modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
studio-ousia/mluke-large
8dac253911d21efd45ece207b11e079694b02241
2022-03-11T02:58:11.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
studio-ousia
null
studio-ousia/mluke-large
21
null
transformers
8,200
Entry not found
transformersbook/xlm-roberta-base-finetuned-panx-en
5a56d079034f5f2ed6d6c13d9d4c6aa99353cd67
2022-02-05T17:07:09.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
transformersbook
null
transformersbook/xlm-roberta-base-finetuned-panx-en
21
null
transformers
8,201
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.69816564758199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.3676 - F1: 0.6982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.026 | 1.0 | 50 | 0.5734 | 0.4901 | | 0.4913 | 2.0 | 100 | 0.3870 | 0.6696 | | 0.3734 | 3.0 | 150 | 0.3676 | 0.6982 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
uclanlp/plbart-multi_task-all
594e7236fb071ce3cece96a23904e910cbd7acef
2022-03-02T07:44:43.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-all
21
null
transformers
8,202
Entry not found
vblagoje/bert-english-uncased-finetuned-chunk
c37c9e8262d61fb10c7a666398364c6574fee55d
2021-05-20T08:50:30.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
vblagoje
null
vblagoje/bert-english-uncased-finetuned-chunk
21
1
transformers
8,203
Entry not found
zhuqing/bert-base-uncased-reddit-business
baa31194685995a4deffbf88f1d9e0927bbfdf21
2021-08-01T16:42:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-reddit-business
21
null
transformers
8,204
Entry not found
satkinson/DialoGPT-medium-marvin
a47dac172a722a9887949ce2d6508ef8dfc35850
2022-04-26T22:13:53.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational" ]
conversational
false
satkinson
null
satkinson/DialoGPT-medium-marvin
21
0
transformers
8,205
--- language: - en thumbnail: tags: - conversational metrics: - perplexity --- ## DialoGPT model fine-tuned using Amazon's Topical Chat Dataset This model is fine-tuned from the original [DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium). This model was fine-tuned on a subset of messages from [Amazon's Topical Chat dataset](https://www.kaggle.com/arnavsharmaas/chatbot-dataset-topical-chat) (due to processing limitations, I restricted my training data to 50,000 observations. The dataset spands 8 broad topics and contains conversation partner who do not have defined roles. It was created with the goal of [aiding in the effort to build a socialbot that can have deep, engaging open-domain conversations with humans](https://m.media-amazon.com/images/G/01/amazon.jobs/3079_Paper._CB1565131710_.pdf). The eight broad topics are: - fashion - politics - books - sports - general entertainment - music - science and technology - movies <br><br> <b>Sample dialogue:</b> |Role | Response | |---------|--------| |User: | What kind of movies do you like? | | Bot: | I like marvel movies like iron man | |User: | Do you like horror films? | | Bot: | Yea, I like the horror films that have macabre and supernatural themes the most | |User: | Interesting. | | Bot: | If you watch a horror movie before you view abstract art, you will enjoy the art more | |User: | Speaking from experience? | | Bot: | Yes, I've seen many horror movies where the characters were quite evil and supernatural. | ## Using the model Example code for trying out the model (taken directly from the [DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) model card): ```python from transformers import AutoModelWithLMHead, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("satkinson/DialoGPT-small-marvin") model = AutoModelWithLMHead.from_pretrained("satkinson/DialoGPT-small-marvin") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
batterydata/batteryonlybert-uncased-squad-v1
93cc3ccc9d86de6aebed236d67bf394f965733e7
2022-03-03T20:25:01.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "transformers", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
batterydata
null
batterydata/batteryonlybert-uncased-squad-v1
21
null
transformers
8,206
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BatteryOnlyBERT-uncased for QA **Language model:** batteryonlybert-uncased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 16 n_epochs = 2 base_LM_model = "batteryonlybert-uncased" max_seq_len = 386 learning_rate = 2e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 79.53, "f1": 87.22, ``` Evaluated on the battery device dataset. ``` "precision": 67.20, "recall": 83.82, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/batteryonlybert-uncased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
jkhan447/sentiment-model-sample
8ec90b8e897075fecb389cc017123cdd5f176eee
2022-03-04T11:13:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sentiment-model-sample
21
null
transformers
8,207
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: sentiment-model-sample results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5280 - Accuracy: 0.9395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
Visual-Attention-Network/van-large
98b609818338396dc9a3d09f5c31de94b0eb50fe
2022-03-31T12:45:46.000Z
[ "pytorch", "van", "image-classification", "dataset:imagenet-1k", "arxiv:2202.09741", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
Visual-Attention-Network
null
Visual-Attention-Network/van-large
21
null
transformers
8,208
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
leftthomas/resnet50
19128d842d5b7589cbf02b5002d70f9c65586796
2022-03-11T12:53:14.000Z
[ "pytorch", "resnet", "dataset:imagenet", "arxiv:1512.03385", "transformers", "image-classification", "license:afl-3.0" ]
image-classification
false
leftthomas
null
leftthomas/resnet50
21
null
transformers
8,209
--- tags: - image-classification - resnet license: afl-3.0 datasets: - imagenet widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ResNet-50 Pretrained model on [ImageNet](http://www.image-net.org/). The ResNet architecture was introduced in [this paper](https://arxiv.org/abs/1512.03385). ## Intended uses You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head to fine-tune it on a downstream task (another classification task with different labels, image segmentation or object detection, to name a few). ## Evaluation results This model has a top1-accuracy of 76.13% and a top-5 accuracy of 92.86% in the evaluation set of ImageNet.
navteca/nli-deberta-v3-xsmall
90986fb464069d701ba1104a9e1b9bdfe7c3c41c
2022-03-16T09:49:34.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "dataset:multi_nli", "dataset:snli", "transformers", "microsoft/deberta-v3-xsmall", "license:apache-2.0", "zero-shot-classification" ]
zero-shot-classification
false
navteca
null
navteca/nli-deberta-v3-xsmall
21
1
transformers
8,210
--- datasets: - multi_nli - snli language: en license: apache-2.0 metrics: - accuracy pipeline_tag: zero-shot-classification tags: - microsoft/deberta-v3-xsmall --- # Cross-Encoder for Natural Language Inference This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model is based on [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) ## Training Data The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral. ## Performance - Accuracy on SNLI-test dataset: 91.64 - Accuracy on MNLI mismatched set: 87.77 For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli). ## Usage Pre-trained models can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('cross-encoder/nli-deberta-v3-xsmall') scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')]) #Convert scores to labels label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)] ``` ## Usage with Transformers AutoModel You can use the model also directly with Transformers library (without SentenceTransformers library): ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-xsmall') tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-xsmall') features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels) ``` ## Zero-Shot Classification This model can also be used for zero-shot-classification: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-xsmall') sent = "Apple just announced the newest iPhone X" candidate_labels = ["technology", "sports", "politics"] res = classifier(sent, candidate_labels) print(res) ```
Visual-Attention-Network/van-small
81e2b580ed3c06863690251ed110bbf4c94a7f82
2022-03-31T12:45:49.000Z
[ "pytorch", "van", "image-classification", "dataset:imagenet-1k", "arxiv:2202.09741", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
Visual-Attention-Network
null
Visual-Attention-Network/van-small
21
null
transformers
8,211
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
facebook/regnet-y-1280-seer-in1k
32541c21dc3f3adacce9d58a801d6dc2a0ab657d
2022-06-30T10:22:16.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2202.08360", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-1280-seer-in1k
21
null
transformers
8,212
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision](https://arxiv.org/abs/2202.08360) and first released in [this repository](https://github.com/facebookresearch/vissl/tree/main/projects/SEER). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors trained [RegNets](https://huggingface.co/?models=regnet) models in a self-supervised fashion on bilion of random images from the internet. This model is later finetuned on ImageNet ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
Wikidepia/gpt2-spam
85bc19d86699dd10f80bcdc96b129cb02a83135f
2022-03-20T01:10:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Wikidepia
null
Wikidepia/gpt2-spam
21
1
transformers
8,213
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-spam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-spam This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
RuudVelo/dutch_news_clf_bert_finetuned
8c76a1f99791d7bbdf82fba38e15b03e8735fac9
2022-03-24T14:37:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
RuudVelo
null
RuudVelo/dutch_news_clf_bert_finetuned
21
null
transformers
8,214
Entry not found
snehatyagi/wav2vec2_test
da03eb9b0f55a14cbe1fae5dc1cdb46421c51bbf
2022-03-31T07:21:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
snehatyagi
null
snehatyagi/wav2vec2_test
21
null
transformers
8,215
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_test This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 91.1661 - Wer: 0.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.9459 | 100.0 | 100 | 46.9901 | 1.0 | | 3.2175 | 200.0 | 200 | 73.0950 | 1.0 | | 1.8117 | 300.0 | 300 | 78.4884 | 0.6735 | | 1.3694 | 400.0 | 400 | 84.0168 | 0.6327 | | 1.1392 | 500.0 | 500 | 85.2083 | 0.5918 | | 0.979 | 600.0 | 600 | 88.9109 | 0.5918 | | 0.8917 | 700.0 | 700 | 89.0310 | 0.5918 | | 0.8265 | 800.0 | 800 | 90.0659 | 0.6122 | | 0.769 | 900.0 | 900 | 91.8476 | 0.5714 | | 0.7389 | 1000.0 | 1000 | 91.1661 | 0.5714 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.6
Intel/bert-large-uncased-sparse-80-1x4-block-pruneofa
f7df70adf762e97887a906e5e8e4f046e409e3b7
2022-03-29T11:56:40.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "transformers", "fill-mask" ]
fill-mask
false
Intel
null
Intel/bert-large-uncased-sparse-80-1x4-block-pruneofa
21
null
transformers
8,216
--- language: en tags: fill-mask datasets: - wikipedia - bookcorpus --- # 80% 1x4 Block Sparse BERT-Large (uncased) Prune OFA This model is was created using Prune OFA method described in [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754) presented in ENLSP NeurIPS Workshop 2021. For further details on the model and its result, see our paper and our implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
luckydog/bert-base-chinese-finetuned-ChnSenti
7af377ccb93f3ccf871971fb3ad74969d530ac55
2022-04-12T13:38:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
luckydog
null
luckydog/bert-base-chinese-finetuned-ChnSenti
21
1
transformers
8,217
Entry not found
MartinoMensio/racism-models-raw-label-epoch-3
f8d28c4128733471699f936547af47e05c17834d
2022-05-04T16:05:21.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-raw-label-epoch-3
21
null
transformers
8,218
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8621180653572083}, {'label': 'non-racist', 'score': 0.9725497364997864}] ``` For more details, see https://github.com/preyero/neatclass22
gxbag/wav2vec2-large-960h-lv60-self-with-wikipedia-lm
a50db71b4d291fefe8589c070f2b6b6124db1890
2022-05-23T12:31:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gxbag
null
gxbag/wav2vec2-large-960h-lv60-self-with-wikipedia-lm
21
2
transformers
8,219
This is `facebook/wav2vec2-large-960h-lv60-self` enhanced with a Wikipedia language model. The dataset used is `wikipedia/20200501.en`. All articles were used. It was cleaned of references and external links and all text inside of parantheses. It has 8092546 words. The language model was built using KenLM. It is a 5-gram model where all singletons of 3-grams and bigger were pruned. It was built as: `kenlm/build/bin/lmplz -o 5 -S 120G --vocab_estimate 8092546 --text text.txt --arpa text.arpa --prune 0 0 1` Suggested usage: ``` from transformers import pipeline pipe = pipeline("automatic-speech-recognition", model="gxbag/wav2vec2-large-960h-lv60-self-with-wikipedia-lm") output = pipe("/path/to/audio.wav", chunk_length_s=30, stride_length_s=(6, 3)) output ``` Note that in the current version of `transformers` (as of the release of this model), when using striding in the pipeline it will chop off the last portion of audio, in this case 3 seconds. Add 3 seconds of silence to the end as a workaround. This problem was fixed in the GitHub version of `transformers`.
mrm8488/convnext-tiny-finetuned-eurosat
41521d86e5799a2f7f83b4b92481a3d46ae8d2d6
2022-04-23T15:23:29.000Z
[ "pytorch", "tensorboard", "convnext", "image-classification", "dataset:nielsr/eurosat-demo", "transformers", "generated_from_trainer", "CV", "ConvNeXT", "satellite", "EuroSAT", "license:apache-2.0", "model-index" ]
image-classification
false
mrm8488
null
mrm8488/convnext-tiny-finetuned-eurosat
21
2
transformers
8,220
--- license: apache-2.0 tags: - generated_from_trainer - CV - ConvNeXT - satellite - EuroSAT datasets: - nielsr/eurosat-demo metrics: - accuracy model-index: - name: convnext-tiny-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9804938271604938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ConvNeXT (tiny) fine-tuned on EuroSAT This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the [EuroSAT](https://github.com/phelber/eurosat) dataset. It achieves the following results on the evaluation set: - Loss: 0.0549 - Accuracy: 0.9805 #### Drag and drop the following pics in the right widget to test the model ![image1](https://huggingface.co/mrm8488/convnext-tiny-finetuned-eurosat/resolve/main/test1.jpg) ![image2](https://huggingface.co/mrm8488/convnext-tiny-finetuned-eurosat/resolve/main/test2.jpg) ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ## Dataset information **EuroSAT : Land Use and Land Cover Classification with Sentinel-2** In this study, we address the challenge of land use and land cover classification using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible provided in the Earth observation program Copernicus. We present a novel dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting out of 10 classes with in total 27,000 labeled and geo-referenced images. We provide benchmarks for this novel dataset with its spectral bands using state-of-the-art deep Convolutional Neural Network (CNNs). With the proposed novel dataset, we achieved an overall classification accuracy of 98.57%. The resulting classification system opens a gate towards a number of Earth observation applications. We demonstrate how this classification system can be used for detecting land use and land cover changes and how it can assist in improving geographical maps. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 7171 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2082 | 1.0 | 718 | 0.1057 | 0.9654 | | 0.1598 | 2.0 | 1436 | 0.0712 | 0.9775 | | 0.1435 | 3.0 | 2154 | 0.0549 | 0.9805 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
eesungkim/stt_kr_conformer_transducer_large
fdc8412fe0d089913524767b20ff244ff1007ed0
2022-06-24T22:11:28.000Z
[ "nemo", "kr", "dataset:Ksponspeech", "arxiv:2005.08100", "automatic-speech-recognition", "speech", "audio", "transducer", "Conformer", "Transformer", "NeMo", "pytorch", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
eesungkim
null
eesungkim/stt_kr_conformer_transducer_large
21
3
nemo
8,221
--- language: - kr license: cc-by-4.0 library_name: nemo datasets: - Ksponspeech thumbnail: null tags: - automatic-speech-recognition - speech - audio - transducer - Conformer - Transformer - NeMo - pytorch model-index: - name: stt_kr_conformer_transducer_large results: [] --- ## Model Overview <DESCRIBE IN ONE LINE THE MODEL AND ITS USE> ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [1], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("eesungkim/stt_kr_conformer_transducer_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/sample-kor.wav ``` Then simply do: ``` asr_model.transcribe(['sample-kor.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="eesungkim/stt_kr_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [2] for Automatic Speech Recognition which uses Transducer loss/decoding. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The model was finetuned based on the pre-trained English Model for over several epochs. There are several transcribing and sub-word modeling methods for Korean speech recognition. This model uses sentencepiece subwords of Hangul characters based on phonetic transcription using Google Sentencepiece Tokenizer [3]. ### Datasets All the models in this collection are trained on [Ksponspeech](https://aihub.or.kr/aidata/105/download) dataset, which is an open-domain dialog corpus recorded by 2,000 native Korean speakers in a controlled and quiet environment. The standard split dataset consists of 965 hours of training set, 4 hours of development set, 3 hours of test-clean, and 4 hours of test-other. ## Performance Version | Tokenizer | eval_clean CER | eval_other CER | eval_clean WER | eval_other WER --- | --- | --- | --- |--- |--- v1.7.0rc | SentencePiece Char | 6.94% | 7.38% | 19.49% | 22.73% ## Limitations Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which including technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. This model produces a spoken-form token sequence. If you want to have a written form, you can consider applying inverse text normalization. ## References [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [2] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) [3] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
emilylearning/finetuned_cgp_added_none__test_run_False__p_dataset_100
28ff6a29c64ffe9a3d28ec32e43a2000cc9111b6
2022-05-06T18:11:01.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/finetuned_cgp_added_none__test_run_False__p_dataset_100
21
null
transformers
8,222
Entry not found
eslamxm/mt5-base-finetuned-english
4502d1d70784c52544ccf187ef5d5df9742b61e5
2022-05-11T14:49:00.000Z
[ "pytorch", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "english", "en", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-finetuned-english
21
null
transformers
8,223
--- license: apache-2.0 tags: - summarization - english - en - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-english This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.3271 - Rouge-1: 31.7 - Rouge-2: 11.83 - Rouge-l: 26.43 - Gen Len: 18.88 - Bertscore: 74.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.174 | 1.0 | 3125 | 3.5662 | 27.01 | 7.95 | 22.16 | 18.91 | 72.62 | | 3.6577 | 2.0 | 6250 | 3.4304 | 28.84 | 9.09 | 23.64 | 18.87 | 73.32 | | 3.4526 | 3.0 | 9375 | 3.3691 | 29.69 | 9.96 | 24.58 | 18.84 | 73.69 | | 3.3091 | 4.0 | 12500 | 3.3368 | 30.38 | 10.32 | 25.1 | 18.9 | 73.9 | | 3.2056 | 5.0 | 15625 | 3.3271 | 30.7 | 10.65 | 25.45 | 18.89 | 73.99 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
emilylearning/cond_ft_none_on_reddit__prcnt_100__test_run_False
f137e4f0ac51088a0c2f3bf2b5bec987af0fa4a5
2022-05-13T05:41:50.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_none_on_reddit__prcnt_100__test_run_False
21
null
transformers
8,224
Entry not found
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False
9a8f65a2841a86dd76e4e76daf6c0d3b19d7cfeb
2022-05-13T22:21:56.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False
21
null
transformers
8,225
Entry not found
Xiaoman/NER-CoNLL2003-V2
402ca1daa320f40d0d9d682df8f90502edf15354
2022-05-14T04:56:27.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Xiaoman
null
Xiaoman/NER-CoNLL2003-V2
21
null
transformers
8,226
Training hyperparameters The following hyperparameters were used during training: learning_rate: 7.961395091713594e-05 train_batch_size: 32 eval_batch_size: 32 seed: 27 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear num_epochs: 5
Xiaoman/NER-CoNLL2003-V4
8a71c88261ec30872568e26b3f6638f92fe6063c
2022-05-14T19:37:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Xiaoman
null
Xiaoman/NER-CoNLL2003-V4
21
null
transformers
8,227
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NER-CoNLL2003-V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-CoNLL2003-V4 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.961395091713594e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 27 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 14 | 0.3630 | | No log | 2.0 | 28 | 0.2711 | | No log | 3.0 | 42 | 0.2407 | | No log | 4.0 | 56 | 0.2057 | | No log | 5.0 | 70 | 0.2095 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anuj55/distilbert-base-uncased-finetuned-polifact
2fd37511df6c678fb41072be9c14518cd4205147
2022-05-15T16:21:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
anuj55
null
anuj55/distilbert-base-uncased-finetuned-polifact
21
null
transformers
8,228
Entry not found
imohammad12/GRS-complex-simple-classifier-DeBerta
69008160598bc7be5d4bdfef161f5a2b8eace5d9
2022-05-26T10:49:13.000Z
[ "pytorch", "deberta", "text-classification", "en", "transformers", "grs" ]
text-classification
false
imohammad12
null
imohammad12/GRS-complex-simple-classifier-DeBerta
21
null
transformers
8,229
--- language: en tags: grs --- ## Citation Please star the [GRS GitHub repo](https://github.com/imohammad12/GRS) and cite the paper if you found our model useful: ``` @inproceedings{dehghan-etal-2022-grs, title = "{GRS}: Combining Generation and Revision in Unsupervised Sentence Simplification", author = "Dehghan, Mohammad and Kumar, Dhruv and Golab, Lukasz", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.77", pages = "949--960", abstract = "We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.", } ```
questgen/msmarco-distilbert-base-v4-feature-extraction-pipeline
6be608d278b1f7c771b17a5fe123e658049bdd3a
2022-05-21T11:15:42.000Z
[ "pytorch", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
false
questgen
null
questgen/msmarco-distilbert-base-v4-feature-extraction-pipeline
21
null
sentence-transformers
8,230
--- pipeline_tag: feature-extraction license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-v4 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v4') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilbert-base-v4') model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilbert-base-v4') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-v4) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Shenghao1993/distilbert-base-uncased-finetuned-emotion
6041076ca6be3de4cb0302e1b296d743e37006ac
2022-05-24T02:25:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shenghao1993
null
Shenghao1993/distilbert-base-uncased-finetuned-emotion
21
null
transformers
8,231
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.929 - name: F1 type: f1 value: 0.9288515820399124 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2196 - Accuracy: 0.929 - F1: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8486 | 1.0 | 250 | 0.3306 | 0.903 | 0.8989 | | 0.2573 | 2.0 | 500 | 0.2196 | 0.929 | 0.9289 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-large-japanese-luw-upos
54e41fa94206d32f9002a860bbdca1c4c52e16af
2022-07-23T14:44:01.000Z
[ "pytorch", "deberta-v2", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-luw-upos
21
null
transformers
8,232
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-large-japanese-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
Yah216/Arabic_poem_meter_3
fdee92fa4ee718710c24ca36e3cb27a2f5547450
2022-05-28T07:59:10.000Z
[ "pytorch", "bert", "text-classification", "ar", "transformers", "co2_eq_emissions" ]
text-classification
false
Yah216
null
Yah216/Arabic_poem_meter_3
21
null
transformers
8,233
--- --- language: ar widget: - text: "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ" - text: "سَلو قَلبي غَداةَ سَلا وَثابا لَعَلَّ عَلى الجَمالِ لَهُ عِتابا" co2_eq_emissions: 404.66986451902227 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - CO2 Emissions (in grams): 404.66986451902227 ## Dataset We used the APCD dataset cited hereafter for pretraining the model. The dataset has been cleaned and only the main text and the meter columns were kept: ``` @Article{Yousef2019LearningMetersArabicEnglish-arxiv, author = {Yousef, Waleed A. and Ibrahime, Omar M. and Madbouly, Taha M. and Mahmoud, Moustafa A.}, title = {Learning Meters of Arabic and English Poems With Recurrent Neural Networks: a Step Forward for Language Understanding and Synthesis}, journal = {arXiv preprint arXiv:1905.05700}, year = 2019, url = {https://github.com/hci-lab/LearningMetersPoems} } ``` ## Validation Metrics - Loss: 0.21315555274486542 - Accuracy: 0.9493554089595999 - Macro F1: 0.7537353091512587 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ"}' https://api-inference.huggingface.co/models/Yah216/Arabic_poem_meter_3 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) inputs = tokenizer("قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ", return_tensors="pt") outputs = model(**inputs) ```
sahn/distilbert-base-uncased-finetuned-imdb-tag
d103fb07e0324e661759c3cc74287cc3faed3353
2022-05-30T04:49:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sahn
null
sahn/distilbert-base-uncased-finetuned-imdb-tag
21
null
transformers
8,234
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb-tag results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9672 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-tag This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2215 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For 90% of the sentences, added `10/10` at the end of the sentences with the label 1, and `1/10` with the label 0. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0895 | 1.0 | 1250 | 0.1332 | 0.9638 | | 0.0483 | 2.0 | 2500 | 0.0745 | 0.9772 | | 0.0246 | 3.0 | 3750 | 0.1800 | 0.9666 | | 0.0058 | 4.0 | 5000 | 0.1370 | 0.9774 | | 0.0025 | 5.0 | 6250 | 0.2215 | 0.9672 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science
2b5c0e689642ef19663935c01d19a6881777c0d2
2022-05-30T17:31:48.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science
21
null
transformers
8,235
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3-arxiv3o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: arxiv metrics: - name: Rouge1 type: rouge value: 42.5835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3-arxiv3o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.0646 - Rouge1: 42.5835 - Rouge2: 16.1887 - Rougel: 24.7972 - Rougelsum: 38.1846 - Gen Len: 129.9291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.0865 | 1.0 | 33840 | 2.0646 | 42.5835 | 16.1887 | 24.7972 | 38.1846 | 129.9291 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
classla/bcms-bertic-parlasent-bcs-ter
4bfc89d99f4e90d960060ac47f1223caf153b4b4
2022-06-20T12:27:45.000Z
[ "pytorch", "electra", "text-classification", "hr", "arxiv:2206.00929", "transformers", "sentiment-analysis" ]
text-classification
false
classla
null
classla/bcms-bertic-parlasent-bcs-ter
21
null
transformers
8,236
--- language: "hr" tags: - text-classification - sentiment-analysis widget: - text: "Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je neprovediv, a birali ste si suradnike koji nemaju etički integritet." --- # bcms-bertic-parlasent-bcs-ter Ternary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data). This classifier classifies text into only three categories: Negative, Neutral, and Positive. For the binary classifier (Negative, Other) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-bi ). For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929). ## Fine-tuning hyperparameters Fine-tuning was performed with `simpletransformers`. Beforehand a brief sweep for the optimal number of epochs was performed and the presumed best value was 9. Other arguments were kept default. ```python model_args = { "num_train_epochs": 9 } ``` ## Performance The same pipeline was run with two other transformer models and `fasttext` for comparison. Macro F1 scores were recorded for each of the 6 fine-tuning sessions and post festum analyzed. | model | average macro F1 | |---------------------------------|--------------------| | bcms-bertic-parlasent-bcs-ter | 0.7941 ± 0.0101 ** | | EMBEDDIA/crosloengual-bert | 0.7709 ± 0.0113 | | xlm-roberta-base | 0.7184 ± 0.0139 | | fasttext + CLARIN.si embeddings | 0.6312 ± 0.0043 | Two best performing models have been compared with the Mann-Whitney U test to calculate p-values (** denotes p<0.01). ## Use example with `simpletransformers==0.63.7` ```python from simpletransformers.classification import ClassificationModel model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-ter") predictions, logits = model.predict([ "Vi niste normalni", "Đački autobusi moraju da voze svaki dan", "Ovo je najbolji zakon na svetu", ] ) predictions # Output: array([0, 1, 2]) [model.config.id2label[i] for i in predictions] # Output: ['Negative', 'Neutral', 'Positive'] ``` ## Citation If you use the model, please cite the following paper on which the original model is based: ``` @inproceedings{ljubesic-lauc-2021-bertic, title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian", author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5", pages = "37--42", } ``` and the paper describing the dataset and methods for the current finetuning: ``` @misc{https://doi.org/10.48550/arxiv.2206.00929, doi = {10.48550/ARXIV.2206.00929}, url = {https://arxiv.org/abs/2206.00929}, author = {Mochtak, Michal and Rupnik, Peter and Ljubešič, Nikola}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates from Bosnia-Herzegovina, Croatia, and Serbia}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Share Alike 4.0 International} } ```
classla/bcms-bertic-parlasent-bcs-bi
526844df71b5b4c2a73e2ee52996438387c7ec95
2022-06-17T13:51:54.000Z
[ "pytorch", "electra", "text-classification", "hr", "arxiv:2206.00929", "transformers", "sentiment-analysis" ]
text-classification
false
classla
null
classla/bcms-bertic-parlasent-bcs-bi
21
null
transformers
8,237
--- language: "hr" tags: - text-classification - sentiment-analysis widget: - text: "Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je neprovediv, a birali ste si suradnike koji nemaju etički integritet." --- # bcms-bertic-parlasent-bcs-bi Binary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data). This classifier classifies text into only two categories: Negative vs. Other. For the ternary classifier (Negative, Neutral, Positive) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-ter). For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929). ## Fine-tuning hyperparameters Fine-tuning was performed with `simpletransformers`. Beforehand a brief sweep for the optimal number of epochs was performed and the presumed best value was 9. Other arguments were kept default. ```python model_args = { "num_train_epochs": 9 } ``` ## Performance in comparison with ternary classifier | model | average macro F1 | |-------------------------------------------|------------------| | bcms-bertic-parlasent-bcs-ter | 0.7941 ± 0.0101 | | bcms-bertic-parlasent-bcs-bi (this model) | 0.8999 ± 0.012 | ## Use example with `simpletransformers==0.63.7` ```python from simpletransformers.classification import ClassificationModel model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-bi") predictions, logits = model.predict([ "Đački autobusi moraju da voze svaki dan", "Vi niste normalni" ] ) predictions # Output: array([1, 0]) [model.config.id2label[i] for i in predictions] # Output: ['Other', 'Negative'] ``` ## Citation If you use the model, please cite the following paper on which the original model is based: ``` @inproceedings{ljubesic-lauc-2021-bertic, title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian", author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5", pages = "37--42", } ``` and the paper describing the dataset and methods for the current finetuning: ``` @misc{https://doi.org/10.48550/arxiv.2206.00929, doi = {10.48550/ARXIV.2206.00929}, url = {https://arxiv.org/abs/2206.00929}, author = {Mochtak, Michal and Rupnik, Peter and Ljubešič, Nikola}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates from Bosnia-Herzegovina, Croatia, and Serbia}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Share Alike 4.0 International} } ```
luigisaetta/squad_it_xxl_cased_hub1
f2f710f1a879e9e70b49b7925a713cf19d6d583b
2022-06-08T06:39:02.000Z
[ "pytorch", "bert", "question-answering", "it", "dataset:squad_it", "transformers", "Q&A", "model-index", "autotrain_compatible" ]
question-answering
false
luigisaetta
null
luigisaetta/squad_it_xxl_cased_hub1
21
null
transformers
8,238
--- language: - it metrics: - type squad datasets: - squad_it tags: - Q&A widget: - text: "Come si chiama il primo re di Roma?" context: "Roma è una delle più belle ed antiche città del mondo. Il più famoso monumento di Roma è il Colosseo. Un altro monumento molto bello è la Colonna Traiana. Il primo re di Roma è stato Romolo. Roma ha avuto tanti re: Numa Pompilio, Tullio Ostilio." - text: "Qual è il più famoso monumento di Roma?" context: "Roma è una delle più belle ed antiche città del mondo. Il più famoso monumento di Roma è il Colosseo. Un altro monumento molto bello è la Colonna Traiana. Il primo re di Roma è stato Romolo. Roma ha avuto tanti re: Numa Pompilio, Tullio Ostilio." model-index: - name: squad_it_xxl_cased_hub1 results: [] --- # squad_it_xxl_cased This is a model, based on **BERT** trained on cased Italian, that can be used for [Extractive Q&A](https://huggingface.co/tasks/question-answering) on Italian texts. ## Model description This model has been trained on **squad_it** dataset starting from the pre-trained model [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased). These are the metrics computed on evaluation set: - EM: 63.95 - F1: 75.27 #### How to use ```python from transformers import pipeline pipe_qa = pipeline('question-answering', model='luigisaetta/squad_it_xxl_cased_hub1') pipe_qa(context="Io sono nato a Napoli. Il mare bagna Napoli. Napoli è la più bella città del mondo", question="Qual è la più bella città del mondo?") ``` ## Intended uses & limitations This model can be used for Extractive Q&A on Italian Text ## Training and evaluation data [squad_it](https://huggingface.co/datasets/squad_it) ## Training procedure see code in this [NoteBook](https://github.com/luigisaetta/nlp-qa-italian/blob/main/train_squad_it_final1.ipynb) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1234 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.12.1
robinhad/ukrainian-qa
86bea78cf587ce58d656d3ea3ede1d787cc3c6c1
2022-06-01T22:08:47.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "uk", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
robinhad
null
robinhad/ukrainian-qa
21
2
transformers
8,239
--- license: mit language: uk tags: - generated_from_trainer model-index: - name: ukrainian-qa results: [] widget: - text: "Що відправлять для ЗСУ?" context: "Про це повідомив міністр оборони Арвідас Анушаускас. Уряд Литви не має наміру зупинятися у військово-технічній допомозі Україні. Збройні сили отримають антидрони, тепловізори та ударний безпілотник. «Незабаром Литва передасть Україні не лише обіцяні бронетехніку, вантажівки та позашляховики, але також нову партію антидронів та тепловізорів. І, звичайно, Байрактар, який придбають на зібрані литовцями гроші», - написав глава Міноборони." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ukrainian-qa This model is a fine-tuned version of [ukr-models/xlm-roberta-base-uk](https://huggingface.co/ukr-models/xlm-roberta-base-uk) on the [UA-SQuAD](https://github.com/fido-ai/ua-datasets/tree/main/ua_datasets/src/question_answering) dataset. Link to training scripts - [https://github.com/robinhad/ukrainian-qa](https://github.com/robinhad/ukrainian-qa) It achieves the following results on the evaluation set: - Loss: 1.4778 ## Model description More information needed ## How to use ```python from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering model_name = "robinhad/ukrainian-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) qa_model = pipeline("question-answering", model=model.to("cpu"), tokenizer=tokenizer) question = "Де ти живеш?" context = "Мене звати Сара і я живу у Лондоні" qa_model(question = question, context = context) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4526 | 1.0 | 650 | 1.3631 | | 1.3317 | 2.0 | 1300 | 1.2229 | | 1.0693 | 3.0 | 1950 | 1.2184 | | 0.6851 | 4.0 | 2600 | 1.3171 | | 0.5594 | 5.0 | 3250 | 1.3893 | | 0.4954 | 6.0 | 3900 | 1.4778 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
avacaondata/roberta-large-biomedical
8bfd234324037d30c29d3246b826dbf3fafca872
2022-06-04T10:44:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
avacaondata
null
avacaondata/roberta-large-biomedical
21
null
transformers
8,240
Entry not found
facebook/genre-linking-blink
3c33ba95f2427fb67fd45971cca66b8a676614b4
2022-06-14T14:07:29.000Z
[ "pytorch", "tf", "jax", "bart", "text2text-generation", "en", "arxiv:2010.00904", "arxiv:1910.13461", "arxiv:1911.03814", "transformers", "retrieval", "entity-retrieval", "named-entity-disambiguation", "entity-disambiguation", "named-entity-linking", "entity-linking", "autotrain_compatible" ]
text2text-generation
false
facebook
null
facebook/genre-linking-blink
21
1
transformers
8,241
--- language: - en tags: - retrieval - entity-retrieval - named-entity-disambiguation - entity-disambiguation - named-entity-linking - entity-linking - text2text-generation --- # GENRE The GENRE (Generative ENtity REtrieval) system as presented in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) implemented in pytorch. In a nutshell, GENRE uses a sequence-to-sequence approach to entity retrieval (e.g., linking), based on fine-tuned [BART](https://arxiv.org/abs/1910.13461) architecture. GENRE performs retrieval generating the unique entity name conditioned on the input text using constrained beam search to only generate valid identifiers. The model was first released in the [facebookresearch/GENRE](https://github.com/facebookresearch/GENRE) repository using `fairseq` (the `transformers` models are obtained with a conversion script similar to [this](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py). This model was trained on the full training set of [BLINK](https://arxiv.org/abs/1911.03814) (i.e., 9M datapoints for entity-disambiguation grounded on Wikipedia). ## BibTeX entry and citation info **Please consider citing our works if you use code from this repository.** ```bibtex @inproceedings{decao2020autoregressive, title={Autoregressive Entity Retrieval}, author={Nicola {De Cao} and Gautier Izacard and Sebastian Riedel and Fabio Petroni}, booktitle={International Conference on Learning Representations}, url={https://openreview.net/forum?id=5k8F6UU39V}, year={2021} } ``` ## Usage Here is an example of generation for Wikipedia page disambiguation: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # OPTIONAL: load the prefix tree (trie), you need to additionally download # https://huggingface.co/facebook/genre-linking-blink/blob/main/trie.py and # https://huggingface.co/facebook/genre-linking-blink/blob/main/kilt_titles_trie_dict.pkl # import pickle # from trie import Trie # with open("kilt_titles_trie_dict.pkl", "rb") as f: # trie = Trie.load_from_dict(pickle.load(f)) tokenizer = AutoTokenizer.from_pretrained("facebook/genre-linking-blink") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/genre-linking-blink").eval() sentences = ["Einstein was a [START_ENT] German [END_ENT] physicist."] outputs = model.generate( **tokenizer(sentences, return_tensors="pt"), num_beams=5, num_return_sequences=5, # OPTIONAL: use constrained beam search # prefix_allowed_tokens_fn=lambda batch_id, sent: trie.get(sent.tolist()), ) tokenizer.batch_decode(outputs, skip_special_tokens=True) ``` which outputs the following top-5 predictions (using constrained beam search) ``` ['Germans', 'Germany', 'German Empire', 'Weimar Republic', 'Greeks'] ```
santiviquez/t5-small-finetuned-samsum-en
a59cce76a34827e9d37b6d52586ae988e4b4d259
2022-06-27T20:55:29.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:samsum", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
santiviquez
null
santiviquez/t5-small-finetuned-samsum-en
21
null
transformers
8,242
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: t5-small-finetuned-samsum-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 44.3313 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 40.0386 verified: true - name: ROUGE-2 type: rouge value: 15.8501 verified: true - name: ROUGE-L type: rouge value: 31.8084 verified: true - name: ROUGE-LSUM type: rouge value: 36.0888 verified: true - name: loss type: loss value: 2.1917073726654053 verified: true - name: gen_len type: gen_len value: 18.1074 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-samsum-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.9335 - Rouge1: 44.3313 - Rouge2: 20.71 - Rougel: 37.221 - Rougelsum: 40.9603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.4912 | 1.0 | 300 | 1.9043 | 44.1517 | 20.0186 | 36.6053 | 40.5164 | | 1.5055 | 2.0 | 600 | 1.8912 | 44.1473 | 20.4456 | 37.069 | 40.6714 | | 1.4852 | 3.0 | 900 | 1.8986 | 44.7536 | 20.8646 | 37.525 | 41.2189 | | 1.4539 | 4.0 | 1200 | 1.9136 | 44.2144 | 20.3446 | 37.1088 | 40.7581 | | 1.4262 | 5.0 | 1500 | 1.9215 | 44.2656 | 20.6044 | 37.3267 | 40.9469 | | 1.4118 | 6.0 | 1800 | 1.9247 | 43.8793 | 20.4663 | 37.0614 | 40.6065 | | 1.3987 | 7.0 | 2100 | 1.9256 | 43.9981 | 20.2703 | 36.7856 | 40.6354 | | 1.3822 | 8.0 | 2400 | 1.9316 | 43.9732 | 20.4559 | 36.8039 | 40.5784 | | 1.3773 | 9.0 | 2700 | 1.9314 | 44.3075 | 20.5435 | 37.0457 | 40.832 | | 1.3795 | 10.0 | 3000 | 1.9335 | 44.3313 | 20.71 | 37.221 | 40.9603 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ghadeermobasher/Original-BioBERT-NCBI
8f5cebb0956af733a3f314ef2efb228d2076f64b
2022-06-08T20:01:10.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BioBERT-NCBI
21
null
transformers
8,243
Entry not found
alistvt/01-roberta-dialdoc
dedca71f17480d9a754883f199f510c6c0649fae
2022-06-19T07:58:18.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
alistvt
null
alistvt/01-roberta-dialdoc
21
null
transformers
8,244
Entry not found
ericntay/bert-finetuned-emotion
e1fcb14e2f19b5b2dce860b1f06afc0df3fff0cb
2022-06-13T17:46:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ericntay
null
ericntay/bert-finetuned-emotion
21
null
transformers
8,245
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.937 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-emotion This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Accuracy: 0.937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.553 | 1.0 | 1600 | 0.2631 | 0.9255 | | 0.161 | 2.0 | 3200 | 0.1582 | 0.937 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ghadeermobasher/BC4CHEMD-Chem-Modified-BioBERT-384
040c680156d681d4aecdd032c42fa611f4064feb
2022-06-15T18:03:04.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Modified-BioBERT-384
21
null
transformers
8,246
Entry not found
Nonzerophilip/bert-finetuned-ner
8b34bfe88ffaf4a8cf83bf94b0c3ecae5621e5a4
2022-06-16T13:45:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Nonzerophilip
null
Nonzerophilip/bert-finetuned-ner
21
null
transformers
8,247
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.7978891820580475 - name: Recall type: recall value: 0.8600682593856656 - name: F1 type: f1 value: 0.8278127566383794 - name: Accuracy type: accuracy value: 0.9614351593776922 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1286 - Precision: 0.7979 - Recall: 0.8601 - F1: 0.8278 - Accuracy: 0.9614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 125 | 0.2188 | 0.6221 | 0.6985 | 0.6581 | 0.9285 | | No log | 2.0 | 250 | 0.1396 | 0.7681 | 0.8402 | 0.8025 | 0.9590 | | No log | 3.0 | 375 | 0.1286 | 0.7979 | 0.8601 | 0.8278 | 0.9614 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
RomanCast/no_init_miam_loria_finetuned
a5864b2c9a807ec3d27f401a131ca0719db0ed60
2022-06-16T17:11:36.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers" ]
text-classification
false
RomanCast
null
RomanCast/no_init_miam_loria_finetuned
21
null
transformers
8,248
--- language: - fr ---
ZipperXYZ/DialoGPT-medium-TheWorldMachineExpressive
fb80535c4688c1c6a45613df9eb6079a6a6f3950
2022-06-18T02:07:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ZipperXYZ
null
ZipperXYZ/DialoGPT-medium-TheWorldMachineExpressive
21
null
transformers
8,249
--- tags: - conversational --- # The world machine DialoGPT model
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-4
dd8a0f437357611b3d23d39a8ad793a7d1e10728
2022-06-28T14:44:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Willy
null
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-4
21
null
transformers
8,250
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-NLP-IE-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-NLP-IE-4 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7825 - Accuracy: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7005 | 1.0 | 9 | 0.6977 | 0.5069 | | 0.65 | 2.0 | 18 | 0.7035 | 0.4861 | | 0.6144 | 3.0 | 27 | 0.7189 | 0.4722 | | 0.5898 | 4.0 | 36 | 0.7859 | 0.4861 | | 0.561 | 5.0 | 45 | 0.7825 | 0.4931 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Jeevesh8/std_0pnt2_bert_ft_cola-0
a2a40c784daf42e87cd750460039543d3c2b1fa0
2022-06-21T13:27:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-0
21
null
transformers
8,251
Entry not found
Matthijs/mobilenet_v1_0.75_192
1a63ace7d0a9d72ac33b3af39e044a1dcd4c65d4
2022-06-22T12:50:39.000Z
[ "pytorch", "mobilenet_v1", "dataset:imagenet-1k", "arxiv:1704.04861", "transformers", "vision", "image-classification", "license:other" ]
image-classification
false
Matthijs
null
Matthijs/mobilenet_v1_0.75_192
21
null
transformers
8,252
--- license: other tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # MobileNet V1 MobileNet V1 model pre-trained on ImageNet-1k at resolution 192x192. It was introduced in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Howard et al, and first released in [this repository](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md). Disclaimer: The team releasing MobileNet V1 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description From the [original README](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md): > MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of a variety of use cases. They can be built upon for classification, detection, embeddings and segmentation similar to how other popular large scale models, such as Inception, are used. MobileNets can be run efficiently on mobile devices [...] MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilenet_v1) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileNetV1FeatureExtractor, MobileNetV1ForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileNetV1FeatureExtractor.from_pretrained("Matthijs/mobilenet_v1_1.0_224") model = MobileNetV1ForImageClassification.from_pretrained("Matthijs/mobilenet_v1_1.0_224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Note: This model actually predicts 1001 classes, the 1000 classes from ImageNet plus an extra “background” class (index 0). Currently, both the feature extractor and model support PyTorch.
truongxl/NER_covid19
2556ec4478e0cf46f0f2f128df371d71962f7110
2022-06-23T04:05:10.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
truongxl
null
truongxl/NER_covid19
21
null
transformers
8,253
Entry not found
KoichiYasuoka/deberta-base-japanese-wikipedia-luw-upos
7e81edcb08c0066c01479572d3314a9ee598699d
2022-07-23T14:43:48.000Z
[ "pytorch", "deberta-v2", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "wikipedia", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-wikipedia-luw-upos
21
null
transformers
8,254
--- language: - "ja" tags: - "japanese" - "wikipedia" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-base-japanese-wikipedia-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on Japanese Wikipedia and 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-base-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-wikipedia). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-wikipedia-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-japanese-wikipedia-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-base-japanese-wikipedia-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
Someman/distilbert-base-uncased-finetuned-emotion
a6bcfd1353b9f050a60a33fe80ebb34c74c746ae
2022-07-16T05:49:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Someman
null
Someman/distilbert-base-uncased-finetuned-emotion
21
null
transformers
8,255
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9245803802599059 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3083 | 0.9005 | 0.8972 | | No log | 2.0 | 500 | 0.2186 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
josh-oo/bert-to-gpt2-german-to-easy-german
674a53597dbcce45743554e30a8b5dbd98a77f6b
2022-07-05T15:20:09.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
josh-oo
null
josh-oo/bert-to-gpt2-german-to-easy-german
21
null
transformers
8,256
Entry not found
codenamewei/speech-to-text
5a0459e9ec7a20b74bc56947afe616f41c8e8844
2022-07-02T18:02:42.000Z
[ "pytorch", "wav2vec2-conformer", "automatic-speech-recognition", "transformers", "license:gpl-3.0" ]
automatic-speech-recognition
false
codenamewei
null
codenamewei/speech-to-text
21
null
transformers
8,257
--- license: gpl-3.0 ---
Doohae/bart-kor-620000
c9b539519ea5fde413bc25e65b7954eee5dd5e30
2022-07-04T09:39:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Doohae
null
Doohae/bart-kor-620000
21
null
transformers
8,258
Entry not found
KoichiYasuoka/bert-ancient-chinese-base-upos
fb6752bd3c5e4847f9902fc35beb6ca94ca3ae74
2022-07-09T10:26:04.000Z
[ "pytorch", "bert", "token-classification", "lzh", "dataset:universal_dependencies", "transformers", "classical chinese", "literary chinese", "ancient chinese", "pos", "dependency-parsing", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/bert-ancient-chinese-base-upos
21
null
transformers
8,259
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎" --- # bert-ancient-chinese-base-upos ## Model Description This is a BERT model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [bert-ancient-chinese](https://huggingface.co/Jihuai/bert-ancient-chinese). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-ancient-chinese-base-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-ancient-chinese-base-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-ancient-chinese-base-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_50_2_Previous_Hyperparameters
235724245b899d6ae294c189d77d89fc615aad02
2022-07-05T13:14:17.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
BBarbarestani
null
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_50_2_Previous_Hyperparameters
21
null
transformers
8,260
Entry not found
ryo0634/en-encoder-en-0
3e5092e9a08677b356658495290f6d4fc889f687
2022-07-06T05:15:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/en-encoder-en-0
21
null
transformers
8,261
Entry not found
ghadeermobasher/Modified-BlueBERT-BioRED-Chem-512-5-30
3a8ae2d36ad05789143137010993bda3e5da3796
2022-07-08T08:30:24.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modified-BlueBERT-BioRED-Chem-512-5-30
21
null
transformers
8,262
ryo0634/zip-dependency-flat-encoder-en-0
fd17a5e4a8604dcf6f3f6616dc14000264092863
2022-07-09T15:40:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/zip-dependency-flat-encoder-en-0
21
null
transformers
8,263
Entry not found
Kozias/BERT-v11
9b1ccd1f18e616d3aad3bb927db0272e0ce70ed2
2022-07-19T02:08:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Kozias
null
Kozias/BERT-v11
21
null
transformers
8,264
Entry not found
thu-coai/EVA2.0-xlarge
6b3ad1fdf16df28d300da46aebc2e7991baa6fce
2022-07-25T02:57:30.000Z
[ "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "transformers", "license:mit" ]
null
false
thu-coai
null
thu-coai/EVA2.0-xlarge
21
null
transformers
8,265
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
jhonparra18/bert-base-cased-cv-studio_name-medium
807a3b8cf8129bdca64842896809d1901978da72
2022-07-14T22:17:03.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/bert-base-cased-cv-studio_name-medium
21
null
transformers
8,266
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-cv-studio_name-medium results: [] widget: - text: "Egresado de la carrera Ingeniería en Computación Conocimientos de lenguajes HTML, CSS, Javascript y MySQL. Experiencia trabajando en ámbitos de redes de pequeña y mediana escala. Inglés Hablado nivel básico, escrito nivel intermedio.HTML, CSS y JavaScript. Realidad aumentada. Lenguaje R. HTML5, JavaScript y Nodejs" - text: "mi nombre es Ivan Ducales Marquez, hago de subpresidente en la republica de Colombia. tengo experiencia en seguir órdenes de mis patrocinadores y repartir los recursos del país a empresarios corruptos" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-cv-studio_name-medium This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3310 - F1 Micro: 0.6388 - F1 Macro: 0.5001 ## Model description Predicts a studio name based on a CV text ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:| | 1.4139 | 0.98 | 1000 | 1.3831 | 0.6039 | 0.6039 | 0.4188 | 0.6039 | 0.6039 | | 1.1561 | 1.96 | 2000 | 1.2386 | 0.6554 | 0.6554 | 0.4743 | 0.6554 | 0.6554 | | 0.9183 | 2.93 | 3000 | 1.2201 | 0.6576 | 0.6576 | 0.5011 | 0.6576 | 0.6576 | | 0.677 | 3.91 | 4000 | 1.3478 | 0.6442 | 0.6442 | 0.5206 | 0.6442 | 0.6442 | | 0.4857 | 4.89 | 5000 | 1.4765 | 0.6393 | 0.6393 | 0.5215 | 0.6393 | 0.6393 | | 0.3318 | 5.87 | 6000 | 1.6924 | 0.6442 | 0.6442 | 0.5024 | 0.6442 | 0.6442 | | 0.2273 | 6.84 | 7000 | 1.8645 | 0.6444 | 0.6444 | 0.5060 | 0.6444 | 0.6444 | | 0.1396 | 7.82 | 8000 | 2.1143 | 0.6381 | 0.6381 | 0.5181 | 0.6381 | 0.6381 | | 0.0841 | 8.8 | 9000 | 2.2699 | 0.6359 | 0.6359 | 0.5065 | 0.6359 | 0.6359 | | 0.0598 | 9.78 | 10000 | 2.3310 | 0.6388 | 0.6388 | 0.5001 | 0.6388 | 0.6388 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.8.2+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
jhonparra18/roberta-base-cv-studio_name-medium
80b48b379ba1ca5778cf24671e900d3db006686f
2022-07-16T02:43:03.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/roberta-base-cv-studio_name-medium
21
null
transformers
8,267
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-cv-studio_name-medium results: [] widget: - text: "Egresado de la carrera Ingeniería en Computación Conocimientos de lenguajes HTML, CSS, Javascript y MySQL. Experiencia trabajando en ámbitos de redes de pequeña y mediana escala. Inglés Hablado nivel básico, escrito nivel intermedio.HTML, CSS y JavaScript. Realidad aumentada. Lenguaje R. HTML5, JavaScript y Nodejs" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-cv-studio_name-medium This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description Predicts a studio name based on a CV text ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 10 ### Framework versions - Transformers 4.19.0 - Pytorch 1.8.2+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
jinwooChoi/KDH_NER_ELECTRA
598b8d4ebeb7fd5771ea0bad8b14b9d8d20e2476
2022-07-19T07:54:14.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
jinwooChoi
null
jinwooChoi/KDH_NER_ELECTRA
21
null
transformers
8,268
Entry not found
Evelyn18/distilbert-base-uncased-modelo-becas0
dcc0ed2933940ac7d3dc6ce53b1be22a0e94e919
2022-07-15T22:56:08.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:becasv3", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/distilbert-base-uncased-modelo-becas0
21
null
transformers
8,269
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv3 model-index: - name: distilbert-base-uncased-modelo-becas0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-modelo-becas0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv3 dataset. It achieves the following results on the evaluation set: - Loss: 3.1182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.5381 | | No log | 2.0 | 10 | 4.9493 | | No log | 3.0 | 15 | 4.4985 | | No log | 4.0 | 20 | 4.1063 | | No log | 5.0 | 25 | 3.7708 | | No log | 6.0 | 30 | 3.5205 | | No log | 7.0 | 35 | 3.3313 | | No log | 8.0 | 40 | 3.2195 | | No log | 9.0 | 45 | 3.1453 | | No log | 10.0 | 50 | 3.1182 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Unso/roberta-large-finetuned-sst5
9c6fbad1c3e478f68a524b1f844259990f8375f2
2022-07-20T07:05:57.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
Unso
null
Unso/roberta-large-finetuned-sst5
21
null
transformers
8,270
Entry not found
RobertoFont/pegasus-large-samsum
e68697845c4da36861d535d2252b7d30961d0340
2022-07-16T15:12:09.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
RobertoFont
null
RobertoFont/pegasus-large-samsum
21
null
transformers
8,271
--- tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-large-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 48.0968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-large-samsum This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4109 - Rouge1: 48.0968 - Rouge2: 24.6663 - Rougel: 40.2569 - Rougelsum: 44.0137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 230 | 1.4646 | 45.0631 | 22.5567 | 38.0518 | 41.2694 | | No log | 2.0 | 460 | 1.4203 | 47.4122 | 24.158 | 39.7414 | 43.3485 | | 1.699 | 3.0 | 690 | 1.4109 | 48.0968 | 24.6663 | 40.2569 | 44.0137 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
UT/BRTW_MULICLASS
9b891cec9165a2cb4bc7ef7d78b68b109b9d51bf
2022-07-17T10:57:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/BRTW_MULICLASS
21
null
transformers
8,272
Entry not found
uer/roberta-large-wwm-chinese-cluecorpussmall
96862a51fef0b5cc9cc485007f06db0ddd2c2dab
2022-07-18T05:56:53.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-large-wwm-chinese-cluecorpussmall
21
null
transformers
8,273
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese Whole Word Masking RoBERTa Miniatures ## Model description This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. You can download the 6 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **Tiny** | [**2/128 (Tiny)**][2_128] | | **Mini** | [**4/256 (Mini)**][4_256] | | **Small** | [**4/512 (Small)**][4_512] | | **Medium** | [**8/512 (Medium)**][8_512] | | **Base** | [**12/768 (Base)**][12_768] | | **Large** | [**24/1024 (Large)**][24_1024] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | ------------------ | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny-WWM | 72.1 | 82.8 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 | | RoBERTa-Mini-WWM | 76.1 | 84.9 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 | | RoBERTa-Small-WWM | 77.3 | 86.8 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 | | RoBERTa-Medium-WWM | 78.4 | 88.2 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 | | RoBERTa-Base-WWM | 80.1 | 90.0 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 | | RoBERTa-Large-WWM | 81.0 | 90.4 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall') >>> unmasker("北京是[MASK]国的首都。") [ {'score': 0.294228732585907, 'token': 704, 'token_str': '中', 'sequence': '北 京 是 中 国 的 首 都 。'}, {'score': 0.19691626727581024, 'token': 1266, 'token_str': '北', 'sequence': '北 京 是 北 国 的 首 都 。'}, {'score': 0.1070084273815155, 'token': 7506, 'token_str': '韩', 'sequence': '北 京 是 韩 国 的 首 都 。'}, {'score': 0.031527262181043625, 'token': 2769, 'token_str': '我', 'sequence': '北 京 是 我 国 的 首 都 。'}, {'score': 0.023054633289575577, 'token': 1298, 'token_str': '南', 'sequence': '北 京 是 南 国 的 首 都 。'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. Taking the case of Whole Word Masking RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-wwm-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-wwm-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-wwm-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-wwm-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-wwm-chinese-cluecorpussmall [24_1024]:https://huggingface.co/uer/roberta-large-wwm-chinese-cluecorpussmall
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1-5gram
0c024b28259a5a1b51331c6972b8f4b9aa2982df
2022-07-29T08:18:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1-5gram
21
null
transformers
8,274
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1-5gram results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1-5gram This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1-5gram](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1-5gram) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.4693 - Wer: 0.2046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3028 | 1.0 | 288 | 0.4693 | 0.2046 | | 0.2986 | 2.0 | 576 | 0.4828 | 0.2058 | | 0.297 | 3.0 | 864 | 0.5020 | 0.2038 | | 0.2863 | 4.0 | 1152 | 0.5216 | 0.2020 | | 0.3036 | 5.0 | 1440 | 0.4963 | 0.2008 | | 0.3141 | 6.0 | 1728 | 0.5005 | 0.2020 | | 0.2898 | 7.0 | 2016 | 0.4962 | 0.2029 | | 0.2922 | 8.0 | 2304 | 0.5073 | 0.2031 | | 0.266 | 9.0 | 2592 | 0.5159 | 0.2024 | | 0.2817 | 10.0 | 2880 | 0.5238 | 0.2011 | | 0.2922 | 11.0 | 3168 | 0.5080 | 0.2011 | | 0.2869 | 12.0 | 3456 | 0.4974 | 0.2027 | | 0.284 | 13.0 | 3744 | 0.5104 | 0.2006 | | 0.2911 | 14.0 | 4032 | 0.5026 | 0.2017 | | 0.2864 | 15.0 | 4320 | 0.5065 | 0.2002 | | 0.2779 | 16.0 | 4608 | 0.5024 | 0.2010 | | 0.2766 | 17.0 | 4896 | 0.5078 | 0.1998 | | 0.2872 | 18.0 | 5184 | 0.5114 | 0.1981 | | 0.268 | 19.0 | 5472 | 0.5078 | 0.1980 | | 0.2631 | 20.0 | 5760 | 0.5262 | 0.2021 | | 0.2753 | 21.0 | 6048 | 0.5161 | 0.1991 | | 0.2797 | 22.0 | 6336 | 0.5097 | 0.2009 | | 0.2667 | 23.0 | 6624 | 0.5131 | 0.1995 | | 0.2722 | 24.0 | 6912 | 0.5098 | 0.1990 | | 0.3026 | 25.0 | 7200 | 0.5193 | 0.2006 | | 0.2888 | 26.0 | 7488 | 0.4987 | 0.1986 | | 0.2732 | 27.0 | 7776 | 0.5063 | 0.2007 | | 0.2567 | 28.0 | 8064 | 0.5103 | 0.2015 | | 0.2845 | 29.0 | 8352 | 0.5084 | 0.2020 | | 0.2591 | 30.0 | 8640 | 0.5109 | 0.1989 | | 0.2777 | 31.0 | 8928 | 0.5179 | 0.1994 | | 0.2784 | 32.0 | 9216 | 0.5183 | 0.1989 | | 0.2801 | 33.0 | 9504 | 0.5222 | 0.2003 | | 0.2554 | 34.0 | 9792 | 0.5137 | 0.1990 | | 0.2708 | 35.0 | 10080 | 0.5094 | 0.1964 | | 0.27 | 36.0 | 10368 | 0.5076 | 0.1980 | | 0.2706 | 37.0 | 10656 | 0.5179 | 0.1983 | | 0.2791 | 38.0 | 10944 | 0.5154 | 0.1976 | | 0.3148 | 39.0 | 11232 | 0.5082 | 0.1990 | | 0.2834 | 40.0 | 11520 | 0.5107 | 0.1980 | | 0.2739 | 41.0 | 11808 | 0.5009 | 0.1990 | | 0.2687 | 42.0 | 12096 | 0.5232 | 0.2011 | | 0.2696 | 43.0 | 12384 | 0.5108 | 0.1986 | | 0.2729 | 44.0 | 12672 | 0.5159 | 0.1991 | | 0.2579 | 45.0 | 12960 | 0.5162 | 0.1991 | | 0.283 | 46.0 | 13248 | 0.5032 | 0.1982 | | 0.282 | 47.0 | 13536 | 0.5107 | 0.1980 | | 0.2708 | 48.0 | 13824 | 0.5128 | 0.1982 | | 0.2562 | 49.0 | 14112 | 0.5163 | 0.1991 | | 0.2675 | 50.0 | 14400 | 0.5062 | 0.1994 | | 0.285 | 51.0 | 14688 | 0.4999 | 0.1988 | | 0.2756 | 52.0 | 14976 | 0.5030 | 0.1986 | | 0.2888 | 53.0 | 15264 | 0.5043 | 0.1975 | | 0.2778 | 54.0 | 15552 | 0.5111 | 0.1980 | | 0.2707 | 55.0 | 15840 | 0.5117 | 0.1995 | | 0.2566 | 56.0 | 16128 | 0.5197 | 0.2002 | | 0.2517 | 57.0 | 16416 | 0.5211 | 0.1977 | | 0.2629 | 58.0 | 16704 | 0.5080 | 0.1986 | | 0.2787 | 59.0 | 16992 | 0.5133 | 0.1980 | | 0.269 | 60.0 | 17280 | 0.5156 | 0.1973 | | 0.2664 | 61.0 | 17568 | 0.5192 | 0.1949 | | 0.2605 | 62.0 | 17856 | 0.5095 | 0.1970 | | 0.2649 | 63.0 | 18144 | 0.5149 | 0.1970 | | 0.246 | 64.0 | 18432 | 0.5165 | 0.1975 | | 0.2567 | 65.0 | 18720 | 0.5072 | 0.1981 | | 0.2509 | 66.0 | 19008 | 0.5061 | 0.1978 | | 0.289 | 67.0 | 19296 | 0.5087 | 0.1957 | | 0.2511 | 68.0 | 19584 | 0.5168 | 0.1982 | | 0.2623 | 69.0 | 19872 | 0.5110 | 0.1959 | | 0.2762 | 70.0 | 20160 | 0.5123 | 0.1959 | | 0.2704 | 71.0 | 20448 | 0.5118 | 0.1966 | | 0.2854 | 72.0 | 20736 | 0.5128 | 0.1949 | | 0.2602 | 73.0 | 21024 | 0.5094 | 0.1966 | | 0.2675 | 74.0 | 21312 | 0.5058 | 0.1961 | | 0.2519 | 75.0 | 21600 | 0.5216 | 0.1988 | | 0.2666 | 76.0 | 21888 | 0.5117 | 0.1959 | | 0.2637 | 77.0 | 22176 | 0.5058 | 0.1957 | | 0.273 | 78.0 | 22464 | 0.5187 | 0.1966 | | 0.2666 | 79.0 | 22752 | 0.5176 | 0.1958 | | 0.2627 | 80.0 | 23040 | 0.5142 | 0.1950 | | 0.2508 | 81.0 | 23328 | 0.5158 | 0.1961 | | 0.2499 | 82.0 | 23616 | 0.5131 | 0.1970 | | 0.2583 | 83.0 | 23904 | 0.5150 | 0.1975 | | 0.246 | 84.0 | 24192 | 0.5097 | 0.1962 | | 0.272 | 85.0 | 24480 | 0.5043 | 0.1950 | | 0.2601 | 86.0 | 24768 | 0.5091 | 0.1961 | | 0.2719 | 87.0 | 25056 | 0.5087 | 0.1975 | | 0.269 | 88.0 | 25344 | 0.5126 | 0.1966 | | 0.2863 | 89.0 | 25632 | 0.5174 | 0.1966 | | 0.2581 | 90.0 | 25920 | 0.5159 | 0.1969 | | 0.26 | 91.0 | 26208 | 0.5146 | 0.1969 | | 0.2796 | 92.0 | 26496 | 0.5150 | 0.1966 | | 0.2723 | 93.0 | 26784 | 0.5133 | 0.1971 | | 0.249 | 94.0 | 27072 | 0.5096 | 0.1961 | | 0.266 | 95.0 | 27360 | 0.5116 | 0.1964 | | 0.2683 | 96.0 | 27648 | 0.5133 | 0.1967 | | 0.2451 | 97.0 | 27936 | 0.5141 | 0.1965 | | 0.2723 | 98.0 | 28224 | 0.5123 | 0.1962 | | 0.2527 | 99.0 | 28512 | 0.5120 | 0.1966 | | 0.2604 | 100.0 | 28800 | 0.5111 | 0.1961 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
xhyi/layoutlmv3_docvqa_t11c5000
0965ab663472459606e8c8c5ee126157725a3d9a
2022-07-22T18:53:47.000Z
[ "pytorch", "layoutlmv3", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
xhyi
null
xhyi/layoutlmv3_docvqa_t11c5000
21
null
transformers
8,275
# LayoutLMv3: DocVQA Replication WIP See experiments code: <https://github.com/redthing1/layoutlm_experiments>
razhan/codeqmul
2da18b55944a2b6d0ea73dc2c746a501bf611a02
2022-07-28T18:25:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
razhan
null
razhan/codeqmul
21
null
transformers
8,276
Entry not found
luffycodes/luke-base-conll
85ae436586c1f3944ba07950f4050dbf86bba7b2
2022-07-29T04:32:14.000Z
[ "pytorch", "luke", "allennlp" ]
null
false
luffycodes
null
luffycodes/luke-base-conll
21
null
allennlp
8,277
--- tags: - allennlp --- # TODO: Fill this model card --- tags: - allennlp --- # TODO: Fill this model card
Aastha/wav2vec2-large-xls-r-300m-tr-colab
10ec5e7ec56346b18f5e3d9fbc189b390f03a62f
2022-01-23T20:43:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-300m-tr-colab
20
null
transformers
8,278
Entry not found
AndrewMcDowell/wav2vec2-xls-r-300m-japanese
831b85ecd8b3adc91e8de38984f761bcce9bfef6
2022-03-23T18:34:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AndrewMcDowell
null
AndrewMcDowell/wav2vec2-xls-r-300m-japanese
20
null
transformers
8,279
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300-m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 95.82 - name: Test CER type: cer value: 23.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 100.0 - name: Test CER type: cer value: 30.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test CER type: cer value: 30.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 34.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable. On mozilla-foundation/common_voice_8_0 it achieved: - cer: 23.64% On speech-recognition-community-v2/dev_data it achieved: - cer: 30.99% It achieves the following results on the evaluation set: - Loss: 0.5212 - Wer: 1.3068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.0974 | 4.72 | 1000 | 4.0178 | 1.9535 | | 2.1276 | 9.43 | 2000 | 0.9301 | 1.2128 | | 1.7622 | 14.15 | 3000 | 0.7103 | 1.5527 | | 1.6397 | 18.87 | 4000 | 0.6729 | 1.4269 | | 1.5468 | 23.58 | 5000 | 0.6087 | 1.2497 | | 1.4885 | 28.3 | 6000 | 0.5786 | 1.3222 | | 1.451 | 33.02 | 7000 | 0.5726 | 1.3768 | | 1.3912 | 37.74 | 8000 | 0.5518 | 1.2497 | | 1.3617 | 42.45 | 9000 | 0.5352 | 1.2694 | | 1.3113 | 47.17 | 10000 | 0.5228 | 1.2781 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
Andrija/M-bert-NER
c21a97f630f3ce9c97de7b2a5844d3d9101ca6c5
2021-08-13T09:46:42.000Z
[ "pytorch", "bert", "token-classification", "hr", "sr", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Andrija
null
Andrija/M-bert-NER
20
null
transformers
8,280
--- datasets: - hr500k language: - hr - sr widget: - text: "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije" license: apache-2.0 --- Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person’s name right after another person’s name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Person’s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
Ayoola/cdial-yoruba-test
9e6978cfe41814448ae39be633008abdd6d254a8
2021-12-12T09:21:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Ayoola
null
Ayoola/cdial-yoruba-test
20
1
transformers
8,281
Entry not found
BlindMan820/Sarcastic-News-Headlines
b499a7ba3786864ea571f8de1400d7e9a96fb674
2022-01-21T13:31:44.000Z
[ "pytorch", "distilbert", "text-classification", "English", "dataset:Kaggle Dataset", "transformers", "Text", "Sequence-Classification", "Sarcasm", "DistilBert" ]
text-classification
false
BlindMan820
null
BlindMan820/Sarcastic-News-Headlines
20
null
transformers
8,282
--- language: - English tags: - Text - Sequence-Classification - Sarcasm - DistilBert datasets: - Kaggle Dataset metrics : - precision - recall - f1 --- Dataset Link - https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detection
CenIA/bert-base-spanish-wwm-cased-finetuned-ner
0cf7cc10bc005707fa8a70ba3739c7d1b50b2630
2022-01-06T20:06:50.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-cased-finetuned-ner
20
null
transformers
8,283
Entry not found
DaNLP/da-xlmr-ned
4a030b975894a7b9b17e9a9801dd18d1cd727d50
2021-09-17T12:10:46.000Z
[ "pytorch", "tf", "xlm-roberta", "text-classification", "da", "dataset:DaNED", "dataset:DaWikiNED", "transformers", "ned", "license:cc-by-sa-4.0" ]
text-classification
false
DaNLP
null
DaNLP/da-xlmr-ned
20
null
transformers
8,284
--- language: - da tags: - ned - xlm-roberta - pytorch - transformers license: cc-by-sa-4.0 datasets: - DaNED - DaWikiNED metrics: - f1 --- # XLM-Roberta fine-tuned for Named Entity Disambiguation Given a sentence and a knowledge graph context, the model detects whether a specific entity (represented by the knowledge graph context) is mentioned in the sentence (binary classification). The base language model used is the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). Here is how to use the model: ```python from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification model = XLMRobertaForSequenceClassification.from_pretrained("DaNLP/da-xlmr-ned") tokenizer = XLMRobertaTokenizer.from_pretrained("DaNLP/da-xlmr-ned") ``` The tokenizer takes 2 strings has input: the sentence and the knowledge graph (KG) context. Here is an example: ```python sentence = "Karen Blixen vendte tilbage til Danmark, hvor hun boede resten af sit liv på Rungstedlund, som hun arvede efter sin mor i 1939" kg_context = "udmærkelser modtaget Kritikerprisen udmærkelser modtaget Tagea Brandts Rejselegat udmærkelser modtaget Ingenio et arti udmærkelser modtaget Holbergmedaljen udmærkelser modtaget De Gyldne Laurbær mor Ingeborg Dinesen ægtefælle Bror von Blixen-Finecke køn kvinde Commons-kategori Karen Blixen LCAuth no95003722 VIAF 90663542 VIAF 121643918 GND-identifikator 118637878 ISNI 0000 0001 2096 6265 ISNI 0000 0003 6863 4408 ISNI 0000 0001 1891 0457 fødested Rungstedlund fødested Rungsted dødssted Rungstedlund dødssted København statsborgerskab Danmark NDL-nummer 00433530 dødsdato +1962-09-07T00:00:00Z dødsdato +1962-01-01T00:00:00Z fødselsdato +1885-04-17T00:00:00Z fødselsdato +1885-01-01T00:00:00Z AUT NKC jn20000600905 AUT NKC jo2015880827 AUT NKC xx0196181 emnets hovedkategori Kategori:Karen Blixen tilfælde af menneske billede Karen Blixen cropped from larger original.jpg IMDb-identifikationsnummer nm0227598 Freebase-ID /m/04ymd8w BNF 118857710 beskæftigelse skribent beskæftigelse selvbiograf beskæftigelse novelleforfatter ..." ``` A KG context, for a specific entity, can be generated from its Wikidata page. In the previous example, the KG context is a string representation of the Wikidata page of [Karen Blixen (QID=Q182804)](https://www.wikidata.org/wiki/Q182804). See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/ned.html#xlmr) for more details about how to generate a KG context. ## Training Data The model has been trained on the [DaNED](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#daned) and [DaWikiNED](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#dawikined) datasets.
Darkrider/covidbert_medmarco
dcf299f1f7e791b63479cd7c5d3c10264592f62b
2021-05-18T18:08:55.000Z
[ "pytorch", "jax", "bert", "text-classification", "arxiv:2010.05987", "transformers" ]
text-classification
false
Darkrider
null
Darkrider/covidbert_medmarco
20
null
transformers
8,285
Fine-tuned CovidBERT on Med-Marco Dataset for passage ranking # CovidBERT-MedNLI This is the model **CovidBERT** trained by DeepSet on AllenAI's [CORD19 Dataset](https://pages.semanticscholar.org/coronavirus-research) of scientific articles about coronaviruses. The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [1] using the **average pooling strategy** and a **softmax loss**. It is further fine-tuned Med-Marco Dataset. MacAvaney et.al in their [paper](https://arxiv.org/abs/2010.05987) titled “SLEDGE-Z: A Zero-Shot Baseline for COVID-19 Literature Search” used MedSyn a lexicon of layperson and expert terminology for various medical conditions to filter for medical questions. One can also replace this by UMLs ontologies but the beauty of MedSyn is that the terms are more general human conversation lingo and not terms based on scientific literature. Parameter details for the original training on CORD-19 are available on [DeepSet's MLFlow](https://public-mlflow.deepset.ai/#/experiments/2/runs/ba27d00c30044ef6a33b1d307b4a6cba) **Base model**: `deepset/covid_bert_base` from HuggingFace's `AutoModel`.
Davlan/bert-base-multilingual-cased-masakhaner
b541a4b146aa178ddb6783638bbaa2ba86d9d349
2022-06-27T11:50:04.000Z
[ "pytorch", "tf", "bert", "token-classification", "ha", "ig", "rw", "lg", "luo", "pcm", "sw", "wo", "yo", "multilingual", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
false
Davlan
null
Davlan/bert-base-multilingual-cased-masakhaner
20
null
transformers
8,286
Hugging Face's logo --- language: - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # bert-base-multilingual-cased-masakhaner ## Model description **bert-base-multilingual-cased-masakhaner** is the first **Named Entity Recognition** model for 9 African languages (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) based on a fine-tuned mBERT base model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 9 African NER datasets (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- hau |88.66 ibo |85.72 kin |71.94 lug |81.73 luo |77.39 pcm |88.96 swa |88.23 wol |66.27 yor |80.09 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
Geotrend/bert-base-zh-cased
21847ddf72c2f6cfb6b2d214e04d5804fb8c2d12
2021-05-18T20:16:15.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-zh-cased
20
null
transformers
8,287
--- language: zh datasets: wikipedia license: apache-2.0 --- # bert-base-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Helsinki-NLP/opus-mt-en-ts
8093589efb39ad94f79db8e22c3dbabd6d598310
2021-09-09T21:40:13.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ts", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ts
20
null
transformers
8,288
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ts * source languages: en * target languages: ts * OPUS readme: [en-ts](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ts/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ts/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ts/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ts/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ts | 43.4 | 0.639 |
Helsinki-NLP/opus-mt-ja-sv
1c70b4dc2dc82ada9a036ac3a4bc2cf552be3201
2021-09-10T13:53:27.000Z
[ "pytorch", "marian", "text2text-generation", "ja", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ja-sv
20
null
transformers
8,289
--- tags: - translation license: apache-2.0 --- ### opus-mt-ja-sv * source languages: ja * target languages: sv * OPUS readme: [ja-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ja-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ja-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ja-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ja-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ja.sv | 26.1 | 0.445 |
Helsinki-NLP/opus-mt-kqn-en
2fcb140432b927a8d8c726edda2fd73bf7d54378
2021-09-10T13:54:08.000Z
[ "pytorch", "marian", "text2text-generation", "kqn", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-kqn-en
20
null
transformers
8,290
--- tags: - translation license: apache-2.0 --- ### opus-mt-kqn-en * source languages: kqn * target languages: en * OPUS readme: [kqn-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kqn-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/kqn-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kqn-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kqn-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kqn.en | 32.6 | 0.480 |
Helsinki-NLP/opus-mt-loz-en
d975d0dcd374d47e05c15069ad5f63296d53a3c0
2021-09-10T13:55:15.000Z
[ "pytorch", "marian", "text2text-generation", "loz", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-loz-en
20
null
transformers
8,291
--- tags: - translation license: apache-2.0 --- ### opus-mt-loz-en * source languages: loz * target languages: en * OPUS readme: [loz-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/loz-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/loz-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/loz-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/loz-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.loz.en | 42.1 | 0.565 |
Helsinki-NLP/opus-mt-lun-en
79da48c57f71876f29327472e09943a1cda155bf
2021-09-10T13:56:41.000Z
[ "pytorch", "marian", "text2text-generation", "lun", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lun-en
20
null
transformers
8,292
--- tags: - translation license: apache-2.0 --- ### opus-mt-lun-en * source languages: lun * target languages: en * OPUS readme: [lun-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lun-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lun-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lun-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lun-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lun.en | 30.6 | 0.466 |
Helsinki-NLP/opus-mt-phi-en
e82e04a34f749e0f6a21beff9e7415dfa21d04d2
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "phi", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-phi-en
20
null
transformers
8,293
--- language: - phi - en tags: - translation license: apache-2.0 --- ### phi-eng * source group: Philippine languages * target group: English * OPUS readme: [phi-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/phi-eng/README.md) * model: transformer * source language(s): akl_Latn ceb hil ilo pag war * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/phi-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/phi-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/phi-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.akl-eng.akl.eng | 11.6 | 0.321 | | Tatoeba-test.ceb-eng.ceb.eng | 21.7 | 0.393 | | Tatoeba-test.hil-eng.hil.eng | 17.6 | 0.371 | | Tatoeba-test.ilo-eng.ilo.eng | 36.6 | 0.560 | | Tatoeba-test.multi.eng | 21.5 | 0.391 | | Tatoeba-test.pag-eng.pag.eng | 27.5 | 0.494 | | Tatoeba-test.war-eng.war.eng | 17.3 | 0.380 | ### System Info: - hf_name: phi-eng - source_languages: phi - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/phi-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['phi', 'en'] - src_constituents: {'ilo', 'akl_Latn', 'war', 'hil', 'pag', 'ceb'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/phi-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/phi-eng/opus2m-2020-08-01.test.txt - src_alpha3: phi - tgt_alpha3: eng - short_pair: phi-en - chrF2_score: 0.391 - bleu: 21.5 - brevity_penalty: 1.0 - ref_len: 2380.0 - src_name: Philippine languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: phi - tgt_alpha2: en - prefer_old: False - long_pair: phi-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-srn-en
733852218fbe91aee17c1bc3a3cedf4737a3db6e
2021-09-10T14:04:31.000Z
[ "pytorch", "marian", "text2text-generation", "srn", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-srn-en
20
null
transformers
8,294
--- tags: - translation license: apache-2.0 --- ### opus-mt-srn-en * source languages: srn * target languages: en * OPUS readme: [srn-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/srn-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/srn-en/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/srn-en/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/srn-en/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.srn.en | 40.3 | 0.555 |
Helsinki-NLP/opus-mt-taw-en
3561d29d357076b0351253652cbed0d28f42b75d
2020-08-21T14:42:50.000Z
[ "pytorch", "marian", "text2text-generation", "lo", "th", "taw", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-taw-en
20
null
transformers
8,295
--- language: - lo - th - taw - en tags: - translation license: apache-2.0 --- ### taw-eng * source group: Tai * target group: English * OPUS readme: [taw-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/taw-eng/README.md) * model: transformer * source language(s): lao tha * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.zip) * test set translations: [opus-2020-06-28.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.test.txt) * test set scores: [opus-2020-06-28.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.lao-eng.lao.eng | 1.1 | 0.133 | | Tatoeba-test.multi.eng | 38.9 | 0.572 | | Tatoeba-test.tha-eng.tha.eng | 40.6 | 0.588 | ### System Info: - hf_name: taw-eng - source_languages: taw - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/taw-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lo', 'th', 'taw', 'en'] - src_constituents: {'lao', 'tha'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/taw-eng/opus-2020-06-28.test.txt - src_alpha3: taw - tgt_alpha3: eng - short_pair: taw-en - chrF2_score: 0.5720000000000001 - bleu: 38.9 - brevity_penalty: 1.0 - ref_len: 7630.0 - src_name: Tai - tgt_name: English - train_date: 2020-06-28 - src_alpha2: taw - tgt_alpha2: en - prefer_old: False - long_pair: taw-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ts-en
62fafde175b8164b5fc1cb28511184adf259ff94
2021-09-11T10:49:49.000Z
[ "pytorch", "marian", "text2text-generation", "ts", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ts-en
20
null
transformers
8,296
--- tags: - translation license: apache-2.0 --- ### opus-mt-ts-en * source languages: ts * target languages: en * OPUS readme: [ts-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ts-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ts-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ts-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ts-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ts.en | 44.0 | 0.590 |
Helsinki-NLP/opus-mt-zne-sv
80dea0c78d7a8eb2647fc6e2aa17aeef46c682a6
2021-09-11T10:53:18.000Z
[ "pytorch", "marian", "text2text-generation", "zne", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zne-sv
20
null
transformers
8,297
--- tags: - translation license: apache-2.0 --- ### opus-mt-zne-sv * source languages: zne * target languages: sv * OPUS readme: [zne-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.sv | 25.2 | 0.425 |
IlyaGusev/gen_title_tg_bottleneck_encoder
65142ed360a292834364ffbddf12648956c35401
2021-05-18T21:08:31.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
IlyaGusev
null
IlyaGusev/gen_title_tg_bottleneck_encoder
20
null
transformers
8,298
Entry not found
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
6a55108f19f038fbde9fb430d0da009669698bbf
2021-12-15T16:50:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Jeska
null
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
20
null
transformers
8,299
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 This model is a fine-tuned version of [outputDAQonly09/](https://huggingface.co/outputDAQonly09/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4978 - Accuracy: 0.9031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 330 | 3.9692 | 0.2249 | | 4.3672 | 2.0 | 660 | 3.1312 | 0.4031 | | 4.3672 | 3.0 | 990 | 2.5068 | 0.5658 | | 3.1495 | 4.0 | 1320 | 2.0300 | 0.6600 | | 2.2491 | 5.0 | 1650 | 1.6517 | 0.7450 | | 2.2491 | 6.0 | 1980 | 1.3604 | 0.7943 | | 1.622 | 7.0 | 2310 | 1.1328 | 0.8327 | | 1.1252 | 8.0 | 2640 | 0.9484 | 0.8611 | | 1.1252 | 9.0 | 2970 | 0.8212 | 0.8757 | | 0.7969 | 10.0 | 3300 | 0.7243 | 0.8830 | | 0.5348 | 11.0 | 3630 | 0.6597 | 0.8867 | | 0.5348 | 12.0 | 3960 | 0.5983 | 0.8857 | | 0.3744 | 13.0 | 4290 | 0.5635 | 0.8976 | | 0.2564 | 14.0 | 4620 | 0.5437 | 0.8985 | | 0.2564 | 15.0 | 4950 | 0.5124 | 0.9013 | | 0.1862 | 16.0 | 5280 | 0.5074 | 0.9022 | | 0.1349 | 17.0 | 5610 | 0.5028 | 0.9049 | | 0.1349 | 18.0 | 5940 | 0.4876 | 0.9077 | | 0.0979 | 19.0 | 6270 | 0.4971 | 0.9049 | | 0.0763 | 20.0 | 6600 | 0.4941 | 0.9022 | | 0.0763 | 21.0 | 6930 | 0.4957 | 0.9049 | | 0.0602 | 22.0 | 7260 | 0.4989 | 0.9049 | | 0.0504 | 23.0 | 7590 | 0.4959 | 0.9040 | | 0.0504 | 24.0 | 7920 | 0.4944 | 0.9031 | | 0.0422 | 25.0 | 8250 | 0.4985 | 0.9040 | | 0.0379 | 26.0 | 8580 | 0.4970 | 0.9049 | | 0.0379 | 27.0 | 8910 | 0.4949 | 0.9040 | | 0.0351 | 28.0 | 9240 | 0.4971 | 0.9040 | | 0.0321 | 29.0 | 9570 | 0.4967 | 0.9031 | | 0.0321 | 30.0 | 9900 | 0.4978 | 0.9031 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3