modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
aspis/data2vec-text-finetuned-squad2
168c261c73222cb3e1988c9f2c8ff0b7f5b2cd1b
2022-07-05T20:03:52.000Z
[ "pytorch", "tensorboard", "data2vec-text", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
aspis
null
aspis/data2vec-text-finetuned-squad2
22
null
transformers
8,100
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: data2vec-text-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-finetuned-squad2 This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0173 | 1.0 | 8239 | 0.9629 | | 0.7861 | 2.0 | 16478 | 1.0098 | | 0.6402 | 3.0 | 24717 | 1.1044 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
akhisreelibra/mt5-small-finetuned-amazon-en-es
c000dd436ace73d04608af84d3d53ff8af1f6e2a
2022-07-05T16:04:31.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
akhisreelibra
null
akhisreelibra/mt5-small-finetuned-amazon-en-es
22
null
transformers
8,101
PrimeQA/tapas-based-tableqa-wikisql-lookup
6fdf82954f7b8ec19079ec525809be1966c0dd70
2022-07-09T18:28:41.000Z
[ "pytorch", "tapas", "table-question-answering", "arxiv:2004.02349", "transformers", "license:apache-2.0" ]
table-question-answering
false
PrimeQA
null
PrimeQA/tapas-based-tableqa-wikisql-lookup
22
null
transformers
8,102
--- license: apache-2.0 --- # Model description This is an [tapas-base](https://huggingface.co/google/tapas-base) model, trained on the lookup queries of [wikisql](https://huggingface.co/datasets/wikisql) dataset. It was trained to take tables and questions as input to extract answers from the table. # Overview *Language model*: tapas-base \ *Language*: English\ *Task*: Table Question Answering \ *Data*: WikiSQL # Intented use and limitations One can use this model to predict answers for natural language queries given a table. Biases associated with pre-training of tapas-base and wikisql dataset may be present. ## Usage One can use this model directly in the [PrimeQA](https://github.com/primeqa/primeqa) framework as in this example [notebook](https://github.com/primeqa/primeqa/blob/tableqa_tapas/notebooks/tableqa/tableqa_inference.ipynb). ## Citation ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```
KevinChoi/dpr-question_encoder-klue-roberta-base
b3ee4d28023018d06a09a9b5106a63f7d46180f0
2022-07-06T03:52:47.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KevinChoi
null
KevinChoi/dpr-question_encoder-klue-roberta-base
22
null
transformers
8,103
Entry not found
sgugger/test-dynamic-pipeline
d895845216b0915a68d360931b2b635fa6276f1f
2022-07-06T22:23:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
sgugger
null
sgugger/test-dynamic-pipeline
22
null
transformers
8,104
Entry not found
Manishkalra/discourse_classification
0e4021b553e6c213a6c593baa3732199675bfc9a
2022-07-20T09:48:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Manishkalra
null
Manishkalra/discourse_classification
22
null
transformers
8,105
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: discourse_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # discourse_classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7639 - Accuracy: 0.6649 - F1: 0.6649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7565 | 1.0 | 1839 | 0.7589 | 0.6635 | 0.6635 | | 0.6693 | 2.0 | 3678 | 0.7639 | 0.6649 | 0.6649 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
NAACL2022/spider-nq-ctx-encoder
421284fcf5d863bfe4408d2bd55bbdc263892ae3
2022-07-09T19:20:32.000Z
[ "pytorch", "dpr", "arxiv:2112.07708", "transformers" ]
null
false
NAACL2022
null
NAACL2022/spider-nq-ctx-encoder
22
4
transformers
8,106
# Spider-NQ: Context Encoder This is the context encoder of the model fine-tuned on Natural Questions (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708). ## Usage We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both. **Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token type ids are all 0-s. An example usage: ```python from transformers import AutoTokenizer, DPRContextEncoder tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-nq-ctx-encoder") model = DPRContextEncoder.from_pretrained("NAACL2022/spider-nq-ctx-encoder") title = "Sauron" context = "Sauron is the title character and main antagonist of J. R. R. Tolkien's \"The Lord of the Rings\"." input_dict = tokenizer(title, context, return_tensors="pt") del input_dict["token_type_ids"] outputs = model(**input_dict) ```
p2o/neuralmind-bert-base-portuguese-squad
d074a6cd5d1cb50e1e84ac887fb0e7181f518a79
2022-07-09T20:01:53.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
p2o
null
p2o/neuralmind-bert-base-portuguese-squad
22
null
transformers
8,107
Entry not found
sssingh/distilbert-base-uncased-emotion-finetuned
e5ccaeddda7b7983c122f9085cdc7edd4bea05c7
2022-07-16T08:15:11.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sssingh
null
sssingh/distilbert-base-uncased-emotion-finetuned
22
null
transformers
8,108
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: distilbert-base-uncased-emotion-finetuned results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9350215566385567 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-emotion-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1518 - Acc: 0.935 - F1: 0.9350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:| | 0.1734 | 1.0 | 250 | 0.1624 | 0.928 | 0.9279 | | 0.1187 | 2.0 | 500 | 0.1518 | 0.935 | 0.9350 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Hamzaaa/wav2vec2-base-finetuned-trained-3-languages
715134f2a40b8a6caf06b54f86b5b0d3f8b9204e
2022-07-11T16:38:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-finetuned-trained-3-languages
22
null
transformers
8,109
Entry not found
srini98/distilbert_finetuned-clinc
80bb3493ef2d30af920e6197400f4f965497bc99
2022-07-13T15:05:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
srini98
null
srini98/distilbert_finetuned-clinc
22
null
transformers
8,110
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert_finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7799 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2788 | 0.7371 | | 3.7785 | 2.0 | 636 | 1.8739 | 0.8358 | | 3.7785 | 3.0 | 954 | 1.1618 | 0.8923 | | 1.6926 | 4.0 | 1272 | 0.8647 | 0.9090 | | 0.9104 | 5.0 | 1590 | 0.7799 | 0.9161 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.11.6
jhonparra18/bert-base-uncased-cv-position-classifier
c446350fd81416e2481c4b7c2a8c9e728ebc7647
2022-07-13T18:10:30.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/bert-base-uncased-cv-position-classifier
22
null
transformers
8,111
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision model-index: - name: bert-base-uncased-cv-position-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-cv-position-classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6924 - Accuracy: {'accuracy': 0.5780703216130645} - F1: {'f1': 0.5780703216130645} - Precision: {'precision': 0.5780703216130645} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:| | 2.0336 | 1.14 | 1000 | 1.8856 | {'accuracy': 0.5259123479420097} | {'f1': 0.5259123479420097} | {'precision': 0.5259123479420097} | | 1.5348 | 2.28 | 2000 | 1.6924 | {'accuracy': 0.5780703216130645} | {'f1': 0.5780703216130645} | {'precision': 0.5780703216130645} | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.1+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
NimaBoscarino/efficientformer-l1-1000
4d215f01f9ec95e56bc7fb8224634f61e41a5873
2022-07-18T20:14:47.000Z
[ "pytorch", "en", "dataset:imagenet-1k", "arxiv:2206.01191", "timm", "mobile", "vison", "image-classification", "license:apache-2.0" ]
image-classification
false
NimaBoscarino
null
NimaBoscarino/efficientformer-l1-1000
22
null
timm
8,112
--- language: - en license: apache-2.0 library_name: timm tags: - mobile - vison - image-classification datasets: - imagenet-1k metrics: - accuracy --- # EfficientFormer-L1 ## Table of Contents - [EfficientFormer-L1](#-model_id--defaultmymodelname-true) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [How to Get Started with the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use](#downstream-use) - [Misuse and Out-of-scope Use](#misuse-and-out-of-scope-use) - [Limitations and Biases](#limitations-and-biases) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation Results](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Citation Information](#citation-information) <model_details> ## Model Details <!-- Give an overview of your model, the relevant research paper, who trained it, etc. --> EfficientFormer-L1, developed by [Snap Research](https://github.com/snap-research), is one of three EfficientFormer models. The EfficientFormer models were released as part of an effort to prove that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance. This checkpoint of EfficientFormer-L1 was trained for 1000 epochs. - Developed by: Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren - Language(s): English - License: This model is licensed under the apache-2.0 license - Resources for more information: - [Research Paper](https://arxiv.org/abs/2206.01191) - [GitHub Repo](https://github.com/snap-research/EfficientFormer/) </model_details> <how_to_start> ## How to Get Started with the Model Use the code below to get started with the model. ```python # A nice code snippet here that describes how to use the model... ``` </how_to_start> <uses> ## Uses #### Direct Use This model can be used for image classification and semantic segmentation. On mobile devices (the model was tested on iPhone 12), the CoreML checkpoints will perform these tasks with low latency. <Limitations_and_Biases> ## Limitations and Biases Though most designs in EfficientFormer are general-purposed, e.g., dimension- consistent design and 4D block with CONV-BN fusion, the actual speed of EfficientFormer may vary on other platforms. For instance, if GeLU is not well supported while HardSwish is efficiently implemented on specific hardware and compiler, the operator may need to be modified accordingly. The proposed latency-driven slimming is simple and fast. However, better results may be achieved if search cost is not a concern and an enumeration-based brute search is performed. Since the model was trained on Imagenet-1K, the [biases embedded in that dataset](https://huggingface.co/datasets/imagenet-1k#considerations-for-using-the-data) will be reflected in the EfficientFormer models. </Limitations_and_Biases> <Training> ## Training #### Training Data This model was trained on ImageNet-1K. See the [data card](https://huggingface.co/datasets/imagenet-1k) for additional information. #### Training Procedure * Parameters: 12.3 M * GMACs: 1.3 * Train. Epochs: 1000 Trained on a cluster with NVIDIA A100 and V100 GPUs. </Training> <Eval_Results> ## Evaluation Results Top-1 Accuracy: 80.2% on ImageNet 10K </Eval_Results> <Cite> ## Citation Information ```bibtex @article{li2022efficientformer, title={EfficientFormer: Vision Transformers at MobileNet Speed}, author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian}, journal={arXiv preprint arXiv:2206.01191}, year={2022} } ``` </Cite>
Team-PIXEL/pixel-base-finetuned-conll2003-en
3dd353a6df09737aff194d2b36dbec67218a4b3b
2022-07-15T03:12:42.000Z
[ "pytorch", "pixel", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-conll2003-en
22
null
transformers
8,113
Entry not found
aalbertini1990/autotrain-first-test-html-1136241677
e19b7e4367b2d20f7ca4525c490a74ff7f6d7aa0
2022-07-16T21:16:30.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:aalbertini1990/autotrain-data-first-test-html", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
aalbertini1990
null
aalbertini1990/autotrain-first-test-html-1136241677
22
null
transformers
8,114
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - aalbertini1990/autotrain-data-first-test-html co2_eq_emissions: 19.49742293318862 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1136241677 - CO2 Emissions (in grams): 19.49742293318862 ## Validation Metrics - Loss: 0.18860992789268494 - Rouge1: 84.2283 - Rouge2: 80.2825 - RougeL: 83.9066 - RougeLsum: 83.9129 - Gen Len: 58.3175 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aalbertini1990/autotrain-first-test-html-1136241677 ```
koushikn/segformer-finetuned-Maize-10k-steps-sem
3bedd986d2e9e3a7d6f4eacf9cacd102e1dbbcf2
2022-07-17T12:52:45.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "image-segmentation", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
koushikn
null
koushikn/segformer-finetuned-Maize-10k-steps-sem
22
null
transformers
8,115
--- license: apache-2.0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: segformer-finetuned-Maize-10k-steps-sem results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-finetuned-Maize-10k-steps-sem This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the koushikn/Maize_sem_seg dataset. It achieves the following results on the evaluation set: - Loss: 0.0756 - Mean Iou: 0.9172 - Mean Accuracy: 0.9711 - Overall Accuracy: 0.9804 - Accuracy Background: 0.9834 - Accuracy Maize: 0.9588 - Iou Background: 0.9779 - Iou Maize: 0.8566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Maize | Iou Background | Iou Maize | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| | 0.0529 | 1.0 | 678 | 69.3785 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.3755 | 2.0 | 1356 | 0.9455 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0603 | 3.0 | 2034 | 0.0920 | 0.8356 | 0.8602 | 0.9641 | 0.9976 | 0.7227 | 0.9607 | 0.7106 | | 0.0341 | 4.0 | 2712 | 24.6203 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0332 | 5.0 | 3390 | 101.5635 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0331 | 6.0 | 4068 | 9.6824 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0302 | 7.0 | 4746 | 260.7923 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0305 | 8.0 | 5424 | 172.8153 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0313 | 9.0 | 6102 | 304.2714 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0301 | 10.0 | 6780 | 547.2355 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.03 | 11.0 | 7458 | 224.2607 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0285 | 12.0 | 8136 | 116.3474 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0284 | 13.0 | 8814 | 96.8429 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.0281 | 14.0 | 9492 | 54.2593 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | | 0.028 | 14.75 | 10000 | 0.0756 | 0.9172 | 0.9711 | 0.9804 | 0.9834 | 0.9588 | 0.9779 | 0.8566 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
kabelomalapane/En-Nso_update
347016caba50c0d083d7ea198605bd9a3d61e348
2022-07-19T12:44:05.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
kabelomalapane
null
kabelomalapane/En-Nso_update
22
null
transformers
8,116
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Nso_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Nso_update This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-nso](https://huggingface.co/Helsinki-NLP/opus-mt-en-nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8782 - Bleu: 31.2967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 4 | 7.2950 | 0.0088 | | No log | 2.0 | 8 | 5.9614 | 0.6848 | | No log | 3.0 | 12 | 5.0695 | 4.9050 | | No log | 4.0 | 16 | 4.5523 | 9.1757 | | No log | 5.0 | 20 | 4.2355 | 10.4744 | | No log | 6.0 | 24 | 4.0106 | 14.6163 | | No log | 7.0 | 28 | 3.8427 | 15.8379 | | No log | 8.0 | 32 | 3.7264 | 15.6158 | | No log | 9.0 | 36 | 3.6338 | 16.3562 | | No log | 10.0 | 40 | 3.5555 | 21.1011 | | No log | 11.0 | 44 | 3.4839 | 21.5754 | | No log | 12.0 | 48 | 3.4180 | 22.7155 | | No log | 13.0 | 52 | 3.3620 | 23.1592 | | No log | 14.0 | 56 | 3.3115 | 24.3886 | | No log | 15.0 | 60 | 3.2676 | 24.1278 | | No log | 16.0 | 64 | 3.2285 | 24.2245 | | No log | 17.0 | 68 | 3.1974 | 23.9716 | | No log | 18.0 | 72 | 3.1695 | 24.2395 | | No log | 19.0 | 76 | 3.1441 | 23.3442 | | No log | 20.0 | 80 | 3.1235 | 21.3332 | | No log | 21.0 | 84 | 3.1029 | 21.8410 | | No log | 22.0 | 88 | 3.0849 | 22.4065 | | No log | 23.0 | 92 | 3.0666 | 22.3016 | | No log | 24.0 | 96 | 3.0534 | 22.9616 | | No log | 25.0 | 100 | 3.0423 | 23.3971 | | No log | 26.0 | 104 | 3.0306 | 23.5443 | | No log | 27.0 | 108 | 3.0183 | 23.3348 | | No log | 28.0 | 112 | 3.0051 | 23.4077 | | No log | 29.0 | 116 | 2.9947 | 24.1791 | | No log | 30.0 | 120 | 2.9855 | 24.1265 | | No log | 31.0 | 124 | 2.9777 | 23.9860 | | No log | 32.0 | 128 | 2.9691 | 24.7301 | | No log | 33.0 | 132 | 2.9597 | 25.1896 | | No log | 34.0 | 136 | 2.9521 | 24.5893 | | No log | 35.0 | 140 | 2.9457 | 24.5229 | | No log | 36.0 | 144 | 2.9409 | 24.6232 | | No log | 37.0 | 148 | 2.9354 | 24.2830 | | No log | 38.0 | 152 | 2.9322 | 26.1404 | | No log | 39.0 | 156 | 2.9306 | 25.9425 | | No log | 40.0 | 160 | 2.9288 | 30.5432 | | No log | 41.0 | 164 | 2.9261 | 29.4635 | | No log | 42.0 | 168 | 2.9215 | 28.4787 | | No log | 43.0 | 172 | 2.9182 | 28.9082 | | No log | 44.0 | 176 | 2.9151 | 29.3171 | | No log | 45.0 | 180 | 2.9132 | 28.3602 | | No log | 46.0 | 184 | 2.9126 | 28.9583 | | No log | 47.0 | 188 | 2.9104 | 26.0269 | | No log | 48.0 | 192 | 2.9086 | 29.6904 | | No log | 49.0 | 196 | 2.9052 | 29.2881 | | No log | 50.0 | 200 | 2.9020 | 29.6063 | | No log | 51.0 | 204 | 2.8994 | 29.5224 | | No log | 52.0 | 208 | 2.8960 | 29.3913 | | No log | 53.0 | 212 | 2.8930 | 30.5451 | | No log | 54.0 | 216 | 2.8889 | 32.1862 | | No log | 55.0 | 220 | 2.8869 | 31.9423 | | No log | 56.0 | 224 | 2.8859 | 30.7244 | | No log | 57.0 | 228 | 2.8846 | 30.8172 | | No log | 58.0 | 232 | 2.8837 | 30.5376 | | No log | 59.0 | 236 | 2.8826 | 31.1454 | | No log | 60.0 | 240 | 2.8813 | 30.9049 | | No log | 61.0 | 244 | 2.8802 | 30.6363 | | No log | 62.0 | 248 | 2.8802 | 31.3739 | | No log | 63.0 | 252 | 2.8799 | 30.9776 | | No log | 64.0 | 256 | 2.8793 | 29.8283 | | No log | 65.0 | 260 | 2.8795 | 29.6912 | | No log | 66.0 | 264 | 2.8804 | 29.7654 | | No log | 67.0 | 268 | 2.8810 | 29.1586 | | No log | 68.0 | 272 | 2.8822 | 28.8888 | | No log | 69.0 | 276 | 2.8819 | 29.7222 | | No log | 70.0 | 280 | 2.8810 | 29.9932 | | No log | 71.0 | 284 | 2.8811 | 30.2492 | | No log | 72.0 | 288 | 2.8802 | 29.9644 | | No log | 73.0 | 292 | 2.8791 | 30.3378 | | No log | 74.0 | 296 | 2.8790 | 29.8055 | | No log | 75.0 | 300 | 2.8794 | 29.0100 | | No log | 76.0 | 304 | 2.8795 | 30.7968 | | No log | 77.0 | 308 | 2.8790 | 31.5414 | | No log | 78.0 | 312 | 2.8783 | 31.5060 | | No log | 79.0 | 316 | 2.8775 | 31.4376 | | No log | 80.0 | 320 | 2.8766 | 31.6005 | | No log | 81.0 | 324 | 2.8767 | 31.3697 | | No log | 82.0 | 328 | 2.8769 | 31.6108 | | No log | 83.0 | 332 | 2.8770 | 31.4214 | | No log | 84.0 | 336 | 2.8772 | 31.6039 | | No log | 85.0 | 340 | 2.8776 | 32.0254 | | No log | 86.0 | 344 | 2.8779 | 31.4024 | | No log | 87.0 | 348 | 2.8783 | 32.0279 | | No log | 88.0 | 352 | 2.8786 | 31.8914 | | No log | 89.0 | 356 | 2.8788 | 31.6500 | | No log | 90.0 | 360 | 2.8791 | 31.7698 | | No log | 91.0 | 364 | 2.8793 | 31.6137 | | No log | 92.0 | 368 | 2.8793 | 31.8244 | | No log | 93.0 | 372 | 2.8790 | 31.5626 | | No log | 94.0 | 376 | 2.8786 | 31.3743 | | No log | 95.0 | 380 | 2.8785 | 31.4160 | | No log | 96.0 | 384 | 2.8784 | 31.6682 | | No log | 97.0 | 388 | 2.8782 | 31.8335 | | No log | 98.0 | 392 | 2.8782 | 31.7143 | | No log | 99.0 | 396 | 2.8782 | 31.7143 | | No log | 100.0 | 400 | 2.8782 | 31.7143 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
erikanesse/test-trainer-gbb-3
fd2648e4ae31389a3331bb29a115d1ad71309e31
2022-07-19T21:12:49.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
erikanesse
null
erikanesse/test-trainer-gbb-3
22
1
transformers
8,117
--- tags: - generated_from_trainer model-index: - name: test-trainer-gbb-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer-gbb-3 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
benoitb/nkbert
5037b8c2586e15e58345ae21fb7983597c291de1
2022-07-21T03:42:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
benoitb
null
benoitb/nkbert
22
null
transformers
8,118
--- license: mit --- ## NKBert A BERT model finetuned from a <a href="https://github.com/SKTBrain/KoBERT">KoBERT</a> base on a dataset of North Korean data.
eclat12450/fine-tuned-NSPKCbert-12
215c888ee997ce2abccb99ef378de9b57d81186b
2022-07-27T06:22:04.000Z
[ "pytorch", "bert", "next-sentence-prediction", "transformers" ]
null
false
eclat12450
null
eclat12450/fine-tuned-NSPKCbert-12
22
null
transformers
8,119
Entry not found
jungjongho/wav2vec2-large-xlsr-korean-demo-colab
14fb4f4e8ef1ee1b849e9897a3eaf7e5300a41c6
2022-07-28T22:43:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jungjongho
null
jungjongho/wav2vec2-large-xlsr-korean-demo-colab
22
null
transformers
8,120
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-korean-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-korean-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4534 - Wer: 0.3272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 17.4809 | 0.65 | 400 | 4.6145 | 1.0 | | 4.4863 | 1.29 | 800 | 4.3819 | 1.0 | | 4.2921 | 1.94 | 1200 | 4.1163 | 0.9970 | | 2.7971 | 2.59 | 1600 | 1.5376 | 0.8379 | | 1.5061 | 3.24 | 2000 | 1.0354 | 0.7299 | | 1.1123 | 3.88 | 2400 | 0.7909 | 0.6418 | | 0.9037 | 4.53 | 2800 | 0.6345 | 0.5698 | | 0.779 | 5.18 | 3200 | 0.5909 | 0.5571 | | 0.6834 | 5.83 | 3600 | 0.5339 | 0.5063 | | 0.6287 | 6.47 | 4000 | 0.5326 | 0.4954 | | 0.5518 | 7.12 | 4400 | 0.4930 | 0.4607 | | 0.5315 | 7.77 | 4800 | 0.4577 | 0.4451 | | 0.4867 | 8.41 | 5200 | 0.4547 | 0.4382 | | 0.4543 | 9.06 | 5600 | 0.4581 | 0.4371 | | 0.4089 | 9.71 | 6000 | 0.4387 | 0.4258 | | 0.3893 | 10.36 | 6400 | 0.4300 | 0.4100 | | 0.3751 | 11.0 | 6800 | 0.4265 | 0.4137 | | 0.3333 | 11.65 | 7200 | 0.4294 | 0.4011 | | 0.3039 | 12.3 | 7600 | 0.4187 | 0.3912 | | 0.2974 | 12.94 | 8000 | 0.4079 | 0.3805 | | 0.2658 | 13.59 | 8400 | 0.4273 | 0.3864 | | 0.2676 | 14.24 | 8800 | 0.4103 | 0.3734 | | 0.2466 | 14.89 | 9200 | 0.4122 | 0.3701 | | 0.2282 | 15.53 | 9600 | 0.4176 | 0.3650 | | 0.2186 | 16.18 | 10000 | 0.4199 | 0.3632 | | 0.2132 | 16.83 | 10400 | 0.4159 | 0.3671 | | 0.1962 | 17.48 | 10800 | 0.4321 | 0.3641 | | 0.1922 | 18.12 | 11200 | 0.4300 | 0.3535 | | 0.1827 | 18.77 | 11600 | 0.4244 | 0.3596 | | 0.1709 | 19.42 | 12000 | 0.4191 | 0.3518 | | 0.157 | 20.06 | 12400 | 0.4308 | 0.3496 | | 0.147 | 20.71 | 12800 | 0.4360 | 0.3457 | | 0.1502 | 21.36 | 13200 | 0.4329 | 0.3431 | | 0.1448 | 22.01 | 13600 | 0.4334 | 0.3432 | | 0.1407 | 22.65 | 14000 | 0.4392 | 0.3440 | | 0.1342 | 23.3 | 14400 | 0.4418 | 0.3399 | | 0.1325 | 23.95 | 14800 | 0.4360 | 0.3383 | | 0.1183 | 24.6 | 15200 | 0.4521 | 0.3359 | | 0.1174 | 25.24 | 15600 | 0.4426 | 0.3322 | | 0.1137 | 25.89 | 16000 | 0.4438 | 0.3356 | | 0.1129 | 26.54 | 16400 | 0.4547 | 0.3347 | | 0.1077 | 27.18 | 16800 | 0.4482 | 0.3300 | | 0.0999 | 27.83 | 17200 | 0.4491 | 0.3281 | | 0.0978 | 28.48 | 17600 | 0.4533 | 0.3281 | | 0.0997 | 29.13 | 18000 | 0.4542 | 0.3283 | | 0.0908 | 29.77 | 18400 | 0.4534 | 0.3272 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ParkSaeroyi/distilroberta-base-finetuned-wikitext2
60e608ccb626feb9e47ed089be3a387d079749cc
2022-07-29T08:10:16.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ParkSaeroyi
null
ParkSaeroyi/distilroberta-base-finetuned-wikitext2
22
null
transformers
8,121
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.3687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 8.8622 | | No log | 2.0 | 12 | 8.4576 | | No log | 3.0 | 18 | 8.4412 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Anon25/DialoGPT-Medium-BaymaxBot
7505e67fb3bcb7da4c00043f45d3af5fc8e45db7
2022-07-29T14:58:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Anon25
null
Anon25/DialoGPT-Medium-BaymaxBot
22
null
transformers
8,122
--- tags: - conversational --- # DialoGPT BaymaxBot
A-bhimany-u08/bert-base-cased-qqp
b5e8848d0676e40a2b8a2f4b0a3a3073e581d3e6
2021-05-23T06:58:51.000Z
[ "pytorch", "bert", "text-classification", "dataset:qqp", "transformers" ]
text-classification
false
A-bhimany-u08
null
A-bhimany-u08/bert-base-cased-qqp
21
null
transformers
8,123
--- inference: False datasets: - qqp --- bert-base-cased model trained on quora question pair dataset. The task requires to predict whether the two given sentences (or questions) are `not_duplicate` (label 0) or `duplicate` (label 1). The model achieves 89% evaluation accuracy
Aleksandar/bert-srb-ner-setimes
a06811745221ba5ede99506829f2b28bcc6eac66
2021-09-22T12:19:23.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
Aleksandar
null
Aleksandar/bert-srb-ner-setimes
21
null
transformers
8,124
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: bert-srb-ner-setimes results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9645112274185379 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-srb-ner-setimes This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1955 - Precision: 0.8229 - Recall: 0.8465 - F1: 0.8345 - Accuracy: 0.9645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 104 | 0.2281 | 0.6589 | 0.7001 | 0.6789 | 0.9350 | | No log | 2.0 | 208 | 0.1833 | 0.7105 | 0.7694 | 0.7388 | 0.9470 | | No log | 3.0 | 312 | 0.1573 | 0.7461 | 0.7778 | 0.7616 | 0.9525 | | No log | 4.0 | 416 | 0.1489 | 0.7665 | 0.8091 | 0.7872 | 0.9557 | | 0.1898 | 5.0 | 520 | 0.1445 | 0.7881 | 0.8327 | 0.8098 | 0.9587 | | 0.1898 | 6.0 | 624 | 0.1473 | 0.7913 | 0.8316 | 0.8109 | 0.9601 | | 0.1898 | 7.0 | 728 | 0.1558 | 0.8101 | 0.8347 | 0.8222 | 0.9620 | | 0.1898 | 8.0 | 832 | 0.1616 | 0.8026 | 0.8302 | 0.8162 | 0.9612 | | 0.1898 | 9.0 | 936 | 0.1716 | 0.8127 | 0.8409 | 0.8266 | 0.9631 | | 0.0393 | 10.0 | 1040 | 0.1751 | 0.8140 | 0.8369 | 0.8253 | 0.9628 | | 0.0393 | 11.0 | 1144 | 0.1775 | 0.8096 | 0.8420 | 0.8255 | 0.9626 | | 0.0393 | 12.0 | 1248 | 0.1763 | 0.8161 | 0.8386 | 0.8272 | 0.9636 | | 0.0393 | 13.0 | 1352 | 0.1949 | 0.8259 | 0.8400 | 0.8329 | 0.9634 | | 0.0393 | 14.0 | 1456 | 0.1842 | 0.8205 | 0.8420 | 0.8311 | 0.9642 | | 0.0111 | 15.0 | 1560 | 0.1862 | 0.8160 | 0.8493 | 0.8323 | 0.9646 | | 0.0111 | 16.0 | 1664 | 0.1989 | 0.8176 | 0.8367 | 0.8270 | 0.9627 | | 0.0111 | 17.0 | 1768 | 0.1945 | 0.8246 | 0.8409 | 0.8327 | 0.9638 | | 0.0111 | 18.0 | 1872 | 0.1997 | 0.8270 | 0.8426 | 0.8347 | 0.9634 | | 0.0111 | 19.0 | 1976 | 0.1917 | 0.8258 | 0.8491 | 0.8373 | 0.9651 | | 0.0051 | 20.0 | 2080 | 0.1955 | 0.8229 | 0.8465 | 0.8345 | 0.9645 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
CenIA/bert-base-spanish-wwm-uncased-finetuned-pos
1b3e20ce7cd4507a1b9b52f47dc2f901b8f60536
2021-12-18T00:34:15.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-pos
21
null
transformers
8,125
Entry not found
Contrastive-Tension/RoBerta-Large-CT-STSb
43813afe01041a34f21aff389f44ae7b5a65feec
2021-05-20T11:41:18.000Z
[ "pytorch", "tf", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Contrastive-Tension
null
Contrastive-Tension/RoBerta-Large-CT-STSb
21
null
transformers
8,126
Entry not found
DanL/scientific-challenges-and-directions
d86bd50d2b94e0b592b752b2b1c1674ddea5f65d
2022-01-19T12:47:22.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:DanL/scientific-challenges-and-directions-dataset", "arxiv:2108.13751", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
DanL
null
DanL/scientific-challenges-and-directions
21
null
transformers
8,127
--- tags: - generated_from_trainer - text-classification language: - en datasets: - DanL/scientific-challenges-and-directions-dataset widget: - text: "severe atypical cases of pneumonia emerged and quickly spread worldwide." example_title: "challenge" - text: "we speculate that studying IL-6 will be beneficial." example_title: "direction" - text: "in future studies, both PRRs should be tested as the cause for multiple deaths." example_title: "both" - text: "IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots." example_title: "neither" metrics: - precision - recall - f1 model-index: - name: scientific-challenges-and-directions results: [] --- # scientific-challenges-and-directions We present a novel resource to help scientists and medical professionals discover challenges and potential directions across scientific literature, focusing on a broad corpus pertaining to the COVID-19 pandemic and related historical research. At a high level, the _challenges_ and _directions_ are defined as follows: * **Challenge**: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or knowledge gap. * **Research direction**: A sentence mentioning suggestions or needs for further research, hypotheses, speculations, indications or hints that an issue is worthy of exploration. * This model here is described in our paper: [A Search Engine for Discovery of Scientific Challenges and Directions](https://arxiv.org/abs/2108.13751) (though we've upgraded the infrastructure since the paper was released - there are slight differences in the results). * Our dataset can be found [here](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset). * Please cite our paper if you use our datasets or models in your project. See the [BibTeX](#citation). * Feel free to [email us](#contact-us). * Also, check out [our search engine](https://challenges.apps.allenai.org/), as an example application. ## Model description This model is a fine-tuned version of [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [scientific-challenges-and-directions-dataset](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset), designed for multi-label text classification. ## Training and evaluation data The scientific-challenges-and-directions model is trained based on a dataset that is a collection of 2894 sentences and their surrounding contexts, from 1786 full-text papers in the CORD-19 corpus, labeled for classification of challenges and directions by expert annotators with biomedical and bioNLP backgrounds. For full details on the train/test/split of the data see section 3.1 in our [paper](https://arxiv.org/abs/2108.13751) ## Example notebook We include an example notebook that uses the model for inference in our [repo](https://github.com/Dan-La/scientific-challenges-and-directions). See `Inference_Notebook.ipynb`. A training notebook is also included. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning rate: 2e-05 - train batch size: 8 - eval batch size: 4 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr scheduler type: linear - lr scheduler warmup steps: 500 - num epochs: 30 ### Training results The achieves the following results on the test set: - Precision Challenge: 0.768719 - Recall Challenge: 0.780405 - F1 Challenge: 0.774518 - Precision Direction: 0.758112 - Recall Direction: 0.774096 - F1 Direction: 0.766021 - Precision (micro avg. on both labels): 0.764894 - Recall (micro avg. on both labels): 0.778139 - F1 (micro avg. on both labels): 0.771459 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Citation If using our dataset and models, please cite: ``` @misc{lahav2021search, title={A Search Engine for Discovery of Scientific Challenges and Directions}, author={Dan Lahav and Jon Saad Falcon and Bailey Kuehl and Sophie Johnson and Sravanthi Parasa and Noam Shomron and Duen Horng Chau and Diyi Yang and Eric Horvitz and Daniel S. Weld and Tom Hope}, year={2021}, eprint={2108.13751}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact us Please don't hesitate to reach out. **Email:** `[email protected]`,`[email protected]`.
EMBEDDIA/sloberta-tweetsentiment
2cbfdc5fb6cdd8b5400eb33153c68ac3072ab726
2021-07-09T14:27:28.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
EMBEDDIA
null
EMBEDDIA/sloberta-tweetsentiment
21
null
transformers
8,128
Entry not found
EasthShin/Klue-CommonSense-model
4f01be2e2b74f65ba541d9a75839008e6fd98b59
2021-07-12T10:01:36.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
EasthShin
null
EasthShin/Klue-CommonSense-model
21
null
transformers
8,129
#### Klue-bert base for Common Sense QA #### Klue-CommonSense-model DEMO: [Ainize DEMO](https://main-klue-common-sense-qa-east-h-shin.endpoint.ainize.ai/) #### Klue-CommonSense-model API: [Ainize API](https://ainize.ai/EastHShin/Klue-CommonSense_QA?branch=main) ### Overview **Language model**: klue/bert-base <br> **Language**: Korean <br> **Downstream-task**: Extractive QA <br> **Training data**: Common sense Data from [Mindslab](https://mindslab.ai:8080/kr/company) <br> **Eval data**: Common sense Data from [Mindslab](https://mindslab.ai:8080/kr/company) <br> **Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Klue-CommonSense-workspace) <br> ### Usage ### In Transformers ``` from transformers import AutoModelForQuestionAnswering, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EasthShin/Klue-CommonSense-model") model = AutoModelForQuestionAnswering.from_pretrained("EasthShin/Klue-CommonSense-model") context = "your context" question = "your question" encodings = tokenizer(context, question, max_length=512, truncation=True, padding="max_length", return_token_type_ids=False) encodings = {key: torch.tensor([val]) for key, val in encodings.items()} input_ids = encodings["input_ids"] attention_mask = encodings["attention_mask"] pred = model(input_ids, attention_mask=attention_mask) start_logits, end_logits = pred.start_logits, pred.end_logits token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1) pred_ids = input_ids[0][token_start_index: token_end_index + 1] prediction = tokenizer.decode(pred_ids) ```
GKLMIP/bert-khmer-base-uncased-tokenized
8654291edec0db4592eb4b0db0eb34b7eccfc3fb
2021-07-31T03:07:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-khmer-base-uncased-tokenized
21
null
transformers
8,130
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GKLMIP/bert-myanmar-small-uncased
ed42175fd89ee3972cf4b4a706d9f463f23baf35
2021-10-11T04:59:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-myanmar-small-uncased
21
null
transformers
8,131
The Usage of tokenizer for Myanmar is same as Laos in https://github.com/GKLMIP/Pretrained-Models-For-Laos. If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Huang, Xiuwen and Cai, Xiaonan and Lin, Nankai", title="Pre-trained Models and Evaluation Data for the Myanmar Language", booktitle="The 28th International Conference on Neural Information Processing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
GPL/msmarco-distilbert-margin-mse
3fbae3e91e291b2472e58a9fff859a5e564f00a1
2021-12-15T04:10:19.000Z
[ "pytorch", "distilbert", "feature-extraction", "arxiv:2112.07577", "transformers" ]
feature-extraction
false
GPL
null
GPL/msmarco-distilbert-margin-mse
21
1
transformers
8,132
This is the zero-shot baseline model in the paper ["GPL: Generative Pseudo Labeling for Unsupervised Domain Adaptation of Dense Retrieval"](https://arxiv.org/abs/2112.07577) The training setup: 1. Start from `distilbert-base-uncased`; 2. Mine 50 hard negatives for each query on MS MARCO with `sentence-transformers/msmarco-distilbert-base-v3` and `sentence-transformers/msmarco-MiniLM-L-6-v3`; 3. Do Margin-MSE training on the tuples (including queries, gold relevant, and hard negatives) with the teacher model `cross-encoder/ms-marco-MiniLM-L-6-v2` for 70K steps with batch size 75, max. sequence-length 350.
Hate-speech-CNERG/dehatebert-mono-indonesian
08693d6cc64f7e7b3019b2a3abe3b1a9c8ca74c2
2021-05-18T20:33:24.000Z
[ "pytorch", "jax", "bert", "text-classification", "arxiv:2004.06465", "transformers" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/dehatebert-mono-indonesian
21
null
transformers
8,133
This model is used detecting **hatespeech** in **Indonesian language**. The mono in the name refers to the monolingual setting, where the model is trained using only Arabic language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.844494 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Helsinki-NLP/opus-mt-ceb-fr
90d773c1774988007f9fd8f44477de8d5ee310b6
2021-09-09T21:28:34.000Z
[ "pytorch", "marian", "text2text-generation", "ceb", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ceb-fr
21
null
transformers
8,134
--- tags: - translation license: apache-2.0 --- ### opus-mt-ceb-fr * source languages: ceb * target languages: fr * OPUS readme: [ceb-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ceb-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/ceb-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ceb.fr | 30.0 | 0.491 |
Helsinki-NLP/opus-mt-en-ha
36027da91d68364e34454ce37ce60d0a43671430
2021-09-09T21:35:46.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ha", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ha
21
null
transformers
8,135
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ha * source languages: en * target languages: ha * OPUS readme: [en-ha](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ha/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ha/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ha/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ha/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ha | 34.1 | 0.544 | | Tatoeba.en.ha | 17.6 | 0.498 |
Helsinki-NLP/opus-mt-en-ig
32e340a06fdff2e071d306a127d91b5fbb31c359
2021-09-09T21:36:12.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ig", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ig
21
null
transformers
8,136
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ig * source languages: en * target languages: ig * OPUS readme: [en-ig](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ig/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ig/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ig/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ig/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ig | 39.5 | 0.546 | | Tatoeba.en.ig | 3.8 | 0.297 |
Helsinki-NLP/opus-mt-es-swc
a75200fce67b931b7ec153baa31b9f56755429f5
2021-09-09T21:44:57.000Z
[ "pytorch", "marian", "text2text-generation", "es", "swc", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-swc
21
null
transformers
8,137
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-swc * source languages: es * target languages: swc * OPUS readme: [es-swc](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-swc/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-swc/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-swc/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-swc/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.swc | 26.0 | 0.490 |
Helsinki-NLP/opus-mt-gil-en
c9d7eff5c31aff094d44707990b24e11358b7dfd
2021-09-09T21:59:03.000Z
[ "pytorch", "marian", "text2text-generation", "gil", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gil-en
21
null
transformers
8,138
--- tags: - translation license: apache-2.0 --- ### opus-mt-gil-en * source languages: gil * target languages: en * OPUS readme: [gil-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.en | 36.0 | 0.522 |
Helsinki-NLP/opus-mt-lus-en
f69813f841d2399ba35b514a9377a64aff188fc6
2021-09-10T13:56:48.000Z
[ "pytorch", "marian", "text2text-generation", "lus", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lus-en
21
null
transformers
8,139
--- tags: - translation license: apache-2.0 --- ### opus-mt-lus-en * source languages: lus * target languages: en * OPUS readme: [lus-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lus-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lus-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lus-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lus-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lus.en | 37.0 | 0.534 |
Helsinki-NLP/opus-mt-nyk-en
635c9eeb90b4d5fb0674da39f756b46981bbc195
2021-09-10T13:59:59.000Z
[ "pytorch", "marian", "text2text-generation", "nyk", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nyk-en
21
null
transformers
8,140
--- tags: - translation license: apache-2.0 --- ### opus-mt-nyk-en * source languages: nyk * target languages: en * OPUS readme: [nyk-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nyk-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nyk-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nyk-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nyk-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nyk.en | 27.3 | 0.423 |
Helsinki-NLP/opus-mt-pon-en
f2e18a245014af64478edabce9c590c6ef049919
2021-09-10T14:01:30.000Z
[ "pytorch", "marian", "text2text-generation", "pon", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pon-en
21
null
transformers
8,141
--- tags: - translation license: apache-2.0 --- ### opus-mt-pon-en * source languages: pon * target languages: en * OPUS readme: [pon-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pon-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pon-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pon.en | 34.1 | 0.489 |
Helsinki-NLP/opus-mt-sm-en
75d732a3c9dcc01e3218d965fe0eda4a972775d3
2021-09-10T14:03:53.000Z
[ "pytorch", "marian", "text2text-generation", "sm", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sm-en
21
null
transformers
8,142
--- tags: - translation license: apache-2.0 --- ### opus-mt-sm-en * source languages: sm * target languages: en * OPUS readme: [sm-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sm-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sm-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sm-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sm-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sm.en | 36.1 | 0.520 |
Helsinki-NLP/opus-mt-tiv-en
6ec75c7fab0b64d880ab2370c6b672c4208e271d
2021-09-11T10:48:08.000Z
[ "pytorch", "marian", "text2text-generation", "tiv", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tiv-en
21
null
transformers
8,143
--- tags: - translation license: apache-2.0 --- ### opus-mt-tiv-en * source languages: tiv * target languages: en * OPUS readme: [tiv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tiv-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tiv-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tiv-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tiv-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tiv.en | 31.5 | 0.473 |
Helsinki-NLP/opus-mt-war-es
6a6f9fb2b0a5db968aa332d1924f6573889f610d
2021-09-11T10:51:54.000Z
[ "pytorch", "marian", "text2text-generation", "war", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-war-es
21
null
transformers
8,144
--- tags: - translation license: apache-2.0 --- ### opus-mt-war-es * source languages: war * target languages: es * OPUS readme: [war-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/war-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/war-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.war.es | 28.7 | 0.470 |
Jitin/romanized-malayalam
1ce63a6321b546686dfebfce8f70c01adbd5be0c
2021-05-20T11:58:42.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jitin
null
Jitin/romanized-malayalam
21
null
transformers
8,145
Entry not found
KoichiYasuoka/roberta-large-japanese-luw-upos
79973f2afb55e1a6b6ca01a745ba716ba74f4cec
2022-05-24T06:27:45.000Z
[ "pytorch", "roberta", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-large-japanese-luw-upos
21
null
transformers
8,146
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # roberta-large-japanese-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-japanese-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-large-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
LanceaKing/spkrec-ecapa-cnceleb
014d1d63fdbccd155fe30bce8459d33fea81290c
2022-01-08T09:27:18.000Z
[ "zh", "dataset:cnceleb", "arxiv:2106.04624", "speechbrain", "embeddings", "Speaker", "Verification", "Identification", "pytorch", "ECAPA", "TDNN", "license:apache-2.0" ]
null
false
LanceaKing
null
LanceaKing/spkrec-ecapa-cnceleb
21
1
speechbrain
8,147
--- language: "zh" thumbnail: tags: - speechbrain - embeddings - Speaker - Verification - Identification - pytorch - ECAPA - TDNN license: "apache-2.0" datasets: - cnceleb metrics: - EER --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Speaker Verification with ECAPA-TDNN embeddings on cnceleb This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain. The system can be used to extract speaker embeddings as well. It is trained on cnceleb 1+ cnceleb2 training data. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance on cnceleb1-test set(Cleaned) is: | Release | EER(%) | minDCF | |:-------------:|:--------------:|:--------------:| ## Pipeline description This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Compute your speaker embeddings ```python import torchaudio from speechbrain.pretrained import EncoderClassifier classifier = EncoderClassifier.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb") signal, fs =torchaudio.load('samples/audio_samples/example1.wav') embeddings = classifier.encode_batch(signal) ``` The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ### Perform Speaker Verification ```python from speechbrain.pretrained import SpeakerRecognition verification = SpeakerRecognition.from_hparams(source="LanceaKing/spkrec-ecapa-cnceleb", savedir="pretrained_models/spkrec-ecapa-cnceleb") score, prediction = verification.verify_files("speechbrain/spkrec-ecapa-cnceleb/example1.wav", "speechbrain/spkrec-ecapa-cnceleb/example2.flac") ``` The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (aa018540). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/LanceaKing/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/CNCeleb/SpeakerRec python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing ECAPA-TDNN ``` @inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and Fran莽ois Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
LilaBoualili/bert-sim-pair
e03568203cd506372323431ac462711969082076
2021-05-18T21:26:27.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/bert-sim-pair
21
null
transformers
8,148
At its core it uses an BERT-Base model (bert-base-uncased) fine-tuned on the MS MARCO passage classification task using the Sim-Pair marking strategy that highlights exact term matches between the query and the passage via marker tokens (#). It can be loaded using the TF/AutoModelForSequenceClassification classes. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
NoLawz/DialoGPT-medium-hagrid
c8b2bdebdc4cc87859abeb56336afbd909720f63
2021-08-27T04:32:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
NoLawz
null
NoLawz/DialoGPT-medium-hagrid
21
null
transformers
8,149
--- tags: - conversational --- # Hagrid DialoGPT medium model
PereLluis13/wav2vec2-large-xlsr-53-greek
1038521bc2c8994cb6778ff514fec91c388243f8
2021-07-05T16:44:41.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice", "dataset:CSS10", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/wav2vec2-large-xlsr-53-greek
21
null
transformers
8,150
--- language: el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. datasets: - common_voice #TODO: remove if you did not use the common voice dataset - CSS10 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Greek XLSR Wav2Vec2 Large 53 - CV + CSS10 #TODO: replace {human_readable_name} with a name of your model as it should appear on the leaderboard. It could be something like `Elgeish XLSR Wav2Vec2 Large 53` results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. type: common_voice args: el #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. metrics: - name: Test WER type: wer value: 20.89 #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value --- # Wav2Vec2-Large-XLSR-53-greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test") processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 20.89 % ## Training The Common Voice `train`, `validation`, and CSS10 datasets were used for training, added as `extra` split to the dataset. The sampling rate and format of the CSS10 files is different, hence the function `speech_file_to_array_fn` was changed to: ``` def speech_file_to_array_fn(batch): try: speech_array, sampling_rate = sf.read(batch["path"] + ".wav") except: speech_array, sampling_rate = librosa.load(batch["path"], sr = 16000, res_type='zero_order_hold') sf.write(batch["path"] + ".wav", speech_array, sampling_rate, subtype='PCM_24') batch["speech"] = speech_array batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["text"] return batch ``` As suggested by [Florian Zimmermeister](https://github.com/flozi00). The script used for training can be found in [run_common_voice.py](examples/research_projects/wav2vec2/run_common_voice.py), still pending of PR. The only changes are to `speech_file_to_array_fn`. Batch size was kept at 32 (using `gradient_accumulation_steps`) using one of the [OVH](https://www.ovh.com/) machines, with a V100 GPU (thank you very much [OVH](https://www.ovh.com/)). The model trained for 40 epochs, the first 20 with the `train+validation` splits, and then `extra` split was added with the data from CSS10 at the 20th epoch.
Pyjay/gpt2-medium-dutch-finetuned-text-generation
320d8904c16b550e03a873be6709796643c8c5d2
2021-07-23T09:44:31.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer" ]
text-generation
false
Pyjay
null
Pyjay/gpt2-medium-dutch-finetuned-text-generation
21
null
transformers
8,151
--- tags: - generated_from_trainer model_index: - name: gpt2-medium-dutch-finetuned-text-generation results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-dutch-finetuned-text-generation This model is a fine-tuned version of [GroNLP/gpt2-medium-dutch-embeddings](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 3.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 394 | 4.0144 | | 3.3633 | 2.0 | 788 | 3.9379 | | 2.7108 | 3.0 | 1182 | 3.9268 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Pyjay/sentence-transformers-multilingual-snli-v2-500k
db1e3450586788d37d6d0df60a0fd5f72d554aa3
2021-08-05T21:42:55.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Pyjay
null
Pyjay/sentence-transformers-multilingual-snli-v2-500k
21
1
sentence-transformers
8,152
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Pyjay/sentence-transformers-multilingual-snli-v2-500k This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Pyjay/sentence-transformers-multilingual-snli-v2-500k') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Pyjay/sentence-transformers-multilingual-snli-v2-500k') model = AutoModel.from_pretrained('Pyjay/sentence-transformers-multilingual-snli-v2-500k') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Pyjay/sentence-transformers-multilingual-snli-v2-500k) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15604 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 72, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
SEBIS/code_trans_t5_large_commit_generation_multitask
90b07932ba1f058f61a452044f07181d179f3dcc
2021-06-23T08:09:26.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_commit_generation_multitask
21
null
transformers
8,153
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_commit_generation_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_commit_generation_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/commit%20generation/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 220,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
Theivaprakasham/sentence-transformers-paraphrase-MiniLM-L6-v2-twitter_sentiment
2c704c61b29e85390dd28858371bf95d8af4306e
2021-12-06T06:18:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Theivaprakasham
null
Theivaprakasham/sentence-transformers-paraphrase-MiniLM-L6-v2-twitter_sentiment
21
null
transformers
8,154
Entry not found
TuhinColumbia/germanpoetrymany
339c1b86ce4524cc7d61743ede33ba9c6bca47ee
2021-09-04T09:37:02.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/germanpoetrymany
21
null
transformers
8,155
Entry not found
abdelkader/distilbert-base-uncased-finetuned-clinc
43cb619030ec12a7c61727fb0f1300c011eb2d4c
2022-01-20T04:59:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
abdelkader
null
abdelkader/distilbert-base-uncased-finetuned-clinc
21
null
transformers
8,156
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7713 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2831 | 0.7426 | | 3.785 | 2.0 | 636 | 1.8739 | 0.8335 | | 3.785 | 3.0 | 954 | 1.1525 | 0.8926 | | 1.6894 | 4.0 | 1272 | 0.8569 | 0.91 | | 0.897 | 5.0 | 1590 | 0.7713 | 0.9174 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
alexbrandsen/ArcheoBERTje-NER
7139d3191d64934a64e07b2083c7f00adc80a676
2021-05-18T23:21:58.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
alexbrandsen
null
alexbrandsen/ArcheoBERTje-NER
21
1
transformers
8,157
# ArcheoBERTje-NER A Dutch BERT model for Named Entity Recognition in the Archaeology domain This is the [ArcheoBERTje](https://huggingface.co/alexbrandsen/ArcheoBERTje) model finetuned for NER, targeting the following entities: - Time periods - Places - Artefacts - Contexts - Materials - Species
allenai/dsp_roberta_base_tapt_chemprot_4169
b8b106a3c5d0b7fd876320ddd4f801c205782f1c
2021-05-20T13:23:16.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_chemprot_4169
21
null
transformers
8,158
Entry not found
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616_squad2_covid-qna
629f45e60d677baff78e60affe105a553414c073
2021-05-18T23:49:46.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616_squad2_covid-qna
21
null
transformers
8,159
Entry not found
aphuongle95/xlnet_effect_partial_new
f2c28acc4a763fb7af0150a2933fbe859e1fdec5
2020-09-23T16:40:15.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
aphuongle95
null
aphuongle95/xlnet_effect_partial_new
21
null
transformers
8,160
Entry not found
benjaminbeilharz/dialoGPT-small-empatheticdialogues-generation
4a8d404f9b35c1d92a511c5424d9a0243dafaeb1
2022-01-27T11:07:49.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "en", "dataset:empathetic dialogues", "transformers", "conversational", "license:mit" ]
conversational
false
benjaminbeilharz
null
benjaminbeilharz/dialoGPT-small-empatheticdialogues-generation
21
null
transformers
8,161
--- language: - en datasets: - empathetic dialogues tags: - conversational - pytorch - transformers - gpt2 license: mit --- Still figuring out to properly write model cards. WIP.
bgoel4132/tweet-disaster-classifier
db2a76702f811bfe3c016d1f29c205b842394a33
2021-11-02T09:55:27.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:bgoel4132/autonlp-data-tweet-disaster-classifier", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
bgoel4132
null
bgoel4132/tweet-disaster-classifier
21
null
transformers
8,162
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bgoel4132/autonlp-data-tweet-disaster-classifier co2_eq_emissions: 27.22397099134103 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 28716412 - CO2 Emissions (in grams): 27.22397099134103 ## Validation Metrics - Loss: 0.4146720767021179 - Accuracy: 0.8066924731182795 - Macro F1: 0.7835463282531184 - Micro F1: 0.8066924731182795 - Weighted F1: 0.7974252447208724 - Macro Precision: 0.8183917344767431 - Micro Precision: 0.8066924731182795 - Weighted Precision: 0.8005510296861892 - Macro Recall: 0.7679676081852519 - Micro Recall: 0.8066924731182795 - Weighted Recall: 0.8066924731182795 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bgoel4132/autonlp-tweet-disaster-classifier-28716412 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bgoel4132/autonlp-tweet-disaster-classifier-28716412", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bgoel4132/autonlp-tweet-disaster-classifier-28716412", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
castorini/duot5-3b-med-msmarco
553eafaab45ee8b980baa4c9ca2df4eb044f8235
2021-05-28T12:02:55.000Z
[ "pytorch", "t5", "feature-extraction", "arxiv:2101.05667", "transformers" ]
feature-extraction
false
castorini
null
castorini/duot5-3b-med-msmarco
21
null
transformers
8,163
This model is a T5-3B reranker pre-finetuned on the MS MARCO passage dataset for 10K steps (or 1 epoch) on the pairwise task and then finetuned on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf)) for 1K steps on the pairwise task. For more details on how to use it, check [pygaggle.ai](pygaggle.ai)! Paper describing the model: [The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models](https://arxiv.org/abs/2101.05667)
danurahul/alex_gpt3_Doctextfull2
0a212546424a9936eacf37501e9a3b8698534b8c
2021-05-21T15:19:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/alex_gpt3_Doctextfull2
21
null
transformers
8,164
Entry not found
dbmdz/flair-historic-ner-onb
99c1e7122a688aae8a1f45f875207a358bb109d0
2021-02-26T15:41:21.000Z
[ "pytorch", "de", "flair", "token-classification", "sequence-tagger-model", "license:mit" ]
token-classification
false
dbmdz
null
dbmdz/flair-historic-ner-onb
21
null
flair
8,165
--- tags: - flair - token-classification - sequence-tagger-model language: de widget: - text: "April Martin Ansclm, K. Gefangen-Auffehers Georg Sausgruber." license: mit --- # Towards Robust Named Entity Recognition for Historic German Based on [our paper](https://www.aclweb.org/anthology/W19-4312/) we release a new model trained on the ONB dataset. **Note:** We use BPEmbeddings instead of the combination of Wikipedia, Common Crawl and character embeddings (as used in the paper), so save space and training/inferencing time. # Results | Dataset \ Run | Run 1 | Run 2 | Run 3 | Avg. | ------------- | ----- | ----- | --------- | ------------ | Development | 86.69 | 86.13 | **87.18** | 86.67 | Test | 85.27 | 86.05 | 85.75† | 85.69 Paper reported an averaged F1-score of 85.31. † denotes that this model is selected for upload.
dbsamu/electra-small-discriminator-finetuned-ner
22872a0c99f393a67de341f085453242bad81129
2022-01-24T14:27:41.000Z
[ "pytorch", "tensorboard", "electra", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
dbsamu
null
dbsamu/electra-small-discriminator-finetuned-ner
21
null
transformers
8,166
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: electra-small-discriminator-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.7330965535385425 - name: Recall type: recall value: 0.7542632861138681 - name: F1 type: f1 value: 0.7435293071244329 - name: Accuracy type: accuracy value: 0.8883011190233978 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-finetuned-ner This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3685 - Precision: 0.7331 - Recall: 0.7543 - F1: 0.7435 - Accuracy: 0.8883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5465 | 1.0 | 1250 | 0.4158 | 0.6932 | 0.7201 | 0.7064 | 0.8735 | | 0.4037 | 2.0 | 2500 | 0.3817 | 0.7191 | 0.7470 | 0.7328 | 0.8828 | | 0.3606 | 3.0 | 3750 | 0.3685 | 0.7331 | 0.7543 | 0.7435 | 0.8883 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
fergusq/finbert-finnsentiment
132114fa461bd591d0861cf10d0299f9d227f22d
2021-09-30T20:41:06.000Z
[ "pytorch", "bert", "text-classification", "fi", "arxiv:2012.02613", "transformers" ]
text-classification
false
fergusq
null
fergusq/finbert-finnsentiment
21
1
transformers
8,167
--- language: fi --- # FinBERT fine-tuned with the FinnSentiment dataset This is a FinBERT model fine-tuned with the [FinnSentiment dataset](https://arxiv.org/pdf/2012.02613.pdf).
fidukm34/biobert_v1.1_pubmed-finetuned-ner
43583cebe51e3bcb4a135f83cc5e216e415b6d38
2021-09-16T17:09:50.000Z
[ "pytorch", "bert", "token-classification", "dataset:ncbi_disease", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
fidukm34
null
fidukm34/biobert_v1.1_pubmed-finetuned-ner
21
null
transformers
8,168
--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model_index: - name: biobert_v1.1_pubmed-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metric: name: Accuracy type: accuracy value: 0.9827274990663513 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_v1.1_pubmed-finetuned-ner This model is a fine-tuned version of [monologg/biobert_v1.1_pubmed](https://huggingface.co/monologg/biobert_v1.1_pubmed) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Precision: 0.8338 - Recall: 0.8933 - F1: 0.8625 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0612 | 0.8268 | 0.85 | 0.8382 | 0.9806 | | 0.0987 | 2.0 | 680 | 0.0604 | 0.8397 | 0.8848 | 0.8616 | 0.9829 | | 0.0272 | 3.0 | 1020 | 0.0657 | 0.8338 | 0.8933 | 0.8625 | 0.9827 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0 - Datasets 1.6.2 - Tokenizers 0.10.3
gabrieljg/wav2vec2-common_voice-es-demo
ba9f8bb7d9ceb676c5939e817e2e3f45533327ac
2022-01-30T21:38:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gabrieljg
null
gabrieljg/wav2vec2-common_voice-es-demo
21
null
transformers
8,169
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-es-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-es-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1788 - Wer: 1.0239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.02 | 100 | 6.6465 | 1.0 | | No log | 0.04 | 200 | 3.0150 | 1.0 | | No log | 0.05 | 300 | 2.8622 | 1.0003 | | No log | 0.07 | 400 | 0.9506 | 0.9771 | | 5.1598 | 0.09 | 500 | 0.4883 | 1.0009 | | 5.1598 | 0.11 | 600 | 0.3893 | 1.0203 | | 5.1598 | 0.13 | 700 | 0.3417 | 1.0283 | | 5.1598 | 0.14 | 800 | 0.3352 | 1.0335 | | 5.1598 | 0.16 | 900 | 0.2987 | 1.0168 | | 0.3671 | 0.18 | 1000 | 0.2921 | 1.0159 | | 0.3671 | 0.2 | 1100 | 0.2770 | 1.0096 | | 0.3671 | 0.22 | 1200 | 0.2790 | 1.0398 | | 0.3671 | 0.24 | 1300 | 0.2659 | 1.0190 | | 0.3671 | 0.25 | 1400 | 0.2657 | 1.0528 | | 0.289 | 0.27 | 1500 | 0.2556 | 1.0301 | | 0.289 | 0.29 | 1600 | 0.2514 | 1.0193 | | 0.289 | 0.31 | 1700 | 0.2708 | 1.0699 | | 0.289 | 0.33 | 1800 | 0.2455 | 1.0723 | | 0.289 | 0.34 | 1900 | 0.2456 | 1.0100 | | 0.271 | 0.36 | 2000 | 0.2338 | 1.0533 | | 0.271 | 0.38 | 2100 | 0.2479 | 1.0128 | | 0.271 | 0.4 | 2200 | 0.2483 | 1.0386 | | 0.271 | 0.42 | 2300 | 0.2436 | 1.0528 | | 0.271 | 0.43 | 2400 | 0.2382 | 1.0476 | | 0.2634 | 0.45 | 2500 | 0.2329 | 1.0680 | | 0.2634 | 0.47 | 2600 | 0.2433 | 1.0581 | | 0.2634 | 0.49 | 2700 | 0.2354 | 1.0641 | | 0.2634 | 0.51 | 2800 | 0.2318 | 1.0504 | | 0.2634 | 0.52 | 2900 | 0.2325 | 1.0500 | | 0.2522 | 0.54 | 3000 | 0.2344 | 1.0380 | | 0.2522 | 0.56 | 3100 | 0.2244 | 1.0663 | | 0.2522 | 0.58 | 3200 | 0.2340 | 1.0647 | | 0.2522 | 0.6 | 3300 | 0.2288 | 1.0538 | | 0.2522 | 0.61 | 3400 | 0.2212 | 1.0614 | | 0.2468 | 0.63 | 3500 | 0.2487 | 1.0557 | | 0.2468 | 0.65 | 3600 | 0.2330 | 1.0510 | | 0.2468 | 0.67 | 3700 | 0.2308 | 1.0506 | | 0.2468 | 0.69 | 3800 | 0.2320 | 1.0451 | | 0.2468 | 0.71 | 3900 | 0.2261 | 1.0701 | | 0.2505 | 0.72 | 4000 | 0.2281 | 1.0713 | | 0.2505 | 0.74 | 4100 | 0.2277 | 1.0741 | | 0.2505 | 0.76 | 4200 | 0.2253 | 1.0814 | | 0.2505 | 0.78 | 4300 | 0.2215 | 1.0437 | | 0.2505 | 0.8 | 4400 | 0.2220 | 1.0557 | | 0.2434 | 0.81 | 4500 | 0.2184 | 1.0533 | | 0.2434 | 0.83 | 4600 | 0.2222 | 1.0819 | | 0.2434 | 0.85 | 4700 | 0.2162 | 1.0238 | | 0.2434 | 0.87 | 4800 | 0.2132 | 1.0457 | | 0.2434 | 0.89 | 4900 | 0.2068 | 1.0611 | | 0.2347 | 0.9 | 5000 | 0.2166 | 1.0332 | | 0.2347 | 0.92 | 5100 | 0.2087 | 1.0433 | | 0.2347 | 0.94 | 5200 | 0.2100 | 1.0292 | | 0.2347 | 0.96 | 5300 | 0.2067 | 1.0734 | | 0.2347 | 0.98 | 5400 | 0.2148 | 1.0279 | | 0.2333 | 0.99 | 5500 | 0.2125 | 1.0277 | | 0.2333 | 1.01 | 5600 | 0.2054 | 1.0453 | | 0.2333 | 1.03 | 5700 | 0.2091 | 1.0557 | | 0.2333 | 1.05 | 5800 | 0.2086 | 1.0239 | | 0.2333 | 1.07 | 5900 | 0.2051 | 1.0645 | | 0.2087 | 1.09 | 6000 | 0.2103 | 1.0240 | | 0.2087 | 1.1 | 6100 | 0.2145 | 1.0197 | | 0.2087 | 1.12 | 6200 | 0.2136 | 1.0248 | | 0.2087 | 1.14 | 6300 | 0.2045 | 1.0443 | | 0.2087 | 1.16 | 6400 | 0.2089 | 1.0397 | | 0.2013 | 1.18 | 6500 | 0.2012 | 1.0654 | | 0.2013 | 1.19 | 6600 | 0.2054 | 1.0414 | | 0.2013 | 1.21 | 6700 | 0.2081 | 1.0632 | | 0.2013 | 1.23 | 6800 | 0.2104 | 1.0190 | | 0.2013 | 1.25 | 6900 | 0.2045 | 1.0813 | | 0.2092 | 1.27 | 7000 | 0.2096 | 1.0751 | | 0.2092 | 1.28 | 7100 | 0.2103 | 1.0328 | | 0.2092 | 1.3 | 7200 | 0.2044 | 1.0011 | | 0.2092 | 1.32 | 7300 | 0.2089 | 1.0260 | | 0.2092 | 1.34 | 7400 | 0.2063 | 1.0551 | | 0.2076 | 1.36 | 7500 | 0.2029 | 1.0075 | | 0.2076 | 1.37 | 7600 | 0.2040 | 1.0528 | | 0.2076 | 1.39 | 7700 | 0.2075 | 1.0398 | | 0.2076 | 1.41 | 7800 | 0.2023 | 1.0231 | | 0.2076 | 1.43 | 7900 | 0.2049 | 1.0318 | | 0.2028 | 1.45 | 8000 | 0.2072 | 1.0763 | | 0.2028 | 1.47 | 8100 | 0.2075 | 1.0762 | | 0.2028 | 1.48 | 8200 | 0.2052 | 1.0838 | | 0.2028 | 1.5 | 8300 | 0.2053 | 1.0407 | | 0.2028 | 1.52 | 8400 | 0.2066 | 1.0266 | | 0.2025 | 1.54 | 8500 | 0.2037 | 1.0628 | | 0.2025 | 1.56 | 8600 | 0.2010 | 1.0351 | | 0.2025 | 1.57 | 8700 | 0.1961 | 1.0812 | | 0.2025 | 1.59 | 8800 | 0.1963 | 1.0868 | | 0.2025 | 1.61 | 8900 | 0.2022 | 1.0710 | | 0.1997 | 1.63 | 9000 | 0.2051 | 1.0764 | | 0.1997 | 1.65 | 9100 | 0.1987 | 1.0581 | | 0.1997 | 1.66 | 9200 | 0.2051 | 1.0611 | | 0.1997 | 1.68 | 9300 | 0.1999 | 1.0808 | | 0.1997 | 1.7 | 9400 | 0.1972 | 1.0703 | | 0.1983 | 1.72 | 9500 | 0.1961 | 1.0584 | | 0.1983 | 1.74 | 9600 | 0.2031 | 1.0938 | | 0.1983 | 1.75 | 9700 | 0.2019 | 1.0891 | | 0.1983 | 1.77 | 9800 | 0.2006 | 1.0542 | | 0.1983 | 1.79 | 9900 | 0.1925 | 1.0627 | | 0.1961 | 1.81 | 10000 | 0.1976 | 1.0751 | | 0.1961 | 1.83 | 10100 | 0.2051 | 1.0611 | | 0.1961 | 1.85 | 10200 | 0.2037 | 1.0656 | | 0.1961 | 1.86 | 10300 | 0.2025 | 1.0291 | | 0.1961 | 1.88 | 10400 | 0.1977 | 1.0525 | | 0.2025 | 1.9 | 10500 | 0.2030 | 1.0670 | | 0.2025 | 1.92 | 10600 | 0.1980 | 1.0765 | | 0.2025 | 1.94 | 10700 | 0.1975 | 1.0254 | | 0.2025 | 1.95 | 10800 | 0.1986 | 1.0636 | | 0.2025 | 1.97 | 10900 | 0.1956 | 1.0352 | | 0.2025 | 1.99 | 11000 | 0.1954 | 1.0265 | | 0.2025 | 2.01 | 11100 | 0.1957 | 1.0752 | | 0.2025 | 2.03 | 11200 | 0.1943 | 1.0784 | | 0.2025 | 2.04 | 11300 | 0.1898 | 1.0341 | | 0.2025 | 2.06 | 11400 | 0.1921 | 1.0301 | | 0.1805 | 2.08 | 11500 | 0.1910 | 1.0230 | | 0.1805 | 2.1 | 11600 | 0.1961 | 1.0203 | | 0.1805 | 2.12 | 11700 | 0.1973 | 1.0776 | | 0.1805 | 2.13 | 11800 | 0.1876 | 1.0788 | | 0.1805 | 2.15 | 11900 | 0.1934 | 1.0251 | | 0.177 | 2.17 | 12000 | 0.1967 | 1.0340 | | 0.177 | 2.19 | 12100 | 0.1932 | 1.0131 | | 0.177 | 2.21 | 12200 | 0.1926 | 1.0078 | | 0.177 | 2.23 | 12300 | 0.1947 | 0.9991 | | 0.177 | 2.24 | 12400 | 0.1914 | 1.0213 | | 0.1782 | 2.26 | 12500 | 0.1962 | 0.9882 | | 0.1782 | 2.28 | 12600 | 0.1960 | 1.0562 | | 0.1782 | 2.3 | 12700 | 0.2006 | 1.0401 | | 0.1782 | 2.32 | 12800 | 0.1950 | 1.0688 | | 0.1782 | 2.33 | 12900 | 0.1920 | 1.0435 | | 0.1796 | 2.35 | 13000 | 0.1926 | 1.0667 | | 0.1796 | 2.37 | 13100 | 0.1949 | 1.0859 | | 0.1796 | 2.39 | 13200 | 0.1932 | 1.0670 | | 0.1796 | 2.41 | 13300 | 0.1882 | 1.0663 | | 0.1796 | 2.42 | 13400 | 0.1877 | 1.0760 | | 0.1775 | 2.44 | 13500 | 0.1893 | 1.0859 | | 0.1775 | 2.46 | 13600 | 0.1936 | 1.0702 | | 0.1775 | 2.48 | 13700 | 0.1871 | 1.0414 | | 0.1775 | 2.5 | 13800 | 0.1917 | 1.0430 | | 0.1775 | 2.51 | 13900 | 0.1922 | 1.0422 | | 0.1778 | 2.53 | 14000 | 0.1875 | 1.0585 | | 0.1778 | 2.55 | 14100 | 0.1876 | 1.0603 | | 0.1778 | 2.57 | 14200 | 0.1888 | 1.0628 | | 0.1778 | 2.59 | 14300 | 0.1948 | 1.0782 | | 0.1778 | 2.6 | 14400 | 0.1942 | 1.0695 | | 0.1784 | 2.62 | 14500 | 0.1842 | 1.0863 | | 0.1784 | 2.64 | 14600 | 0.1850 | 1.0543 | | 0.1784 | 2.66 | 14700 | 0.1824 | 1.0683 | | 0.1784 | 2.68 | 14800 | 0.1888 | 1.0693 | | 0.1784 | 2.7 | 14900 | 0.1871 | 1.0175 | | 0.1753 | 2.71 | 15000 | 0.1889 | 1.0549 | | 0.1753 | 2.73 | 15100 | 0.1865 | 1.0544 | | 0.1753 | 2.75 | 15200 | 0.1918 | 1.0726 | | 0.1753 | 2.77 | 15300 | 0.1964 | 1.0915 | | 0.1753 | 2.79 | 15400 | 0.1900 | 1.0610 | | 0.1768 | 2.8 | 15500 | 0.1894 | 1.0763 | | 0.1768 | 2.82 | 15600 | 0.1882 | 1.0548 | | 0.1768 | 2.84 | 15700 | 0.1861 | 1.0902 | | 0.1768 | 2.86 | 15800 | 0.1860 | 1.0551 | | 0.1768 | 2.88 | 15900 | 0.1879 | 1.0581 | | 0.1761 | 2.89 | 16000 | 0.1899 | 1.0544 | | 0.1761 | 2.91 | 16100 | 0.1860 | 1.0530 | | 0.1761 | 2.93 | 16200 | 0.1894 | 1.0596 | | 0.1761 | 2.95 | 16300 | 0.1835 | 1.0394 | | 0.1761 | 2.97 | 16400 | 0.1852 | 1.0445 | | 0.1754 | 2.98 | 16500 | 0.1847 | 1.0390 | | 0.1754 | 3.0 | 16600 | 0.1828 | 1.0440 | | 0.1754 | 3.02 | 16700 | 0.1869 | 1.0560 | | 0.1754 | 3.04 | 16800 | 0.1882 | 1.0573 | | 0.1754 | 3.06 | 16900 | 0.1912 | 1.0600 | | 0.1592 | 3.08 | 17000 | 0.1921 | 1.0529 | | 0.1592 | 3.09 | 17100 | 0.1881 | 1.0175 | | 0.1592 | 3.11 | 17200 | 0.1891 | 1.0654 | | 0.1592 | 3.13 | 17300 | 0.1889 | 1.0687 | | 0.1592 | 3.15 | 17400 | 0.1916 | 1.0642 | | 0.1556 | 3.17 | 17500 | 0.1850 | 1.0295 | | 0.1556 | 3.18 | 17600 | 0.1875 | 1.0273 | | 0.1556 | 3.2 | 17700 | 0.1894 | 1.0051 | | 0.1556 | 3.22 | 17800 | 0.1870 | 1.0462 | | 0.1556 | 3.24 | 17900 | 0.1831 | 1.0308 | | 0.1557 | 3.26 | 18000 | 0.1878 | 1.0603 | | 0.1557 | 3.27 | 18100 | 0.1850 | 1.0566 | | 0.1557 | 3.29 | 18200 | 0.1843 | 1.0629 | | 0.1557 | 3.31 | 18300 | 0.1886 | 1.0378 | | 0.1557 | 3.33 | 18400 | 0.1892 | 1.0381 | | 0.159 | 3.35 | 18500 | 0.1942 | 1.0519 | | 0.159 | 3.36 | 18600 | 0.1829 | 1.0622 | | 0.159 | 3.38 | 18700 | 0.1894 | 1.0557 | | 0.159 | 3.4 | 18800 | 0.1895 | 1.0627 | | 0.159 | 3.42 | 18900 | 0.1863 | 1.0362 | | 0.1582 | 3.44 | 19000 | 0.1888 | 1.0491 | | 0.1582 | 3.46 | 19100 | 0.1854 | 1.0483 | | 0.1582 | 3.47 | 19200 | 0.1797 | 0.9787 | | 0.1582 | 3.49 | 19300 | 0.1785 | 1.0086 | | 0.1582 | 3.51 | 19400 | 0.1797 | 0.9915 | | 0.1507 | 3.53 | 19500 | 0.1873 | 1.0266 | | 0.1507 | 3.55 | 19600 | 0.1838 | 1.0299 | | 0.1507 | 3.56 | 19700 | 0.1817 | 1.0355 | | 0.1507 | 3.58 | 19800 | 0.1819 | 1.0271 | | 0.1507 | 3.6 | 19900 | 0.1883 | 1.0248 | | 0.1601 | 3.62 | 20000 | 0.1823 | 1.0406 | | 0.1601 | 3.64 | 20100 | 0.1801 | 1.0261 | | 0.1601 | 3.65 | 20200 | 0.1783 | 1.0329 | | 0.1601 | 3.67 | 20300 | 0.1857 | 1.0162 | | 0.1601 | 3.69 | 20400 | 0.1814 | 1.0212 | | 0.1552 | 3.71 | 20500 | 0.1837 | 1.0232 | | 0.1552 | 3.73 | 20600 | 0.1843 | 1.0314 | | 0.1552 | 3.74 | 20700 | 0.1842 | 1.0258 | | 0.1552 | 3.76 | 20800 | 0.1821 | 1.0479 | | 0.1552 | 3.78 | 20900 | 0.1864 | 1.0459 | | 0.1576 | 3.8 | 21000 | 0.1831 | 1.0364 | | 0.1576 | 3.82 | 21100 | 0.1852 | 1.0271 | | 0.1576 | 3.83 | 21200 | 0.1865 | 1.0204 | | 0.1576 | 3.85 | 21300 | 0.1794 | 1.0324 | | 0.1576 | 3.87 | 21400 | 0.1826 | 1.0315 | | 0.1585 | 3.89 | 21500 | 0.1824 | 1.0327 | | 0.1585 | 3.91 | 21600 | 0.1838 | 1.0208 | | 0.1585 | 3.93 | 21700 | 0.1850 | 1.0199 | | 0.1585 | 3.94 | 21800 | 0.1841 | 1.0050 | | 0.1585 | 3.96 | 21900 | 0.1783 | 1.0003 | | 0.1572 | 3.98 | 22000 | 0.1787 | 1.0115 | | 0.1572 | 4.0 | 22100 | 0.1810 | 1.0235 | | 0.1572 | 4.02 | 22200 | 0.1763 | 1.0191 | | 0.1572 | 4.03 | 22300 | 0.1764 | 1.0332 | | 0.1572 | 4.05 | 22400 | 0.1794 | 1.0429 | | 0.1406 | 4.07 | 22500 | 0.1905 | 1.0288 | | 0.1406 | 4.09 | 22600 | 0.1776 | 1.0244 | | 0.1406 | 4.11 | 22700 | 0.1782 | 1.0451 | | 0.1406 | 4.12 | 22800 | 0.1771 | 1.0387 | | 0.1406 | 4.14 | 22900 | 0.1788 | 1.0435 | | 0.14 | 4.16 | 23000 | 0.1792 | 1.0421 | | 0.14 | 4.18 | 23100 | 0.1841 | 1.0241 | | 0.14 | 4.2 | 23200 | 0.1769 | 1.0546 | | 0.14 | 4.21 | 23300 | 0.1815 | 1.0602 | | 0.14 | 4.23 | 23400 | 0.1784 | 1.0369 | | 0.1394 | 4.25 | 23500 | 0.1809 | 1.0406 | | 0.1394 | 4.27 | 23600 | 0.1744 | 1.0133 | | 0.1394 | 4.29 | 23700 | 0.1771 | 1.0214 | | 0.1394 | 4.31 | 23800 | 0.1765 | 1.0064 | | 0.1394 | 4.32 | 23900 | 0.1793 | 1.0200 | | 0.14 | 4.34 | 24000 | 0.1776 | 1.0352 | | 0.14 | 4.36 | 24100 | 0.1775 | 1.0294 | | 0.14 | 4.38 | 24200 | 0.1763 | 1.0213 | | 0.14 | 4.4 | 24300 | 0.1697 | 1.0302 | | 0.14 | 4.41 | 24400 | 0.1771 | 1.0259 | | 0.1408 | 4.43 | 24500 | 0.1747 | 1.0409 | | 0.1408 | 4.45 | 24600 | 0.1769 | 1.0278 | | 0.1408 | 4.47 | 24700 | 0.1767 | 1.0190 | | 0.1408 | 4.49 | 24800 | 0.1745 | 1.0281 | | 0.1408 | 4.5 | 24900 | 0.1738 | 1.0356 | | 0.1391 | 4.52 | 25000 | 0.1781 | 1.0429 | | 0.1391 | 4.54 | 25100 | 0.1784 | 1.0076 | | 0.1391 | 4.56 | 25200 | 0.1771 | 1.0157 | | 0.1391 | 4.58 | 25300 | 0.1758 | 1.0337 | | 0.1391 | 4.59 | 25400 | 0.1758 | 1.0466 | | 0.1398 | 4.61 | 25500 | 0.1724 | 1.0403 | | 0.1398 | 4.63 | 25600 | 0.1765 | 1.0481 | | 0.1398 | 4.65 | 25700 | 0.1757 | 1.0320 | | 0.1398 | 4.67 | 25800 | 0.1814 | 1.0479 | | 0.1398 | 4.69 | 25900 | 0.1713 | 1.0251 | | 0.1427 | 4.7 | 26000 | 0.1735 | 1.0340 | | 0.1427 | 4.72 | 26100 | 0.1765 | 1.0358 | | 0.1427 | 4.74 | 26200 | 0.1731 | 1.0220 | | 0.1427 | 4.76 | 26300 | 0.1769 | 1.0261 | | 0.1427 | 4.78 | 26400 | 0.1747 | 1.0139 | | 0.1424 | 4.79 | 26500 | 0.1791 | 1.0406 | | 0.1424 | 4.81 | 26600 | 0.1735 | 1.0497 | | 0.1424 | 4.83 | 26700 | 0.1710 | 1.0433 | | 0.1424 | 4.85 | 26800 | 0.1771 | 1.0002 | | 0.1424 | 4.87 | 26900 | 0.1748 | 1.0046 | | 0.1419 | 4.88 | 27000 | 0.1794 | 1.0332 | | 0.1419 | 4.9 | 27100 | 0.1772 | 1.0558 | | 0.1419 | 4.92 | 27200 | 0.1757 | 1.0477 | | 0.1419 | 4.94 | 27300 | 0.1735 | 1.0324 | | 0.1419 | 4.96 | 27400 | 0.1758 | 1.0260 | | 0.1433 | 4.97 | 27500 | 0.1767 | 1.0422 | | 0.1433 | 4.99 | 27600 | 0.1695 | 1.0386 | | 0.1433 | 5.01 | 27700 | 0.1763 | 1.0571 | | 0.1433 | 5.03 | 27800 | 0.1743 | 1.0367 | | 0.1433 | 5.05 | 27900 | 0.1804 | 1.0255 | | 0.1306 | 5.07 | 28000 | 0.1803 | 1.0377 | | 0.1306 | 5.08 | 28100 | 0.1750 | 1.0552 | | 0.1306 | 5.1 | 28200 | 0.1743 | 1.0512 | | 0.1306 | 5.12 | 28300 | 0.1777 | 1.0584 | | 0.1306 | 5.14 | 28400 | 0.1726 | 1.0374 | | 0.123 | 5.16 | 28500 | 0.1776 | 1.0439 | | 0.123 | 5.17 | 28600 | 0.1759 | 1.0682 | | 0.123 | 5.19 | 28700 | 0.1724 | 1.0511 | | 0.123 | 5.21 | 28800 | 0.1677 | 1.0560 | | 0.123 | 5.23 | 28900 | 0.1699 | 1.0421 | | 0.1217 | 5.25 | 29000 | 0.1803 | 1.0370 | | 0.1217 | 5.26 | 29100 | 0.1770 | 1.0474 | | 0.1217 | 5.28 | 29200 | 0.1733 | 1.0332 | | 0.1217 | 5.3 | 29300 | 0.1746 | 1.0158 | | 0.1217 | 5.32 | 29400 | 0.1763 | 1.0341 | | 0.1246 | 5.34 | 29500 | 0.1775 | 1.0348 | | 0.1246 | 5.35 | 29600 | 0.1730 | 1.0492 | | 0.1246 | 5.37 | 29700 | 0.1730 | 1.0503 | | 0.1246 | 5.39 | 29800 | 0.1727 | 1.0437 | | 0.1246 | 5.41 | 29900 | 0.1744 | 1.0539 | | 0.127 | 5.43 | 30000 | 0.1748 | 1.0463 | | 0.127 | 5.44 | 30100 | 0.1746 | 1.0555 | | 0.127 | 5.46 | 30200 | 0.1810 | 1.0558 | | 0.127 | 5.48 | 30300 | 0.1773 | 1.0407 | | 0.127 | 5.5 | 30400 | 0.1722 | 1.0489 | | 0.1276 | 5.52 | 30500 | 0.1720 | 1.0520 | | 0.1276 | 5.54 | 30600 | 0.1777 | 1.0347 | | 0.1276 | 5.55 | 30700 | 0.1685 | 1.0347 | | 0.1276 | 5.57 | 30800 | 0.1659 | 1.0338 | | 0.1276 | 5.59 | 30900 | 0.1756 | 1.0228 | | 0.1246 | 5.61 | 31000 | 0.1717 | 1.0409 | | 0.1246 | 5.63 | 31100 | 0.1764 | 1.0202 | | 0.1246 | 5.64 | 31200 | 0.1693 | 1.0314 | | 0.1246 | 5.66 | 31300 | 0.1731 | 1.0319 | | 0.1246 | 5.68 | 31400 | 0.1688 | 1.0380 | | 0.1271 | 5.7 | 31500 | 0.1671 | 1.0350 | | 0.1271 | 5.72 | 31600 | 0.1676 | 1.0430 | | 0.1271 | 5.73 | 31700 | 0.1656 | 1.0441 | | 0.1271 | 5.75 | 31800 | 0.1664 | 1.0403 | | 0.1271 | 5.77 | 31900 | 0.1691 | 1.0152 | | 0.1259 | 5.79 | 32000 | 0.1702 | 1.0018 | | 0.1259 | 5.81 | 32100 | 0.1664 | 1.0246 | | 0.1259 | 5.82 | 32200 | 0.1737 | 1.0340 | | 0.1259 | 5.84 | 32300 | 0.1742 | 1.0449 | | 0.1259 | 5.86 | 32400 | 0.1707 | 1.0279 | | 0.1273 | 5.88 | 32500 | 0.1697 | 1.0471 | | 0.1273 | 5.9 | 32600 | 0.1668 | 1.0322 | | 0.1273 | 5.92 | 32700 | 0.1706 | 1.0378 | | 0.1273 | 5.93 | 32800 | 0.1704 | 1.0350 | | 0.1273 | 5.95 | 32900 | 0.1725 | 1.0244 | | 0.123 | 5.97 | 33000 | 0.1678 | 1.0447 | | 0.123 | 5.99 | 33100 | 0.1681 | 1.0438 | | 0.123 | 6.01 | 33200 | 0.1689 | 1.0297 | | 0.123 | 6.02 | 33300 | 0.1690 | 1.0333 | | 0.123 | 6.04 | 33400 | 0.1734 | 1.0296 | | 0.1163 | 6.06 | 33500 | 0.1748 | 1.0307 | | 0.1163 | 6.08 | 33600 | 0.1715 | 1.0123 | | 0.1163 | 6.1 | 33700 | 0.1668 | 1.0117 | | 0.1163 | 6.11 | 33800 | 0.1690 | 1.0230 | | 0.1163 | 6.13 | 33900 | 0.1693 | 1.0166 | | 0.1101 | 6.15 | 34000 | 0.1728 | 1.0162 | | 0.1101 | 6.17 | 34100 | 0.1683 | 1.0107 | | 0.1101 | 6.19 | 34200 | 0.1703 | 0.9814 | | 0.1101 | 6.2 | 34300 | 0.1692 | 1.0007 | | 0.1101 | 6.22 | 34400 | 0.1690 | 1.0000 | | 0.1118 | 6.24 | 34500 | 0.1734 | 0.9972 | | 0.1118 | 6.26 | 34600 | 0.1739 | 1.0096 | | 0.1118 | 6.28 | 34700 | 0.1749 | 1.0047 | | 0.1118 | 6.3 | 34800 | 0.1709 | 1.0111 | | 0.1118 | 6.31 | 34900 | 0.1717 | 1.0179 | | 0.1153 | 6.33 | 35000 | 0.1690 | 1.0155 | | 0.1153 | 6.35 | 35100 | 0.1710 | 1.0144 | | 0.1153 | 6.37 | 35200 | 0.1719 | 1.0030 | | 0.1153 | 6.39 | 35300 | 0.1690 | 1.0272 | | 0.1153 | 6.4 | 35400 | 0.1673 | 1.0103 | | 0.1106 | 6.42 | 35500 | 0.1710 | 1.0222 | | 0.1106 | 6.44 | 35600 | 0.1747 | 1.0173 | | 0.1106 | 6.46 | 35700 | 0.1721 | 0.9933 | | 0.1106 | 6.48 | 35800 | 0.1670 | 1.0184 | | 0.1106 | 6.49 | 35900 | 0.1714 | 1.0122 | | 0.1116 | 6.51 | 36000 | 0.1717 | 1.0035 | | 0.1116 | 6.53 | 36100 | 0.1685 | 1.0099 | | 0.1116 | 6.55 | 36200 | 0.1687 | 1.0288 | | 0.1116 | 6.57 | 36300 | 0.1664 | 1.0314 | | 0.1116 | 6.58 | 36400 | 0.1665 | 1.0264 | | 0.1128 | 6.6 | 36500 | 0.1681 | 1.0420 | | 0.1128 | 6.62 | 36600 | 0.1682 | 1.0409 | | 0.1128 | 6.64 | 36700 | 0.1717 | 1.0271 | | 0.1128 | 6.66 | 36800 | 0.1717 | 1.0166 | | 0.1128 | 6.68 | 36900 | 0.1755 | 1.0175 | | 0.1134 | 6.69 | 37000 | 0.1623 | 1.0185 | | 0.1134 | 6.71 | 37100 | 0.1674 | 1.0302 | | 0.1134 | 6.73 | 37200 | 0.1633 | 1.0325 | | 0.1134 | 6.75 | 37300 | 0.1628 | 1.0228 | | 0.1134 | 6.77 | 37400 | 0.1636 | 1.0243 | | 0.1102 | 6.78 | 37500 | 0.1667 | 1.0282 | | 0.1102 | 6.8 | 37600 | 0.1623 | 1.0212 | | 0.1102 | 6.82 | 37700 | 0.1639 | 1.0140 | | 0.1102 | 6.84 | 37800 | 0.1587 | 1.0258 | | 0.1102 | 6.86 | 37900 | 0.1610 | 1.0087 | | 0.1113 | 6.87 | 38000 | 0.1647 | 1.0199 | | 0.1113 | 6.89 | 38100 | 0.1609 | 1.0054 | | 0.1113 | 6.91 | 38200 | 0.1602 | 1.0145 | | 0.1113 | 6.93 | 38300 | 0.1602 | 1.0144 | | 0.1113 | 6.95 | 38400 | 0.1602 | 1.0375 | | 0.1071 | 6.96 | 38500 | 0.1592 | 1.0259 | | 0.1071 | 6.98 | 38600 | 0.1612 | 1.0236 | | 0.1071 | 7.0 | 38700 | 0.1621 | 1.0277 | | 0.1071 | 7.02 | 38800 | 0.1669 | 1.0367 | | 0.1071 | 7.04 | 38900 | 0.1742 | 1.0484 | | 0.1062 | 7.05 | 39000 | 0.1752 | 1.0302 | | 0.1062 | 7.07 | 39100 | 0.1676 | 1.0244 | | 0.1062 | 7.09 | 39200 | 0.1723 | 1.0300 | | 0.1062 | 7.11 | 39300 | 0.1727 | 1.0294 | | 0.1062 | 7.13 | 39400 | 0.1711 | 1.0255 | | 0.1021 | 7.15 | 39500 | 0.1699 | 1.0471 | | 0.1021 | 7.16 | 39600 | 0.1682 | 1.0426 | | 0.1021 | 7.18 | 39700 | 0.1713 | 1.0233 | | 0.1021 | 7.2 | 39800 | 0.1682 | 1.0259 | | 0.1021 | 7.22 | 39900 | 0.1710 | 1.0162 | | 0.103 | 7.24 | 40000 | 0.1725 | 1.0283 | | 0.103 | 7.25 | 40100 | 0.1729 | 1.0264 | | 0.103 | 7.27 | 40200 | 0.1665 | 1.0451 | | 0.103 | 7.29 | 40300 | 0.1671 | 1.0386 | | 0.103 | 7.31 | 40400 | 0.1671 | 1.0316 | | 0.0981 | 7.33 | 40500 | 0.1708 | 1.0257 | | 0.0981 | 7.34 | 40600 | 0.1642 | 1.0152 | | 0.0981 | 7.36 | 40700 | 0.1707 | 1.0110 | | 0.0981 | 7.38 | 40800 | 0.1675 | 1.0186 | | 0.0981 | 7.4 | 40900 | 0.1702 | 1.0123 | | 0.1005 | 7.42 | 41000 | 0.1699 | 1.0159 | | 0.1005 | 7.43 | 41100 | 0.1703 | 1.0219 | | 0.1005 | 7.45 | 41200 | 0.1707 | 1.0194 | | 0.1005 | 7.47 | 41300 | 0.1644 | 1.0016 | | 0.1005 | 7.49 | 41400 | 0.1716 | 0.9941 | | 0.1021 | 7.51 | 41500 | 0.1670 | 1.0159 | | 0.1021 | 7.53 | 41600 | 0.1667 | 1.0033 | | 0.1021 | 7.54 | 41700 | 0.1667 | 1.0176 | | 0.1021 | 7.56 | 41800 | 0.1679 | 1.0194 | | 0.1021 | 7.58 | 41900 | 0.1632 | 1.0418 | | 0.0963 | 7.6 | 42000 | 0.1712 | 1.0152 | | 0.0963 | 7.62 | 42100 | 0.1632 | 1.0364 | | 0.0963 | 7.63 | 42200 | 0.1702 | 1.0229 | | 0.0963 | 7.65 | 42300 | 0.1655 | 1.0179 | | 0.0963 | 7.67 | 42400 | 0.1698 | 1.0329 | | 0.1014 | 7.69 | 42500 | 0.1691 | 1.0398 | | 0.1014 | 7.71 | 42600 | 0.1638 | 1.0487 | | 0.1014 | 7.72 | 42700 | 0.1617 | 1.0210 | | 0.1014 | 7.74 | 42800 | 0.1648 | 1.0124 | | 0.1014 | 7.76 | 42900 | 0.1608 | 1.0202 | | 0.1008 | 7.78 | 43000 | 0.1611 | 1.0353 | | 0.1008 | 7.8 | 43100 | 0.1633 | 1.0319 | | 0.1008 | 7.81 | 43200 | 0.1640 | 1.0032 | | 0.1008 | 7.83 | 43300 | 0.1589 | 0.9985 | | 0.1008 | 7.85 | 43400 | 0.1630 | 0.9975 | | 0.0988 | 7.87 | 43500 | 0.1604 | 1.0053 | | 0.0988 | 7.89 | 43600 | 0.1687 | 1.0063 | | 0.0988 | 7.91 | 43700 | 0.1619 | 1.0096 | | 0.0988 | 7.92 | 43800 | 0.1565 | 0.9901 | | 0.0988 | 7.94 | 43900 | 0.1619 | 0.9742 | | 0.102 | 7.96 | 44000 | 0.1598 | 0.9593 | | 0.102 | 7.98 | 44100 | 0.1635 | 0.9718 | | 0.102 | 8.0 | 44200 | 0.1624 | 0.9903 | | 0.102 | 8.01 | 44300 | 0.1605 | 0.9882 | | 0.102 | 8.03 | 44400 | 0.1657 | 1.0128 | | 0.0961 | 8.05 | 44500 | 0.1651 | 1.0155 | | 0.0961 | 8.07 | 44600 | 0.1680 | 1.0194 | | 0.0961 | 8.09 | 44700 | 0.1694 | 1.0112 | | 0.0961 | 8.1 | 44800 | 0.1665 | 1.0073 | | 0.0961 | 8.12 | 44900 | 0.1612 | 1.0200 | | 0.0894 | 8.14 | 45000 | 0.1652 | 1.0337 | | 0.0894 | 8.16 | 45100 | 0.1626 | 1.0086 | | 0.0894 | 8.18 | 45200 | 0.1639 | 1.0083 | | 0.0894 | 8.19 | 45300 | 0.1634 | 1.0223 | | 0.0894 | 8.21 | 45400 | 0.1631 | 1.0339 | | 0.0887 | 8.23 | 45500 | 0.1640 | 1.0311 | | 0.0887 | 8.25 | 45600 | 0.1661 | 1.0264 | | 0.0887 | 8.27 | 45700 | 0.1650 | 1.0315 | | 0.0887 | 8.29 | 45800 | 0.1624 | 1.0390 | | 0.0887 | 8.3 | 45900 | 0.1624 | 1.0350 | | 0.0884 | 8.32 | 46000 | 0.1615 | 1.0318 | | 0.0884 | 8.34 | 46100 | 0.1628 | 1.0410 | | 0.0884 | 8.36 | 46200 | 0.1627 | 1.0429 | | 0.0884 | 8.38 | 46300 | 0.1644 | 1.0320 | | 0.0884 | 8.39 | 46400 | 0.1633 | 1.0177 | | 0.0893 | 8.41 | 46500 | 0.1654 | 1.0189 | | 0.0893 | 8.43 | 46600 | 0.1598 | 1.0154 | | 0.0893 | 8.45 | 46700 | 0.1618 | 1.0250 | | 0.0893 | 8.47 | 46800 | 0.1639 | 1.0402 | | 0.0893 | 8.48 | 46900 | 0.1616 | 1.0336 | | 0.0869 | 8.5 | 47000 | 0.1613 | 1.0296 | | 0.0869 | 8.52 | 47100 | 0.1648 | 1.0568 | | 0.0869 | 8.54 | 47200 | 0.1625 | 1.0256 | | 0.0869 | 8.56 | 47300 | 0.1609 | 1.0390 | | 0.0869 | 8.57 | 47400 | 0.1606 | 1.0450 | | 0.0894 | 8.59 | 47500 | 0.1605 | 1.0445 | | 0.0894 | 8.61 | 47600 | 0.1660 | 1.0402 | | 0.0894 | 8.63 | 47700 | 0.1618 | 1.0444 | | 0.0894 | 8.65 | 47800 | 0.1669 | 1.0333 | | 0.0894 | 8.66 | 47900 | 0.1627 | 1.0364 | | 0.0885 | 8.68 | 48000 | 0.1616 | 1.0334 | | 0.0885 | 8.7 | 48100 | 0.1626 | 1.0564 | | 0.0885 | 8.72 | 48200 | 0.1624 | 1.0396 | | 0.0885 | 8.74 | 48300 | 0.1623 | 1.0396 | | 0.0885 | 8.76 | 48400 | 0.1612 | 1.0112 | | 0.0888 | 8.77 | 48500 | 0.1638 | 1.0292 | | 0.0888 | 8.79 | 48600 | 0.1639 | 0.9988 | | 0.0888 | 8.81 | 48700 | 0.1618 | 1.0127 | | 0.0888 | 8.83 | 48800 | 0.1584 | 1.0042 | | 0.0888 | 8.85 | 48900 | 0.1615 | 1.0041 | | 0.0887 | 8.86 | 49000 | 0.1637 | 1.0269 | | 0.0887 | 8.88 | 49100 | 0.1627 | 0.9989 | | 0.0887 | 8.9 | 49200 | 0.1583 | 1.0104 | | 0.0887 | 8.92 | 49300 | 0.1600 | 1.0214 | | 0.0887 | 8.94 | 49400 | 0.1599 | 1.0126 | | 0.0893 | 8.95 | 49500 | 0.1595 | 1.0516 | | 0.0893 | 8.97 | 49600 | 0.1625 | 1.0464 | | 0.0893 | 8.99 | 49700 | 0.1595 | 1.0361 | | 0.0893 | 9.01 | 49800 | 0.1614 | 1.0469 | | 0.0893 | 9.03 | 49900 | 0.1612 | 1.0304 | | 0.0834 | 9.04 | 50000 | 0.1643 | 1.0335 | | 0.0834 | 9.06 | 50100 | 0.1640 | 1.0175 | | 0.0834 | 9.08 | 50200 | 0.1655 | 1.0264 | | 0.0834 | 9.1 | 50300 | 0.1678 | 1.0243 | | 0.0834 | 9.12 | 50400 | 0.1659 | 1.0145 | | 0.079 | 9.14 | 50500 | 0.1644 | 1.0316 | | 0.079 | 9.15 | 50600 | 0.1630 | 1.0326 | | 0.079 | 9.17 | 50700 | 0.1634 | 1.0154 | | 0.079 | 9.19 | 50800 | 0.1697 | 1.0095 | | 0.079 | 9.21 | 50900 | 0.1678 | 1.0050 | | 0.078 | 9.23 | 51000 | 0.1626 | 1.0159 | | 0.078 | 9.24 | 51100 | 0.1666 | 1.0238 | | 0.078 | 9.26 | 51200 | 0.1644 | 1.0244 | | 0.078 | 9.28 | 51300 | 0.1655 | 1.0345 | | 0.078 | 9.3 | 51400 | 0.1615 | 1.0237 | | 0.0776 | 9.32 | 51500 | 0.1664 | 1.0180 | | 0.0776 | 9.33 | 51600 | 0.1603 | 1.0208 | | 0.0776 | 9.35 | 51700 | 0.1594 | 1.0230 | | 0.0776 | 9.37 | 51800 | 0.1622 | 1.0201 | | 0.0776 | 9.39 | 51900 | 0.1596 | 1.0039 | | 0.0782 | 9.41 | 52000 | 0.1645 | 1.0204 | | 0.0782 | 9.42 | 52100 | 0.1640 | 1.0318 | | 0.0782 | 9.44 | 52200 | 0.1621 | 1.0290 | | 0.0782 | 9.46 | 52300 | 0.1638 | 1.0318 | | 0.0782 | 9.48 | 52400 | 0.1613 | 1.0217 | | 0.0782 | 9.5 | 52500 | 0.1609 | 1.0261 | | 0.0782 | 9.52 | 52600 | 0.1625 | 1.0101 | | 0.0782 | 9.53 | 52700 | 0.1613 | 1.0058 | | 0.0782 | 9.55 | 52800 | 0.1599 | 1.0068 | | 0.0782 | 9.57 | 52900 | 0.1600 | 1.0110 | | 0.0797 | 9.59 | 53000 | 0.1594 | 1.0171 | | 0.0797 | 9.61 | 53100 | 0.1583 | 1.0124 | | 0.0797 | 9.62 | 53200 | 0.1646 | 1.0093 | | 0.0797 | 9.64 | 53300 | 0.1580 | 1.0201 | | 0.0797 | 9.66 | 53400 | 0.1599 | 1.0207 | | 0.0783 | 9.68 | 53500 | 0.1577 | 1.0226 | | 0.0783 | 9.7 | 53600 | 0.1593 | 1.0160 | | 0.0783 | 9.71 | 53700 | 0.1570 | 1.0173 | | 0.0783 | 9.73 | 53800 | 0.1614 | 1.0299 | | 0.0783 | 9.75 | 53900 | 0.1610 | 1.0184 | | 0.0779 | 9.77 | 54000 | 0.1606 | 1.0173 | | 0.0779 | 9.79 | 54100 | 0.1577 | 1.0032 | | 0.0779 | 9.8 | 54200 | 0.1590 | 1.0070 | | 0.0779 | 9.82 | 54300 | 0.1580 | 1.0257 | | 0.0779 | 9.84 | 54400 | 0.1592 | 1.0108 | | 0.0778 | 9.86 | 54500 | 0.1617 | 0.9907 | | 0.0778 | 9.88 | 54600 | 0.1605 | 1.0189 | | 0.0778 | 9.89 | 54700 | 0.1605 | 1.0177 | | 0.0778 | 9.91 | 54800 | 0.1536 | 1.0275 | | 0.0778 | 9.93 | 54900 | 0.1658 | 1.0282 | | 0.0777 | 9.95 | 55000 | 0.1543 | 1.0385 | | 0.0777 | 9.97 | 55100 | 0.1559 | 1.0375 | | 0.0777 | 9.99 | 55200 | 0.1590 | 1.0215 | | 0.0777 | 10.0 | 55300 | 0.1624 | 1.0242 | | 0.0777 | 10.02 | 55400 | 0.1635 | 1.0244 | | 0.0712 | 10.04 | 55500 | 0.1629 | 1.0298 | | 0.0712 | 10.06 | 55600 | 0.1601 | 1.0299 | | 0.0712 | 10.08 | 55700 | 0.1625 | 1.0117 | | 0.0712 | 10.09 | 55800 | 0.1650 | 1.0233 | | 0.0712 | 10.11 | 55900 | 0.1631 | 1.0061 | | 0.0667 | 10.13 | 56000 | 0.1637 | 1.0226 | | 0.0667 | 10.15 | 56100 | 0.1607 | 1.0042 | | 0.0667 | 10.17 | 56200 | 0.1599 | 1.0117 | | 0.0667 | 10.18 | 56300 | 0.1623 | 1.0246 | | 0.0667 | 10.2 | 56400 | 0.1639 | 1.0294 | | 0.0695 | 10.22 | 56500 | 0.1650 | 1.0232 | | 0.0695 | 10.24 | 56600 | 0.1620 | 1.0289 | | 0.0695 | 10.26 | 56700 | 0.1667 | 1.0209 | | 0.0695 | 10.27 | 56800 | 0.1580 | 1.0163 | | 0.0695 | 10.29 | 56900 | 0.1646 | 1.0293 | | 0.0686 | 10.31 | 57000 | 0.1636 | 1.0106 | | 0.0686 | 10.33 | 57100 | 0.1586 | 1.0044 | | 0.0686 | 10.35 | 57200 | 0.1582 | 1.0213 | | 0.0686 | 10.37 | 57300 | 0.1627 | 1.0151 | | 0.0686 | 10.38 | 57400 | 0.1619 | 1.0248 | | 0.0686 | 10.4 | 57500 | 0.1596 | 1.0098 | | 0.0686 | 10.42 | 57600 | 0.1606 | 1.0031 | | 0.0686 | 10.44 | 57700 | 0.1620 | 1.0046 | | 0.0686 | 10.46 | 57800 | 0.1592 | 1.0018 | | 0.0686 | 10.47 | 57900 | 0.1592 | 1.0058 | | 0.0669 | 10.49 | 58000 | 0.1605 | 0.9961 | | 0.0669 | 10.51 | 58100 | 0.1632 | 1.0102 | | 0.0669 | 10.53 | 58200 | 0.1593 | 1.0061 | | 0.0669 | 10.55 | 58300 | 0.1586 | 1.0091 | | 0.0669 | 10.56 | 58400 | 0.1603 | 1.0085 | | 0.068 | 10.58 | 58500 | 0.1579 | 1.0031 | | 0.068 | 10.6 | 58600 | 0.1591 | 1.0021 | | 0.068 | 10.62 | 58700 | 0.1590 | 1.0163 | | 0.068 | 10.64 | 58800 | 0.1584 | 1.0045 | | 0.068 | 10.65 | 58900 | 0.1594 | 1.0158 | | 0.0693 | 10.67 | 59000 | 0.1568 | 1.0052 | | 0.0693 | 10.69 | 59100 | 0.1581 | 0.9955 | | 0.0693 | 10.71 | 59200 | 0.1622 | 0.9917 | | 0.0693 | 10.73 | 59300 | 0.1580 | 1.0018 | | 0.0693 | 10.75 | 59400 | 0.1601 | 1.0077 | | 0.0699 | 10.76 | 59500 | 0.1605 | 0.9997 | | 0.0699 | 10.78 | 59600 | 0.1585 | 1.0009 | | 0.0699 | 10.8 | 59700 | 0.1541 | 1.0058 | | 0.0699 | 10.82 | 59800 | 0.1583 | 1.0026 | | 0.0699 | 10.84 | 59900 | 0.1592 | 0.9992 | | 0.0671 | 10.85 | 60000 | 0.1590 | 1.0004 | | 0.0671 | 10.87 | 60100 | 0.1585 | 1.0060 | | 0.0671 | 10.89 | 60200 | 0.1579 | 1.0063 | | 0.0671 | 10.91 | 60300 | 0.1582 | 0.9949 | | 0.0671 | 10.93 | 60400 | 0.1562 | 1.0004 | | 0.0661 | 10.94 | 60500 | 0.1560 | 0.9950 | | 0.0661 | 10.96 | 60600 | 0.1564 | 0.9990 | | 0.0661 | 10.98 | 60700 | 0.1552 | 0.9982 | | 0.0661 | 11.0 | 60800 | 0.1596 | 1.0018 | | 0.0661 | 11.02 | 60900 | 0.1618 | 0.9905 | | 0.0634 | 11.03 | 61000 | 0.1652 | 0.9890 | | 0.0634 | 11.05 | 61100 | 0.1649 | 0.9886 | | 0.0634 | 11.07 | 61200 | 0.1668 | 0.9870 | | 0.0634 | 11.09 | 61300 | 0.1663 | 0.9921 | | 0.0634 | 11.11 | 61400 | 0.1650 | 0.9919 | | 0.0587 | 11.13 | 61500 | 0.1674 | 0.9831 | | 0.0587 | 11.14 | 61600 | 0.1633 | 0.9793 | | 0.0587 | 11.16 | 61700 | 0.1665 | 0.9781 | | 0.0587 | 11.18 | 61800 | 0.1642 | 0.9821 | | 0.0587 | 11.2 | 61900 | 0.1638 | 0.9797 | | 0.0581 | 11.22 | 62000 | 0.1628 | 0.9727 | | 0.0581 | 11.23 | 62100 | 0.1661 | 0.9796 | | 0.0581 | 11.25 | 62200 | 0.1641 | 0.9830 | | 0.0581 | 11.27 | 62300 | 0.1601 | 0.9867 | | 0.0581 | 11.29 | 62400 | 0.1626 | 0.9757 | | 0.0584 | 11.31 | 62500 | 0.1632 | 1.0014 | | 0.0584 | 11.32 | 62600 | 0.1626 | 1.0052 | | 0.0584 | 11.34 | 62700 | 0.1586 | 1.0098 | | 0.0584 | 11.36 | 62800 | 0.1597 | 1.0151 | | 0.0584 | 11.38 | 62900 | 0.1624 | 1.0054 | | 0.0589 | 11.4 | 63000 | 0.1618 | 1.0018 | | 0.0589 | 11.41 | 63100 | 0.1635 | 1.0032 | | 0.0589 | 11.43 | 63200 | 0.1654 | 1.0142 | | 0.0589 | 11.45 | 63300 | 0.1646 | 1.0031 | | 0.0589 | 11.47 | 63400 | 0.1618 | 1.0118 | | 0.0579 | 11.49 | 63500 | 0.1634 | 1.0218 | | 0.0579 | 11.51 | 63600 | 0.1616 | 1.0179 | | 0.0579 | 11.52 | 63700 | 0.1603 | 1.0036 | | 0.0579 | 11.54 | 63800 | 0.1610 | 1.0150 | | 0.0579 | 11.56 | 63900 | 0.1605 | 1.0285 | | 0.0572 | 11.58 | 64000 | 0.1621 | 1.0261 | | 0.0572 | 11.6 | 64100 | 0.1625 | 1.0252 | | 0.0572 | 11.61 | 64200 | 0.1677 | 1.0257 | | 0.0572 | 11.63 | 64300 | 0.1656 | 1.0243 | | 0.0572 | 11.65 | 64400 | 0.1669 | 1.0270 | | 0.0592 | 11.67 | 64500 | 0.1605 | 1.0305 | | 0.0592 | 11.69 | 64600 | 0.1633 | 1.0277 | | 0.0592 | 11.7 | 64700 | 0.1606 | 1.0176 | | 0.0592 | 11.72 | 64800 | 0.1618 | 1.0249 | | 0.0592 | 11.74 | 64900 | 0.1609 | 1.0113 | | 0.0595 | 11.76 | 65000 | 0.1609 | 1.0254 | | 0.0595 | 11.78 | 65100 | 0.1662 | 1.0275 | | 0.0595 | 11.79 | 65200 | 0.1652 | 1.0164 | | 0.0595 | 11.81 | 65300 | 0.1638 | 1.0266 | | 0.0595 | 11.83 | 65400 | 0.1589 | 1.0274 | | 0.0588 | 11.85 | 65500 | 0.1607 | 1.0136 | | 0.0588 | 11.87 | 65600 | 0.1592 | 1.0136 | | 0.0588 | 11.88 | 65700 | 0.1581 | 1.0183 | | 0.0588 | 11.9 | 65800 | 0.1587 | 1.0133 | | 0.0588 | 11.92 | 65900 | 0.1596 | 1.0170 | | 0.0558 | 11.94 | 66000 | 0.1590 | 1.0161 | | 0.0558 | 11.96 | 66100 | 0.1597 | 1.0193 | | 0.0558 | 11.98 | 66200 | 0.1590 | 1.0193 | | 0.0558 | 11.99 | 66300 | 0.1608 | 1.0242 | | 0.0558 | 12.01 | 66400 | 0.1642 | 1.0231 | | 0.0555 | 12.03 | 66500 | 0.1679 | 1.0168 | | 0.0555 | 12.05 | 66600 | 0.1674 | 1.0083 | | 0.0555 | 12.07 | 66700 | 0.1658 | 1.0069 | | 0.0555 | 12.08 | 66800 | 0.1661 | 1.0134 | | 0.0555 | 12.1 | 66900 | 0.1682 | 1.0274 | | 0.0508 | 12.12 | 67000 | 0.1702 | 1.0219 | | 0.0508 | 12.14 | 67100 | 0.1694 | 1.0219 | | 0.0508 | 12.16 | 67200 | 0.1667 | 1.0236 | | 0.0508 | 12.17 | 67300 | 0.1672 | 1.0253 | | 0.0508 | 12.19 | 67400 | 0.1640 | 1.0215 | | 0.0513 | 12.21 | 67500 | 0.1649 | 1.0242 | | 0.0513 | 12.23 | 67600 | 0.1687 | 1.0262 | | 0.0513 | 12.25 | 67700 | 0.1655 | 1.0231 | | 0.0513 | 12.26 | 67800 | 0.1692 | 1.0176 | | 0.0513 | 12.28 | 67900 | 0.1675 | 1.0202 | | 0.0519 | 12.3 | 68000 | 0.1644 | 1.0241 | | 0.0519 | 12.32 | 68100 | 0.1651 | 1.0297 | | 0.0519 | 12.34 | 68200 | 0.1661 | 1.0287 | | 0.0519 | 12.36 | 68300 | 0.1665 | 1.0257 | | 0.0519 | 12.37 | 68400 | 0.1685 | 1.0233 | | 0.0522 | 12.39 | 68500 | 0.1636 | 1.0177 | | 0.0522 | 12.41 | 68600 | 0.1709 | 1.0200 | | 0.0522 | 12.43 | 68700 | 0.1684 | 1.0164 | | 0.0522 | 12.45 | 68800 | 0.1666 | 1.0119 | | 0.0522 | 12.46 | 68900 | 0.1683 | 1.0136 | | 0.05 | 12.48 | 69000 | 0.1696 | 1.0127 | | 0.05 | 12.5 | 69100 | 0.1708 | 1.0184 | | 0.05 | 12.52 | 69200 | 0.1654 | 1.0282 | | 0.05 | 12.54 | 69300 | 0.1700 | 1.0235 | | 0.05 | 12.55 | 69400 | 0.1688 | 1.0257 | | 0.0513 | 12.57 | 69500 | 0.1646 | 1.0274 | | 0.0513 | 12.59 | 69600 | 0.1660 | 1.0247 | | 0.0513 | 12.61 | 69700 | 0.1657 | 1.0188 | | 0.0513 | 12.63 | 69800 | 0.1654 | 1.0087 | | 0.0513 | 12.64 | 69900 | 0.1681 | 1.0146 | | 0.0512 | 12.66 | 70000 | 0.1660 | 1.0185 | | 0.0512 | 12.68 | 70100 | 0.1690 | 1.0214 | | 0.0512 | 12.7 | 70200 | 0.1683 | 1.0160 | | 0.0512 | 12.72 | 70300 | 0.1695 | 1.0198 | | 0.0512 | 12.74 | 70400 | 0.1666 | 1.0193 | | 0.0484 | 12.75 | 70500 | 0.1654 | 1.0142 | | 0.0484 | 12.77 | 70600 | 0.1598 | 1.0154 | | 0.0484 | 12.79 | 70700 | 0.1623 | 1.0139 | | 0.0484 | 12.81 | 70800 | 0.1662 | 1.0180 | | 0.0484 | 12.83 | 70900 | 0.1659 | 1.0232 | | 0.0501 | 12.84 | 71000 | 0.1662 | 1.0202 | | 0.0501 | 12.86 | 71100 | 0.1639 | 1.0161 | | 0.0501 | 12.88 | 71200 | 0.1666 | 1.0151 | | 0.0501 | 12.9 | 71300 | 0.1644 | 1.0129 | | 0.0501 | 12.92 | 71400 | 0.1642 | 1.0171 | | 0.0482 | 12.93 | 71500 | 0.1635 | 1.0162 | | 0.0482 | 12.95 | 71600 | 0.1637 | 1.0186 | | 0.0482 | 12.97 | 71700 | 0.1639 | 1.0142 | | 0.0482 | 12.99 | 71800 | 0.1643 | 1.0122 | | 0.0482 | 13.01 | 71900 | 0.1679 | 1.0156 | | 0.0483 | 13.02 | 72000 | 0.1717 | 1.0224 | | 0.0483 | 13.04 | 72100 | 0.1742 | 1.0229 | | 0.0483 | 13.06 | 72200 | 0.1718 | 1.0237 | | 0.0483 | 13.08 | 72300 | 0.1742 | 1.0266 | | 0.0483 | 13.1 | 72400 | 0.1736 | 1.0257 | | 0.0443 | 13.12 | 72500 | 0.1741 | 1.0275 | | 0.0443 | 13.13 | 72600 | 0.1745 | 1.0325 | | 0.0443 | 13.15 | 72700 | 0.1737 | 1.0296 | | 0.0443 | 13.17 | 72800 | 0.1722 | 1.0303 | | 0.0443 | 13.19 | 72900 | 0.1702 | 1.0305 | | 0.0424 | 13.21 | 73000 | 0.1733 | 1.0241 | | 0.0424 | 13.22 | 73100 | 0.1748 | 1.0243 | | 0.0424 | 13.24 | 73200 | 0.1760 | 1.0231 | | 0.0424 | 13.26 | 73300 | 0.1745 | 1.0241 | | 0.0424 | 13.28 | 73400 | 0.1772 | 1.0217 | | 0.0424 | 13.3 | 73500 | 0.1755 | 1.0206 | | 0.0424 | 13.31 | 73600 | 0.1743 | 1.0242 | | 0.0424 | 13.33 | 73700 | 0.1738 | 1.0208 | | 0.0424 | 13.35 | 73800 | 0.1736 | 1.0249 | | 0.0424 | 13.37 | 73900 | 0.1747 | 1.0271 | | 0.0437 | 13.39 | 74000 | 0.1707 | 1.0241 | | 0.0437 | 13.4 | 74100 | 0.1731 | 1.0269 | | 0.0437 | 13.42 | 74200 | 0.1743 | 1.0290 | | 0.0437 | 13.44 | 74300 | 0.1739 | 1.0266 | | 0.0437 | 13.46 | 74400 | 0.1763 | 1.0246 | | 0.0443 | 13.48 | 74500 | 0.1724 | 1.0209 | | 0.0443 | 13.49 | 74600 | 0.1744 | 1.0244 | | 0.0443 | 13.51 | 74700 | 0.1717 | 1.0232 | | 0.0443 | 13.53 | 74800 | 0.1754 | 1.0217 | | 0.0443 | 13.55 | 74900 | 0.1721 | 1.0234 | | 0.0435 | 13.57 | 75000 | 0.1751 | 1.0197 | | 0.0435 | 13.59 | 75100 | 0.1727 | 1.0285 | | 0.0435 | 13.6 | 75200 | 0.1715 | 1.0221 | | 0.0435 | 13.62 | 75300 | 0.1746 | 1.0247 | | 0.0435 | 13.64 | 75400 | 0.1712 | 1.0231 | | 0.0436 | 13.66 | 75500 | 0.1719 | 1.0228 | | 0.0436 | 13.68 | 75600 | 0.1727 | 1.0197 | | 0.0436 | 13.69 | 75700 | 0.1750 | 1.0252 | | 0.0436 | 13.71 | 75800 | 0.1702 | 1.0241 | | 0.0436 | 13.73 | 75900 | 0.1720 | 1.0250 | | 0.0433 | 13.75 | 76000 | 0.1744 | 1.0210 | | 0.0433 | 13.77 | 76100 | 0.1735 | 1.0211 | | 0.0433 | 13.78 | 76200 | 0.1727 | 1.0205 | | 0.0433 | 13.8 | 76300 | 0.1706 | 1.0218 | | 0.0433 | 13.82 | 76400 | 0.1709 | 1.0238 | | 0.0431 | 13.84 | 76500 | 0.1705 | 1.0197 | | 0.0431 | 13.86 | 76600 | 0.1734 | 1.0223 | | 0.0431 | 13.87 | 76700 | 0.1695 | 1.0250 | | 0.0431 | 13.89 | 76800 | 0.1734 | 1.0232 | | 0.0431 | 13.91 | 76900 | 0.1724 | 1.0219 | | 0.041 | 13.93 | 77000 | 0.1706 | 1.0236 | | 0.041 | 13.95 | 77100 | 0.1689 | 1.0220 | | 0.041 | 13.97 | 77200 | 0.1738 | 1.0230 | | 0.041 | 13.98 | 77300 | 0.1727 | 1.0254 | | 0.041 | 14.0 | 77400 | 0.1721 | 1.0261 | | 0.041 | 14.02 | 77500 | 0.1760 | 1.0261 | | 0.041 | 14.04 | 77600 | 0.1772 | 1.0202 | | 0.041 | 14.06 | 77700 | 0.1782 | 1.0202 | | 0.041 | 14.07 | 77800 | 0.1777 | 1.0222 | | 0.041 | 14.09 | 77900 | 0.1787 | 1.0203 | | 0.0383 | 14.11 | 78000 | 0.1790 | 1.0236 | | 0.0383 | 14.13 | 78100 | 0.1812 | 1.0245 | | 0.0383 | 14.15 | 78200 | 0.1778 | 1.0224 | | 0.0383 | 14.16 | 78300 | 0.1771 | 1.0231 | | 0.0383 | 14.18 | 78400 | 0.1782 | 1.0242 | | 0.0391 | 14.2 | 78500 | 0.1785 | 1.0262 | | 0.0391 | 14.22 | 78600 | 0.1791 | 1.0261 | | 0.0391 | 14.24 | 78700 | 0.1770 | 1.0254 | | 0.0391 | 14.25 | 78800 | 0.1810 | 1.0257 | | 0.0391 | 14.27 | 78900 | 0.1794 | 1.0241 | | 0.0387 | 14.29 | 79000 | 0.1774 | 1.0256 | | 0.0387 | 14.31 | 79100 | 0.1774 | 1.0236 | | 0.0387 | 14.33 | 79200 | 0.1759 | 1.0222 | | 0.0387 | 14.35 | 79300 | 0.1787 | 1.0237 | | 0.0387 | 14.36 | 79400 | 0.1788 | 1.0227 | | 0.0372 | 14.38 | 79500 | 0.1789 | 1.0232 | | 0.0372 | 14.4 | 79600 | 0.1771 | 1.0254 | | 0.0372 | 14.42 | 79700 | 0.1777 | 1.0244 | | 0.0372 | 14.44 | 79800 | 0.1791 | 1.0225 | | 0.0372 | 14.45 | 79900 | 0.1786 | 1.0237 | | 0.0385 | 14.47 | 80000 | 0.1782 | 1.0243 | | 0.0385 | 14.49 | 80100 | 0.1770 | 1.0236 | | 0.0385 | 14.51 | 80200 | 0.1782 | 1.0240 | | 0.0385 | 14.53 | 80300 | 0.1764 | 1.0243 | | 0.0385 | 14.54 | 80400 | 0.1748 | 1.0248 | | 0.039 | 14.56 | 80500 | 0.1758 | 1.0232 | | 0.039 | 14.58 | 80600 | 0.1763 | 1.0246 | | 0.039 | 14.6 | 80700 | 0.1770 | 1.0220 | | 0.039 | 14.62 | 80800 | 0.1788 | 1.0225 | | 0.039 | 14.63 | 80900 | 0.1781 | 1.0230 | | 0.039 | 14.65 | 81000 | 0.1779 | 1.0230 | | 0.039 | 14.67 | 81100 | 0.1755 | 1.0212 | | 0.039 | 14.69 | 81200 | 0.1765 | 1.0226 | | 0.039 | 14.71 | 81300 | 0.1787 | 1.0241 | | 0.039 | 14.72 | 81400 | 0.1782 | 1.0250 | | 0.0368 | 14.74 | 81500 | 0.1780 | 1.0248 | | 0.0368 | 14.76 | 81600 | 0.1782 | 1.0242 | | 0.0368 | 14.78 | 81700 | 0.1782 | 1.0242 | | 0.0368 | 14.8 | 81800 | 0.1792 | 1.0241 | | 0.0368 | 14.82 | 81900 | 0.1796 | 1.0238 | | 0.0378 | 14.83 | 82000 | 0.1795 | 1.0236 | | 0.0378 | 14.85 | 82100 | 0.1796 | 1.0239 | | 0.0378 | 14.87 | 82200 | 0.1792 | 1.0236 | | 0.0378 | 14.89 | 82300 | 0.1789 | 1.0239 | | 0.0378 | 14.91 | 82400 | 0.1788 | 1.0238 | | 0.0386 | 14.92 | 82500 | 0.1787 | 1.0239 | | 0.0386 | 14.94 | 82600 | 0.1786 | 1.0236 | | 0.0386 | 14.96 | 82700 | 0.1786 | 1.0237 | | 0.0386 | 14.98 | 82800 | 0.1787 | 1.0239 | | 0.0386 | 15.0 | 82900 | 0.1788 | 1.0238 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
gokulkarthik/xlm-roberta-qa-chaii
02f9edd5440b984f92764c4fadadab75079be001
2021-12-06T15:50:08.000Z
[ "pytorch", "xlm-roberta", "question-answering", "en", "ta", "hi", "dataset:squad", "dataset:chaii", "transformers", "autotrain_compatible" ]
question-answering
false
gokulkarthik
null
gokulkarthik/xlm-roberta-qa-chaii
21
null
transformers
8,170
--- language: - en - ta - hi datasets: - squad - chaii widget: - text: "அலுமினியத்தின் அணு எண் என்ன?" context: "அலுமினியம் (ஆங்கிலம்: அலுமினியம்; வட அமெரிக்க ஆங்கிலம்: Aluminum) ஒரு வேதியியல் தனிமம் ஆகும். இதனுடைய அணு எண் 13 ஆகும். இது பூமியில் அதிகம் கிடைக்கும் உலோகங்களுள் ஒன்று. இது மின்சாரத்தையும் வெப்பத்தையும் கடத்த வல்லது. பாக்ஸைட் என்ற தாதுவில் இருந்து அலுமினியம் தயாரிக்கப்படுகிறது. இதன் வேதிக்குறியீடு Al ஆகும்." - text: "ज्वाला गुट्टा की माँ का नाम क्या है?" context: "ज्वाला गुट्टा (जन्म: 7 सितंबर 1983; वर्धा, महाराष्ट्र) एक भारतीय बैडमिंटन खिलाडी हैं। प्रारंभिक जीवन ज्वाला गुट्टा का जन्म 7 सितंबर 1983 को वर्धा, महाराष्ट्र में हुआ था। उनके पिता एम. क्रांति तेलुगु और मां येलन चीन से हैं। उनकी मां येलन गुट्टा पहली बार 1977 में अपने दादा जी के साथ भारत आई थीं। ज्वाला गुट्टा की प्रारंभिक पढ़ाई हैदराबाद से हुई और यहीं से उन्होंने बैडमिंटन खेलना भी शुरू किया। कॅरियर 10 साल की उम्र से ही ज्वाला गुट्टा ने एस.एम. आरिफ से ट्रेनिंग लेना शुरू कर दिया था। एस.एम. आरिफ भारत के जाने माने खेल प्रशिक्षक हैं जिन्हें द्रोणाचार्य अवार्ड से सम्मानित किया गया है। पहली बार 13 साल की उम्र में उन्होंने मिनी नेशनल बैडमिंटन चैंपियनशिप जीती थी। साल 2000 में ज्वाला गुट्टा ने 17 साल की उम्र में जूनियर नेशनल बैडमिंटन चैंपियनशिप जीती। इसी साल उन्होंने श्रुति कुरियन के साथ डबल्स में जोड़ी बनाते हुए महिलाओं के डबल्स जूनियर नेशनल बैडमिंटन चैंपियनशिप और सीनियर नेशनल बैडमिंटन चैंपियनशिप में जीत हासिल की। श्रुति कुरियन के साथ उनकी जोड़ी काफी लंबे समय तक चली। 2002 से 2008 तक लगातार सात बार ज्वाला गुट्टा ने महिलाओं के नेशनल युगल प्रतियोगिता में जीत हासिल की।" - text: "How many bones do you have in your body?" context: "A normal adult human skeleton consists of the following 206 (208 if the breast is thought to be three parts). This number can vary depending on the physiological differences. For example, in a very small number of humans, an extra rib (neck) or an extra lower spinal cord is found. There are 22 bones in the human skull (excluding the ear tendons), which are divided into eight cranium bones and 14 facial bones. (Thick numbers indicate the numbers seen in the nearby picture.) Bones (8) 1 frontal bone (2) 3 temporal bone (2) 4 occipital bone (4) Sphinoid bone (14) 7 mandible (6) maxilla (2) palatine bone (2) 5 zygotic bone (9) 9 nasal bone (2) The sacral vertebrae (4 or 5), in adults, form the sacral vertebrae (3 to 5), in adults they form the valve." --- # XLM-RoBERTa for question answering in Indian languages pre-trained XLM-Roberta with intermediate pre-training on SQUAD dataset (English) and fine tuning on Chaii dataset (Tamil, Hindi) # How to use from the 🤗/transformers library ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("gokulkarthik/xlm-roberta-qa-chaii") model = AutoModelForQuestionAnswering.from_pretrained("gokulkarthik/xlm-roberta-qa-chaii") ```
google/t5-efficient-base-nl40
f3d787d3e0e8156d17f6f2b437fb14631c8abbd8
2022-02-15T10:53:33.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-base-nl40
21
null
transformers
8,171
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-BASE-NL40 (Deep-Narrow version) T5-Efficient-BASE-NL40 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-nl40** - is of model type **Base** with the following variations: - **nl** is **40** It has **685.53** million parameters and thus requires *ca.* **2742.11 MB** of memory in full precision (*fp32*) or **1371.05 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
huggingtweets/4by3animetits
09ba7bd133af922a75414d546b5498ad10218abe
2021-09-14T06:15:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/4by3animetits
21
null
transformers
8,172
--- language: en thumbnail: https://www.huggingtweets.com/4by3animetits/1631600106043/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1437436917201637376/YMXf838Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Numb</div> <div style="text-align: center; font-size: 14px;">@4by3animetits</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Numb. | Data | Numb | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 1497 | | Short tweets | 491 | | Tweets kept | 1218 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pdw5mgr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @4by3animetits's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5yrdnbzr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5yrdnbzr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/4by3animetits') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/molleindustria
52a1a47c3167a2e2b5d4af6428c7e128fb7312e7
2021-05-22T15:04:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/molleindustria
21
null
transformers
8,173
--- language: en thumbnail: https://www.huggingtweets.com/molleindustria/1607297976960/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1093212724/logo_small_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Paolo Pedercini 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@molleindustria bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@molleindustria's tweets](https://twitter.com/molleindustria). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3240</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>376</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>172</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2692</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r51uy9bs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @molleindustria's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cdzfc0q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cdzfc0q/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/molleindustria'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/porngum_ebooks
e2db877750ef12891172d68191b803a3050083aa
2021-05-22T19:07:00.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/porngum_ebooks
21
null
transformers
8,174
--- language: en thumbnail: https://www.huggingtweets.com/porngum_ebooks/1621363486627/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1383374684071227395/e9hDXrVN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Envelope</div> <div style="text-align: center; font-size: 14px;">@porngum_ebooks</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Envelope. | Data | Envelope | | --- | --- | | Tweets downloaded | 3173 | | Retweets | 817 | | Short tweets | 725 | | Tweets kept | 1631 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cyxpt28/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @porngum_ebooks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vi26h00l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vi26h00l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/porngum_ebooks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hyunwoongko/megatron-11B
587257c53d3f43ca2ec213451f4d4c17a8c3e2ed
2021-06-22T18:21:05.000Z
[ "pytorch", "megatron", "text-generation", "transformers" ]
text-generation
false
hyunwoongko
null
hyunwoongko/megatron-11B
21
2
transformers
8,175
Entry not found
idjotherwise/autonlp-reading_prediction-172506
6dd4934e8fe44bad70006d590cfb855b7984a23e
2021-05-20T16:57:07.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "dataset:idjotherwise/autonlp-data-reading_prediction", "transformers", "autonlp" ]
text-classification
false
idjotherwise
null
idjotherwise/autonlp-reading_prediction-172506
21
null
transformers
8,176
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - idjotherwise/autonlp-data-reading_prediction --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 172506 ## Validation Metrics - Loss: 0.03257797285914421 - MSE: 0.03257797285914421 - MAE: 0.14246532320976257 - R2: 0.9693824457290849 - RMSE: 0.18049369752407074 - Explained Variance: 0.9699198007583618 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/idjotherwise/autonlp-reading_prediction-172506 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("idjotherwise/autonlp-reading_prediction-172506") tokenizer = AutoTokenizer.from_pretrained("idjotherwise/autonlp-reading_prediction-172506") inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
infinitejoy/wav2vec2-large-xls-r-300m-hindi
67d68e320645ef250a94d97eea9c620ecc9cdf9e
2022-03-23T18:34:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-hindi
21
null
transformers
8,177
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 100 - name: Test CER type: cer value: 92.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5414 - Wer: 1.0194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6095 | 3.38 | 500 | 4.5881 | 0.9999 | | 3.3396 | 6.76 | 1000 | 3.3301 | 1.0001 | | 2.0061 | 10.14 | 1500 | 1.2096 | 1.0063 | | 1.523 | 13.51 | 2000 | 0.7836 | 1.0051 | | 1.3868 | 16.89 | 2500 | 0.6837 | 1.0080 | | 1.2807 | 20.27 | 3000 | 0.6568 | 1.0112 | | 1.231 | 23.65 | 3500 | 0.6120 | 1.0105 | | 1.1673 | 27.03 | 4000 | 0.5972 | 1.0089 | | 1.1416 | 30.41 | 4500 | 0.5780 | 1.0132 | | 1.0738 | 33.78 | 5000 | 0.5806 | 1.0123 | | 1.0771 | 37.16 | 5500 | 0.5586 | 1.0067 | | 1.0287 | 40.54 | 6000 | 0.5464 | 1.0058 | | 1.0106 | 43.92 | 6500 | 0.5407 | 1.0062 | | 0.9538 | 47.3 | 7000 | 0.5334 | 1.0089 | | 0.9607 | 50.68 | 7500 | 0.5395 | 1.0110 | | 0.9108 | 54.05 | 8000 | 0.5502 | 1.0137 | | 0.9252 | 57.43 | 8500 | 0.5498 | 1.0062 | | 0.8943 | 60.81 | 9000 | 0.5448 | 1.0158 | | 0.8728 | 64.19 | 9500 | 0.5257 | 1.0113 | | 0.8577 | 67.57 | 10000 | 0.5550 | 1.0178 | | 0.8332 | 70.95 | 10500 | 0.5607 | 1.0166 | | 0.8174 | 74.32 | 11000 | 0.5429 | 1.0145 | | 0.8168 | 77.7 | 11500 | 0.5561 | 1.0116 | | 0.7872 | 81.08 | 12000 | 0.5478 | 1.0164 | | 0.7707 | 84.46 | 12500 | 0.5412 | 1.0216 | | 0.7742 | 87.84 | 13000 | 0.5391 | 1.0207 | | 0.7594 | 91.22 | 13500 | 0.5379 | 1.0208 | | 0.7678 | 94.59 | 14000 | 0.5415 | 1.0198 | | 0.7502 | 97.97 | 14500 | 0.5409 | 1.0191 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ismaelardo/BETO_4d
d2114ea296185c262ca9c5c3f305316eb910271a
2021-12-30T23:53:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ismaelardo
null
ismaelardo/BETO_4d
21
null
transformers
8,178
Entry not found
it5/it5-small-headline-generation
f985f0d04fe60572ac4df4aeca2d32133565489e
2022-03-09T08:00:22.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "headline-generation", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-small-headline-generation
21
null
transformers
8,179
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - headline-generation widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore model-index: - name: it5-small-headline-generation results: - task: type: headline-generation name: "Headline generation" dataset: type: headgen_it name: "HeadGen-IT" metrics: - type: rouge1 value: 0.287 name: "Test Rouge1" - type: rouge2 value: 0.100 name: "Test Rouge2" - type: rougeL value: 0.253 name: "Test RougeL" - type: bertscore value: 0.414 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "8g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Small for News Headline Generation 📣 🇮🇹 This repository contains the checkpoint for the [IT5 Small](https://huggingface.co/gsarti/it5-small) model fine-tuned on news headline generation on the Italian HeadGen-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines hg = pipeline("text2text-generation", model='it5/it5-small-headline-generation') hg("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-small-headline-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-small-headline-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
jkgrad/xlnet-base-cased-squad-quoref
1ab9e6595274eda0ab1960db6b0ac95b7fb3cb25
2021-01-28T06:54:08.000Z
[ "pytorch", "xlnet", "question-answering", "arxiv:1906.08237", "transformers", "autotrain_compatible" ]
question-answering
false
jkgrad
null
jkgrad/xlnet-base-cased-squad-quoref
21
null
transformers
8,180
# XLNet Fine-tuned on SQuAD / Quoref Dataset [XLNet](https://arxiv.org/abs/1906.08237) jointly developed by Google and CMU and fine-tuned on [SQuAD / SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) and [Quoref](https://leaderboard.allenai.org/quoref) for question answering down-stream task. ## Evaluation Result on Quoref ``` { "exact_match": 73.65591397848462, "f1": 77.9981532789881 } ``` ## Results Comparison on Quoref | Metric | XLNet Base Line | Model FT on SQuAD | | ------ | --------- | --------- | | **EM** | **61.88** | **73.66** (+11.78) | | **F1** | **70.51** | **78.00** (+7.49)| ## How to Use ``` from transformers import XLNetForQuestionAnswering, XLNetTokenizerFast model = XLNetForQuestionAnswering.from_pretrained('jkgrad/xlnet-base-cased-squad-quoref) tokenizer = XLNetTokenizerFast.from_pretrained('jkgrad/xlnet-base-cased-squad-quoref') ```
junnyu/roformer_chinese_char_small
9bfe6ff7c9e88946e660b3444d25674047409eb3
2022-01-04T11:45:10.000Z
[ "pytorch", "tf", "jax", "roformer", "fill-mask", "zh", "arxiv:2104.09864", "transformers", "tf2.0", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/roformer_chinese_char_small
21
null
transformers
8,181
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liam168/gen-gpt2-medium-chinese
efb34b2f0b82adfe57a9c3f11be066a2a6afc620
2021-07-07T02:26:55.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "zh", "transformers" ]
text-generation
false
liam168
null
liam168/gen-gpt2-medium-chinese
21
null
transformers
8,182
--- language: zh widget: - text: "晓日千红" - text: "长街躞蹀" --- # gen-gpt2-medium-chinese # Overview - **Language model**: GPT2-Medium - **Model size**: 68M - **Language**: Chinese # Example ```python from transformers import TFGPT2LMHeadModel,AutoTokenizer from transformers import TextGenerationPipeline mode_name = 'liam168/gen-gpt2-medium-chinese' tokenizer = AutoTokenizer.from_pretrained(mode_name) model = TFGPT2LMHeadModel.from_pretrained(mode_name) text_generator = TextGenerationPipeline(model, tokenizer) print(text_generator("晓日千红", max_length=64, do_sample=True)) print(text_generator("加餐小语", max_length=50, do_sample=False)) ``` 输出 ```text [{'generated_text': '晓日千红 独 远 客 。 孤 夜 云 云 梦 到 冷 。 著 剩 笑 、 人 远 。 灯 啼 鸦 最 回 吟 。 望 , 枕 付 孤 灯 、 客 。 对 梅 残 照 偏 相 思 , 玉 弦 语 。 翠 台 新 妆 、 沉 、 登 临 水 。 空'}] [{'generated_text': '加餐小语 有 有 骨 , 有 人 诗 成 自 远 诗 。 死 了 自 喜 乐 , 独 撑 天 下 诗 事 小 诗 柴 。 桃 花 谁 知 何 处 何 处 高 吟 诗 从 今 死 火 , 此 事'}] ```
liam168/qa-roberta-base-chinese-extractive
4d2f870d15305bbf09588dc42f2dd845157e51e2
2021-07-16T05:01:19.000Z
[ "pytorch", "bert", "question-answering", "zh", "transformers", "autotrain_compatible" ]
question-answering
false
liam168
null
liam168/qa-roberta-base-chinese-extractive
21
2
transformers
8,183
--- language: zh widget: - text: "著名诗歌《假如生活欺骗了你》的作者是" context: "普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。" --- # Chinese RoBERTa-Base Model for QA ## Model description 用中文预料微调的QA模型. ## Overview - **Language model**: RoBERTa-Base - **Model size**: 400M - **Language**: Chinese ## How to use You can use the model directly with a pipeline for extractive question answering: ```python >>> from transformers import AutoModelForQuestionAnswering,AutoTokenizer,pipeline >>> context = '卡利亚·基拔(,)生于英国汉默史密斯,是一名英格兰籍职业足球员,于2010年夏季约满离开母会阿仙奴。直到2005/06年,基拔通常在阿仙奴的青年后备队效力。他在首次在2005年11月29日的联赛杯赛事上场,并于12月7日,在一个欧洲联赛冠军杯比赛对阿积士,作为替代左后卫,入替受伤的劳伦。2006年7月21日阿仙奴宣布,将基拔出借卡迪夫城整个2006-07赛季,其后转借给修安联。2008年1月3日返回阿仙奴授予46号码。2008年2月11日,阿仙奴的英超联赛比赛中对布莱克本作为后备球员。但2008年7月10日,基拔被出借莱斯特城的一个赛季之久。2009年3月3日主场对-{zh-hans:斯托克港;zh-hk:史托港}-,开赛后仅两分钟,基拔的传中球「挞Q」却直入网角,是他个人首个入球。基拔在外借期间成为常规正选,整季上阵达39场及射入1球,协助莱斯特城赢取英甲联赛冠军及重返英冠。2009/10年上半季仅于两场英格兰联赛杯及一场无关痛痒的欧联分组赛上阵,将于季后约满的基拔获外借到英冠榜末球会彼德堡直到球季结束,期间上阵10场。2010年夏季基拔约满阿仙奴成为自由球员,仅为母会合共上阵10场,英超「升班马」黑池有意罗致,其后前往-{zh-hans:谢菲尔德联; zh-hk:锡菲联;}-参加试训,惟未有获得录用。' >>> mode_name = 'liam168/qa-roberta-base-chinese-extractive' >>> model = AutoModelForQuestionAnswering.from_pretrained(mode_name) >>> tokenizer = AutoTokenizer.from_pretrained(mode_name) >>> QA = pipeline('question-answering', model=model, tokenizer=tokenizer) >>> QA_input = {'question': "卡利亚·基拔的职业是什么?",'context': context} >>> QA(QA_input) {'score': 0.9999, 'start': 20, 'end': 31, 'answer': '一名英格兰籍职业足球员'} ``` ## Contact [email protected]
liangtaiwan/t5-v1_1-lm100k-base
ff02d26d22780e2a4e42b96965d2c7f5fa90e9e5
2021-10-21T09:30:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
liangtaiwan
null
liangtaiwan/t5-v1_1-lm100k-base
21
null
transformers
8,184
Entry not found
madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1
9457400a20c3a0bdc0711ed11f3339b30d7b31aa
2021-05-19T22:32:43.000Z
[ "pytorch", "tf", "bert", "question-answering", "en", "dataset:squad", "arxiv:2005.07683", "transformers", "bert-base", "license:mit", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1
21
null
transformers
8,185
--- language: en thumbnail: license: mit tags: - question-answering - bert - bert-base datasets: - squad metrics: - squad widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model is block sparse: the **linear** layers contains **12.5%** of the original weights. The model contains **32.1%** of the original weights **overall**. The training use a modified version of Victor Sanh [Movement Pruning](https://arxiv.org/abs/2005.07683) method. That means that with the [block-sparse](https://github.com/huggingface/pytorch_block_sparse) runtime it ran **1.65x** faster than an dense networks on the evaluation, at the price of some impact on the accuracy (see below). This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the equivalent model [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1). This model is case-insensitive: it does not make a difference between english and English. ## Pruning details A side-effect of the block pruning is that some of the attention heads are completely removed: 97 heads were removed on a total of 144 (67.4%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. ![Pruning details](https://huggingface.co/madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1/raw/main/model_card/pruning.svg) ## Density plot <script src="/madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1/raw/main/model_card/density.js" id="34ede51e-2375-4d96-99dd-383de82a2d16"></script> ## Details | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `342M` (original BERT: `438M`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| | ------ | --------- | --------- | | **EM** | **74.39** | **80.8** | | **F1** | **83.26** | **88.5** | ## Example Usage ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1", tokenizer="madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1" ) predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print(predictions) ```
monologg/koelectra-small-finetuned-goemotions
761a00c48d933899f3d70a71ba131cbcaca5145e
2020-05-18T21:39:13.000Z
[ "pytorch", "electra", "transformers" ]
null
false
monologg
null
monologg/koelectra-small-finetuned-goemotions
21
null
transformers
8,186
Entry not found
mrm8488/CodeGPT-small-finetuned-python-token-completion
06b027cb8ff99bc236e608c7e3a73f855c99ccf6
2021-05-23T10:08:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/CodeGPT-small-finetuned-python-token-completion
21
1
transformers
8,187
--- language: en widget: - text: "<s> def add_number ( a , b ) : <EOL> return a +" --- # CodeGPT-small-py fine-tuned on CodeXGLUE for code-refinement task
persiannlp/mt5-large-parsinlu-snli-entailment
29df81b8dc19909cb5060518d726b0da287caedf
2021-09-23T16:20:24.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "dataset:snli", "transformers", "entailment", "mt5", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-large-parsinlu-snli-entailment
21
null
transformers
8,188
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - entailment - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - snli metrics: - accuracy --- # Textual Entailment (مدل برای پاسخ به استلزام منطقی) This is a model for textual entailment problems. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size="large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-snli-entailment" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(premise, hypothesis, **generator_args): input_ids = tokenizer.encode(f"{premise}<sep>{hypothesis}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "این مسابقات بین آوریل و دسامبر در هیپودروم ولیفندی در نزدیکی باکرکی ، ۱۵ کیلومتری (۹ مایل) غرب استانبول برگزار می شود.", "در ولیفندی هیپودروم، مسابقاتی از آوریل تا دسامبر وجود دارد." ) run_model( "آیا کودکانی وجود دارند که نیاز به سرگرمی دارند؟", "هیچ کودکی هرگز نمی خواهد سرگرم شود.", ) run_model( "ما به سفرهایی رفته ایم که در نهرهایی شنا کرده ایم", "علاوه بر استحمام در نهرها ، ما به اسپا ها و سونا ها نیز رفته ایم." ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
razent/SciFive-large-PMC
742f5f056b465b331b6efabaf199cf68534296cc
2022-03-20T17:45:54.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:pmc/open_access", "arxiv:2106.03598", "transformers", "token-classification", "text-classification", "question-answering", "text-generation", "autotrain_compatible" ]
text-classification
false
razent
null
razent/SciFive-large-PMC
21
1
transformers
8,189
--- language: - en tags: - token-classification - text-classification - question-answering - text2text-generation - text-generation datasets: - pmc/open_access --- # SciFive PMC Large ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-PMC") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-PMC") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
readerbench/jurBERT-large
af9617d9c39dc5807704062b2f47d3b734d25d98
2021-11-19T11:55:47.000Z
[ "pytorch", "tf", "bert", "ro", "transformers" ]
null
false
readerbench
null
readerbench/jurBERT-large
21
null
transformers
8,190
Model card for jurBERT-large --- language: - ro --- # jurBERT-large ## Pretrained juridical BERT model for Romanian BERT Romanian juridical model trained using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in this [paper](https://aclanthology.org/2021.nllp-1.8/). Two BERT models were released: **jurBERT-base** and **jurBERT-large**, all versions uncased. | Model | Weights | L | H | A | MLM accuracy | NSP accuracy | |----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:| | jurBERT-base | 111M | 12 | 768 | 12 | 0.8936 | 0.9923 | | *jurBERT-large* | *337M* | *24* | *1024* | *24* | *0.9005* | *0.9929* | All models are available: * [jurBERT-base](https://huggingface.co/readerbench/jurBERT-base) * [jurBERT-large](https://huggingface.co/readerbench/jurBERT-large) #### How to use ```python # tensorflow from transformers import AutoModel, AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/jurBERT-large") model = TFAutoModel.from_pretrained("readerbench/jurBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="tf") outputs = model(inputs) # pytorch from transformers import AutoModel, AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/jurBERT-large") model = AutoModel.from_pretrained("readerbench/jurBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="pt") outputs = model(**inputs) ``` ## Datasets The model is trained on a private corpus (that can nevertheless be rented for a fee), that is comprised of all the final ruling, containing both civil and criminal cases, published by any Romanian civil court between 2010 and 2018. Validation is performed on RoBanking datase. We extracted from RoJur common types of cases pertinent to the banking domain (e.g. administration fee litigations, enforcement appeals), kept only the summary of the arguments provided by both the plaitiffs and the defendants and the final verdict (in the form of a boolean value) to build RoBanking. | Corpus | Scope |Entries | Size (GB)| |-----------|:------------:|:---------:|:---------:| | RoJur | pre-training | 11M | 160 | | RoBanking | downstream | 108k | - | ## Downstream performance We report Mean AUC and Std AUC on the task of predicting the outcome of a case. ### Results on RoBanking using only the plea of the plaintiff. | Model | Mean AUC | Std AUC | |--------------------|:--------:|:--------:| | CNN | 79.60 | - | | BI-LSTM | 80.99 | 0.26 | | RoBERT-small | 70.54 | 0.28 | | RoBERT-base | 79.74 | 0.21 | | RoBERT-base + hf | 79.82 | 0.11 | | RoBERT-large | 76.53 | 5.43 | | jurBERT-base | **81.47**| **0.18** | | jurBERT-base + hf | 81.40 | 0.18 | | *jurBERT-large* | *78.38* | *1.77* | ### Results on RoBanking using pleas from both the plaintiff and defendant. | Model | Mean AUC | Std AUC | |---------------------|:--------:|:--------:| | BI-LSTM | 84.60 | 0.59 | | RoBERT-base | 84.40 | 0.26 | | RoBERT-base + hf | 84.43 | 0.15 | | jurBERT-base | 86.63 | 0.18 | | jurBERT-base + hf | **86.73**| **0.22** | | *jurBERT-large* | *82.04* | *0.64* | For complete results and discussion please refer to the [paper](https://aclanthology.org/2021.nllp-1.8/). ### BibTeX entry and citation info ```bibtex @inproceedings{masala2021jurbert, title={jurBERT: A Romanian BERT Model for Legal Judgement Prediction}, author={Masala, Mihai and Iacob, Radu Cristian Alexandru and Uban, Ana Sabina and Cidota, Marina and Velicu, Horia and Rebedea, Traian and Popescu, Marius}, booktitle={Proceedings of the Natural Legal Language Processing Workshop 2021}, pages={86--94}, year={2021} } ```
remi/bertabs-finetuned-extractive-abstractive-summarization
af86c661fc7f94c8526300104d4f7442cdbd1a80
2021-05-20T04:15:22.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
remi
null
remi/bertabs-finetuned-extractive-abstractive-summarization
21
null
transformers
8,191
Entry not found
saburbutt/xlnet_large_tweetqa
ed48a14ba0af1780f818c98b14de2100baba899a
2021-04-13T22:34:59.000Z
[ "pytorch", "xlnet", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saburbutt
null
saburbutt/xlnet_large_tweetqa
21
null
transformers
8,192
sap-ai-research/BERT-Large-Contrastive-Self-Supervised-ACL2020
68db970e7f9e4d00ec4fafc13df43607e1aed9cd
2021-05-20T04:50:14.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sap-ai-research
null
sap-ai-research/BERT-Large-Contrastive-Self-Supervised-ACL2020
21
null
transformers
8,193
Entry not found
sc2qa/msmarco_qa_classifier
2b4efdfe1e6b089de60c9340eb9175ac6dffae4c
2022-03-30T18:33:34.000Z
[ "pytorch", "roberta", "text-classification", "arxiv:2109.04689", "transformers" ]
text-classification
false
sc2qa
null
sc2qa/msmarco_qa_classifier
21
null
transformers
8,194
For details, please refer to the following links. Github repo: https://github.com/amazon-research/SC2QA-DRIL Paper: [Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning](https://arxiv.org/pdf/2109.04689.pdf)
shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2
21f901058ba6daf20f130cfb4412c2d731f8433f
2021-08-21T18:31:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "dataset:common_voice", "transformers", "audio", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
shahukareem
null
shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2
21
3
transformers
8,195
--- language: dv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 --- # Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\،\.\؟\!\'\"\–\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ```
skylord/wav2vec2-large-xlsr-hindi
c3bd6e40aadcdd3e7abf6a1ccfcef7b10447be75
2021-04-20T07:24:00.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "dataset:indic tts", "dataset:iiith", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
skylord
null
skylord/wav2vec2-large-xlsr-hindi
21
1
transformers
8,196
--- language: hi datasets: - common_voice - indic tts - iiith metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Hindi XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: - name: Common Voice hi type: common_voice args: hi - name: Indic IIT (IITM) type: indic args: hi - name: IIITH Indic Dataset type: iiith args: hi metrics: - name: Custom Dataset Hindi WER type: wer value: 17.23 - name: CommonVoice Hindi (Test) WER type: wer value: 56.46 --- # Wav2Vec2-Large-XLSR-53-Hindi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hindi using the following datasets: - [Common Voice](https://huggingface.co/datasets/common_voice), - [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and - [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html) The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hi", split="test") processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Predictions *Some good ones ..... * | Predictions | Reference | |-------|-------| |फिर वो सूरज तारे पहाड बारिश पदछड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है | फिर वो सूरज तारे पहाड़ बारिश पतझड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है | | इस कारण जंगल में बडी दूर स्थित राघव के आश्रम में लोघ कम आने लगे और अधिकांश भक्त सुंदर के आश्रम में जाने लगे | इस कारण जंगल में बड़ी दूर स्थित राघव के आश्रम में लोग कम आने लगे और अधिकांश भक्त सुन्दर के आश्रम में जाने लगे | | अपने बचन के अनुसार शुभमूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा | अपने बचन के अनुसार शुभमुहूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा | *Some crappy stuff .... * | Predictions | Reference | |-------|-------| | वस गनिल साफ़ है। | उसका दिल साफ़ है। | | चाय वा एक कुछ लैंगे हब | चायवाय कुछ लेंगे आप | | टॉम आधे है स्कूल हें है | टॉम अभी भी स्कूल में है | ## Evaluation The model can be evaluated as follows on the following two datasets: 1. Custom dataset created from 20% of Indic, IIITH and CV (test): WER 17.xx% 2. CommonVoice Hindi test dataset: WER 56.xx% Links to the datasets are provided above (check the links at the start of the README) train-test csv files are shared on the following gdrive links: a. IIITH [train](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_train.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_test.csv) b. Indic TTS [train](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_train_full.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_test_full.csv) Update the audio_path as per your local file structure. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re ## Load the datasets test_dataset = load_dataset("common_voice", "hi", split="test") indic = load_dataset("csv", data_files= {'train':"/workspace/data/hi2/indic_train_full.csv", "test": "/workspace/data/hi2/indic_test_full.csv"}, download_mode="force_redownload") iiith = load_dataset("csv", data_files= {"train": "/workspace/data/hi2/iiit_hi_train.csv", "test": "/workspace/data/hi2/iiit_hi_test.csv"}, download_mode="force_redownload") ## Pre-process datasets and concatenate to create test dataset # Drop columns of common_voice split = ['train', 'test', 'validation', 'other', 'invalidated'] for sp in split: common_voice[sp] = common_voice[sp].remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment']) common_voice = common_voice.rename_column('path', 'audio_path') common_voice = common_voice.rename_column('sentence', 'target_text') train_dataset = datasets.concatenate_datasets([indic['train'], iiith['train'], common_voice['train']]) test_dataset = datasets.concatenate_datasets([indic['test'], iiith['test'], common_voice['test'], common_voice['validation']]) ## Load model from HF hub wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]' unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["target_text"]) batch["target_text"] = re.sub(unicode_ignore_regex, '', batch["target_text"]) speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result on custom dataset**: 17.23 % ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]' unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).sub(unicode_ignore_regex, '', batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result on CommonVoice**: 56.46 % ## Training The Common Voice `train`, `validation`, datasets were used for training as well as The script used for training & wandb dashboard can be found [here](https://wandb.ai/thinkevolve/huggingface/reports/Project-Hindi-XLSR-Large--Vmlldzo2MTI2MTQ)
sonoisa/t5-base-japanese-article-generation
1355b9d6a603285ddba4ed9f1171e2eb69f944ab
2022-02-21T13:37:45.000Z
[ "pytorch", "t5", "text2text-generation", "ja", "transformers", "seq2seq", "license:cc-by-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
sonoisa
null
sonoisa/t5-base-japanese-article-generation
21
null
transformers
8,197
--- language: ja tags: - t5 - text2text-generation - seq2seq license: cc-by-sa-4.0 --- # タイトルから記事本文を生成するモデル SEE: https://qiita.com/sonoisa/items/a9af64ff641f0bbfed44
spencerh/leftcenterpartisan
69f9ba06e6d0c13a5c9b59e8fd0f85ef5693f988
2021-04-23T19:42:54.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
spencerh
null
spencerh/leftcenterpartisan
21
null
transformers
8,198
Entry not found
ssmadha/gpt2-finetuned-scientific-articles
7e10f99dbe964b0fd2d222165f50d14d036d8624
2021-12-14T20:47:55.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
ssmadha
null
ssmadha/gpt2-finetuned-scientific-articles
21
2
transformers
8,199
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-scientific-articles results: [] --- This repository is the submission for the final project for BF510 [Institutional Racism in Health and Science](http://irhs.bu.edu/) for Shariq Madha. To see Jupyter detailing how this model was produced, as well as the motivation behind it, go [here](https://github.com/ssmadha/BF510-final-project/). To try this out yourself, enter a prompt in the textbox to the right and hit compute (it may take a minute for the first to process, but subsequent results should be quick). # gpt2-finetuned-scientific-articles This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on scientific articles about algorithmic bias. It achieves the following results on the evaluation set: - Loss: 2.3793 ## Model description This model is a casual language modeling GPT2 fine-tuned on scientific articles about algorithmic bias, in an attempt to showcase an example about correcting for algorithmic bias. ## Intended uses & limitations This model is intended for prompts about algorithms and bias. Other prompts will yield results, but they are less likely to be influenced by the fine-tuning. ## Training and evaluation data This model is trained on fully freely accessible articles obtained from a PubMed Central search on algorithmic bias. The pmc_result_algorithmicbias.txt file contains the list of PMC's used. Due to technical and time limitations, only fine-tuned on the introduction sections, but training on other sections is planned. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5293 | 1.0 | 1071 | 2.3892 | | 2.4821 | 2.0 | 2142 | 2.3793 | ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3