modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
lysandre/dum
7ca05142c3d15590084e70249b3687b66c4aeba3
2022-06-14T08:45:44.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:sst2", "transformers", "license:apache-2.0" ]
text-classification
false
lysandre
null
lysandre/dum
23
null
transformers
7,900
--- language: en license: apache-2.0 datasets: - sst2 --- # Sentiment Analysis This is a BERT model fine-tuned for sentiment analysis.
manishiitg/distilrobert-base-squadv2-328seq-128stride-test
8776dc47fd58e19672d4be7a864c186efa236f18
2021-05-20T17:43:42.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manishiitg
null
manishiitg/distilrobert-base-squadv2-328seq-128stride-test
23
null
transformers
7,901
Entry not found
maple/bert-large-cased
307bf5fe1b972a63b748580a8e6d6dc7bac912e0
2022-01-03T07:39:42.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
maple
null
maple/bert-large-cased
23
null
transformers
7,902
Entry not found
moussaKam/frugalscore_tiny_bert-base_mover-score
e691626ad7864f8c433a77cf4a8946b2c0c79452
2022-05-11T11:04:23.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_tiny_bert-base_mover-score
23
null
transformers
7,903
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
mrm8488/distilgpt2-finetuned-bookcopus-10
ec1424e27449a3cee5c6aea36c60d241c70ab140
2021-05-23T10:21:22.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/distilgpt2-finetuned-bookcopus-10
23
null
transformers
7,904
Entry not found
mrm8488/distilroberta-base-finetuned-suicide-depression
7574c32aa783a63116539e20f97f8a0c336220bd
2021-10-14T09:26:23.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/distilroberta-base-finetuned-suicide-depression
23
3
transformers
7,905
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy widget: - text: "It's in the back of my mind. I'm not sure I'll be ok. Not sure I can deal with this. I'll try...I will try. Even though it's hard to see the point. But...this still isn't off the table." model-index: - name: distilroberta-base-finetuned-suicide-depression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-suicide-depression This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6622 - Accuracy: 0.7158 ## Model description Just a **POC** of a Transformer fine-tuned on [SDCNL](https://github.com/ayaanzhaque/SDCNL) dataset for suicide (label 1) or depression (label 0) detection in tweets. **DO NOT use it in production** ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 214 | 0.6204 | 0.6632 | | No log | 2.0 | 428 | 0.6622 | 0.7158 | | 0.5244 | 3.0 | 642 | 0.7312 | 0.6684 | | 0.5244 | 4.0 | 856 | 0.9711 | 0.7105 | | 0.2876 | 5.0 | 1070 | 1.1620 | 0.7 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.0 - Tokenizers 0.10.3
mrm8488/wav2vec2-large-xlsr-53-spanish
9539f36ad626a8abadc64e2b904fe3f0ff37bc49
2021-07-06T13:14:39.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "es", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mrm8488
null
mrm8488/wav2vec2-large-xlsr-53-spanish
23
1
transformers
7,906
--- language: es datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Spanish Manuel Romero results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice es type: common_voice args: es metrics: - name: Test WER type: wer value: ??? --- # Wav2Vec2-Large-XLSR-53-Spanish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Spanish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "es", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "es", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
mys/mt5-small-turkish-question-paraphrasing
fd37d138c0d210a3e6f33dc734c47af4aa2c47e6
2021-11-07T08:26:51.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mys
null
mys/mt5-small-turkish-question-paraphrasing
23
2
transformers
7,907
## Overview This model is a finetuned version of [mt5-small](https://huggingface.co/google/mt5-small) for question paraphrasing task in Turkish. As a generator model, its capabilities are currently investigated and there is an ongoing effort to further improve it. You can raise an issue [in this GitHub repo](https://github.com/monatis/tqp) for any comments, suggestions or interesting findings when using this model. ## Usage You can generate 5 paraphrases for the input question with The simple code below. ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "mys/mt5-small-turkish-question-paraphrasing" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) tokens = tokenizer.encode_plus("Yarın toplantı kaçta başlıyor?", return_tensors='pt') paraphrases = model.generate(tokens['input_ids'], max_length=128, num_return_sequences=5, num_beams=5) tokenizer.batch_decode(paraphrases, skip_special_tokens=True) ``` And the output will be something like: ```shell ['Yarın toplantı ne zaman başlıyor?', 'Yarın toplantı saat kaçta başlıyor?', 'Yarın toplantı saat kaçta başlar?', 'Yarın toplantı ne zaman başlayacak?', 'Yarın toplantı ne zaman başlar?'] ``` ## Dataset I used [TQP dataset V0.1](https://github.com/monatis/tqp) that I've published just recently. This model should be taken as as a baseline model for TQP dataset. A cleaning and further improvements in the dataset and an elaborate hyperparameter tuning may boost the performance. ## Citation If you find the dataset or model useful for your research, [consider citation](https://zenodo.org/record/4719801#.YIbI45AzZPZ).
navsad/navid_test_bert
56b40fd8d9564d563bd5523a5a119323f85d61b8
2022-02-02T04:52:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
navsad
null
navsad/navid_test_bert
23
null
transformers
7,908
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: navid_test_bert results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5834463254140851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # navid_test_bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8149 - Matthews Correlation: 0.5834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4598 | 1.0 | 1069 | 0.4919 | 0.5314 | | 0.3228 | 2.0 | 2138 | 0.6362 | 0.5701 | | 0.17 | 3.0 | 3207 | 0.8149 | 0.5834 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
pandyaved98/DialoGPT-small-AlchemyBot
877a86d93e27c72935fc14e0d455b9971fbf27f6
2021-11-29T15:33:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pandyaved98
null
pandyaved98/DialoGPT-small-AlchemyBot
23
1
transformers
7,909
--- tags: - conversational --- # AlchemyBot DialoGPT Model
panggi/t5-small-indonesian-summarization-cased
b0c72296041ebf885d071be74c1590844069c7c4
2020-12-19T18:01:23.000Z
[ "pytorch", "t5", "text2text-generation", "id", "dataset:indosum", "transformers", "pipeline:summarization", "summarization", "autotrain_compatible" ]
summarization
false
panggi
null
panggi/t5-small-indonesian-summarization-cased
23
null
transformers
7,910
--- language: id tags: - pipeline:summarization - summarization - t5 datasets: - indosum --- # Indonesian T5 Summarization Small Model Finetuned T5 small summarization model for Indonesian. ## Finetuning Corpus `t5-small-indonesian-summarization-cased` model is based on `t5-small-bahasa-summarization-cased` by [huseinzol05](https://huggingface.co/huseinzol05), finetuned using [indosum](https://github.com/kata-ai/indosum) dataset. ## Load Finetuned Model ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("panggi/t5-small-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("panggi/t5-small-indonesian-summarization-cased") ``` ## Code Sample ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("panggi/t5-small-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("panggi/t5-small-indonesian-summarization-cased") # https://www.sehatq.com/artikel/apa-itu-dispepsia-fungsional-ketahui-gejala-dan-faktor-risikonya ARTICLE_TO_SUMMARIZE = "Secara umum, dispepsia adalah kumpulan gejala pada saluran pencernaan seperti nyeri, sensasi terbakar, dan rasa tidak nyaman pada perut bagian atas. Pada beberapa kasus, dispepsia yang dialami seseorang tidak dapat diketahui penyebabnya. Jenis dispepsia ini disebut dengan dispepsia fungsional. Apa saja gejala dispepsia fungsional? Apa itu dispepsia fungsional? Dispepsia fungsional adalah kumpulan gejala tanpa sebab pada saluran pencernaan bagian atas. Gejala tersebut dapat berupa rasa sakit, nyeri, dan tak nyaman pada perut bagian atas atau ulu hati. Penderita dispepsia fungsional juga akan merasakan kenyang lebih cepat dan sensasi perut penuh berkepanjangan. Gejala-gejala tersebut bisa berlangsung selama sebulan atau lebih. Dispepsia ini memiliki nama “fungsional” karena kumpulan gejalanya tidak memiliki penyebab yang jelas. Dilihat dari fungsi dan struktur saluran pencernaan, dokter tidak menemukan hal yang salah. Namun, gejalanya bisa sangat mengganggu dan menyiksa. Dispepsia fungsional disebut juga dengan dispepsia nonulkus. Diperkirakan bahwa 20% masyarakat dunia menderita dispepsia fungsional. Kondisi ini berisiko tinggi dialami oleh wanita, perokok, dan orang yang mengonsumsi obat anti-peradangan nonsteroid (NSAID). Dispepsia fungsional bisa bersifat kronis dan mengganggu kehidupan penderitanya. Namun beruntung, ada beberapa strategi yang bisa diterapkan untuk mengendalikan gejala dispepsia ini. Strategi tersebut termasuk perubahan gaya hidup, obat-obatan, dan terapi.Ragam gejala dispepsia fungsional Gejala dispepsia fungsional dapat bervariasi antara satu pasien dengan pasien lain. Beberapa tanda yang bisa dirasakan seseorang, yaitu: Sensasi terbakar atau nyeri di saluran pencernaan bagian atas Perut kembung Cepat merasa kenyang walau baru makan sedikit Mual Muntah Bersendawa Rasa asam di mulut Penurunan berat badan Tekanan psikologis terkait dengan kondisi yang dialami Apa sebenarnya penyebab dispepsia fungsional? Sebagai penyakit fungsional, dokter mengkategorikan dispepsia ini sebagai penyakit yang tidak diketahui penyebabnya. Hanya saja, beberapa faktor bisa meningkatkan risiko seseorang terkena dispepsia fungsional. Faktor risiko tersebut, termasuk: Alergi terhadap zat tertentu Perubahan mikrobioma usus Infeksi, seperti yang dipicu oleh bakteriHelicobacter pylori Sekresi asam lambung yang tidak normal Peradangan pada saluran pencernaan bagian atas Gangguan pada fungsi lambung untuk mencerna makanan Pola makan tertentu Gaya hidup tidak sehat Stres Kecemasan atau depresi Efek samping pemakaian obat seperti obat antiinflamasi nonsteroid Penanganan untuk dispepsia fungsional Ada banyak pilihan pengobatan untuk dispepsia fungsional. Seperti yang disampaikan di atas, tidak ada penyebab tunggal dispepsia ini yang bisa diketahui. Gejala yang dialami antara satu pasien juga mungkin amat berbeda dari orang lain. Dengan demikian, jenis pengobatan dispepsia fungsional juga akan bervariasi. Beberapa pilihan strategi penanganan untuk dispepsia fungsional, meliputi: 1. Obat-obatan Ada beberapa jenis obat yang mungkin akan diberikan dokter, seperti Obat penetral asam lambung yang disebut penghambat reseptor H2 Obat penghambat produksi asam lambung yang disebut proton pump inhibitors Obat untuk mengendalikan gas di perut yang mengandung simetikon Antidepresan seperti amitriptyline Obat penguat kerongkongan yang disebut agen prokinetik Obat untuk pengosongan isi lambung seperti metoclopramide Antibiotik jika dokter mendeteksi adanya infeksi bakteri H. pylori 2. Anjuran terkait perubahan gaya hidup Selain obat-obatan, dokter akan memberikan rekomendasi perubahan gaya hidup yang harus diterapkan pasien. Tips terkait perubahan gaya hidup termasuk: Makan lebih sering namun dengan porsi yang lebih sedikit Menjauhi makanan berlemak karena memperlambat pengosongan makanan di lambung Menjauhi jenis makanan lain yang memicu gejala dispepsia, seperti makanan pedas, makanan tinggi asam, produk susu, dan produk kafein Menjauhi rokok Dokter juga akan meminta pasien untuk mencari cara untuk mengendalikan stres, tidur dengan kepala lebih tinggi, dan menjalankan usaha untuk mengendalikan berat badan. Apakah penyakit dispepsia itu berbahaya? Dispepsia, termasuk dispepsia fungsional, dapat menjadi kronis dengan gejala yang menyiksa. Jika tidak ditangani, dispepsia tentu dapat berbahaya dan mengganggu kehidupan pasien. Segera hubungi dokter apabila Anda merasakan gejala dispepsia, terlebih jika tidak merespons obat-obatan yang dijual bebas. Catatan dari SehatQ Dispepsia fungsional adalah kumpulan gejala pada saluran pencernaan bagian atas yang tidak diketahui penyebabnya. Dispepsia fungsional dapat ditangani dengan kombinasi obat-obatan dan perubahan gaya hidup. Jika masih memiliki pertanyaan terkait dispepsia fungsional, Anda bisa menanyakan ke dokter di aplikasi kesehatan keluarga SehatQ. Aplikasi SehatQ bisa diunduh gratis di Appstore dan Playstore yang berikan informasi penyakit terpercaya." # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, max_length=100, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` 'Dispepsia fungsional adalah kumpulan gejala tanpa sebab pada saluran pencernaan bagian atas. Gejala tersebut dapat berupa rasa sakit, nyeri, dan tak nyaman pada perut bagian atas. Penderita dispepsia fungsional juga akan merasakan kenyang lebih cepat dan sensasi perut penuh berkepanjangan. Gejala-gejala tersebut bisa berlangsung selama sebulan atau lebih. ``` ## Acknowledgement Thanks to Immanuel Drexel for his article [Text Summarization, Extractive, T5, Bahasa Indonesia, Huggingface’s Transformers](https://medium.com/analytics-vidhya/text-summarization-t5-bahasa-indonesia-huggingfaces-transformers-ee9bfe368e2f)
plum/bert-large-cased
6462870803e95b422dadb3e5ab15166878708330
2022-01-04T23:05:59.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
plum
null
plum/bert-large-cased
23
null
transformers
7,911
Entry not found
pritamdeka/S-Scibert-snli-multinli-stsb
314f56eb315692762db7c5b1d02a8f14193685b4
2022-05-09T10:03:33.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
pritamdeka
null
pritamdeka/S-Scibert-snli-multinli-stsb
23
null
sentence-transformers
7,912
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # pritamdeka/S-Scibert-snli-multinli-stsb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pritamdeka/S-Scibert-snli-multinli-stsb') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-Scibert-snli-multinli-stsb') model = AutoModel.from_pretrained('pritamdeka/S-Scibert-snli-multinli-stsb') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 90 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pritoms/gpt-neo-125M-philosophical-investigation
17164b7c802d0351afedba6e4d4e9a8ef71c7d97
2022-01-11T06:18:34.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/gpt-neo-125M-philosophical-investigation
23
null
transformers
7,913
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-125M-philosophical-investigation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-philosophical-investigation This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 3.4901 | | No log | 2.0 | 14 | 3.4550 | | No log | 3.0 | 21 | 3.4443 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
royeis/T5-Factual-Classifier-V1
bea492321f59f322094eabc737fc389ee0f47601
2021-06-23T14:01:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
royeis
null
royeis/T5-Factual-Classifier-V1
23
null
transformers
7,914
Entry not found
sagittariusA/gender_classifier_cs
090c3e9855bd1f2a5a654d3ed98da9d7b74559d2
2021-11-09T22:41:12.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
sagittariusA
null
sagittariusA/gender_classifier_cs
23
null
transformers
7,915
Entry not found
sanchit-gandhi/wav2vec2-2-gpt2-grid-search
9f69036d12f516265208efd8c02bdf3bdf692989
2022-03-07T13:18:03.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-gpt2-grid-search
23
null
transformers
7,916
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
sentence-transformers/distilbert-base-nli-max-tokens
b406dc6411aa5f75c3703b7aa06851c8ddff8916
2022-06-16T00:21:25.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
false
sentence-transformers
null
sentence-transformers/distilbert-base-nli-max-tokens
23
null
sentence-transformers
7,917
--- pipeline_tag: feature-extraction license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/distilbert-base-nli-max-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/distilbert-base-nli-max-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.max(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/distilbert-base-nli-max-tokens') model = AutoModel.from_pretrained('sentence-transformers/distilbert-base-nli-max-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distilbert-base-nli-max-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': True, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
severo/autonlp-sentiment_detection-1781580
179a1d752c5cdd039bfe70ff785f0e1999b7cacb
2021-06-18T18:20:55.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:severo/autonlp-data-sentiment_detection-3c8bcd36", "transformers", "autonlp" ]
text-classification
false
severo
null
severo/autonlp-sentiment_detection-1781580
23
1
transformers
7,918
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - severo/autonlp-data-sentiment_detection-3c8bcd36 --- # Model Trained Using AutoNLP _debug - I want to update this model_ - Problem type: Binary Classification - Model ID: 1781580 ## Validation Metrics - Loss: 0.16026505827903748 - Accuracy: 0.9426 - Precision: 0.9305057745917961 - Recall: 0.95406288280931 - AUC: 0.9861051024994563 - F1: 0.9421370967741935 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/severo/autonlp-sentiment_detection-1781580 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("severo/autonlp-sentiment_detection-1781580", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("severo/autonlp-sentiment_detection-1781580", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
toastynews/xlnet-hongkongese-base
e4a8655e729603edc8e54baa3ce2b95dfb757342
2020-07-07T17:52:07.000Z
[ "pytorch", "tf", "xlnet", "text-generation", "yue", "transformers", "license:apache-2.0" ]
text-generation
false
toastynews
null
toastynews/xlnet-hongkongese-base
23
null
transformers
7,919
--- language: yue license: apache-2.0 metrics: - DRCD - openrice-senti - lihkg-cat - wordshk-sem --- # XLNet Hongkongese Base ## Model description XLNet trained exclusively with data from Hong Kong. A signaficant amount of Hongkongese/Cantonese/Yue is included in the training data. ## Intended uses & limitations This model is an alternative to Chinese models. It may offer better performance for tasks catering to the langauge usage of Hong Kongers. Yue Wikipedia is used which is much smaller than Chinese Wikipedia; this model will lack the breath of knowledge compared to other Chinese models. #### How to use This is the base model trained from the official repo. Further finetuning will be needed for use on downstream tasks. It can also be used to generate text. #### Limitations and bias The training data consists of mostly news articles and blogs. There is probably a bias towards formal language usage. For text generation, like other XLNet models, a longer context will help generate better text. Overall result is not as good as GPT-2. ## Training data The following is the list of data sources. Total characters is about 507M. | Data | % | | ------------------------------------------------- | --: | | News Articles / Blogs | 58% | | Yue Wikipedia / EVCHK | 18% | | Restaurant Reviews | 12% | | Forum Threads | 12% | | Online Fiction | 1% | The following is the distribution of different languages within the corpus. | Language | % | | ------------------------------------------------- | --: | | Standard Chinese | 62% | | Hongkongese | 30% | | English | 8% | ## Training procedure Model was trained on a single TPUv3 from the official repo with the default parameters. | Parameter | Value | | ------------------------------------------------ | ----: | | Batch Size | 32 | | Max Sequence Size | 512 | | Vocab Size | 32000 | *Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC)* ## Eval results Average evaluation task results over 10 runs. Comparison using the original repo model and code. Chinese models are available from [Joint Laboratory of HIT and iFLYTEK Research (HFL)](https://huggingface.co/hfl) | Model | DRCD (EM/F1) | openrice-senti | lihkg-cat | wordshk-sem | |:-----------:|:------------:|:--------------:|:---------:|:-----------:| | Chinese | 82.8 / 91.8 | 79.8 | 70.7 | 72.0 / 78.9*| | Hongkongese | 76.1 / 76.1 | 81.4 | 69.5 | 66.7 / 87.3*| \* With the default of 3 epoches, 6 of 10 Chinese finetuned models have accuracy of 66.7 (always negative baseline). All Hongkongese finetuned models have accuracy of 66.7. The \* values are the accuracy after 24 epoches.
tuhailong/cross-encoder-bert-base
61198bd89bd36b9667aec7a66441e2a2e473fcd2
2022-04-20T02:42:39.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:dialogue", "transformers", "sbert" ]
text-classification
false
tuhailong
null
tuhailong/cross-encoder-bert-base
23
null
transformers
7,920
--- language: zh tags: - sbert datasets: - dialogue --- # Data train data is similarity sentence data from E-commerce dialogue, about 20w sentence pairs. ## Model model created by [sentence-tansformers](https://www.sbert.net/index.html),model struct is cross-encoder ### Usage ```python >>> from sentence_transformers.cross_encoder import CrossEncoder >>> model = CrossEncoder('tuhailong/cross-encoder') >>> scores = model.predict([["今天天气不错", "今天心情不错"]]) >>> print(scores) ```
uer/chinese_roberta_L-6_H-512
34d41591eebf00951e61a614af808468c4c9bbfc
2022-07-15T08:13:20.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-6_H-512
23
null
transformers
7,921
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
verloop/Hinglish-Bert-Class
4d1ffe6c3a246398b9da0d451f83a892ffa18635
2021-05-20T08:56:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
verloop
null
verloop/Hinglish-Bert-Class
23
1
transformers
7,922
Entry not found
vidhur2k/mBERT-French-Mono
8d47dd80aed14404af78737057820be8997758cf
2021-12-03T04:50:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-French-Mono
23
null
transformers
7,923
Entry not found
wangfan/jdt-fin-roberta-wwm
ef5ec78cb8e478e327569bbca955140ab5908b39
2022-05-19T03:40:06.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:finance", "transformers", "roberta-wwm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
wangfan
null
wangfan/jdt-fin-roberta-wwm
23
null
transformers
7,924
--- language: zh tags: - roberta-wwm license: apache-2.0 datasets: - finance --- 在众多业务中,越来越频繁的使用预训练语言模型(Pre-trained Language Models),为了在金融场景下各任务中取得更好效果,我们发布了jdt-fin-roberta-wwm模型 #### 模型&下载 * `base模型`:12-layer, 768-hidden, 12-heads, 110M parameters | 模型简称 | 京盘下载 | | :----: | :----:| | fin-roberta-wwm | [Tensorflow](https://3.cn/103c-hwSS)/[Pytorch](https://3.cn/103c-izpe) | | fin-roberta-wwm-large | todo | #### 快速加载 依托于[Huggingface-Transformers](https://github.com/huggingface/transformers),可轻松调用以上模型。 ``` tokenizer = BertTokenizer.from_pretrained("MODEL_NAME") model = BertModel.from_pretrained("MODEL_NAME") ``` **注意:本目录中的所有模型均使用BertTokenizer以及BertModel加载,请勿使用RobertaTokenizer/RobertaModel!** 其中`MODEL_NAME`对应列表如下: | 模型名 | MODEL_NAME | | - | - | | fin-roberta-wwm | wangfan/jdt-fin-roberta-wwm | | fin-roberta-wwm-large | todo | #### 任务效果 | Task | NER | 关系抽取 | 事件抽取 | 指标抽取 | 实体链接 | |:----:|:-- :|:------:|:-------:|:-------:|:------:| | Our |93.88| 79.02 | 91.99 | 94.28| 86.72 | | Roberta-wwm |93.47| 76.99 | 91.58 | 93.98| 85.20 |
Anthos23/FS-distilroberta-fine-tuned
2850ed4017485cdae8f78ea0ae2ab658206be8a2
2022-03-04T13:00:00.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Anthos23
null
Anthos23/FS-distilroberta-fine-tuned
23
null
transformers
7,925
Entry not found
facebook/wav2vec2-base-fr-voxpopuli-v2
b610edc383f3af2cef6361656fda66885201d026
2022-02-27T13:12:05.000Z
[ "pytorch", "wav2vec2", "pretraining", "fr", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-fr-voxpopuli-v2
23
1
transformers
7,926
--- language: fr tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **fr** on **22.8k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **fr**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
nguyenvulebinh/spoken-norm-taggen
7e90e9609d242fc7a268e5e707d0eae63d2ab0ea
2022-03-01T09:10:45.000Z
[ "pytorch", "transformers", "license:cc-by-nc-4.0" ]
null
false
nguyenvulebinh
null
nguyenvulebinh/spoken-norm-taggen
23
1
transformers
7,927
--- license: cc-by-nc-4.0 ---
datnth1709/Phobert-classifier
412842e9758e77ff6457ba1a205a5fb440b1c8ba
2022-03-02T18:29:53.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2003.00744", "transformers", "autotrain_compatible" ]
fill-mask
false
datnth1709
null
datnth1709/Phobert-classifier
23
null
transformers
7,928
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam): - Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance. - PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744): @article{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, journal = {Findings of EMNLP}, year = {2020} } **Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software. For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)! ### Installation <a name="install2"></a> - Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+) - Install `transformers`: - `git clone https://github.com/huggingface/transformers.git` - `cd transformers` - `pip3 install --upgrade .` ### Pre-trained models <a name="models2"></a> Model | #params | Arch. | Pre-training data ---|---|---|--- `vinai/phobert-base` | 135M | base | 20GB of texts `vinai/phobert-large` | 370M | large | 20GB of texts ### Example usage <a name="usage2"></a> ```python import torch from transformers import AutoModel, AutoTokenizer phobert = AutoModel.from_pretrained("vinai/phobert-base") tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! line = "Tôi là sinh_viên trường đại_học Công_nghệ ." input_ids = torch.tensor([tokenizer.encode(line)]) with torch.no_grad(): features = phobert(input_ids) # Models outputs are now tuples ## With TensorFlow 2.0+: # from transformers import TFAutoModel # phobert = TFAutoModel.from_pretrained("vinai/phobert-base") ```
l3cube-pune/hing-mbert
2eed9350653a8a7601042cc6afa6ca1065f20b97
2022-06-26T15:12:58.000Z
[ "pytorch", "bert", "fill-mask", "hi", "en", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "transformers", "codemix", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
l3cube-pune
null
l3cube-pune/hing-mbert
23
1
transformers
7,929
--- license: cc-by-4.0 language: - hi - en tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingMBERT HingBERT is a Hindi-English code-mixed BERT model trained on roman text. It is a mBERT model fine-tuned on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) ``` @InProceedings{nayak-joshi:2022:WILDRE6, author = {Nayak, Ravindra and Joshi, Raviraj}, title = {L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and BERT Language Models}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {7--12} } ```
mitiku/AmharicWICPostag10Tags
d4551db9e59a9e0e67f7e960fbf9a0e5ad9067f6
2022-03-20T10:11:33.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
mitiku
null
mitiku/AmharicWICPostag10Tags
23
null
transformers
7,930
--- tags: - generated_from_trainer model-index: - name: AmharicWICPostag10Tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicWICPostag10Tags This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
sdadas/polish-longformer-large-4096
1ef68e01fe87aec12e1060f307ea1829b535bab6
2022-03-08T18:15:18.000Z
[ "pytorch", "longformer", "fill-mask", "transformers", "license:lgpl-3.0", "autotrain_compatible" ]
fill-mask
false
sdadas
null
sdadas/polish-longformer-large-4096
23
null
transformers
7,931
--- license: lgpl-3.0 ---
ShihTing/HealthBureauSix
04cb59a958fce6af0408d9f95922bad15b7237c7
2022-03-27T04:45:41.000Z
[ "pytorch", "bert", "text-classification", "unk", "transformers", "autonlp" ]
text-classification
false
ShihTing
null
ShihTing/HealthBureauSix
23
1
transformers
7,932
--- tags: autonlp language: unk widget: - text: "民眾來電反映:事由:護士態度惡劣,對病人大吼大叫,對於態度惡劣的人卻於與錄用,敬請相關單位改善" - text: "民眾來電: 時間:2016年3月24號至2019年10月26號 地點:三軍總醫院 北投分院 事由:民眾表揚上述地點及時間有些醫護人員很優秀、親切、具有專業服務水準、好相處(2病房的護理師陳怡鎮、歐素玲、陳芊糖,7病房蔡閔儒,12病房林哲玄、黃仙怡,主治醫師楊蕙年) 訴求:敬請相關單位給予表揚與肯定 " - text: "本人之先生2-3年前接受吳醫師植牙治療,本人之先生已付完植牙醫療費用,但吳醫師尚未完成本人先生之植牙,診所即關閉,導致本人先生植牙之牙體未鎖緊且不斷發炎、無法咀嚼,精神跟身體上都受到傷害,去別家牙醫診所看診也沒有醫師願意處理。後本人發現吳醫師有在XX牙醫診所(台北市)看診,本人之先生去該診所再請吳醫師協助處理原本植牙方面問題,但診所跟本人先生收取3萬5的材料費,本人認為不合理,本人已付完當初植牙費用,且是吳醫師當初未處理好,應該全權負責,現在再收取醫療費用,實在不合理。" --- 衛生局文本分類->六元 Data random_state=43
Alvenir/bert-punct-restoration-de
b2527bd6afd759df3fc48015f284783a75633518
2022-03-23T08:43:29.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Alvenir
null
Alvenir/bert-punct-restoration-de
23
null
transformers
7,933
--- license: apache-2.0 --- TODO
hamedkhaledi/persain-flair-ner
18387458cd56aecfa6d2f163eb33372d22a68ead
2022-04-03T22:22:20.000Z
[ "pytorch", "fa", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
hamedkhaledi
null
hamedkhaledi/persain-flair-ner
23
1
flair
7,934
--- tags: - flair - token-classification - sequence-tagger-model language: fa dataset: - NSURL-2019 widget: - text: "آخرین مقام برجسته ژاپنی که پس از انقلاب 57 تاکنون به ایران سفر کرده است شینتارو آبه است." --- ## Persian NER in Flair This is the universal Named-entity recognition model for Persian that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **84.03** (NSURL-2019) Predicts NER tags: | **tag** | **meaning** | |:---------------------------------:|:-----------:| | PER | person name | | LOC | location name | | ORG | organization name | | DAT | date | | TIM | time | | PCT | percent | | MON | Money| --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("hamedkhaledi/persain-flair-ner") # make example sentence sentence = Sentence("آخرین مقام برجسته ژاپنی که پس از انقلاب 57 تاکنون به ایران سفر کرده است شینتارو آبه است.") tagger.predict(sentence) #print result print(sentence.to_tagged_string()) ``` This yields the following output: ``` آخرین مقام برجسته ژاپنی که پس از انقلاب 57 <B-DAT> تاکنون به ایران <B-LOC> سفر کرده است شینتارو <B-PER> آبه <I-PER> است . ``` --- ### Results - F-score (micro) 0.8403 - F-score (macro) 0.8656 - Accuracy 0.7357 ``` By class: precision recall f1-score support LOC 0.8789 0.8589 0.8688 4083 ORG 0.8390 0.7653 0.8005 3166 PER 0.8395 0.8169 0.8280 2741 DAT 0.8648 0.7957 0.8288 1150 MON 0.9758 0.9020 0.9374 357 TIM 0.8500 0.8193 0.8344 166 PCT 0.9615 0.9615 0.9615 156 micro avg 0.8616 0.8200 0.8403 11819 macro avg 0.8871 0.8456 0.8656 11819 weighted avg 0.8613 0.8200 0.8400 11819 samples avg 0.7357 0.7357 0.7357 11819 Loss: 0.06893542408943176' ```
timpal0l/xlm-roberta-base-faq-extractor
07ed39d541dab1256c385a403db198d8cbbd54cf
2022-03-27T21:00:09.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
timpal0l
null
timpal0l/xlm-roberta-base-faq-extractor
23
null
transformers
7,935
--- license: apache-2.0 --- # xlm-roberta-base-faq-extractor
hackathon-pln-es/bertin-roberta-base-finetuning-esnli
22cc774f4b3c520dd8bf9262d1f569e8a05022d8
2022-04-04T01:45:21.000Z
[ "pytorch", "roberta", "feature-extraction", "es", "dataset:hackathon-pln-es/nli-es", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
hackathon-pln-es
null
hackathon-pln-es/bertin-roberta-base-finetuning-esnli
23
5
sentence-transformers
7,936
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: - es datasets: - hackathon-pln-es/nli-es widget: - text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos." - text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario." - text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos." - text: "Queda descartada la huelga aunque no cobremos lo que queramos." --- # bertin-roberta-base-finetuning-esnli This is a [sentence-transformers](https://www.SBERT.net) model trained on a collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Based around the siamese networks approach from [this paper](https://arxiv.org/pdf/1908.10084.pdf). <!--- Describe your model here --> You can see a demo for this model [here](https://huggingface.co/spaces/hackathon-pln-es/Sentence-Embedding-Bertin). You can find our other model, **paraphrase-spanish-distilroberta** [here](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) and its demo [here](https://huggingface.co/spaces/hackathon-pln-es/Paraphrase-Bertin). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Este es un ejemplo", "Cada oración es transformada"] model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> Our model was evaluated on the task of Semantic Textual Similarity using the [SemEval-2015 Task](https://alt.qcri.org/semeval2015/task2/) for [Spanish](http://alt.qcri.org/semeval2015/task2/data/uploads/sts2015-es-test.zip). We measure | | [BETO STS](https://huggingface.co/espejelomar/sentece-embeddings-BETO) | BERTIN STS (this model) | Relative improvement | |-------------------:|---------:|-----------:|---------------------:| | cosine_pearson | 0.609803 | 0.683188 | +12.03 | | cosine_spearman | 0.528776 | 0.615916 | +16.48 | | euclidean_pearson | 0.590613 | 0.672601 | +13.88 | | euclidean_spearman | 0.526529 | 0.611539 | +16.15 | | manhattan_pearson | 0.589108 | 0.672040 | +14.08 | | manhattan_spearman | 0.525910 | 0.610517 | +16.09 | | dot_pearson | 0.544078 | 0.600517 | +10.37 | | dot_spearman | 0.460427 | 0.521260 | +13.21 | ## Training The model was trained with the parameters: **Dataset** We used a collection of datasets of Natural Language Inference as training data: - [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish - [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated - [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es). Here we leave the trick we used to increase the amount of data for training here: ``` for row in reader: if row['language'] == 'es': sent1 = row['sentence1'].strip() sent2 = row['sentence2'].strip() add_to_samples(sent1, sent2, row['gold_label']) add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite ``` **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 1818 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 909, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Authors [Anibal Pérez](https://huggingface.co/Anarpego), [Emilio Tomás Ariza](https://huggingface.co/medardodt), [Lautaro Gesuelli](https://huggingface.co/Lgesuelli) y [Mauricio Mazuecos](https://huggingface.co/mmazuecos).
MMG/xlm-roberta-base-sa-spanish
870b8ba260b012d063b0236ab3ed7a793be0e87b
2022-03-31T11:36:53.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
MMG
null
MMG/xlm-roberta-base-sa-spanish
23
null
transformers
7,937
Entry not found
TropicalJuice/Dialog-PeterGriffin
eb3b26f8789df202c0a56cc0d118049069f136a4
2022-04-04T18:25:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TropicalJuice
null
TropicalJuice/Dialog-PeterGriffin
23
null
transformers
7,938
--- tags: - conversational --- # Peter Griffin DialoGPT Model
dapang/distilbert-base-uncased-finetuned-toxicity
ab381c64960388e848a38ad7f299623eead1ec9a
2022-04-05T06:08:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilbert-base-uncased-finetuned-toxicity
23
null
transformers
7,939
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-toxicity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-toxicity This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0086 - Accuracy: 0.999 - F1: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.589778712669143e-05 - train_batch_size: 400 - eval_batch_size: 400 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 20 | 0.0142 | 0.998 | 0.998 | | No log | 2.0 | 40 | 0.0112 | 0.997 | 0.9970 | | No log | 3.0 | 60 | 0.0088 | 0.999 | 0.9990 | | No log | 4.0 | 80 | 0.0091 | 0.998 | 0.998 | | No log | 5.0 | 100 | 0.0086 | 0.999 | 0.9990 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 2.0.0 - Tokenizers 0.11.0
BramVanroy/gbert-base-finetuned-cefr
4c69c0ef7a5311ba742a95cb3a8deb3d9cb1d73b
2022-07-26T11:41:51.000Z
[ "pytorch", "bert", "text-classification", "de", "dataset:merlin", "dataset:disko", "transformers", "cefr", "proficiency assessment", "written text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/gbert-base-finetuned-cefr
23
1
transformers
7,940
--- language: - de license: mit tags: - cefr - proficiency assessment - written text datasets: - merlin - disko metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: gbert-base-finetuned-cefr results: - task: type: text-classification name: CEFR proficiency prediction metrics: - type: accuracy value: 0.8297872340425532 - type: f1 value: 0.831662518023171 - type: precision value: 0.8379770347855454 - type: qwk value: 0.9497893050032643 - type: recall value: 0.8297872340425532 widget: - text: "Samstag der 13. Februar Hallo ! Ich habe eine Fragen . Ich habe Probleme hören “ eu ” und “ cht ” . Wie sage ich “ also ” und “ to bake ” auf Deutsche ? Ich bin nicht gut aber ich lerne . Ich studiere Kunstgeschichte . Ich liebe Kunst und Geschichte . Mathamatik und Deutsche ich schierig aber nützlich . Es regnet heute . Die Woche ist interessant ." - text: "Lieber . Ingo . Wie gehts es Ich will 3 Zimmer Wohnung Mieten . Ich kann nicht so viel Miete bezahlen Ich hab kein Geld . Ich muss eine wohnung Mieten . Viel Danke - Maria" - text: "Hallo Liebe Daniela , ich möchte am Samstag um 15.00 Uhr im Schwimmbad gehen . In Stadt X ist ein neue Schwimmbad und ich möchte da gehen . _ Diese Schwimmbad ist so groß und sehr schön . Möchtest du mit mir gehen ? Weiß du dass ich liebe schwimmen , aber zusammen ist besser . Nimm bitte ein Tüch , speciall Schuhe , ein Schampoo und etwas zu trinken . Ruft mir an oder schreibt wenn möchtest du gehen mit mir . Mit freundlichen Grüße Julia" ---
Davlan/afro-xlmr-base
bfba0ed43d950f9a58a83064b4f0e1d17e5362e1
2022-04-15T14:23:42.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "arxiv:2204.06487", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/afro-xlmr-base
23
1
transformers
7,941
--- license: mit tags: - generated_from_trainer model-index: - name: afro-xlmr-base results: [] --- # afro-xlmr-base AfroXLMR-base was created by MLM adaptation of XLM-R-base model on 17 African languages (Afrikaans, Amharic, Hausa, Igbo, Malagasy, Chichewa, Oromo, Naija, Kinyarwanda, Kirundi, Shona, Somali, Sesotho, Swahili, isiXhosa, Yoruba, and isiZulu) covering the major African language families and 3 high resource languages (Arabic, French, and English). ## Eval results on MasakhaNER (F-score) language| XLM-R-miniLM| XLM-R-base |XLM-R-large| afro-xlmr-base | afro-xlmr-small | afro-xlmr-mini -|-|-|-|-|-|- amh |69.5|70.6|76.2|76.1|70.1|69.7 hau |74.5|89.5|90.5|91.2|91.4|87.7 ibo |81.9|84.8|84.1|87.4|86.6|83.5 kin |68.6|73.3|73.8|78.0|77.5|74.1 lug |64.7|79.7|81.6|82.9|83.2|77.4 luo |11.7|74.9|73.6|75.1|75.4|17.5 pcm |83.2|87.3|89.0|89.6|89.0|85.5 swa |86.3|87.4|89.4|88.6|88.7|86.0 wol |51.7|63.9|67.9|67.4|65.9|59.0 yor |72.0|78.3|78.9|82.1|81.3|75.1 ### BibTeX entry and citation info ``` @misc{afro_maft, doi = {10.48550/ARXIV.2204.06487}, url = {https://arxiv.org/abs/2204.06487}, author = {Alabi, Jesujoba O. and Adelani, David Ifeoluwa and Mosbach, Marius and Klakow, Dietrich}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Multilingual Language Model Adaptive Fine-Tuning: A Study on African Languages}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
cambridgeltl/magic_flickr30k
4f5c4ca58c36d1f413a5f5aaa40f625273a821c7
2022-04-13T08:56:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
cambridgeltl
null
cambridgeltl/magic_flickr30k
23
null
transformers
7,942
Entry not found
ChrisLiewJY/BERTweet-Hedge
ba5ff4bba3275436d75b0e4297b56f3cfecc4157
2022-04-30T10:39:56.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers", "uncertainty-detection", "social-media", "license:mit" ]
text-classification
false
ChrisLiewJY
null
ChrisLiewJY/BERTweet-Hedge
23
0
transformers
7,943
--- license: mit language: - en tags: - uncertainty-detection - social-media - text-classification widget: - text: "It seems like Bitcoin prices are heading into bearish territory." example_title: "Hedge Detection (Positive - Label 1)" - text: "Bitcoin prices have fallen by 42% in the last 30 days." example_title: "Hedge Detection (Negative - Label 0)" --- ### Overview Fine tuned VinAI's BERTweet base model on the Wiki Weasel 2.0 Corpus from the [Szeged Uncertainty Corpus](https://rgai.inf.u-szeged.hu/node/160) for hedge (linguistic uncertainty) detection in social media texts. Model was trained and optimised using Ray Tune's implementation of Deep Mind's Population Based Training with the arithmetic mean of Accuracy & F1 as its evaluation metric. ### Labels * LABEL_1 = Positive (Hedge is detected within text) * LABEL_0 = Negative (No Hedges detected within text) ### <a name="models2"></a> Model Performance Model | Accuracy | F1-Score | Accuracy & F1-Score ---|---|---|--- `BERTweet-Hedge` | 0.9680 | 0.8765 | 0.9222
KoichiYasuoka/roberta-base-serbian-upos
bcdb67409ecd45d042323980a6d602aa42ea258c
2022-05-07T13:35:28.000Z
[ "pytorch", "roberta", "token-classification", "sr", "dataset:universal_dependencies", "transformers", "serbian", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-serbian-upos
23
null
transformers
7,944
--- language: - "sr" tags: - "serbian" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Да има сира и масла и моја би мати знала гибати гибаницу." - text: "Da ima sira i masla i moja bi mati znala gibati gibanicu." --- # roberta-base-serbian-upos ## Model Description This is a RoBERTa model in Serbian (Cyrillic and Latin) for POS-tagging and dependency-parsing, derived from [roberta-base-serbian](https://huggingface.co/KoichiYasuoka/roberta-base-serbian). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-serbian-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-serbian-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-serbian-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
Xiaoman/NER-for-female-names
5f7578a2211ea522925e3f6adc0d9a3e3a3e1902
2022-05-13T11:43:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Xiaoman
null
Xiaoman/NER-for-female-names
23
null
transformers
7,945
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NER-for-female-names results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-for-female-names This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.961395091713594e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 27 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 0.6371 | | No log | 2.0 | 10 | 0.4213 | | No log | 3.0 | 15 | 0.3227 | | No log | 4.0 | 20 | 0.2867 | | No log | 5.0 | 25 | 0.2606 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
Xiaoman/NER-CoNLL2003
157e5cd260c04136d3e17d1a15f9247852fb7485
2022-05-13T11:45:22.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Xiaoman
null
Xiaoman/NER-CoNLL2003
23
null
transformers
7,946
Entry not found
malay-huggingface/wav2vec2-xls-r-300m-mixed
0600ae9fd207d8d188c2a25e03bd1a26a291ed22
2022-07-02T13:33:37.000Z
[ "pytorch", "tf", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_keras_callback", "model-index" ]
automatic-speech-recognition
false
malay-huggingface
null
malay-huggingface/wav2vec2-xls-r-300m-mixed
23
1
transformers
7,947
--- tags: - generated_from_keras_callback model-index: - name: wav2vec2-xls-r-300m-mixed results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-mixed Finetuned https://huggingface.co/facebook/wav2vec2-xls-r-300m on https://github.com/huseinzol05/malaya-speech/tree/master/data/mixed-stt **Update 2022-07-02, https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed slightly better accuracy**. This model was finetuned on 3 languages, 1. Malay 2. Singlish 3. Mandarin **This model trained on a single Tesla V100 32GB VRAM, provided by https://keyreply.com/**. ## Evaluation set Evaluation set from https://github.com/huseinzol05/malaya-speech/tree/master/pretrained-model/prepare-stt with sizes, ``` len(malay), len(singlish), len(mandarin) -> (765, 3579, 614) ``` It achieves the following results on the evaluation set based on [evaluate-wav2vec2-xls-r-300m-mixed.ipynb](evaluate-wav2vec2-xls-r-300m-mixed.ipynb): Mixed evaluation, ``` CER: 0.048555454439612775 WER: 0.14151468058308714 CER with LM: 0.03977501945111893 WER with LM: 0.09809135311921899 ``` Malay evaluation, ``` CER: 0.05372605571018908 WER: 0.23714922876687583 CER with LM: 0.03508559320616622 WER with LM: 0.1294898148329521 ``` Singlish evaluation, ``` CER: 0.0488366183589853 WER: 0.1294114484378467 CER with LM: 0.04119293317615 WER with LM: 0.09411106530063 ``` Mandarin evaluation, ``` CER: 0.04047435404966954 WER: 0.09291050873816364 CER with LM: 0.037352703254831865 WER with LM: 0.08217217867571727 ``` Language model from https://huggingface.co/huseinzol05/language-model-bahasa-manglish-combined
Dizzykong/gpt2-medium-commands
92ddf481c571555d1df8b730043b7da97e200bcf
2022-05-19T22:45:13.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-medium-commands
23
null
transformers
7,948
--- tags: - generated_from_trainer model-index: - name: gpt2-medium-commands results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-commands This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
pritam18/swadeshi_hindiwav2vec2asr
d7189be4d532299bf13a1d3d3ef5883201270ad8
2022-06-29T16:37:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
pritam18
null
pritam18/swadeshi_hindiwav2vec2asr
23
null
transformers
7,949
swadeshi_hindiwav2vec2asr/ is a Hindi speech recognition model which is a fine tuned version of the theainerd/Wav2Vec2-large-xlsr-hindi model. The model achieved a Word Error Rate of 0.738 when trained when with 12 Hours of MUCS data with 30 epochs and given a batch size of 12.
mehari/tig-roberta-base
1e7f88b95b726c4db6ced7af5905597b308e4f44
2022-07-08T06:18:08.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mehari
null
mehari/tig-roberta-base
23
null
transformers
7,950
Entry not found
FigoMe/sonnet_keyword_gen
f453014249e0c3cbca6c2e86daaa4a4cc45e3972
2022-05-24T23:32:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
FigoMe
null
FigoMe/sonnet_keyword_gen
23
null
transformers
7,951
Entry not found
sbenel/emotion-distilbert
a012e44cd6c487e1e8215fd85e70c1349845cdee
2022-07-09T16:34:13.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "emotion", "license:apache-2.0" ]
text-classification
false
sbenel
null
sbenel/emotion-distilbert
23
null
transformers
7,952
--- license: apache-2.0 language: en tags: - text-classification - pytorch - emotion metrics: - accuracy, F1 score dataset: - emotion --- ## Training Parameters ``` learning rate: 2e-5 epochs: 40 weight decay: 0.01 batch size: 16 ``` ## Metrics ``` acuraccy: 0.93 macro-F1 (macro avg): 0.88 best epoch: 15 ``` ## Dataset: [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).
aware-ai/robust-wav2vec2-base-german
404de64d9f4ba27555493d5fa464c9094054f780
2022-05-31T13:30:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/robust-wav2vec2-base-german
23
null
transformers
7,953
Entry not found
huggingtweets/botphilosophyq-philosophical_9-philosophy_life
84659941cc7ba7ca59d36e6d7ed67410c2cee628
2022-05-31T12:56:27.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/botphilosophyq-philosophical_9-philosophy_life
23
null
transformers
7,954
--- language: en thumbnail: http://www.huggingtweets.com/botphilosophyq-philosophical_9-philosophy_life/1654001783159/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503378148544720896/cqXtOCzo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1454403230218080259/l2xRKFYN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1465751420146225152/REt6VnPb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Philosophy Quotes & Philosophy Quotes & philosophy for life</div> <div style="text-align: center; font-size: 14px;">@botphilosophyq-philosophical_9-philosophy_life</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Philosophy Quotes & Philosophy Quotes & philosophy for life. | Data | Philosophy Quotes | Philosophy Quotes | philosophy for life | | --- | --- | --- | --- | | Tweets downloaded | 1162 | 489 | 1175 | | Retweets | 377 | 59 | 2 | | Short tweets | 30 | 0 | 0 | | Tweets kept | 755 | 430 | 1173 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cvz516e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @botphilosophyq-philosophical_9-philosophy_life's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13d841md) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13d841md/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/botphilosophyq-philosophical_9-philosophy_life') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
arize-ai/distilbert_reviews_with_language_drift
f3997bc7d78f2d4903e1b7a444132adeb77c8b2e
2022-06-01T06:15:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:ecommerce_reviews_with_language_drift", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
arize-ai
null
arize-ai/distilbert_reviews_with_language_drift
23
null
transformers
7,955
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ecommerce_reviews_with_language_drift metrics: - accuracy - f1 model-index: - name: distilbert_reviews_with_language_drift results: - task: name: Text Classification type: text-classification dataset: name: ecommerce_reviews_with_language_drift type: ecommerce_reviews_with_language_drift args: default metrics: - name: Accuracy type: accuracy value: 0.818 - name: F1 type: f1 value: 0.8167126877417763 widget: - text: "Poor quality of fabric and ridiculously tight at chest. It's way too short." example_title: "Negative" - text: "One worked perfectly, but the other one has a slight leak and we end up with water underneath the filter." example_title: "Neutral" - text: "I liked the price most! Nothing to dislike here!" example_title: "Positive" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_reviews_with_language_drift This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ecommerce_reviews_with_language_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.4970 - Accuracy: 0.818 - F1: 0.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.593 | 1.0 | 500 | 0.4723 | 0.799 | 0.7976 | | 0.3714 | 2.0 | 1000 | 0.4679 | 0.818 | 0.8177 | | 0.2652 | 3.0 | 1500 | 0.4970 | 0.818 | 0.8167 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RUCAIBox/mvp-task-dialog
b2c5dc8fb36f4ef4d15ae085d3dc6b78d54ce896
2022-06-27T02:28:25.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mvp-task-dialog
23
1
transformers
7,956
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the task dialog: Belief state [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example1" - text: "Given the task dialog: Dialogue action [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example2" - text: "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example3" --- # MVP-task-dialog The MVP-task-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-task-dialog is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled task-oriented system datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-task-dialog is specially designed for task-oriented tasks, such as MultiWOZ. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-task-dialog") >>> inputs = tokenizer( ... "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['What date and time would you like to go?'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
vortixhead/distilbert-base-uncased-finetuned-emotion
ebf52ef7323a83dc4dd67ac9a5eb795032e39a1c
2022-07-14T12:00:08.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vortixhead
null
vortixhead/distilbert-base-uncased-finetuned-emotion
23
null
transformers
7,957
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240758723346115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2140 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8278 | 1.0 | 250 | 0.3099 | 0.9055 | 0.9032 | | 0.251 | 2.0 | 500 | 0.2140 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
eslamxm/arabert2arabert-finetuned-ar-xlsum
955789ed12f1b24fbd6abb89d510e48238fbd49d
2022-06-07T09:34:31.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "ar", "arabert", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/arabert2arabert-finetuned-ar-xlsum
23
null
transformers
7,958
--- tags: - summarization - ar - encoder-decoder - arabert - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: arabert2arabert-finetuned-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert2arabert-finetuned-ar-xlsum This model is a fine-tuned version of [](https://huggingface.co/) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 5.1557 - Rouge-1: 25.3 - Rouge-2: 10.46 - Rouge-l: 22.12 - Gen Len: 20.0 - Bertscore: 71.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-base-japanese-unidic-luw-upos
e750b897e815e2324a9fea5f266be88dd83ddcb4
2022-06-26T13:35:54.000Z
[ "pytorch", "deberta-v2", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-unidic-luw-upos
23
null
transformers
7,959
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-base-japanese-unidic-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-base-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-unidic). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-base-japanese-unidic-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` [fugashi](https://pypi.org/project/fugashi), [unidic-lite](https://pypi.org/project/unidic-lite) and [pytokenizations](https://pypi.org/project/pytokenizations) are required. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
jungealexander/distilbert-base-uncased-finetuned-go_emotions_20220608_1
997c80125fd925ac808ee63fc2ac0e7d1c8d58cd
2022-06-08T20:14:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:go_emotions", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jungealexander
null
jungealexander/distilbert-base-uncased-finetuned-go_emotions_20220608_1
23
null
transformers
7,960
--- license: apache-2.0 tags: - generated_from_trainer datasets: - go_emotions metrics: - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-go_emotions_20220608_1 results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: go_emotions args: simplified metrics: - name: F1 type: f1 value: 0.5575026333429091 - name: Accuracy type: accuracy value: 0.43641725027644673 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-go_emotions_20220608_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the go_emotions dataset. It achieves the following results on the evaluation set: - Loss: 0.0857 - F1: 0.5575 - Roc Auc: 0.7242 - Accuracy: 0.4364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.173 | 1.0 | 679 | 0.1074 | 0.4245 | 0.6455 | 0.2976 | | 0.0989 | 2.0 | 1358 | 0.0903 | 0.5199 | 0.6974 | 0.3972 | | 0.0865 | 3.0 | 2037 | 0.0868 | 0.5504 | 0.7180 | 0.4263 | | 0.0806 | 4.0 | 2716 | 0.0860 | 0.5472 | 0.7160 | 0.4233 | | 0.0771 | 5.0 | 3395 | 0.0857 | 0.5575 | 0.7242 | 0.4364 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
binay1999/distilbert-cybertexts-preprocessed
4b3657434eae047989152e10c1547db361b06726
2022-06-12T23:04:12.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
binay1999
null
binay1999/distilbert-cybertexts-preprocessed
23
null
transformers
7,961
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-cybertexts-preprocessed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cybertexts-preprocessed This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.4031 | 1.0 | 17824 | 3.0932 | | 2.2404 | 2.0 | 35648 | 3.0124 | | 2.155 | 3.0 | 53472 | 2.9901 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
cotcode/wav2vec2-finetuned-ch-emotion-edu
50785b0b1195118ca03949cc931bf134005cc44c
2022-06-15T18:31:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
cotcode
null
cotcode/wav2vec2-finetuned-ch-emotion-edu
23
null
transformers
7,962
Entry not found
Elijah629/DialoGPT-mrsanai
36746e7bfc02c351d875379b88388e94a6d948e7
2022-06-17T00:43:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Elijah629
null
Elijah629/DialoGPT-mrsanai
23
null
transformers
7,963
--- tags: - conversational ---
RJuro/Da-HyggeBERT
042b1f41ef57e80138cebca6be82ae6403be18cb
2022-06-24T11:09:39.000Z
[ "pytorch", "bert", "text-classification", "da", "dataset:go_emotions", "transformers", "danish", "sentiment", "Maltehb/danish-bert-botxo", "Helsinki-NLP/opus-mt-en-da", "go-emotion", "Certainly", "license:cc-by-4.0" ]
text-classification
false
RJuro
null
RJuro/Da-HyggeBERT
23
2
transformers
7,964
--- language: da tags: - danish - bert - sentiment - text-classification - Maltehb/danish-bert-botxo - Helsinki-NLP/opus-mt-en-da - go-emotion - Certainly license: cc-by-4.0 datasets: - go_emotions metrics: - Accuracy widget: - text: "Det er så sødt af dig at tænke på andre på den måde ved du det?" - text: "Jeg vil gerne have en playstation." - text: "Jeg elsker dig" - text: "Hvordan håndterer jeg min irriterende nabo?" --- # Danish-Bert-GoÆmotion Danish Go-Emotions classifier. [Maltehb/danish-bert-botxo](https://huggingface.co/Maltehb/danish-bert-botxo) (uncased) finetuned on a translation of the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset using [Helsinki-NLP/opus-mt-en-da](https://huggingface.co/Helsinki-NLP/opus-mt-de-en). Thus, performance is obviousely dependent on the translation model. ## Training - Translating the training data with MT: [Notebook](https://colab.research.google.com/github/RJuro/Da-HyggeBERT-finetuning/blob/main/HyggeBERT_translation_en_da.ipynb) - Fine-tuning danish-bert-botxo: coming soon... ## Training Parameters: ``` Num examples = 189900 Num Epochs = 3 Train batch = 8 Eval batch = 8 Learning Rate = 3e-5 Warmup steps = 4273 Total optimization steps = 71125 ``` ## Loss ### Training loss ![](wb_loss.png) ### Eval. loss ``` 0.1178 (21100 examples) ``` ## Using the model with `transformers` Easiest use with `transformers` and `pipeline`: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model = AutoModelForSequenceClassification.from_pretrained('RJuro/Da-HyggeBERT') tokenizer = AutoTokenizer.from_pretrained('RJuro/Da-HyggeBERT') classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) classifier('jeg elsker dig') ``` `[{'label': 'kærlighed', 'score': 0.9634820818901062}]` ## Using the model with `simpletransformers` ```python from simpletransformers.classification import MultiLabelClassificationModel model = MultiLabelClassificationModel('bert', 'RJuro/Da-HyggeBERT') predictions, raw_outputs = model.predict(df['text']) ```
autoevaluate/image-multi-class-classification
2d124b482e1f813185e62fa5b09882ea81fcb74a
2022-06-21T14:29:00.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:mnist", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
autoevaluate
null
autoevaluate/image-multi-class-classification
23
null
transformers
7,965
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist metrics: - accuracy model-index: - name: image-classification results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist args: mnist metrics: - name: Accuracy type: accuracy value: 0.9833333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
danieleV9H/wav2vec2-base-ft-cv3-v3
6357081470022bf7d686a6b799b0510e9996e796
2022-07-02T08:18:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
danieleV9H
null
danieleV9H/wav2vec2-base-ft-cv3-v3
23
null
transformers
7,966
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-ft-cv3-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ft-cv3-v3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the "mozilla-foundation/common_voice_3_0 english" dataset: "train" and "validation" splits are used for training while "test" split is used for validation. It achieves the following results on the evaluation set: - Loss: 0.5787 - Wer: 0.2470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5935 | 0.1 | 500 | 3.0085 | 1.0 | | 1.6296 | 0.21 | 1000 | 1.0879 | 0.5895 | | 0.7154 | 0.31 | 1500 | 0.8224 | 0.4839 | | 0.6387 | 0.42 | 2000 | 0.7290 | 0.4302 | | 0.5322 | 0.52 | 2500 | 0.6864 | 0.4044 | | 0.497 | 0.63 | 3000 | 0.6294 | 0.3746 | | 0.4659 | 0.73 | 3500 | 0.6388 | 0.3745 | | 0.4452 | 0.84 | 4000 | 0.6122 | 0.3570 | | 0.4356 | 0.94 | 4500 | 0.5770 | 0.3443 | | 0.3976 | 1.05 | 5000 | 0.6145 | 0.3296 | | 0.3767 | 1.15 | 5500 | 0.6099 | 0.3325 | | 0.3704 | 1.25 | 6000 | 0.5998 | 0.3263 | | 0.3541 | 1.36 | 6500 | 0.6070 | 0.3250 | | 0.3592 | 1.46 | 7000 | 0.6076 | 0.3352 | | 0.3508 | 1.57 | 7500 | 0.5712 | 0.3239 | | 0.3437 | 1.67 | 8000 | 0.5729 | 0.3202 | | 0.352 | 1.78 | 8500 | 0.5465 | 0.3100 | | 0.34 | 1.88 | 9000 | 0.5418 | 0.3059 | | 0.4086 | 1.99 | 9500 | 0.5189 | 0.3053 | | 0.2968 | 2.09 | 10000 | 0.5373 | 0.3076 | | 0.2968 | 2.2 | 10500 | 0.5602 | 0.3061 | | 0.2956 | 2.3 | 11000 | 0.5651 | 0.3051 | | 0.2863 | 2.41 | 11500 | 0.5476 | 0.2982 | | 0.2852 | 2.51 | 12000 | 0.5579 | 0.2954 | | 0.292 | 2.61 | 12500 | 0.5451 | 0.2953 | | 0.2877 | 2.72 | 13000 | 0.5468 | 0.2905 | | 0.285 | 2.82 | 13500 | 0.5283 | 0.2908 | | 0.2872 | 2.93 | 14000 | 0.5240 | 0.2867 | | 0.3286 | 3.03 | 14500 | 0.5078 | 0.2846 | | 0.2526 | 3.14 | 15000 | 0.5373 | 0.2836 | | 0.2494 | 3.24 | 15500 | 0.5566 | 0.2861 | | 0.2534 | 3.35 | 16000 | 0.5378 | 0.2859 | | 0.2435 | 3.45 | 16500 | 0.5225 | 0.2813 | | 0.3144 | 3.56 | 17000 | 0.5203 | 0.2808 | | 0.2501 | 3.66 | 17500 | 0.5176 | 0.2785 | | 0.2469 | 3.76 | 18000 | 0.5022 | 0.2795 | | 0.242 | 3.87 | 18500 | 0.5228 | 0.2757 | | 0.242 | 3.97 | 19000 | 0.5024 | 0.2788 | | 0.2205 | 4.08 | 19500 | 0.5318 | 0.2729 | | 0.2149 | 4.18 | 20000 | 0.5492 | 0.2763 | | 0.2186 | 4.29 | 20500 | 0.5599 | 0.2769 | | 0.2191 | 4.39 | 21000 | 0.5493 | 0.2695 | | 0.218 | 4.5 | 21500 | 0.5385 | 0.2709 | | 0.2046 | 4.6 | 22000 | 0.5326 | 0.2718 | | 0.2064 | 4.71 | 22500 | 0.5591 | 0.2725 | | 0.2066 | 4.81 | 23000 | 0.5283 | 0.2700 | | 0.2102 | 4.92 | 23500 | 0.5456 | 0.2713 | | 0.3345 | 5.02 | 24000 | 0.5474 | 0.2698 | | 0.1891 | 5.12 | 24500 | 0.5466 | 0.2672 | | 0.1954 | 5.23 | 25000 | 0.5691 | 0.2731 | | 0.1971 | 5.33 | 25500 | 0.5595 | 0.2741 | | 0.1995 | 5.44 | 26000 | 0.5609 | 0.2716 | | 0.1911 | 5.54 | 26500 | 0.5513 | 0.2684 | | 0.1954 | 5.65 | 27000 | 0.5282 | 0.2683 | | 0.193 | 5.75 | 27500 | 0.5460 | 0.2644 | | 0.1974 | 5.86 | 28000 | 0.5415 | 0.2650 | | 0.1947 | 5.96 | 28500 | 0.5227 | 0.2656 | | 0.1836 | 6.07 | 29000 | 0.5361 | 0.2743 | | 0.1741 | 6.17 | 29500 | 0.5637 | 0.2649 | | 0.1776 | 6.27 | 30000 | 0.5705 | 0.2680 | | 0.1747 | 6.38 | 30500 | 0.5587 | 0.2667 | | 0.1761 | 6.48 | 31000 | 0.5480 | 0.2683 | | 0.1715 | 6.59 | 31500 | 0.5547 | 0.2627 | | 0.2424 | 6.69 | 32000 | 0.5254 | 0.2610 | | 0.1756 | 6.8 | 32500 | 0.5301 | 0.2633 | | 0.1761 | 6.9 | 33000 | 0.5267 | 0.2658 | | 0.1751 | 7.01 | 33500 | 0.5611 | 0.2677 | | 0.1653 | 7.11 | 34000 | 0.5617 | 0.2663 | | 0.1591 | 7.22 | 34500 | 0.5435 | 0.2642 | | 0.1559 | 7.32 | 35000 | 0.5608 | 0.2611 | | 0.1604 | 7.43 | 35500 | 0.5477 | 0.2611 | | 0.162 | 7.53 | 36000 | 0.5257 | 0.2559 | | 0.1579 | 7.63 | 36500 | 0.5398 | 0.2570 | | 0.162 | 7.74 | 37000 | 0.5566 | 0.2605 | | 0.2351 | 7.84 | 37500 | 0.5371 | 0.2564 | | 0.1566 | 7.95 | 38000 | 0.5507 | 0.2565 | | 0.1515 | 8.05 | 38500 | 0.5640 | 0.2544 | | 0.1459 | 8.16 | 39000 | 0.5739 | 0.2523 | | 0.1463 | 8.26 | 39500 | 0.5596 | 0.2522 | | 0.1466 | 8.37 | 40000 | 0.5522 | 0.2537 | | 0.2372 | 8.47 | 40500 | 0.5567 | 0.2520 | | 0.1488 | 8.58 | 41000 | 0.5546 | 0.2506 | | 0.1492 | 8.68 | 41500 | 0.5533 | 0.2518 | | 0.1454 | 8.78 | 42000 | 0.5488 | 0.2508 | | 0.148 | 8.89 | 42500 | 0.5635 | 0.2526 | | 0.1424 | 8.99 | 43000 | 0.5513 | 0.2509 | | 0.1356 | 9.1 | 43500 | 0.5534 | 0.2527 | | 0.1346 | 9.2 | 44000 | 0.5735 | 0.2497 | | 0.1346 | 9.31 | 44500 | 0.5710 | 0.2489 | | 0.1401 | 9.41 | 45000 | 0.5561 | 0.2491 | | 0.2212 | 9.52 | 45500 | 0.5564 | 0.2482 | | 0.1369 | 9.62 | 46000 | 0.5658 | 0.2484 | | 0.1323 | 9.73 | 46500 | 0.5582 | 0.2495 | | 0.1369 | 9.83 | 47000 | 0.5560 | 0.2503 | | 0.1368 | 9.94 | 47500 | 0.5552 | 0.2489 | | 0.1333 | 10.04 | 48000 | 0.5953 | 0.2491 | | 0.1305 | 10.14 | 48500 | 0.5818 | 0.2520 | | 0.1316 | 10.25 | 49000 | 0.5773 | 0.2506 | | 0.1334 | 10.35 | 49500 | 0.5882 | 0.2485 | | 0.1351 | 10.46 | 50000 | 0.5750 | 0.2483 | | 0.1337 | 10.56 | 50500 | 0.5910 | 0.2486 | | 0.2241 | 10.67 | 51000 | 0.5732 | 0.2491 | | 0.1327 | 10.77 | 51500 | 0.5839 | 0.2493 | | 0.1364 | 10.88 | 52000 | 0.5724 | 0.2464 | | 0.1305 | 10.98 | 52500 | 0.5758 | 0.2468 | | 0.128 | 11.09 | 53000 | 0.5811 | 0.2482 | | 0.1267 | 11.19 | 53500 | 0.5903 | 0.2483 | | 0.1262 | 11.29 | 54000 | 0.5792 | 0.2483 | | 0.1291 | 11.4 | 54500 | 0.5735 | 0.2497 | | 0.1228 | 11.5 | 55000 | 0.5920 | 0.2494 | | 0.1249 | 11.61 | 55500 | 0.5907 | 0.2488 | | 0.1266 | 11.71 | 56000 | 0.5786 | 0.2486 | | 0.1235 | 11.82 | 56500 | 0.5790 | 0.2473 | | 0.1243 | 11.92 | 57000 | 0.5787 | 0.2470 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
webshop/il-rl-choice-bert-image_1
1a0f94f9ca9a153dc67b5ad617298fead3f60f67
2022-06-30T06:48:52.000Z
[ "pytorch", "bert", "transformers" ]
null
false
webshop
null
webshop/il-rl-choice-bert-image_1
23
null
transformers
7,967
Entry not found
alexjercan/codet5-base-masked-buggy-code-repair
35de7413eaf2c57bd36ca0f1364b5edc51d4f8e4
2022-06-30T13:06:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
alexjercan
null
alexjercan/codet5-base-masked-buggy-code-repair
23
null
transformers
7,968
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: codet5-base-masked-buggy-code-repair results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-base-masked-buggy-code-repair This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2876 - Precision: 0.1990 - Recall: 0.3 - F1: 0.2320 - Accuracy: 0.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
arize-ai/XLM-RoBERTa-xtreme-en-token-drift
c03c6ec259ffb6e8407b49d0d3323414eac8f7ff
2022-07-01T01:48:49.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme_en_token_drift", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
arize-ai
null
arize-ai/XLM-RoBERTa-xtreme-en-token-drift
23
null
transformers
7,969
--- license: mit tags: - generated_from_trainer datasets: - xtreme_en_token_drift metrics: - accuracy - f1 widget: - text: "My name is Julia, I study at Imperial College, in London" example_title: "Example 1" - text: "My name is Sarah and I live in Paris" example_title: "Example 2" - text: "My name is Clara and I live in Berkeley, California" example_title: "Example 3" model-index: - name: XLM-RoBERTa-xtreme-en-token-drift results: - task: name: Token Classification type: token-classification dataset: name: xtreme_en_token_drift type: xtreme_en_token_drift args: default metrics: - name: Accuracy type: accuracy value: 0.908855961405927 - name: F1 type: f1 value: 0.76126567683807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLM-RoBERTa-xtreme-en-token-drift This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme_en_token_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.2802 - Accuracy: 0.9089 - F1: 0.7613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6398 | 1.0 | 161 | 0.3421 | 0.8973 | 0.7111 | | 0.3268 | 2.0 | 322 | 0.2846 | 0.9097 | 0.7611 | | 0.2701 | 3.0 | 483 | 0.2802 | 0.9089 | 0.7613 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
duchung17/wav2vec2-base-timit-demo-google-colab
7e40948aa7e77ed2fc8d447370e0ed6f4ed7d7f8
2022-07-05T15:24:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
duchung17
null
duchung17/wav2vec2-base-timit-demo-google-colab
23
null
transformers
7,970
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4049 - Wer: 0.3556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7319 | 1.0 | 500 | 1.3558 | 0.8890 | | 0.7826 | 2.01 | 1000 | 0.5655 | 0.5398 | | 0.4157 | 3.01 | 1500 | 0.4692 | 0.4682 | | 0.2722 | 4.02 | 2000 | 0.4285 | 0.4193 | | 0.2094 | 5.02 | 2500 | 0.4170 | 0.3949 | | 0.1682 | 6.02 | 3000 | 0.3895 | 0.3751 | | 0.1295 | 7.03 | 3500 | 0.3943 | 0.3628 | | 0.1064 | 8.03 | 4000 | 0.4198 | 0.3648 | | 0.0869 | 9.04 | 4500 | 0.4049 | 0.3556 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Aktsvigun/bart-base_aeslc_4837
7c6aee9d1f927a99bdd79aaaa5e8165c188e3565
2022-07-07T15:03:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_4837
23
null
transformers
7,971
Entry not found
Yehor/wav2vec2-xls-r-300m-uk-with-news-lm
50b53646bf1612173993b1e8f8395fe5a2f8a207
2022-07-30T07:00:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "uk", "dataset:mozilla-foundation/common_voice_10_0", "transformers", "license:cc-by-nc-sa-4.0" ]
automatic-speech-recognition
false
Yehor
null
Yehor/wav2vec2-xls-r-300m-uk-with-news-lm
23
null
transformers
7,972
--- language: - uk license: "cc-by-nc-sa-4.0" datasets: - mozilla-foundation/common_voice_10_0 --- 🇺🇦 Join Ukrainian Speech Recognition Community - https://t.me/speech_recognition_uk ⭐ See other Ukrainian models - https://github.com/egorsmkv/speech-recognition-uk This model has apostrophes and hyphens. The language model is 3-gram. Attribution to the dataset of the language model: - Chaplynskyi, D. et al. (2021) lang-uk Ukrainian Ubercorpus [Data set]. https://lang.org.ua/uk/corpora/#anchor4 Metrics: | Dataset | CER | WER | |-|-|-| | CV7 (no LM) | 0.0432 | 0.2288 | | CV7 (with LM) | 0.0251 | 0.118 | | CV10 (no LM) | 0.0412 | 0.2206 | | CV10 (with LM) | 0.023 | 0.1081 |
xzhang/distilgpt2-finetuned-spam
5f3e53101bb089ed6c8af7929d72594fe8e9b0b6
2022-07-03T19:09:37.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
xzhang
null
xzhang/distilgpt2-finetuned-spam
23
null
transformers
7,973
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-spam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-spam This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 99 | 5.3140 | | No log | 2.0 | 198 | 5.1952 | | No log | 3.0 | 297 | 5.1656 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ArnavL/roberta-reviews-imdb-0
c0139a78c047a496bb58b3aed9751fa215f973d3
2022-07-09T19:01:24.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
ArnavL
null
ArnavL/roberta-reviews-imdb-0
23
null
transformers
7,974
Entry not found
dmrau/bow-bert
5c0cce3298d0b5b84d05a5ff0186a978994ebd1a
2022-07-12T12:50:12.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
dmrau
null
dmrau/bow-bert
23
null
transformers
7,975
--- license: afl-3.0 --- <strong>Example on how to load and use BOW-BERT: <strong> ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer # load model model = AutoModelForSequenceClassification.from_pretrained('dmrau/bow-bert') # load tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # tokenize query and passage and concatenate them inp = tokenizer(['this is a query','query a is this'], ['this is a passage', 'passage a is this'], return_tensors='pt') # get estimated score print('score', model(**inp).logits[:, 1]) ### outputs identical scores for different ### word orders as the model is order invariant: # scores: [-2.9463, -2.9463] ``` <strong> Cite us:<strong> ``` @article{rau2022role, title={The Role of Complex NLP in Transformers for Text Ranking?}, author={Rau, David and Kamps, Jaap}, journal={arXiv preprint arXiv:2207.02522}, year={2022} } ```
simecek/DNADebertaBPE30k
bb160690d3ac13a6dd4a53d2448f0c9e7561442f
2022-07-15T06:45:23.000Z
[ "pytorch", "tensorboard", "deberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNADebertaBPE30k
23
null
transformers
7,976
--- tags: - generated_from_trainer model-index: - name: DNADebertaBPE30k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaBPE30k This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 5.1519 - eval_runtime: 308.5062 - eval_samples_per_second: 337.384 - eval_steps_per_second: 21.089 - epoch: 7.22 - step: 105695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
khosseini/bert_1760_1900
6c8912e1c770f9d8e46aef218d42433265751678
2022-07-18T09:30:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
khosseini
null
khosseini/bert_1760_1900
23
null
transformers
7,977
# Neural Language Models for Nineteenth-Century English: bert_1760_1900 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1760-1900 and comprised of ~5.1 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
khosseini/bert_1850_1875
0a01a6b22910cd8b12d79725b3004387c58377ea
2022-07-18T09:33:56.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
khosseini
null
khosseini/bert_1850_1875
23
null
transformers
7,978
# Neural Language Models for Nineteenth-Century English: bert_1850_1875 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1850-1875 and comprised of ~1.3 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
rosicast/hubert-large-ll60k-korean-zeroth-jamo
f71d54554bf42ebadc39d62b7cc25ba289a670c6
2022-07-25T19:40:51.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rosicast
null
rosicast/hubert-large-ll60k-korean-zeroth-jamo
23
null
transformers
7,979
Entry not found
google/ddpm-ema-celebahq-256
8b7b4bc06bd63d536e5b50a81ed73c1c7fdb2067
2022-07-21T15:00:38.000Z
[ "diffusers", "arxiv:2006.11239", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ddpm-ema-celebahq-256
23
null
diffusers
7,980
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-ema-celebahq-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm()["sample"] # save image image[0].save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) # <- TODO(PVP) add link ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-ema-celebahq-256/resolve/main/images/generated_image_3.png)
Muennighoff/bloom-tiny-random
a0289b14c88d36f6ad7c4595443c1c5f102a18e5
2022-07-21T08:44:10.000Z
[ "pytorch", "bloom", "feature-extraction", "eng", "transformers", "integration", "text-generation" ]
text-generation
false
Muennighoff
null
Muennighoff/bloom-tiny-random
23
null
transformers
7,981
--- language: - eng tags: - integration pipeline_tag: text-generation --- # BigScience - testing model This model aims to test the conversion between Megatron-LM and transformers. It is a small ```GPT-2```-like model that has been used to debug the script. Use it only for integration tests
zhenglianchi/unAPI-train-model
243d11f03b21be5928260bc631f28b867a5acf3d
2022-07-22T07:09:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
zhenglianchi
null
zhenglianchi/unAPI-train-model
23
null
transformers
7,982
Entry not found
tattle-admin/july22-xlmtwtroberta-da-multi
bafb0c6e58d99a0e23eaacd40542dd73acaba48c
2022-07-22T08:08:52.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
tattle-admin
null
tattle-admin/july22-xlmtwtroberta-da-multi
23
null
transformers
7,983
Entry not found
SIMAS-UN/blaming_government
ea64090a47a6b4eca351c4848619122976456d6c
2022-07-24T03:58:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
SIMAS-UN
null
SIMAS-UN/blaming_government
23
null
transformers
7,984
Entry not found
weijiahaha/t5-small-medicalnews-summarization
92a45ada8f2e9d504b8dfef36755dbbb801070ac
2022-07-27T10:00:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:billsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
weijiahaha
null
weijiahaha/t5-small-medicalnews-summarization
23
null
transformers
7,985
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum model-index: - name: t5-small-medicalnews-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-medicalnews-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 62 | 3.1698 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
GeniusVoice/mmarco-mMiniLMv2-L4-H384-v1-distilled
becacf7b93be80205c06d637570cef17f2eb7b20
2022-07-27T13:42:43.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
GeniusVoice
null
GeniusVoice/mmarco-mMiniLMv2-L4-H384-v1-distilled
23
null
transformers
7,986
Entry not found
Alaeddin/convbert-base-turkish-ner-cased
7b931e17bb65794b696b8d761111815d38311fab
2021-04-13T20:20:58.000Z
[ "pytorch", "convbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Alaeddin
null
Alaeddin/convbert-base-turkish-ner-cased
22
null
transformers
7,987
ArBert/bert-base-uncased-finetuned-ner
9994b81a86d4e0c1bb1f9a7c473fa1599d5261de
2022-02-09T10:46:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/bert-base-uncased-finetuned-ner
22
null
transformers
7,988
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0905 - Precision: 0.9068 - Recall: 0.9200 - F1: 0.9133 - Accuracy: 0.9787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1266 | 1.0 | 1123 | 0.0952 | 0.8939 | 0.8869 | 0.8904 | 0.9742 | | 0.0741 | 2.0 | 2246 | 0.0866 | 0.8936 | 0.9247 | 0.9089 | 0.9774 | | 0.0496 | 3.0 | 3369 | 0.0905 | 0.9068 | 0.9200 | 0.9133 | 0.9787 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
BSC-TeMU/roberta-base-bne-capitel-pos
1ec726f584ea0e8a76c61e5fa53983138e1e2956
2021-10-21T10:29:55.000Z
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "pos", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
BSC-TeMU
null
BSC-TeMU/roberta-base-bne-capitel-pos
22
3
transformers
7,989
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "pos" datasets: - "bne" - "capitel" metrics: - "f1" widget: - text: "Festival de San Sebastián: Johnny Depp recibirá el premio Donostia en pleno rifirrafe judicial con Amber Heard" - text: "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto." - text: "Gracias a los datos de la BNE, se ha podido lograr este modelo del lenguaje." - text: "El Tribunal Superior de Justicia se pronunció ayer: \"Hay base legal dentro del marco jurídico actual\"." --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-pos # Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Part of Speech (POS) dataset RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 2). ## Evaluation and results F1 Score: 0.9846 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BlightZz/DialoGPT-medium-Kurisu
f2f0da1675ee4091bc5f31f06adbc763b28d5a8c
2021-07-01T22:12:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BlightZz
null
BlightZz/DialoGPT-medium-Kurisu
22
1
transformers
7,990
--- tags: - conversational --- # A new medium model based on the character Makise Kurisu from Steins;Gate. # Still has some issues that were present in the previous model, for example, mixing lines from other characters. # If you have any questions, feel free to ask me on discord: BlightZz#1169
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-glf
fc770b520d1075a7105343806d6079fdde0a8c30
2021-10-18T10:13:34.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-glf
22
null
transformers
7,991
--- language: - ar license: apache-2.0 widget: - text: 'شلونك ؟ شخبارك ؟' --- # CAMeLBERT-CA POS-GLF Model ## Model description **CAMeLBERT-CA POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-glf') >>> text = 'شلونك ؟ شخبارك ؟' >>> pos(text) [{'entity': 'noun', 'score': 0.99572617, 'index': 1, 'word': 'شلون', 'start': 0, 'end': 4}, {'entity': 'noun', 'score': 0.9411187, 'index': 2, 'word': '##ك', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999661, 'index': 3, 'word': '؟', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.99286526, 'index': 4, 'word': 'ش', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.9983397, 'index': 5, 'word': '##خبار', 'start': 9, 'end': 13}, {'entity': 'noun', 'score': 0.9609381, 'index': 6, 'word': '##ك', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.9999668, 'index': 7, 'word': '؟', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
b6554a2895d68987fdde3eaa4bc9857ad8c96293
2021-10-18T10:16:30.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
22
null
transformers
7,992
--- language: - ar license: apache-2.0 widget: - text: 'شلونك ؟ شخبارك ؟' --- # CAMeLBERT-Mix POS-GLF Model ## Model description **CAMeLBERT-Mix POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf') >>> text = 'شلونك ؟ شخبارك ؟' >>> pos(text) [{'entity': 'pron_interrog', 'score': 0.82657206, 'index': 1, 'word': 'شلون', 'start': 0, 'end': 4}, {'entity': 'prep', 'score': 0.9771731, 'index': 2, 'word': '##ك', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999568, 'index': 3, 'word': '؟', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.9977217, 'index': 4, 'word': 'ش', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.99993783, 'index': 5, 'word': '##خبار', 'start': 9, 'end': 13}, {'entity': 'prep', 'score': 0.5309442, 'index': 6, 'word': '##ك', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.9999575, 'index': 7, 'word': '؟', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
2d3c49cfd9bb86df0140738823349d5863c500f5
2022-03-02T19:02:06.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CNT-UPenn
null
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
22
null
transformers
7,993
RoBERTa-base with additional training through the finetuning pipeline described in "Extracting Seizure Frequency From Epilepsy Clinic Notes: A Machine Reading Approach To Natural Language Processing." Citation: Kevin Xie, Ryan S Gallagher, Erin C Conrad, Chadric O Garrick, Steven N Baldassano, John M Bernabei, Peter D Galer, Nina J Ghosn, Adam S Greenblatt, Tara Jennings, Alana Kornspun, Catherine V Kulick-Soper, Jal M Panchal, Akash R Pattnaik, Brittany H Scheid, Danmeng Wei, Micah Weitzman, Ramya Muthukrishnan, Joongwon Kim, Brian Litt, Colin A Ellis, Dan Roth, Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing, Journal of the American Medical Informatics Association, 2022;, ocac018, https://doi.org/10.1093/jamia/ocac018 RoBERTa_for_seizureFrequency_QA performs extractive question answering to identify a patient's seizure freedom and/or date of last seizure using the HPI and/or Interval History paragraphs from a medical note.
Cameron/BERT-jigsaw-identityhate
f4e3415be9e7476886fabbf2b3f0bede3ce55e9f
2021-05-18T17:27:44.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-jigsaw-identityhate
22
null
transformers
7,994
Entry not found
Davlan/xlm-roberta-base-finetuned-swahili
cef3c7fa4f9a681d2a05df92ae8167d7353fef93
2021-05-28T14:12:32.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "sw", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-swahili
22
null
transformers
7,995
Hugging Face's logo --- language: sw datasets: --- # xlm-roberta-base-finetuned-swahili ## Model description **xlm-roberta-base-finetuned-swahili** is a **Swahili RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Swahili language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Swahili corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-swahili') >>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko <mask> kwamba hakuna uhalifu ulitendwa") [{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Ufaransa kwamba hakuna uhalifu ulitendwa', 'score': 0.5077782273292542, 'token': 190096, 'token_str': 'Ufaransa'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa', 'score': 0.3657738268375397, 'token': 7270, 'token_str': 'Paris'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Gabon kwamba hakuna uhalifu ulitendwa', 'score': 0.01592041552066803, 'token': 176392, 'token_str': 'Gabon'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa', 'score': 0.010881908237934113, 'token': 9942, 'token_str': 'France'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Marseille kwamba hakuna uhalifu ulitendwa', 'score': 0.009554869495332241, 'token': 185918, 'token_str': 'Marseille'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | sw_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.55 | 89.46 ### BibTeX entry and citation info By David Adelani ``` ```
Geotrend/bert-base-ro-cased
3b7606844688c0dab16012991cc71502e88d0204
2021-05-18T20:08:29.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ro", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-ro-cased
22
null
transformers
7,996
--- language: ro datasets: wikipedia license: apache-2.0 --- # bert-base-ro-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-ro-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Helsinki-NLP/opus-mt-en-gmq
31425dc86abe19cea6d8cca4490aed02cd0d9260
2021-01-18T08:08:21.000Z
[ "pytorch", "marian", "text2text-generation", "en", "da", "nb", "sv", "is", "nn", "fo", "gmq", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-gmq
22
1
transformers
7,997
--- language: - en - da - nb - sv - is - nn - fo - gmq tags: - translation license: apache-2.0 --- ### eng-gmq * source group: English * target group: North Germanic languages * OPUS readme: [eng-gmq](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gmq/README.md) * model: transformer * source language(s): eng * target language(s): dan fao isl nno nob nob_Hebr non_Latn swe * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-dan.eng.dan | 57.7 | 0.724 | | Tatoeba-test.eng-fao.eng.fao | 9.2 | 0.322 | | Tatoeba-test.eng-isl.eng.isl | 23.8 | 0.506 | | Tatoeba-test.eng.multi | 52.8 | 0.688 | | Tatoeba-test.eng-non.eng.non | 0.7 | 0.196 | | Tatoeba-test.eng-nor.eng.nor | 50.3 | 0.678 | | Tatoeba-test.eng-swe.eng.swe | 57.8 | 0.717 | ### System Info: - hf_name: eng-gmq - source_languages: eng - target_languages: gmq - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gmq/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq'] - src_constituents: {'eng'} - tgt_constituents: {'dan', 'nob', 'nob_Hebr', 'swe', 'isl', 'nno', 'non_Latn', 'fao'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: gmq - short_pair: en-gmq - chrF2_score: 0.688 - bleu: 52.8 - brevity_penalty: 0.973 - ref_len: 71881.0 - src_name: English - tgt_name: North Germanic languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: gmq - prefer_old: False - long_pair: eng-gmq - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-et
86b01b0a61ac4372314010e98391893b33ac8445
2021-09-09T21:42:16.000Z
[ "pytorch", "marian", "text2text-generation", "es", "et", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-et
22
null
transformers
7,998
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-et * source languages: es * target languages: et * OPUS readme: [es-et](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-et/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-et/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-et/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-et/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.et | 20.7 | 0.466 |
Helsinki-NLP/opus-mt-fj-en
5fa8cce1063eac808d065d4cf26349ba1f145073
2021-09-09T21:52:36.000Z
[ "pytorch", "marian", "text2text-generation", "fj", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fj-en
22
null
transformers
7,999
--- tags: - translation license: apache-2.0 --- ### opus-mt-fj-en * source languages: fj * target languages: en * OPUS readme: [fj-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fj-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fj-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fj-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fj-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fj.en | 31.0 | 0.471 | | Tatoeba.fj.en | 79.7 | 0.835 |