null
transformers
8,438
--- license: cc-by-nc-4.0 ---
ml6team/keyphrase-extraction-kbir-semeval2017
764f17880ce95ebbe7edbb624d5ef0c0cbae38c5
2022-06-16T18:29:41.000Z
[ "pytorch", "roberta", "token-classification", "en", "dataset:midas/semeval2017", "arxiv:2112.08547", "arxiv:1704.02853", "transformers", "keyphrase-extraction", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ml6team
null
ml6team/keyphrase-extraction-kbir-semeval2017
20
null
transformers
8,439
--- language: en license: mit tags: - keyphrase-extraction datasets: - midas/semeval2017 metrics: - seqeval widget: - text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text." example_title: "Example 1" - text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks." example_title: "Example 2" model-index: - name: ml6team/keyphrase-extraction-kbir-semeval2017 results: - task: type: keyphrase-extraction name: Keyphrase Extraction dataset: type: midas/semeval2017 name: semeval2017 metrics: - type: F1 (Seqeval) value: 0.000 name: F1 (Seqeval) - type: F1@M value: 0.401 name: F1@M --- # 🔑 Keyphrase Extraction Model: KBIR-semeval2017 Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. Here is where Artificial Intelligence 🤖 comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. ## 📓 Model Description This model uses [KBIR](https://huggingface.co/bloomberg/KBIR) as its base model and fine-tunes it on the [semeval2017 dataset](https://huggingface.co/datasets/midas/semeval2017). KBIR or Keyphrase Boundary Infilling with Replacement is a pre-trained model which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC). You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547). Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not. | Label | Description | | ----- | ------------------------------- | | B-KEY | At the beginning of a keyphrase | | I-KEY | Inside a keyphrase | | O | Outside a keyphrase | ## ✋ Intended Uses & Limitations ### 🛑 Limitations * This keyphrase extraction model is very domain-specific and will perform very well on abstracts of scientific articles. It's not recommended to use this model for other domains, but you are free to test it out. * Limited amount of predicted keyphrases. * Only works for English documents. * For a custom model, please consult the [training notebook]() for more information. ### ❓ How To Use ```python from transformers import ( TokenClassificationPipeline, AutoModelForTokenClassification, AutoTokenizer, ) from transformers.pipelines import AggregationStrategy import numpy as np # Define keyphrase extraction pipeline class KeyphraseExtractionPipeline(TokenClassificationPipeline): def __init__(self, model, *args, **kwargs): super().__init__( model=AutoModelForTokenClassification.from_pretrained(model), tokenizer=AutoTokenizer.from_pretrained(model), *args, **kwargs ) def postprocess(self, model_outputs): results = super().postprocess( model_outputs=model_outputs, aggregation_strategy=AggregationStrategy.SIMPLE, ) return np.unique([result.get("word").strip() for result in results]) ``` ```python # Load pipeline model_name = "ml6team/keyphrase-extraction-kbir-semeval2017" extractor = KeyphraseExtractionPipeline(model=model_name) ``` ```python # Inference text = """ Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. """.replace("\n", " ") keyphrases = extractor(text) print(keyphrases) ``` ``` # Output ['artificial intelligence'] ``` ## 📚 Training Dataset [Semeval2017](https://huggingface.co/datasets/midas/semeval2017) is a keyphrase extraction/generation dataset consisting of 500 English scientific paper abstracts from the ScienceDirect open access publications. from NY Times and 10K from JPTimes and annotated by professional indexers or editors. The selected articles were evenly distributed among the domains of Computer Science, Material Sciences and Physics. Each paper has a set of keyphrases annotated by student volunteers. Each paper was double-annotated, where the second annotation was done by an expert annotator. You can find more information in the [paper](https://arxiv.org/abs/1704.02853). ## 👷‍♂️ Training procedure For more in detail information, you can take a look at the [training notebook](). ### Training parameters | Parameter | Value | | --------- | ------| | Learning Rate | 1e-4 | | Epochs | 50 | | Early Stopping Patience | 3 | ### Preprocessing The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens. ```python from datasets import load_dataset from transformers import AutoTokenizer # Labels label_list = ["B", "I", "O"] lbl2idx = {"B": 0, "I": 1, "O": 2} idx2label = {0: "B", 1: "I", 2: "O"} # Tokenizer tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") max_length = 512 # Dataset parameters dataset_full_name = "midas/semeval2017" dataset_subset = "raw" dataset_document_column = "document" dataset_biotags_column = "doc_bio_tags" def preprocess_fuction(all_samples_per_split): tokenized_samples = tokenizer.batch_encode_plus( all_samples_per_split[dataset_document_column], padding="max_length", truncation=True, is_split_into_words=True, max_length=max_length, ) total_adjusted_labels = [] for k in range(0, len(tokenized_samples["input_ids"])): prev_wid = -1 word_ids_list = tokenized_samples.word_ids(batch_index=k) existing_label_ids = all_samples_per_split[dataset_biotags_column][k] i = -1 adjusted_label_ids = [] for wid in word_ids_list: if wid is None: adjusted_label_ids.append(lbl2idx["O"]) elif wid != prev_wid: i = i + 1 adjusted_label_ids.append(lbl2idx[existing_label_ids[i]]) prev_wid = wid else: adjusted_label_ids.append( lbl2idx[ f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}" ] ) total_adjusted_labels.append(adjusted_label_ids) tokenized_samples["labels"] = total_adjusted_labels return tokenized_samples # Load dataset dataset = load_dataset(dataset_full_name, dataset_subset) # Preprocess dataset tokenized_dataset = dataset.map(preprocess_fuction, batched=True) ``` ### Postprocessing (Without Pipeline Function) If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed. ```python # Define post_process functions def concat_tokens_by_tag(keyphrases): keyphrase_tokens = [] for id, label in keyphrases: if label == "B": keyphrase_tokens.append([id]) elif label == "I": if len(keyphrase_tokens) > 0: keyphrase_tokens[len(keyphrase_tokens) - 1].append(id) return keyphrase_tokens def extract_keyphrases(example, predictions, tokenizer, index=0): keyphrases_list = [ (id, idx2label[label]) for id, label in zip( np.array(example["input_ids"]).squeeze().tolist(), predictions[index] ) if idx2label[label] in ["B", "I"] ] processed_keyphrases = concat_tokens_by_tag(keyphrases_list) extracted_kps = tokenizer.batch_decode( processed_keyphrases, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) return np.unique([kp.strip() for kp in extracted_kps]) ``` ## 📝 Evaluation Results Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. The model achieves the following results on the Semeval2017 test set: | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | |:---------------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:| | Semeval2017 Test Set | 0.41 | 0.20 | 0.25 | 0.37 | 0.34 | 0.34 | 0.36 | 0.50 | 0.40 | For more information on the evaluation process, you can take a look at the keyphrase extraction [evaluation notebook](). ## 🚨 Issues Please feel free to start discussions in the Community Tab.
Shikenrua/distilbert-base-uncased-finetuned-emotion
b102f0080eafc39dc89f3632b6fb5b37222c6ae9
2022-06-29T04:46:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shikenrua
null
Shikenrua/distilbert-base-uncased-finetuned-emotion
20
null
transformers
8,440
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0 - Datasets 1.16.1 - Tokenizers 0.10.3
RayMelius/bert-finetuned-ner
c3b99a3542b68aeae1c5403128748d25fb7c28d7
2022-06-17T16:06:51.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
RayMelius
null
RayMelius/bert-finetuned-ner
20
null
transformers
8,441
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-base-japanese-unidic-ud-head
3169ed622fe3b4d0e89b4969c9048e02c0154b9a
2022-07-20T03:51:55.000Z
[ "pytorch", "deberta-v2", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-unidic-ud-head
20
null
transformers
8,442
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # deberta-base-japanese-unidic-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-base-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-unidic) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic-ud-head") question="国語" context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている" inputs=tokenizer(question,context,return_tensors="pt") outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0,start:end+1])) ``` or ```py from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) class TaggerPipeline(TokenClassificationPipeline): def __call__(self,text): d=super().__call__(text) if len(d)>0 and ("start" not in d[0] or d[0]["start"]==None): import tokenizations v=[x["word"].replace(" ","") for x in d] a2b,b2a=tokenizations.get_alignments(v,text) for i,t in enumerate(a2b): s,e=(0,0) if t==[] else (t[0],t[-1]+1) if v[i].startswith(self.tokenizer.unk_token): s=([[-1]]+[x for x in a2b[0:i] if x>[]])[-1][-1]+1 if v[i].endswith(self.tokenizer.unk_token): e=([x for x in a2b[i+1:] if x>[]]+[[len(text)]])[0][0] d[i]["start"],d[i]["end"]=s,e return d class TransformersSlowUD(object): def __init__(self,bert): import os self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TaggerPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TaggerPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersSlowUD("KoichiYasuoka/deberta-base-japanese-unidic-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` [fugashi](https://pypi.org/project/fugashi) [unidic-lite](https://pypi.org/project/unidic-lite) [pytokenizations](https://pypi.org/project/pytokenizations) and [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) required.
AlekseyKorshuk/results-gpt-j-lit-erotic
2e668432c90f9da811b6107777860b6e10d7d5eb
2022-06-18T13:09:31.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/results-gpt-j-lit-erotic
20
null
transformers
8,443
Entry not found
Chemsseddine/bert2gpt2SUMM-finetuned-mlsum-finetuned-mlorange_sum
8b2ad42c31f5ae023dac3d304dcc92b7bc7eb857
2022-06-30T18:42:50.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:orange_sum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chemsseddine
null
Chemsseddine/bert2gpt2SUMM-finetuned-mlsum-finetuned-mlorange_sum
20
null
transformers
8,444
--- tags: - generated_from_trainer datasets: - orange_sum metrics: - rouge model-index: - name: bert2gpt2SUMM-finetuned-mlsum-finetuned-mlorange_sum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: orange_sum type: orange_sum args: abstract metrics: - name: Rouge1 type: rouge value: 24.949 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/Chemsseddine/bert2gpt2_med_ml_orange_summ-finetuned_med_sum_new-finetuned_med_sum_new/resolve/main/logobert2gpt2.png" alt="Map of positive probabilities per country." width="200"/> # bert2gpt2SUMM-finetuned-mlsum-finetuned-mlorange_sum This model is a fine-tuned version of [Chemsseddine/bert2gpt2SUMM-finetuned-mlsum](https://huggingface.co/Chemsseddine/bert2gpt2SUMM-finetuned-mlsum) on the orange_sum dataset. It achieves the following results on the evaluation set: - Loss: 3.1773 - Rouge1: 24.949 - Rouge2: 7.851 - Rougel: 18.1575 - Rougelsum: 18.4114 - Gen Len: 39.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 3.5484 | 1.0 | 1338 | 3.1773 | 24.949 | 7.851 | 18.1575 | 18.4114 | 39.7947 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KoichiYasuoka/roberta-large-japanese-aozora-ud-head
e716b16b458b5e9d604ee940bab030fbb8248fa1
2022-07-20T03:52:24.000Z
[ "pytorch", "roberta", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/roberta-large-japanese-aozora-ud-head
20
null
transformers
8,445
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # roberta-large-japanese-aozora-ud-head ## Model Description This is a RoBERTa model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [roberta-large-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-char) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model) print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/roberta-large-japanese-aozora-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ```
romainlhardy/roberta-large-finetuned-ner
131ae59ac84058dabcaa3dbe2b4b4ccde28315d6
2022-06-26T09:20:58.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
romainlhardy
null
romainlhardy/roberta-large-finetuned-ner
20
null
transformers
8,446
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9476811355009077 - name: Recall type: recall value: 0.9663412992258499 - name: F1 type: f1 value: 0.9569202566452795 - name: Accuracy type: accuracy value: 0.990656929827253 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-ner This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0495 - Precision: 0.9477 - Recall: 0.9663 - F1: 0.9569 - Accuracy: 0.9907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.078 | 1.0 | 1756 | 0.0577 | 0.9246 | 0.9536 | 0.9389 | 0.9865 | | 0.0382 | 2.0 | 3512 | 0.0528 | 0.9414 | 0.9620 | 0.9516 | 0.9890 | | 0.021 | 3.0 | 5268 | 0.0495 | 0.9477 | 0.9663 | 0.9569 | 0.9907 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jacquelinehe/anonymized-model
12d2159f1ce59fabca83b7721670c721c96c45c1
2022-06-27T05:58:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
jacquelinehe
null
jacquelinehe/anonymized-model
20
null
transformers
8,447
--- license: apache-2.0 ---
Rahulrr/language_model_en_de
a5d0d22f266e314bc737a94d496d8281a9045a34
2022-06-27T10:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "en", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Rahulrr
null
Rahulrr/language_model_en_de
20
null
transformers
8,448
--- language: - en - de tags: - translation license: apache-2.0 --- ### en-de * source group: English * target group: German * OPUS readme: [eng-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu/README.md) * model: transformer-big * source language(s): eng * target language(s): deu * raw source language(s): eng * raw target language(s): deu * model: transformer-big * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opusTCv20210807+bt-2021-12-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.zip) * test set translations: [opusTCv20210807+bt-2021-12-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.test.txt) * test set scores: [opusTCv20210807+bt-2021-12-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | newssyscomb2009.eng-deu | 24.3 | 0.5462 | 502 | 11271 | 0.993 | | news-test2008.eng-deu | 24.7 | 0.5412 | 2051 | 47427 | 1.000 | | newstest2009.eng-deu | 23.6 | 0.5385 | 2525 | 62816 | 0.999 | | newstest2010.eng-deu | 26.9 | 0.5589 | 2489 | 61511 | 0.966 | | newstest2011.eng-deu | 24.1 | 0.5364 | 3003 | 72981 | 0.990 | | newstest2012.eng-deu | 24.6 | 0.5375 | 3003 | 72886 | 0.972 | | newstest2013.eng-deu | 28.3 | 0.5636 | 3000 | 63737 | 0.988 | | newstest2014-deen.eng-deu | 30.9 | 0.6084 | 3003 | 62964 | 1.000 | | newstest2015-ende.eng-deu | 33.2 | 0.6106 | 2169 | 44260 | 1.000 | | newstest2016-ende.eng-deu | 39.8 | 0.6595 | 2999 | 62670 | 0.993 | | newstest2017-ende.eng-deu | 32.0 | 0.6047 | 3004 | 61291 | 1.000 | | newstest2018-ende.eng-deu | 48.8 | 0.7146 | 2998 | 64276 | 1.000 | | newstest2019-ende.eng-deu | 45.0 | 0.6821 | 1997 | 48969 | 0.995 | | Tatoeba-test-v2021-08-07.eng-deu | 43.7 | 0.6442 | 10000 | 85728 | 1.000 | ### System Info: - hf_name: en-de - source_languages: eng - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'de'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('German', {'deu'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-deu - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.test.txt - src_alpha3: eng - tgt_alpha3: deu - chrF2_score: 0.6442 - bleu: 43.7 - src_name: English - tgt_name: German - train_date: 2021-12-08 00:00:00 - src_alpha2: en - tgt_alpha2: de - prefer_old: False - short_pair: en-de - helsinki_git_sha: c4e978d8de47875b482653b423dcfe968979d7d5 - transformers_git_sha: 56b83cf049823ed074a655eceb28f31e2077c6eb - port_machine: LAPIN4GLQ2G3 - port_time: 2022-06-27-16:10
barthfab/drugprot
25f9807992a611b6602a27aee4df4338cf16cb53
2022-07-19T14:11:06.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
barthfab
null
barthfab/drugprot
20
null
transformers
8,449
Entry not found
zunicd/finetuning-sentiment-model-3000-samples
27080e6c6c19f8b79e97452788b6cace0452e421
2022-06-28T18:12:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
zunicd
null
zunicd/finetuning-sentiment-model-3000-samples
20
null
transformers
8,450
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8741721854304636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3349 - Accuracy: 0.8733 - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Neha2608/distilbert-base-uncased-finetuned-emotion
5b459baf80167c2b604506be270ae357ef779ba8
2022-07-30T09:43:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Neha2608
null
Neha2608/distilbert-base-uncased-finetuned-emotion
20
null
transformers
8,451
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9184567794520658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy is: 0.9185 - F1: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy is | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:| | 0.8026 | 1.0 | 250 | 0.3114 | 0.905 | 0.9035 | | 0.2409 | 2.0 | 500 | 0.2207 | 0.9185 | 0.9185 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
FabianWillner/bert-base-uncased-finetuned-squad
8328dcbb5aad945ad4fc0557dc83169e94e11ec1
2022-06-29T14:46:28.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FabianWillner
null
FabianWillner/bert-base-uncased-finetuned-squad
20
null
transformers
8,452
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0626 | 1.0 | 5533 | 1.0308 | | 0.8157 | 2.0 | 11066 | 1.0106 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
TheDiamondKing/Discord-Message-Small
f62af9cbf3df78e4873272eb27ccb45e149bd98b
2022-06-29T21:06:10.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
TheDiamondKing
null
TheDiamondKing/Discord-Message-Small
20
null
transformers
8,453
--- license: mit --- Simple model trained with 2790 Discord messages ( Might have some NSFW responses )
clevrly/distilbert-base-uncased-finetuned-hotpot_qa
25947b9cc5b2ac6ffc8eec4313283e9c7852c4eb
2022-06-30T18:12:02.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
clevrly
null
clevrly/distilbert-base-uncased-finetuned-hotpot_qa
20
null
transformers
8,454
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-hotpot_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hotpot_qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1396 | 1.0 | 2572 | 1.0405 | | 0.8396 | 2.0 | 5144 | 0.9299 | | 0.6253 | 3.0 | 7716 | 1.0625 | | 0.4584 | 4.0 | 10288 | 1.1290 | | 0.3432 | 5.0 | 12860 | 1.2565 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ubikpt/t5-small-finetuned-cnn-v2
a0be88a1dd4cb4e76ae49337445f0c08e8a51493
2022-07-01T03:15:22.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ubikpt
null
ubikpt/t5-small-finetuned-cnn-v2
20
null
transformers
8,455
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-v2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 35.154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-v2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.5474 - Rouge1: 35.154 - Rouge2: 18.683 - Rougel: 30.8481 - Rougelsum: 32.9638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.8823 | 1.0 | 35890 | 1.5878 | 34.9676 | 18.4927 | 30.6753 | 32.7702 | | 1.7871 | 2.0 | 71780 | 1.5709 | 34.9205 | 18.5556 | 30.6514 | 32.745 | | 1.7507 | 3.0 | 107670 | 1.5586 | 34.9825 | 18.4964 | 30.6724 | 32.7644 | | 1.7253 | 4.0 | 143560 | 1.5584 | 35.074 | 18.6171 | 30.8007 | 32.9132 | | 1.705 | 5.0 | 179450 | 1.5528 | 35.023 | 18.5787 | 30.7014 | 32.8396 | | 1.6894 | 6.0 | 215340 | 1.5518 | 35.0583 | 18.6754 | 30.791 | 32.8814 | | 1.6776 | 7.0 | 251230 | 1.5468 | 35.2236 | 18.6812 | 30.8944 | 33.0362 | | 1.6687 | 8.0 | 287120 | 1.5474 | 35.154 | 18.683 | 30.8481 | 32.9638 | ### Framework versions - Transformers 4.14.0 - Pytorch 1.5.0 - Datasets 2.3.2 - Tokenizers 0.10.3
sudo-s/new_exper3
1e38cb4be2501c0c085866362bc5104ab0cc8efa
2022-06-30T21:19:12.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/new_exper3
20
null
transformers
8,456
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: new_exper3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new_exper3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3000 - Accuracy: 0.9298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.093 | 0.16 | 100 | 4.1045 | 0.1885 | | 3.5057 | 0.31 | 200 | 3.4448 | 0.3231 | | 2.9116 | 0.47 | 300 | 2.9483 | 0.4537 | | 2.561 | 0.63 | 400 | 2.5700 | 0.5258 | | 2.1611 | 0.78 | 500 | 2.1721 | 0.6145 | | 1.715 | 0.94 | 600 | 1.8255 | 0.6407 | | 1.2752 | 1.1 | 700 | 1.5340 | 0.7051 | | 1.2487 | 1.25 | 800 | 1.3533 | 0.7201 | | 1.0333 | 1.41 | 900 | 1.1474 | 0.7826 | | 0.8856 | 1.56 | 1000 | 1.0914 | 0.7645 | | 0.7512 | 1.72 | 1100 | 0.8893 | 0.8119 | | 0.747 | 1.88 | 1200 | 0.8370 | 0.8304 | | 0.5082 | 2.03 | 1300 | 0.7131 | 0.8566 | | 0.4449 | 2.19 | 1400 | 0.6573 | 0.8547 | | 0.2912 | 2.35 | 1500 | 0.6184 | 0.8597 | | 0.285 | 2.5 | 1600 | 0.5974 | 0.8570 | | 0.2267 | 2.66 | 1700 | 0.5621 | 0.8647 | | 0.2553 | 2.82 | 1800 | 0.5044 | 0.8816 | | 0.2029 | 2.97 | 1900 | 0.4342 | 0.8955 | | 0.1763 | 3.13 | 2000 | 0.4487 | 0.8905 | | 0.1418 | 3.29 | 2100 | 0.4173 | 0.9005 | | 0.0563 | 3.44 | 2200 | 0.3870 | 0.9048 | | 0.0579 | 3.6 | 2300 | 0.3849 | 0.9036 | | 0.166 | 3.76 | 2400 | 0.3933 | 0.9025 | | 0.11 | 3.91 | 2500 | 0.3918 | 0.9056 | | 0.0356 | 4.07 | 2600 | 0.3298 | 0.9202 | | 0.0513 | 4.23 | 2700 | 0.3371 | 0.9210 | | 0.0762 | 4.38 | 2800 | 0.3253 | 0.9225 | | 0.018 | 4.54 | 2900 | 0.3467 | 0.9148 | | 0.0263 | 4.69 | 3000 | 0.3544 | 0.9144 | | 0.0205 | 4.85 | 3100 | 0.3340 | 0.9221 | | 0.0237 | 5.01 | 3200 | 0.3353 | 0.9144 | | 0.013 | 5.16 | 3300 | 0.3218 | 0.9229 | | 0.0116 | 5.32 | 3400 | 0.3088 | 0.9291 | | 0.0119 | 5.48 | 3500 | 0.3047 | 0.9279 | | 0.0098 | 5.63 | 3600 | 0.3063 | 0.9283 | | 0.0086 | 5.79 | 3700 | 0.3074 | 0.9268 | | 0.0081 | 5.95 | 3800 | 0.3220 | 0.9237 | | 0.0078 | 6.1 | 3900 | 0.3064 | 0.9268 | | 0.0074 | 6.26 | 4000 | 0.3062 | 0.9279 | | 0.0068 | 6.42 | 4100 | 0.3051 | 0.9291 | | 0.006 | 6.57 | 4200 | 0.3000 | 0.9298 | | 0.0075 | 6.73 | 4300 | 0.3010 | 0.9310 | | 0.0057 | 6.89 | 4400 | 0.3037 | 0.9298 | | 0.0058 | 7.04 | 4500 | 0.3071 | 0.9279 | | 0.0075 | 7.2 | 4600 | 0.3075 | 0.9283 | | 0.0066 | 7.36 | 4700 | 0.3077 | 0.9295 | | 0.0056 | 7.51 | 4800 | 0.3084 | 0.9295 | | 0.0053 | 7.67 | 4900 | 0.3064 | 0.9310 | | 0.0057 | 7.82 | 5000 | 0.3068 | 0.9318 | | 0.0055 | 7.98 | 5100 | 0.3068 | 0.9318 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Tritkoman/EN-ROM
7afd0b47a0d6951f6888edaa5cb0d9e2ef3d7c14
2022-07-01T06:07:37.000Z
[ "pytorch", "mt5", "text2text-generation", "en", "hi", "dataset:Tritkoman/autotrain-data-rusynpann", "transformers", "autotrain", "translation", "co2_eq_emissions", "autotrain_compatible" ]
translation
false
Tritkoman
null
Tritkoman/EN-ROM
20
null
transformers
8,457
--- tags: - autotrain - translation language: - en - hi datasets: - Tritkoman/autotrain-data-rusynpann co2_eq_emissions: 30.068537136776726 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1066237031 - CO2 Emissions (in grams): 30.068537136776726 ## Validation Metrics - Loss: 2.461327075958252 - SacreBLEU: 13.8452 - Gen len: 13.2313
yuningm/bart-large-citesum-title
c9290ab76e7fcfbd2a87a1ac6faaddcfc25ae4fd
2022-07-08T20:53:19.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:yuningm/citesum", "arxiv:2205.06207", "transformers", "summarization", "license:cc-by-nc-4.0", "autotrain_compatible" ]
summarization
false
yuningm
null
yuningm/bart-large-citesum-title
20
1
transformers
8,458
--- license: cc-by-nc-4.0 language: en tags: - summarization datasets: - yuningm/citesum widget: - text: "Abstract-This paper presents a control strategy that allows a group of mobile robots to position themselves to optimize the measurement of sensory information in the environment. The robots use sensed information to estimate a function indicating the relative importance of different areas in the environment. Their estimate is then used to drive the network to a desirable placement configuration using a computationally simple decentralized control law. We formulate the problem, provide a practical control solution, and present the results of numerical simulations. We then discuss experiments carried out on a swarm of mobile robots." example_title: "Networked Robots" - text: "Abstract. In this paper, a Bayesian method for face recognition is proposed based on Markov Random Fields (MRF) modeling. Constraints on image features as well as contextual relationships between them are explored and encoded into a cost function derived based on a statistical model of MRF. Gabor wavelet coefficients are used as the base features, and relationships between Gabor features at different pixel locations are used to provide higher order contextual constraints. The posterior probability of matching configuration is derived based on MRF modeling. Local search and discriminate analysis are used to evaluate local matches, and a contextual constraint is applied to evaluate mutual matches between local matches. The proposed MRF method provides a new perspective for modeling the face recognition problem. Experiments demonstrate promising results." example_title: "Bayesian Face Recognition" - text: "Abstract One of the most relevant applications of digital image forensics is to accurately identify the device used for taking a given set of images, a problem called source identification. This paper studies recent developments in the field and proposes the mixture of two techniques (Sensor Imperfections and Wavelet Transforms) to get better source identification of images generated with mobile devices. Our results show that Sensor Imperfections and Wavelet Transforms can jointly serve as good forensic features to help trace the source camera of images produced by mobile phones. Furthermore, the model proposed here can also determine with high precision both the brand and model of the device." example_title: "Source identification for mobile devices" --- # Bart-Large CiteSum (Titles) This is facebook/bart-large fine-tuned on CiteSum. The "src" column is the input and the "title" column is the target summarization. ## Authors ### Yuning Mao, Ming Zhong, Jiawei Han #### University of Illinois Urbana-Champaign {yuningm2, mingz5, hanj}@illinois.edu ## Results ``` { "epoch": 6.78, "eval_gen_len": 17.1775, "eval_loss": 1.9626615047454834, "eval_rouge1": 51.4834, "eval_rouge2": 29.9178, "eval_rougeL": 45.4882, "eval_rougeLsum": 45.517, "eval_runtime": 351.9638, "eval_samples": 4681, "eval_samples_per_second": 13.3, "eval_steps_per_second": 0.21, "predict_gen_len": 17.1032, "predict_loss": 1.9391602277755737, "predict_rouge1": 52.0304, "predict_rouge2": 30.1511, "predict_rougeL": 45.9902, "predict_rougeLsum": 46.0068, "predict_runtime": 363.9691, "predict_samples": 4882, "predict_samples_per_second": 13.413, "predict_steps_per_second": 0.212, "train_loss": 1.0821667497907366, "train_runtime": 24401.3762, "train_samples": 82653, "train_samples_per_second": 65.57, "train_steps_per_second": 8.196 } ``` ## Dataset Description CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation. CiteSum contains TLDR summaries for scientific papers from their citation texts without human annotation, making it around 30 times larger than the previous human-curated dataset SciTLDR. ## Homepage https://github.com/morningmoni/CiteSum ## Paper https://arxiv.org/abs/2205.06207 ## Dataset on Hub https://huggingface.co/datasets/nbroad/citesum ## How to use model ```python from transformers import pipeline summarizer = pipeline("summarization", model="yuningm/bart-large-citesum-title") article = ''' We describe a convolutional neural network that learns\ feature representations for short textual posts using hashtags as a\ supervised signal. The proposed approach is trained on up to 5.5 \ billion words predicting 100,000 possible hashtags. As well as strong\ performance on the hashtag prediction task itself, we show that its \ learned representation of text (ignoring the hashtag labels) is useful\ for other tasks as well. To that end, we present results on a document\ recommendation task, where it also outperforms a number of baselines. ''' summarizer(article) # [{'summary_text': 'Learning Text Representations from Hashtags using Convolutional Neural Networks'}] ```
akhisreelibra/bert-finetuned-ner
14a89897eb522db5f76b5f02685ace27687b3052
2022-07-05T13:10:05.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
akhisreelibra
null
akhisreelibra/bert-finetuned-ner
20
null
transformers
8,459
KoichiYasuoka/deberta-large-japanese-wikipedia
ddda036dd277f3e2cdbf8ee888761d83ed28694a
2022-07-23T14:44:05.000Z
[ "pytorch", "deberta-v2", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-wikipedia
20
null
transformers
8,460
--- language: - "ja" tags: - "japanese" - "masked-lm" - "wikipedia" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # deberta-large-japanese-wikipedia ## Model Description This is a DeBERTa(V2) model pre-trained on Japanese Wikipedia and 青空文庫 texts. You can fine-tune `deberta-large-japanese-wikipedia` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-wikipedia-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia") ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
samroni/puisi_model_gpt2_small
9ba9155f8b5978d8574d2e85cd584f4b081c2a8a
2022-07-26T16:42:44.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
samroni
null
samroni/puisi_model_gpt2_small
20
null
transformers
8,461
Entry not found
saadob12/t5_C2T_autochart
3cd8aec43f3287c21164bccc9fafb71682e154b7
2022-07-19T13:03:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
saadob12
null
saadob12/t5_C2T_autochart
20
null
transformers
8,462
# Training Data **Autochart:** Zhu, J., Ran, J., Lee, R. K. W., Choo, K., & Li, Z. (2021). AutoChart: A Dataset for Chart-to-Text Generation Task. arXiv preprint arXiv:2108.06897. **Gitlab Link for the data**: https://gitlab.com/bottle_shop/snlg/chart/autochart Train split for this model: Train 8000, Validation 1297, Test 1296 # Example use: Append ```C2T: ``` before every input to the model ``` tokenizer = AutoTokenizer.from_pretrained(saadob12/t5_C2T_autochart) model = AutoModelForSeq2SeqLM.from_pretrained(saadob12/t5_C2T_autochart) data = 'Trade statistics of Qatar with developing economies in North Africa bar_chart Year-Trade with economies of Middle East & North Africa(%)(Merchandise exports,Merchandise imports) x-y1-y2 values 2000 0.591869968616745 3.59339030672154 , 2001 0.53415012207203 3.25371165779341 , 2002 3.07769793440318 1.672796364224 , 2003 0.6932513078579471 1.62522475477827 , 2004 1.17635914189321 1.80540331396412' prefix = 'C2T: ' tokens = tokenizer.encode(prefix + data, truncation=True, padding='max_length', return_tensors='pt') generated = model.generate(tokens, num_beams=4, max_length=256) tgt_text = tokenizer.decode(generated[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) summary = str(tgt_text).strip('[]""') #Summary: This barchart shows the number of trade statistics of qatar with developing economies in north africa from 2000 through 2004. The unit of measurement in this graph is Trade with economies of Middle East & North Africa(%) as shown on the y-axis. The first group data denotes the change of Merchandise exports. There is a go up and down trend of the number. The peak of the number is found in 2002 and the lowest number is found in 2001. The changes in the number may be related to the conuntry's national policies. The second group data denotes the change of Merchandise imports. There is a go up and down trend of the number. The number in 2000 being the peak, and the lowest number is found in 2003. The changes in the number may be related to the conuntry's national policies. ``` # Limitations You can use the model to generate summaries of data files. Works well for general statistics like the following: | Year | Children born per woman | |:---:|:---:| | 2018 | 1.14 | | 2017 | 1.45 | | 2016 | 1.49 | | 2015 | 1.54 | | 2014 | 1.6 | | 2013 | 1.65 | May or may not generate an **okay** summary at best for the following kind of data: | Model | BLEU score | BLEURT| |:---:|:---:|:---:| | t5-small | 25.4 | -0.11 | | t5-base | 28.2 | 0.12 | | t5-large | 35.4 | 0.34 | # Citation Kindly cite my work. Thank you. ``` @misc{obaid ul islam_2022, title={saadob12/t5_C2T_autochart Hugging Face}, url={https://huggingface.co/saadob12/t5_C2T_autochart}, journal={Huggingface.co}, author={Obaid ul Islam, Saad}, year={2022} } ```
BitanBiswas/depression-detection-bert
189e97418e7f668157f10353b3dc4477f91feb8c
2022-07-09T03:13:46.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
BitanBiswas
null
BitanBiswas/depression-detection-bert
20
null
transformers
8,463
Entry not found
Ahmed007/distilbert-base-uncased-finetuned-emotion
1ccaabaac4388c0a8def8917f13b75b807272baf
2022-07-11T23:04:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Ahmed007
null
Ahmed007/distilbert-base-uncased-finetuned-emotion
20
1
transformers
8,464
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.937 - name: F1 type: f1 value: 0.9372331942198677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1413 - Accuracy: 0.937 - F1: 0.9372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7628 | 1.0 | 250 | 0.2489 | 0.9155 | 0.9141 | | 0.2014 | 2.0 | 500 | 0.1716 | 0.928 | 0.9283 | | 0.1351 | 3.0 | 750 | 0.1456 | 0.937 | 0.9374 | | 0.1046 | 4.0 | 1000 | 0.1440 | 0.9355 | 0.9349 | | 0.0877 | 5.0 | 1250 | 0.1413 | 0.937 | 0.9372 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
MiguelCosta/finetuning-sentiment-model-3000-samples
843a87b16f04f5f19dc9735f6506db9fdbccdda9
2022-07-12T06:06:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MiguelCosta
null
MiguelCosta/finetuning-sentiment-model-3000-samples
20
null
transformers
8,465
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8810289389067525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5805 - Accuracy: 0.8767 - F1: 0.8810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
helena-balabin/qt-simcse-roberta-large
f699253ca4fc453c70b12257e5abc848b4b754a3
2022-07-13T09:33:52.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
helena-balabin
null
helena-balabin/qt-simcse-roberta-large
20
null
transformers
8,466
Entry not found
hirohiroz/wav2vec2-base-timit-demo-google-colab-tryjpn
4c0fa2774bb59db4861cbec1ab370efce2efe80a
2022-07-19T08:16:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hirohiroz
null
hirohiroz/wav2vec2-base-timit-demo-google-colab-tryjpn
20
null
transformers
8,467
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab-tryjpn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab-tryjpn This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1527 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 48.3474 | 6.67 | 100 | 68.0887 | 1.0 | | 7.601 | 13.33 | 200 | 8.3667 | 1.0 | | 4.9107 | 20.0 | 300 | 5.6991 | 1.0 | | 4.379 | 26.67 | 400 | 5.1527 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
uer/roberta-tiny-wwm-chinese-cluecorpussmall
36ecd8c2b96921ec25e5a92aa57d44bc796f4d11
2022-07-18T05:35:15.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-tiny-wwm-chinese-cluecorpussmall
20
null
transformers
8,468
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese Whole Word Masking RoBERTa Miniatures ## Model description This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. You can download the 6 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **Tiny** | [**2/128 (Tiny)**][2_128] | | **Mini** | [**4/256 (Mini)**][4_256] | | **Small** | [**4/512 (Small)**][4_512] | | **Medium** | [**8/512 (Medium)**][8_512] | | **Base** | [**12/768 (Base)**][12_768] | | **Large** | [**24/1024 (Large)**][24_1024] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | ------------------ | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny-WWM | 72.1 | 82.8 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 | | RoBERTa-Mini-WWM | 76.1 | 84.9 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 | | RoBERTa-Small-WWM | 77.3 | 86.8 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 | | RoBERTa-Medium-WWM | 78.4 | 88.2 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 | | RoBERTa-Base-WWM | 80.1 | 90.0 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 | | RoBERTa-Large-WWM | 81.0 | 90.4 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall') >>> unmasker("北京是[MASK]国的首都。") [ {'score': 0.294228732585907, 'token': 704, 'token_str': '中', 'sequence': '北 京 是 中 国 的 首 都 。'}, {'score': 0.19691626727581024, 'token': 1266, 'token_str': '北', 'sequence': '北 京 是 北 国 的 首 都 。'}, {'score': 0.1070084273815155, 'token': 7506, 'token_str': '韩', 'sequence': '北 京 是 韩 国 的 首 都 。'}, {'score': 0.031527262181043625, 'token': 2769, 'token_str': '我', 'sequence': '北 京 是 我 国 的 首 都 。'}, {'score': 0.023054633289575577, 'token': 1298, 'token_str': '南', 'sequence': '北 京 是 南 国 的 首 都 。'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. Taking the case of Whole Word Masking RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-wwm-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-wwm-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-wwm-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-wwm-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-wwm-chinese-cluecorpussmall [24_1024]:https://huggingface.co/uer/roberta-large-wwm-chinese-cluecorpussmall
ChuVN/bart-base-finetuned-squad2
2b047428c2cb0811fb6ae16ee69f49d9081b3469
2022-07-18T17:00:01.000Z
[ "pytorch", "tensorboard", "bart", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ChuVN
null
ChuVN/bart-base-finetuned-squad2
20
null
transformers
8,469
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bart-base-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9981 | 1.0 | 16319 | 0.9607 | | 0.7521 | 2.0 | 32638 | 1.0446 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
anahitapld/dbd_bert
51fe60b82bcd7cff9bc3114855e54a09048140c5
2022-07-18T09:00:39.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
anahitapld
null
anahitapld/dbd_bert
20
null
transformers
8,470
--- license: apache-2.0 ---
Evelyn18/roberta-base-spanish-squades-becas1
ad991e3086ad24101fa5eef917897666f838de86
2022-07-18T23:21:45.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-becas1
20
null
transformers
8,471
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becas1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becas1 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 1.8851 | | No log | 2.0 | 12 | 1.7681 | | No log | 3.0 | 18 | 2.0453 | | No log | 4.0 | 24 | 2.2795 | | No log | 5.0 | 30 | 2.4024 | | No log | 6.0 | 36 | 2.4402 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Anonymous-TST/knight-errant-TST-zh
67eaaf77b9ef72f007a06e0b3b5104652c733732
2022-07-19T10:41:47.000Z
[ "pytorch", "mbart", "text2text-generation", "multilingual", "ar", "cs", "de", "en", "es", "et", "fi", "fr", "gu", "hi", "it", "ja", "kk", "ko", "lt", "lv", "my", "ne", "nl", "ro", "ru", "si", "tr", "vi", "zh", "af", "az", "bn", "fa", "he", "hr", "id", "ka", "km", "mk", "ml", "mn", "mr", "pl", "ps", "pt", "sv", "sw", "ta", "te", "th", "tl", "uk", "ur", "xh", "gl", "sl", "transformers", "mbart-50", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Anonymous-TST
null
Anonymous-TST/knight-errant-TST-zh
20
null
transformers
8,472
--- language: - multilingual - ar - cs - de - en - es - et - fi - fr - gu - hi - it - ja - kk - ko - lt - lv - my - ne - nl - ro - ru - si - tr - vi - zh - af - az - bn - fa - he - hr - id - ka - km - mk - ml - mn - mr - pl - ps - pt - sv - sw - ta - te - th - tl - uk - ur - xh - gl - sl license: mit tags: - mbart-50 --- # Knight-errant Knight-errant is a test style transfer model for knight-errant style. ```python #inference from transformers import MBartForConditionalGeneration, MBart50TokenizerFast model = MBartForConditionalGeneration.from_pretrained("Anonymous-TST/knight-errant-TST-zh") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="zh_CN", tgt_lang="zh_CN") model.cuda() model.eval() article_1 = "jinyong: 接下来会发生什么?" batch = tokenizer(article_1, return_tensors="pt",return_token_type_ids=False, truncation=True, max_length=64, padding=True).to('cuda') translated_tokens = model.generate(**batch,max_length=64) decoded = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(decoded) ``` ```
johanna-k/pw-canine-ame
e66adc66093c7ed192e23a454feb3a6c6d1ba767
2022-07-21T05:08:39.000Z
[ "pytorch", "canine", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
johanna-k
null
johanna-k/pw-canine-ame
20
null
transformers
8,473
Entry not found
shamweel/bert-finetuned-ner
d7c53737adccbff38c68818061cafd99710e9c39
2022-07-22T17:18:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
shamweel
null
shamweel/bert-finetuned-ner
20
null
transformers
8,474
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9312510328871261 - name: Recall type: recall value: 0.9483338943116796 - name: F1 type: f1 value: 0.9397148336529643 - name: Accuracy type: accuracy value: 0.9857096603284865 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0684 - Precision: 0.9313 - Recall: 0.9483 - F1: 0.9397 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0877 | 1.0 | 1756 | 0.0676 | 0.9142 | 0.9357 | 0.9248 | 0.9828 | | 0.0411 | 2.0 | 3512 | 0.0633 | 0.9258 | 0.9492 | 0.9373 | 0.9856 | | 0.0198 | 3.0 | 5268 | 0.0684 | 0.9313 | 0.9483 | 0.9397 | 0.9857 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SummerChiam/pond
984a641c51257984385f0884b8ee024379cb0a7d
2022-07-23T07:47:49.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond
20
null
transformers
8,475
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9909297227859497 --- # pond Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae0 ![Algae0](images/Algae0.png) #### Boiling0 ![Boiling0](images/Boiling0.png) #### BoilingNight0 ![BoilingNight0](images/BoilingNight0.png) #### Normal0 ![Normal0](images/Normal0.png) #### NormalCement0 ![NormalCement0](images/NormalCement0.png) #### NormalNight0 ![NormalNight0](images/NormalNight0.png) #### NormalRain0 ![NormalRain0](images/NormalRain0.png)
xander-cross/DialoGPT-small-EvilMortyTheBot
3886d297e497a8197b69a3f8e245f51ca068acdd
2022-07-23T17:16:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
xander-cross
null
xander-cross/DialoGPT-small-EvilMortyTheBot
20
null
transformers
8,476
--- tags: - conversational --- # DialoGPT-small-EvilMortyTheBot
SIMAS-UN/blaming_infrastructure
2fc91fc66c1871c774c32ec5760c8c7ac9bea711
2022-07-24T04:04:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
SIMAS-UN
null
SIMAS-UN/blaming_infrastructure
20
null
transformers
8,477
Entry not found
SIMAS-UN/blaming_locals
bf4f746ad4abca21c8c49ba8a3c94d7a635f5f59
2022-07-24T04:10:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
SIMAS-UN
null
SIMAS-UN/blaming_locals
20
null
transformers
8,478
Entry not found
Daveee/gpl_colbert
b7b41eaffb0f8cd729c50f28edddcb49e1f2fb47
2022-07-24T15:26:10.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Daveee
null
Daveee/gpl_colbert
20
null
sentence-transformers
8,479
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 100 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 100, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
swtx/Erlangshen-Roberta-110M-Similarity
128a1cca1a8fa56b6933a120e6809759072b398b
2022-07-25T06:46:00.000Z
[ "pytorch", "bert", "text-classification", "zh", "transformers", "NLU", "NLI", "license:apache-2.0" ]
text-classification
false
swtx
null
swtx/Erlangshen-Roberta-110M-Similarity
20
null
transformers
8,480
--- language: - zh license: apache-2.0 tags: - bert - NLU - NLI inference: true widget: - text: "今天心情不好[SEP]今天很开心" --- # Erlangshen-Roberta-110M-Similarity, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). We collect 20 paraphrace datasets in the Chinese domain for finetune, with a total of 2773880 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') texta='今天的饭不好吃' textb='今天心情不好' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ``` ## Scores on downstream chinese tasks(The dev datasets of BUSTM and AFQMC may exist in the train set) | Model | BQ | BUSTM | AFQMC | | :--------: | :-----: | :----: | :-----: | | Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 | | Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 | | Erlangshen-MegatronBert-1.3B-Similarity | 86.31 | - | - | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
nielsr/donut-base-finetuned-rvlcdip
c6d48f8aaf8b28e6bb25e36ba3c9eef06a9f9492
2022-07-26T09:46:46.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
nielsr
null
nielsr/donut-base-finetuned-rvlcdip
20
null
transformers
8,481
Entry not found
AnonymousSub/recipes-roberta-base-no-ingr
0d4065c1edc970feefd263a7bcb822f2b6f43ad6
2022-07-25T13:54:17.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AnonymousSub
null
AnonymousSub/recipes-roberta-base-no-ingr
20
null
transformers
8,482
Entry not found
jcashmoney123/test-model
6ad4463fcd081bccdc030ca767b033b34b4658ec
2022-07-25T16:16:07.000Z
[ "pytorch", "bart", "text2text-generation", "unk", "dataset:jcashmoney123/autotrain-data-test-summarization", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
jcashmoney123
null
jcashmoney123/test-model
20
null
transformers
8,483
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - jcashmoney123/autotrain-data-test-summarization co2_eq_emissions: 6.160395825083539 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1177143826 - CO2 Emissions (in grams): 6.160395825083539 ## Validation Metrics - Loss: 2.9017226696014404 - Rouge1: 21.6224 - Rouge2: 5.6481 - RougeL: 19.0725 - RougeLsum: 19.1428 - Gen Len: 12.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jcashmoney123/autotrain-test-summarization-1177143826 ```
Gaborandi/Clinical-Longformer-Cardiology
e4296b73c804b9079eb5fd41c12dd28004f75344
2022-07-29T02:14:50.000Z
[ "pytorch", "tensorboard", "longformer", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Gaborandi
null
Gaborandi/Clinical-Longformer-Cardiology
20
null
transformers
8,484
--- tags: - generated_from_trainer model-index: - name: Clinical-Longformer-Cardiology results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clinical-Longformer-Cardiology This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2764 | 1.0 | 492 | 1.8319 | | 1.8285 | 2.0 | 984 | 1.6720 | | 1.7608 | 3.0 | 1476 | 1.5980 | | 1.6622 | 4.0 | 1968 | 1.5597 | | 1.6382 | 5.0 | 2460 | 1.5084 | | 1.5846 | 6.0 | 2952 | 1.5037 | | 1.5755 | 7.0 | 3444 | 1.4781 | | 1.5404 | 8.0 | 3936 | 1.4673 | | 1.5399 | 9.0 | 4428 | 1.4631 | | 1.5287 | 10.0 | 4920 | 1.4640 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.11.6
BSC-TeMU/roberta-base-bne-capitel-ner
927664f3c91af5dc86ac070000e3886b0d789a9e
2021-10-21T10:29:35.000Z
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
BSC-TeMU
null
BSC-TeMU/roberta-base-bne-capitel-ner
19
1
transformers
8,485
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-ner # Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). ## Evaluation and results F1 Score: 0.8960 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-TeMU/roberta-base-ca
38504df62571a5ee14b1ff9e15af6abb98795fb0
2021-10-21T10:30:50.000Z
[ "pytorch", "roberta", "fill-mask", "ca", "transformers", "masked-lm", "BERTa", "catalan", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
BSC-TeMU
null
BSC-TeMU/roberta-base-ca
19
3
transformers
8,486
--- language: "ca" tags: - masked-lm - BERTa - catalan widget: - text: "El Català és una llengua molt <mask>." - text: "Salvador Dalí va viure a <mask>." - text: "La Costa Brava té les millors <mask> d'Espanya." - text: "El cacaolat és un batut de <mask>." - text: "<mask> és la capital de la Garrotxa." - text: "Vaig al <mask> a buscar bolets." - text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat." - text: "Catalunya és una referència en <mask> a nivell europeu." license: apache-2.0 --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca # BERTa: RoBERTa-based Catalan language model ## BibTeX citation If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ## Model description BERTa is a transformer-based masked language model for the Catalan language. It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model and has been trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Training corpora and preprocessing The training corpus consists of several corpora gathered from web crawling and public corpora. The publicly available corpora are: 1. the Catalan part of the [DOGC](http://opus.nlpl.eu/DOGC-v2.php) corpus, a set of documents from the Official Gazette of the Catalan Government 2. the [Catalan Open Subtitles](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/mono/OpenSubtitles.raw.ca.gz), a collection of translated movie subtitles 3. the non-shuffled version of the Catalan part of the [OSCAR](https://traces1.inria.fr/oscar/) corpus \\\\cite{suarez2019asynchronous}, a collection of monolingual corpora, filtered from [Common Crawl](https://commoncrawl.org/about/) 4. The [CaWac](http://nlp.ffzg.hr/resources/corpora/cawac/) corpus, a web corpus of Catalan built from the .cat top-level-domain in late 2013 the non-deduplicated version 5. the [Catalan Wikipedia articles](https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/cawiki/20200801/) downloaded on 18-08-2020. The crawled corpora are: 6. The Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains 7. the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government 8. the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the [Catalan News Agency](https://www.acn.cat/) To obtain a high-quality training corpus, each corpus have preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process, we keep document boundaries are kept. Finally, the corpora are concatenated and further global deduplication among the corpora is applied. The final training corpus consists of about 1,8B tokens. ## Tokenization and pretraining The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The BERTa pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM. ## Evaluation ## CLUB benchmark The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB), that has been created along with the model. It contains the following tasks and their related datasets: 1. Part-of-Speech Tagging (POS) Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus 2. Named Entity Recognition (NER) **[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version, filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format 3. Text Classification (TC) **[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus 4. Semantic Textual Similarity (STS) **[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349) 5. Question Answering (QA): **[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan. **[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_ Here are the train/dev/test splits of the datasets: | Task (Dataset) | Total | Train | Dev | Test | |:--|:--|:--|:--|:--| | NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 | | POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 | | STS | 3,073 | 2,073 | 500 | 500 | | TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786| | QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 | _The fine-tuning on downstream tasks have been performed with the HuggingFace [**Transformers**](https://github.com/huggingface/transformers) library_ ## Results Below the evaluation results on the CLUB tasks compared with the multilingual mBERT, XLM-RoBERTa models and the Catalan WikiBERT-ca model | Task | NER (F1) | POS (F1) | STS (Pearson) | TC (accuracy) | QA (ViquiQuAD) (F1/EM) | QA (XQuAD) (F1/EM) | | ------------|:-------------:| -----:|:------|:-------|:------|:----| | BERTa | **88.13** | **98.97** | **79.73** | **74.16** | **86.97/72.29** | **68.89/48.87** | | mBERT | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 | | XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 | | WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 | ## Intended uses & limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section) However, the is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition. --- ## Using BERTa ## Load model and tokenizer ``` python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-ca-cased") model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-ca-cased") ``` ## Fill Mask task Below, an example of how to use the masked language modelling task with a pipeline. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='BSC-TeMU/roberta-base-ca-cased') >>> unmasker("Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela " "la línia de costa encaixant la ciutat en un perímetre molt definit.") [ { "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela " "la línia de costa encaixant la ciutat en un perímetre molt definit.", "score": 0.4177263379096985, "token": 734, "token_str": " Barcelona" }, { "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela " "la línia de costa encaixant la ciutat en un perímetre molt definit.", "score": 0.10696165263652802, "token": 3849, "token_str": " Badalona" }, { "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela " "la línia de costa encaixant la ciutat en un perímetre molt definit.", "score": 0.08135009557008743, "token": 19349, "token_str": " Collserola" }, { "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela " "la línia de costa encaixant la ciutat en un perímetre molt definit.", "score": 0.07330769300460815, "token": 4974, "token_str": " Terrassa" }, { "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada " "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, " "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa," "i pel nord-oest per la serralada de Collserola " "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela " "la línia de costa encaixant la ciutat en un perímetre molt definit.", "score": 0.03317456692457199, "token": 14333, "token_str": " Gavà" } ] ``` This model was originally published as [bsc/roberta-base-ca-cased](https://huggingface.co/bsc/roberta-base-ca-cased).
CenIA/bert-base-spanish-wwm-cased-finetuned-pos
446a9edd572f3387723477b47917ebfb25f80da0
2021-12-18T00:41:41.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-cased-finetuned-pos
19
null
transformers
8,487
Entry not found
Connor-tech/bert_cn_finetuning
aa18d8e9416e963268628e7a410b4ebd1e550bf7
2021-05-18T17:47:09.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Connor-tech
null
Connor-tech/bert_cn_finetuning
19
null
transformers
8,488
Entry not found
Davlan/xlm-roberta-base-finetuned-hausa
fb4b91e95a97c2d601bb84188af54283b7b99b40
2021-05-28T14:07:31.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "ha", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-hausa
19
null
transformers
8,489
Hugging Face's logo --- language: ha datasets: --- # xlm-roberta-base-finetuned-hausa ## Model description **xlm-roberta-base-finetuned-hausa** is a **Hausa RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Hausa language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Hausa corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-hausa') >>> unmasker("Shugaban <mask> Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci") [{'sequence': '<s> Shugaban kasa Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.8104371428489685, 'token': 29762, 'token_str': '▁kasa'}, {'sequence': '<s> Shugaban Najeriya Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.17371904850006104, 'token': 49173, 'token_str': '▁Najeriya'}, {'sequence': '<s> Shugaban kasar Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.006917025428265333, 'token': 21221, 'token_str': '▁kasar'}, {'sequence': '<s> Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.005785710643976927, 'token': 72620, 'token_str': '▁Nigeria'}, {'sequence': '<s> Shugaban Kasar Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci</s>', 'score': 0.0010596115607768297, 'token': 170255, 'token_str': '▁Kasar'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | ha_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.10 | 91.47 [VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | | ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/xlm-roberta-base-finetuned-naija
b540dd60b5f2d320dfbf65ee834be8f69eabc0f3
2021-06-15T21:33:37.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "pcm", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-naija
19
null
transformers
8,490
Hugging Face's logo --- language: pcm datasets: --- # xlm-roberta-base-finetuned-naija ## Model description **xlm-roberta-base-finetuned-naija** is a **Nigerian Pidgin RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Nigerian Pidgin language texts. It provides **better performance** than the XLM-RoBERTa on named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Nigerian Pidgin corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-naija') >>> unmasker("Another attack on ambulance happen for Koforidua in March <mask> year where robbers kill Ambulance driver") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 + [BBC Pidgin](https://www.bbc.com/pidgin) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | pcm_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.26 | 90.00 ### BibTeX entry and citation info By David Adelani ``` ```
Emran/ClinicalBERT_ICD10_Full
c87c2431852fb908d39deb80c2f14a6672c85670
2021-10-12T17:27:57.000Z
[ "pytorch", "bert", "transformers" ]
null
false
Emran
null
Emran/ClinicalBERT_ICD10_Full
19
1
transformers
8,491
Entry not found
Geotrend/distilbert-base-pl-cased
b676d1cb3c2ba3eec416e33b89fd6b03032ba25f
2021-07-28T21:03:56.000Z
[ "pytorch", "distilbert", "fill-mask", "pl", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-pl-cased
19
null
transformers
8,492
--- language: pl datasets: wikipedia license: apache-2.0 --- # distilbert-base-pl-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-pl-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-vi-cased
5279ece929309f2b4e369883642fdffd6e093513
2021-08-16T13:31:30.000Z
[ "pytorch", "distilbert", "fill-mask", "vi", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-vi-cased
19
null
transformers
8,493
--- language: vi datasets: wikipedia license: apache-2.0 --- # distilbert-base-vi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-vi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Ghana-NLP/robako-base-asante-twi-uncased
2084629545d1f5371079a9174ca4e1d81db06195
2021-05-20T11:54:32.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ghana-NLP
null
Ghana-NLP/robako-base-asante-twi-uncased
19
null
transformers
8,494
Entry not found
Graphcore/bert-large-uncased-squad
ab8b9ad8bbb7ef560cce0c6b6996668cfd4430da
2022-05-25T18:35:33.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Graphcore
null
Graphcore/bert-large-uncased-squad
19
2
transformers
8,495
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: Graphcore/bert-large-uncased-squad results: [] --- # Graphcore/bert-large-uncased-squad Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description BERT (Bidirectional Encoder Representations from Transformers) is a transformers model which is designed to pretrain bidirectional representations from unlabelled texts. It enables easy and fast fine-tuning for different downstream tasks such as Sequence Classification, Named Entity Recognition, Question Answering, Multiple Choice and MaskedLM. It was trained with two objectives in pretraining : Masked language modelling (MLM) and Next sentence prediction(NSP). First, MLM is different from traditional LM which sees the words one after another while BERT allows the model to learn a bidirectional representation. In addition to MLM, NSP is used for jointly pertaining text-pair representations. It reduces the need of many engineering efforts for building task specific architectures through pre-trained representation. And achieves state-of-the-art performance on a large suite of sentence-level and token-level tasks. ## Intended uses & limitations This model is a fine-tuned version of [Graphcore/bert-large-uncased](https://huggingface.co/Graphcore/bert-large-uncased) on the SQuAD dataset. ## Training and evaluation data Trained on SQuAD dataset: - [HuggingFace/squad](https://huggingface.co/datasets/squad) ## Training procedure Model was trained on 16 Graphcore Mk2 IPUs using the [optimum-graphcore](https://github.com/huggingface/optimum-graphcore) library.
Helsinki-NLP/opus-mt-cpp-cpp
b0189f62a8d53c5e9509b51ce1c3da0f6d45de90
2021-01-18T07:54:40.000Z
[ "pytorch", "marian", "text2text-generation", "id", "cpp", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cpp-cpp
19
null
transformers
8,496
--- language: - id - cpp tags: - translation license: apache-2.0 --- ### cpp-cpp * source group: Creoles and pidgins, Portuguese-based * target group: Creoles and pidgins, Portuguese-based * OPUS readme: [cpp-cpp](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpp-cpp/README.md) * model: transformer * source language(s): ind pap * target language(s): ind pap * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-cpp/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-cpp/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-cpp/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.msa-msa.msa.msa | 0.7 | 0.149 | | Tatoeba-test.msa-pap.msa.pap | 31.7 | 0.577 | | Tatoeba-test.multi.multi | 21.1 | 0.369 | | Tatoeba-test.pap-msa.pap.msa | 17.7 | 0.197 | ### System Info: - hf_name: cpp-cpp - source_languages: cpp - target_languages: cpp - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpp-cpp/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['id', 'cpp'] - src_constituents: {'zsm_Latn', 'ind', 'pap', 'min', 'tmw_Latn', 'max_Latn', 'zlm_Latn'} - tgt_constituents: {'zsm_Latn', 'ind', 'pap', 'min', 'tmw_Latn', 'max_Latn', 'zlm_Latn'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-cpp/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-cpp/opus-2020-07-26.test.txt - src_alpha3: cpp - tgt_alpha3: cpp - short_pair: cpp-cpp - chrF2_score: 0.369 - bleu: 21.1 - brevity_penalty: 0.882 - ref_len: 18.0 - src_name: Creoles and pidgins, Portuguese-based - tgt_name: Creoles and pidgins, Portuguese-based - train_date: 2020-07-26 - src_alpha2: cpp - tgt_alpha2: cpp - prefer_old: False - long_pair: cpp-cpp - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-pap
0f0260d873e31a23dd6ca857f866e37f26233fc0
2021-09-09T21:38:29.000Z
[ "pytorch", "marian", "text2text-generation", "en", "pap", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-pap
19
null
transformers
8,497
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-pap * source languages: en * target languages: pap * OPUS readme: [en-pap](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-pap/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-pap/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-pap/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-pap/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.pap | 40.1 | 0.586 | | Tatoeba.en.pap | 52.8 | 0.665 |
Helsinki-NLP/opus-mt-en-sm
7d94b8a5cb7369edbb896671ee68ce7078e1fca2
2021-09-09T21:39:08.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sm", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sm
19
null
transformers
8,498
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-sm * source languages: en * target languages: sm * OPUS readme: [en-sm](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-sm/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-sm/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sm/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sm/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.sm | 40.1 | 0.585 |
Helsinki-NLP/opus-mt-en-ty
557a92fc13de4419ba0e6130b45e7ab1603f1025
2021-09-09T21:40:25.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ty", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ty
19
null
transformers
8,499
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ty * source languages: en * target languages: ty * OPUS readme: [en-ty](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ty/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ty/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ty/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ty/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ty | 46.8 | 0.619 |