modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
efederici/it5-efficient-small-lfqa
9b34753efd25e1e849f0ec9b900aeb5210c14d62
2022-05-03T13:33:47.000Z
[ "pytorch", "t5", "text2text-generation", "it", "dataset:custom", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
efederici
null
efederici/it5-efficient-small-lfqa
25
null
transformers
7,700
--- license: apache-2.0 language: - it datasets: - custom --- # it5-efficient-small-lfqa It is a T5 ([IT5](https://huggingface.co/stefan-it/it5-efficient-small-el32)) efficient small model trained on a lfqa dataset. <p align="center"> <img src="https://www.marcorossiartecontemporanea.net/wp-content/uploads/2021/04/MARCTM0413-9CFBn1gs-scaled.jpg" width="400"> </br> Mirco Marchelli, Voce in capitolo, 2019 </p> ## Training Data This model was trained on a lfqa dataset. The model provides long-form answers to open domain questions. ## Usage and Performance ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("efederici/it5-efficient-small-lfqa") model = AutoModelForSeq2SeqLM.from_pretrained("efederici/it5-efficient-small-lfqa") query = "con chi si era messo in contatto elon musk?" # concatenated texts/document text doc = """ La notizia dell’acquisizione da parte di Elon Musk del 9,2 per cento delle azioni di Twitter e del suo successivo ingresso nel consiglio di amministrazione della società hanno attirato grandi attenzioni, non solo da parte degli analisti finanziari, ma anche di chi si occupa di social media e del modo in cui viene impiegata la piattaforma da centinaia di milioni di persone in tutto il mondo. Musk, che ha un grande seguito su Twitter, in passato aveva più volte criticato il social network, accusandolo di non tutelare a sufficienza le libertà di espressione, anche in casi limite come l’assalto al Congresso degli Stati Uniti del 2021. Alcune settimane fa, Musk si era messo in contatto con Parag Agrawal, CEO di Twitter da fine novembre 2021, e con il suo predecessore e cofondatore della società, Jack Dorsey, annunciando di avere avviato l’acquisizione di alcune quote dell’azienda e di essere disponibile per discutere di soluzioni per migliorarla. Secondo fonti del New York Times, dopo i primi contatti, Agrawal aveva proposto a Musk di avere un ruolo più attivo oltre a quello di azionista, offrendogli la possibilità di entrare nel consiglio di amministrazione. """ query_and_docs = f"Domanda: {query} Contesto: {doc}" model_input = tokenizer(query_and_docs, truncation=True, padding=True, return_tensors="pt") output = model.generate(input_ids=model_input["input_ids"], attention_mask=model_input["attention_mask"], min_length=10, max_length=256, do_sample=False, early_stopping=True, num_beams=8, temperature=1.0, top_k=None, top_p=None, no_repeat_ngram_size=3, num_return_sequences=1) tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) ``` The model will predict: 'Elon Musk si era messo in contatto con Parag Agrawal, CEO di Twitter da fine novembre 2021 e con il suo predecessore e cofondatore della società, Jack Dorsey, annunciando di avere avviato l’acquisizione di alcune quote dell’azienda e di essere disponibile per discutere soluzioni per migliorarla.'
leonweber/semantic_relations
f75b57098db886096604641b1892c54728c44418
2022-05-14T12:55:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
leonweber
null
leonweber/semantic_relations
25
null
transformers
7,701
Entry not found
danlupu/sentiment-analysis
69eaa529b7ffb74ed958ef53551765e7b8a1168c
2022-05-17T08:55:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
danlupu
null
danlupu/sentiment-analysis
25
null
transformers
7,702
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8657718120805369 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3124 - Accuracy: 0.8667 - F1: 0.8658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
thunninoi/wav2vec2-japanese-hiragana-vtuber
aeda6196fa45f4a55827043a80087b158b62059d
2022-06-02T04:31:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
thunninoi
null
thunninoi/wav2vec2-japanese-hiragana-vtuber
25
null
transformers
7,703
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: checkpoints results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints This model is a fine-tuned version of [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4134 - Wer: 0.1884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 3 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 75 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4299 | 1.0 | 247 | 0.7608 | 0.4853 | | 0.8045 | 2.0 | 494 | 0.6603 | 0.4449 | | 0.6061 | 3.0 | 741 | 0.5527 | 0.4233 | | 0.4372 | 4.0 | 988 | 0.6262 | 0.4029 | | 0.3226 | 5.0 | 1235 | 0.4528 | 0.3462 | | 0.2581 | 6.0 | 1482 | 0.4961 | 0.3226 | | 0.2147 | 7.0 | 1729 | 0.4856 | 0.3075 | | 0.1736 | 8.0 | 1976 | 0.4372 | 0.3063 | | 0.1488 | 9.0 | 2223 | 0.3771 | 0.2761 | | 0.1286 | 10.0 | 2470 | 0.4373 | 0.2590 | | 0.1118 | 11.0 | 2717 | 0.3840 | 0.2594 | | 0.1037 | 12.0 | 2964 | 0.4241 | 0.2590 | | 0.0888 | 13.0 | 3211 | 0.4150 | 0.2410 | | 0.0923 | 14.0 | 3458 | 0.3811 | 0.2524 | | 0.0813 | 15.0 | 3705 | 0.4164 | 0.2459 | | 0.0671 | 16.0 | 3952 | 0.3498 | 0.2288 | | 0.0669 | 17.0 | 4199 | 0.3697 | 0.2247 | | 0.0586 | 18.0 | 4446 | 0.3550 | 0.2251 | | 0.0533 | 19.0 | 4693 | 0.4024 | 0.2231 | | 0.0542 | 20.0 | 4940 | 0.4130 | 0.2121 | | 0.0532 | 21.0 | 5187 | 0.3464 | 0.2231 | | 0.0451 | 22.0 | 5434 | 0.3346 | 0.1966 | | 0.0413 | 23.0 | 5681 | 0.4599 | 0.2088 | | 0.0401 | 24.0 | 5928 | 0.4031 | 0.2162 | | 0.0345 | 25.0 | 6175 | 0.3726 | 0.2084 | | 0.033 | 26.0 | 6422 | 0.4619 | 0.2076 | | 0.0366 | 27.0 | 6669 | 0.4071 | 0.2202 | | 0.0343 | 28.0 | 6916 | 0.4114 | 0.2088 | | 0.0319 | 29.0 | 7163 | 0.3605 | 0.2015 | | 0.0304 | 30.0 | 7410 | 0.4097 | 0.2015 | | 0.0253 | 31.0 | 7657 | 0.4152 | 0.1970 | | 0.0235 | 32.0 | 7904 | 0.3829 | 0.2043 | | 0.0255 | 33.0 | 8151 | 0.3976 | 0.2011 | | 0.0201 | 34.0 | 8398 | 0.4247 | 0.2088 | | 0.022 | 35.0 | 8645 | 0.3831 | 0.1945 | | 0.0175 | 36.0 | 8892 | 0.3838 | 0.2007 | | 0.0201 | 37.0 | 9139 | 0.4377 | 0.1986 | | 0.0176 | 38.0 | 9386 | 0.4546 | 0.2043 | | 0.021 | 39.0 | 9633 | 0.4341 | 0.2039 | | 0.0191 | 40.0 | 9880 | 0.4043 | 0.1937 | | 0.0159 | 41.0 | 10127 | 0.4098 | 0.2064 | | 0.0148 | 42.0 | 10374 | 0.4027 | 0.1905 | | 0.0129 | 43.0 | 10621 | 0.4104 | 0.1933 | | 0.0123 | 44.0 | 10868 | 0.3738 | 0.1925 | | 0.0159 | 45.0 | 11115 | 0.3946 | 0.1933 | | 0.0091 | 46.0 | 11362 | 0.3971 | 0.1880 | | 0.0082 | 47.0 | 11609 | 0.4042 | 0.1986 | | 0.0108 | 48.0 | 11856 | 0.4092 | 0.1884 | | 0.0123 | 49.0 | 12103 | 0.3674 | 0.1941 | | 0.01 | 50.0 | 12350 | 0.3750 | 0.1876 | | 0.0094 | 51.0 | 12597 | 0.3781 | 0.1831 | | 0.008 | 52.0 | 12844 | 0.4051 | 0.1852 | | 0.0079 | 53.0 | 13091 | 0.3981 | 0.1937 | | 0.0068 | 54.0 | 13338 | 0.4425 | 0.1929 | | 0.0061 | 55.0 | 13585 | 0.4183 | 0.1986 | | 0.0074 | 56.0 | 13832 | 0.3502 | 0.1880 | | 0.0071 | 57.0 | 14079 | 0.3908 | 0.1892 | | 0.0079 | 58.0 | 14326 | 0.3908 | 0.1913 | | 0.0042 | 59.0 | 14573 | 0.3801 | 0.1864 | | 0.0049 | 60.0 | 14820 | 0.4065 | 0.1839 | | 0.0063 | 61.0 | 15067 | 0.4170 | 0.1900 | | 0.0049 | 62.0 | 15314 | 0.3903 | 0.1856 | | 0.0031 | 63.0 | 15561 | 0.4042 | 0.1896 | | 0.0054 | 64.0 | 15808 | 0.3890 | 0.1839 | | 0.0061 | 65.0 | 16055 | 0.3831 | 0.1847 | | 0.0052 | 66.0 | 16302 | 0.3898 | 0.1847 | | 0.0032 | 67.0 | 16549 | 0.4230 | 0.1831 | | 0.0017 | 68.0 | 16796 | 0.4241 | 0.1823 | | 0.0022 | 69.0 | 17043 | 0.4360 | 0.1856 | | 0.0026 | 70.0 | 17290 | 0.4233 | 0.1815 | | 0.0028 | 71.0 | 17537 | 0.4225 | 0.1835 | | 0.0018 | 72.0 | 17784 | 0.4163 | 0.1856 | | 0.0034 | 73.0 | 18031 | 0.4120 | 0.1876 | | 0.0019 | 74.0 | 18278 | 0.4129 | 0.1876 | | 0.0023 | 75.0 | 18525 | 0.4134 | 0.1884 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
cardiffnlp/tweet-topic-19-single
1576eb36befe9b52b6709159b51608b68f17e954
2022-06-09T10:33:26.000Z
[ "pytorch", "tf", "roberta", "text-classification", "arxiv:2202.03829", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/tweet-topic-19-single
25
null
transformers
7,704
# tweet-topic-19-single This is a roBERTa-base model trained on ~90m tweets until the end of 2019 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m)), and finetuned for single-label topic classification on a corpus of 6,997 tweets. The original roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. - Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). - Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms). <b>Labels</b>: - 0 -> arts_&_culture; - 1 -> business_&_entrepreneurs; - 2 -> pop_culture; - 3 -> daily_life; - 4 -> sports_&_gaming; - 5 -> science_&_technology ## Full classification example ```python from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax MODEL = f"cardiffnlp/tweet-topic-19-single" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) class_mapping = model.config.id2label text = "Tesla stock is on the rise!" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # TF #model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) #class_mapping = model.config.id2label #text = "Tesla stock is on the rise!" #encoded_input = tokenizer(text, return_tensors='tf') #output = model(**encoded_input) #scores = output[0][0] #scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = class_mapping[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) business_&_entrepreneurs 0.8575 2) science_&_technology 0.0604 3) pop_culture 0.0295 4) daily_life 0.0217 5) sports_&_gaming 0.0154 6) arts_&_culture 0.0154 ```
KoichiYasuoka/deberta-large-japanese-unidic-luw-upos
8be2d2238eaf4c162e9488779db68d349a9521cf
2022-06-26T14:56:51.000Z
[ "pytorch", "deberta-v2", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-unidic-luw-upos
25
null
transformers
7,705
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-large-japanese-unidic-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` [fugashi](https://pypi.org/project/fugashi), [unidic-lite](https://pypi.org/project/unidic-lite) and [pytokenizations](https://pypi.org/project/pytokenizations) are required. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
gauravnuti/agro_ner
bf1c59dc0735cc9ce2558faab6fcd8e378a02ba8
2022-06-20T12:56:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
gauravnuti
null
gauravnuti/agro_ner
25
null
transformers
7,706
Entry not found
Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469
036376acd226d15c3135cdde0c738992fd036066
2022-06-20T16:21:09.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Siddish/autotrain-data-yes-or-no-classifier-on-circa", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Siddish
null
Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469
25
null
transformers
7,707
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Siddish/autotrain-data-yes-or-no-classifier-on-circa co2_eq_emissions: 0.1287915253247826 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1009033469 - CO2 Emissions (in grams): 0.1287915253247826 ## Validation Metrics - Loss: 0.4084862470626831 - Accuracy: 0.8722054859679721 - Macro F1: 0.6340608446004876 - Micro F1: 0.8722054859679722 - Weighted F1: 0.8679846554644491 - Macro Precision: 0.645023001823007 - Micro Precision: 0.8722054859679721 - Weighted Precision: 0.8656545967138464 - Macro Recall: 0.6283763558287574 - Micro Recall: 0.8722054859679721 - Weighted Recall: 0.8722054859679721 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
twieland/MIX3_ja-en_helsinki
a57a9dcca99a2ce6bcdfaae4b855e9ba734c752d
2022-06-28T11:46:58.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/MIX3_ja-en_helsinki
25
null
transformers
7,708
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX3_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX3_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 2.8699 | 0.01 | 5000 | 2.3465 | | 2.6168 | 0.02 | 10000 | 2.2205 | | 2.5083 | 0.03 | 15000 | 2.2382 | | 2.4359 | 0.04 | 20000 | 2.1670 | | 2.3821 | 0.06 | 25000 | 2.1122 | | 2.3358 | 0.07 | 30000 | 2.0902 | | 2.3045 | 0.08 | 35000 | 2.0461 | | 2.2782 | 0.09 | 40000 | 2.0290 | | 2.2481 | 0.1 | 45000 | 1.9910 | | 2.2267 | 0.11 | 50000 | 2.0059 | | 2.2056 | 0.12 | 55000 | 1.9858 | | 2.1903 | 0.13 | 60000 | 1.9725 | | 2.173 | 0.15 | 65000 | 1.9797 | | 2.154 | 0.16 | 70000 | 1.9654 | | 2.1429 | 0.17 | 75000 | 1.9567 | | 2.1304 | 0.18 | 80000 | 1.9348 | | 2.1232 | 0.19 | 85000 | 1.9361 | | 2.116 | 0.2 | 90000 | 1.9277 | | 2.1016 | 0.21 | 95000 | 1.9193 | | 2.0984 | 0.22 | 100000 | 1.9064 | | 2.0797 | 0.24 | 105000 | 1.9177 | | 2.0767 | 0.25 | 110000 | 1.8975 | | 2.0642 | 0.26 | 115000 | 1.8782 | | 2.0595 | 0.27 | 120000 | 1.9012 | | 2.0533 | 0.28 | 125000 | 1.8977 | | 2.044 | 0.29 | 130000 | 1.8984 | | 2.0374 | 0.3 | 135000 | 1.9221 | | 2.0305 | 0.31 | 140000 | 1.9243 | | 2.02 | 0.32 | 145000 | 1.8773 | | 2.0195 | 0.34 | 150000 | 1.8676 | | 2.0151 | 0.35 | 155000 | 1.8637 | | 2.0065 | 0.36 | 160000 | 1.8556 | | 2.0037 | 0.37 | 165000 | 1.8399 | | 1.9963 | 0.38 | 170000 | 1.8452 | | 1.9878 | 0.39 | 175000 | 1.8644 | | 1.9871 | 0.4 | 180000 | 1.8576 | | 1.9779 | 0.41 | 185000 | 1.8509 | | 1.9721 | 0.43 | 190000 | 1.8405 | | 1.9724 | 0.44 | 195000 | 1.8594 | | 1.9685 | 0.45 | 200000 | 1.8540 | | 1.9634 | 0.46 | 205000 | 1.8694 | | 1.9583 | 0.47 | 210000 | 1.8591 | | 1.9557 | 0.48 | 215000 | 1.8539 | | 1.9494 | 0.49 | 220000 | 1.8673 | | 1.9484 | 0.5 | 225000 | 1.8021 | | 1.9395 | 0.52 | 230000 | 1.8309 | | 1.9384 | 0.53 | 235000 | 1.7933 | | 1.937 | 0.54 | 240000 | 1.8199 | | 1.9315 | 0.55 | 245000 | 1.8065 | | 1.9276 | 0.56 | 250000 | 1.7857 | | 1.9248 | 0.57 | 255000 | 1.8207 | | 1.9195 | 0.58 | 260000 | 1.7898 | | 1.9187 | 0.59 | 265000 | 1.8097 | | 1.9138 | 0.6 | 270000 | 1.7909 | | 1.9094 | 0.62 | 275000 | 1.7995 | | 1.9098 | 0.63 | 280000 | 1.8165 | | 1.9038 | 0.64 | 285000 | 1.8132 | | 1.9034 | 0.65 | 290000 | 1.7951 | | 1.899 | 0.66 | 295000 | 1.7880 | | 1.8965 | 0.67 | 300000 | 1.7953 | | 1.8941 | 0.68 | 305000 | 1.7986 | | 1.8919 | 0.69 | 310000 | 1.7964 | | 1.8875 | 0.71 | 315000 | 1.8041 | | 1.884 | 0.72 | 320000 | 1.7764 | | 1.8798 | 0.73 | 325000 | 1.8019 | | 1.8801 | 0.74 | 330000 | 1.7790 | | 1.8809 | 0.75 | 335000 | 1.7849 | | 1.8736 | 0.76 | 340000 | 1.7800 | | 1.8727 | 0.77 | 345000 | 1.7900 | | 1.8722 | 0.78 | 350000 | 1.7727 | | 1.8699 | 0.8 | 355000 | 1.7597 | | 1.8672 | 0.81 | 360000 | 1.7824 | | 1.8638 | 0.82 | 365000 | 1.7674 | | 1.8609 | 0.83 | 370000 | 1.7715 | | 1.8584 | 0.84 | 375000 | 1.7694 | | 1.8568 | 0.85 | 380000 | 1.7776 | | 1.8523 | 0.86 | 385000 | 1.7697 | | 1.8584 | 0.87 | 390000 | 1.7436 | | 1.8474 | 0.88 | 395000 | 1.7644 | | 1.8492 | 0.9 | 400000 | 1.7732 | | 1.8465 | 0.91 | 405000 | 1.7611 | | 1.846 | 0.92 | 410000 | 1.7717 | | 1.8431 | 0.93 | 415000 | 1.7514 | | 1.8402 | 0.94 | 420000 | 1.7353 | | 1.8398 | 0.95 | 425000 | 1.7720 | | 1.8314 | 0.96 | 430000 | 1.7728 | | 1.8322 | 0.97 | 435000 | 1.7491 | | 1.8284 | 0.99 | 440000 | 1.7561 | | 1.8301 | 1.0 | 445000 | 1.7499 | | 1.8182 | 1.01 | 450000 | 1.7514 | | 1.8111 | 1.02 | 455000 | 1.7596 | | 1.8116 | 1.03 | 460000 | 1.7455 | | 1.8098 | 1.04 | 465000 | 1.7495 | | 1.809 | 1.05 | 470000 | 1.7446 | | 1.8088 | 1.06 | 475000 | 1.7290 | | 1.8127 | 1.08 | 480000 | 1.7453 | | 1.8051 | 1.09 | 485000 | 1.7495 | | 1.8026 | 1.1 | 490000 | 1.7453 | | 1.8028 | 1.11 | 495000 | 1.7615 | | 1.8046 | 1.12 | 500000 | 1.7491 | | 1.8052 | 1.13 | 505000 | 1.7280 | | 1.7997 | 1.14 | 510000 | 1.7482 | | 1.7976 | 1.15 | 515000 | 1.7368 | | 1.7981 | 1.16 | 520000 | 1.7354 | | 1.7949 | 1.18 | 525000 | 1.7076 | | 1.7943 | 1.19 | 530000 | 1.7020 | | 1.7911 | 1.2 | 535000 | 1.7121 | | 1.7909 | 1.21 | 540000 | 1.7170 | | 1.7926 | 1.22 | 545000 | 1.7310 | | 1.7856 | 1.23 | 550000 | 1.7218 | | 1.7875 | 1.24 | 555000 | 1.7362 | | 1.7801 | 1.25 | 560000 | 1.7484 | | 1.7854 | 1.27 | 565000 | 1.7466 | | 1.7799 | 1.28 | 570000 | 1.7248 | | 1.7823 | 1.29 | 575000 | 1.7355 | | 1.7765 | 1.3 | 580000 | 1.7188 | | 1.7779 | 1.31 | 585000 | 1.6993 | | 1.7751 | 1.32 | 590000 | 1.7154 | | 1.7762 | 1.33 | 595000 | 1.7348 | | 1.7725 | 1.34 | 600000 | 1.7272 | | 1.7701 | 1.36 | 605000 | 1.7157 | | 1.7644 | 1.37 | 610000 | 1.7161 | | 1.7707 | 1.38 | 615000 | 1.6961 | | 1.764 | 1.39 | 620000 | 1.6930 | | 1.7639 | 1.4 | 625000 | 1.6927 | | 1.7654 | 1.41 | 630000 | 1.6989 | | 1.7623 | 1.42 | 635000 | 1.6892 | | 1.7598 | 1.43 | 640000 | 1.6911 | | 1.7575 | 1.44 | 645000 | 1.7199 | | 1.7574 | 1.46 | 650000 | 1.6992 | | 1.7526 | 1.47 | 655000 | 1.6981 | | 1.7556 | 1.48 | 660000 | 1.6860 | | 1.7558 | 1.49 | 665000 | 1.7099 | | 1.7539 | 1.5 | 670000 | 1.6950 | | 1.7454 | 1.51 | 675000 | 1.6999 | | 1.748 | 1.52 | 680000 | 1.6871 | | 1.7476 | 1.53 | 685000 | 1.6884 | | 1.7493 | 1.55 | 690000 | 1.6984 | | 1.745 | 1.56 | 695000 | 1.6999 | | 1.7397 | 1.57 | 700000 | 1.7036 | | 1.7429 | 1.58 | 705000 | 1.7223 | | 1.7367 | 1.59 | 710000 | 1.7111 | | 1.7403 | 1.6 | 715000 | 1.6691 | | 1.7361 | 1.61 | 720000 | 1.6693 | | 1.737 | 1.62 | 725000 | 1.6884 | | 1.7347 | 1.63 | 730000 | 1.6641 | | 1.7323 | 1.65 | 735000 | 1.6628 | | 1.7329 | 1.66 | 740000 | 1.6759 | | 1.7292 | 1.67 | 745000 | 1.6654 | | 1.7275 | 1.68 | 750000 | 1.6738 | | 1.7266 | 1.69 | 755000 | 1.6792 | | 1.7259 | 1.7 | 760000 | 1.6752 | | 1.7231 | 1.71 | 765000 | 1.6641 | | 1.7238 | 1.72 | 770000 | 1.6676 | | 1.7223 | 1.74 | 775000 | 1.6563 | | 1.722 | 1.75 | 780000 | 1.6541 | | 1.7195 | 1.76 | 785000 | 1.6560 | | 1.7171 | 1.77 | 790000 | 1.6786 | | 1.7187 | 1.78 | 795000 | 1.6434 | | 1.7186 | 1.79 | 800000 | 1.6538 | | 1.7115 | 1.8 | 805000 | 1.6535 | | 1.7119 | 1.81 | 810000 | 1.6738 | | 1.7106 | 1.83 | 815000 | 1.6597 | | 1.7088 | 1.84 | 820000 | 1.6486 | | 1.7079 | 1.85 | 825000 | 1.6576 | | 1.7062 | 1.86 | 830000 | 1.6676 | | 1.7084 | 1.87 | 835000 | 1.6449 | | 1.7059 | 1.88 | 840000 | 1.6515 | | 1.7057 | 1.89 | 845000 | 1.6609 | | 1.7021 | 1.9 | 850000 | 1.6482 | | 1.7005 | 1.91 | 855000 | 1.6653 | | 1.6988 | 1.93 | 860000 | 1.6801 | | 1.6964 | 1.94 | 865000 | 1.6830 | | 1.6954 | 1.95 | 870000 | 1.6589 | | 1.693 | 1.96 | 875000 | 1.6553 | | 1.689 | 1.97 | 880000 | 1.6554 | | 1.69 | 1.98 | 885000 | 1.6424 | | 1.6893 | 1.99 | 890000 | 1.6628 | | 1.6772 | 2.0 | 895000 | 1.6709 | | 1.6703 | 2.02 | 900000 | 1.6627 | | 1.6726 | 2.03 | 905000 | 1.6612 | | 1.669 | 2.04 | 910000 | 1.6595 | | 1.6696 | 2.05 | 915000 | 1.6427 | | 1.6672 | 2.06 | 920000 | 1.6497 | | 1.669 | 2.07 | 925000 | 1.6288 | | 1.6675 | 2.08 | 930000 | 1.6443 | | 1.6685 | 2.09 | 935000 | 1.6316 | | 1.6671 | 2.11 | 940000 | 1.6451 | | 1.6673 | 2.12 | 945000 | 1.6313 | | 1.6649 | 2.13 | 950000 | 1.6363 | | 1.6655 | 2.14 | 955000 | 1.6440 | | 1.6637 | 2.15 | 960000 | 1.6238 | | 1.6632 | 2.16 | 965000 | 1.6226 | | 1.6599 | 2.17 | 970000 | 1.6171 | | 1.6602 | 2.18 | 975000 | 1.6466 | | 1.658 | 2.19 | 980000 | 1.6341 | | 1.6571 | 2.21 | 985000 | 1.6500 | | 1.6572 | 2.22 | 990000 | 1.6225 | | 1.6572 | 2.23 | 995000 | 1.6296 | | 1.6552 | 2.24 | 1000000 | 1.6437 | | 1.6548 | 2.25 | 1005000 | 1.6162 | | 1.6552 | 2.26 | 1010000 | 1.6223 | | 1.6544 | 2.27 | 1015000 | 1.6355 | | 1.6464 | 2.28 | 1020000 | 1.6250 | | 1.652 | 2.3 | 1025000 | 1.6217 | | 1.6481 | 2.31 | 1030000 | 1.6079 | | 1.6466 | 2.32 | 1035000 | 1.6110 | | 1.6462 | 2.33 | 1040000 | 1.6210 | | 1.6448 | 2.34 | 1045000 | 1.5993 | | 1.6461 | 2.35 | 1050000 | 1.6096 | | 1.6396 | 2.36 | 1055000 | 1.6137 | | 1.644 | 2.37 | 1060000 | 1.6189 | | 1.6396 | 2.39 | 1065000 | 1.6211 | | 1.639 | 2.4 | 1070000 | 1.6149 | | 1.6358 | 2.41 | 1075000 | 1.6144 | | 1.6356 | 2.42 | 1080000 | 1.6018 | | 1.6364 | 2.43 | 1085000 | 1.5999 | | 1.6352 | 2.44 | 1090000 | 1.6095 | | 1.634 | 2.45 | 1095000 | 1.6114 | | 1.6279 | 2.46 | 1100000 | 1.6156 | | 1.6272 | 2.47 | 1105000 | 1.6124 | | 1.6319 | 2.49 | 1110000 | 1.6046 | | 1.6276 | 2.5 | 1115000 | 1.6152 | | 1.6285 | 2.51 | 1120000 | 1.6129 | | 1.6242 | 2.52 | 1125000 | 1.5984 | | 1.6261 | 2.53 | 1130000 | 1.6116 | | 1.623 | 2.54 | 1135000 | 1.6061 | | 1.6203 | 2.55 | 1140000 | 1.6182 | | 1.62 | 2.56 | 1145000 | 1.5887 | | 1.6177 | 2.58 | 1150000 | 1.5731 | | 1.6172 | 2.59 | 1155000 | 1.5990 | | 1.6179 | 2.6 | 1160000 | 1.5965 | | 1.6206 | 2.61 | 1165000 | 1.6000 | | 1.6156 | 2.62 | 1170000 | 1.5873 | | 1.6124 | 2.63 | 1175000 | 1.5899 | | 1.613 | 2.64 | 1180000 | 1.5910 | | 1.6134 | 2.65 | 1185000 | 1.6017 | | 1.609 | 2.67 | 1190000 | 1.5822 | | 1.6084 | 2.68 | 1195000 | 1.5906 | | 1.6101 | 2.69 | 1200000 | 1.6218 | | 1.6077 | 2.7 | 1205000 | 1.6149 | | 1.6057 | 2.71 | 1210000 | 1.5994 | | 1.6018 | 2.72 | 1215000 | 1.5839 | | 1.6049 | 2.73 | 1220000 | 1.5864 | | 1.6012 | 2.74 | 1225000 | 1.5994 | | 1.6013 | 2.75 | 1230000 | 1.5821 | | 1.5957 | 2.77 | 1235000 | 1.5964 | | 1.5971 | 2.78 | 1240000 | 1.5897 | | 1.5967 | 2.79 | 1245000 | 1.5774 | | 1.5927 | 2.8 | 1250000 | 1.5861 | | 1.5954 | 2.81 | 1255000 | 1.5789 | | 1.5937 | 2.82 | 1260000 | 1.5739 | | 1.5895 | 2.83 | 1265000 | 1.5701 | | 1.5912 | 2.84 | 1270000 | 1.5622 | | 1.5922 | 2.86 | 1275000 | 1.5730 | | 1.5883 | 2.87 | 1280000 | 1.5775 | | 1.5864 | 2.88 | 1285000 | 1.5726 | | 1.5837 | 2.89 | 1290000 | 1.5679 | | 1.5824 | 2.9 | 1295000 | 1.5683 | | 1.5817 | 2.91 | 1300000 | 1.5508 | | 1.5778 | 2.92 | 1305000 | 1.5620 | | 1.5822 | 2.93 | 1310000 | 1.5556 | | 1.5783 | 2.95 | 1315000 | 1.5693 | | 1.5751 | 2.96 | 1320000 | 1.5781 | | 1.5716 | 2.97 | 1325000 | 1.5655 | | 1.5765 | 2.98 | 1330000 | 1.5528 | | 1.5728 | 2.99 | 1335000 | 1.5748 | | 1.5672 | 3.0 | 1340000 | 1.5597 | | 1.5467 | 3.01 | 1345000 | 1.5461 | | 1.547 | 3.02 | 1350000 | 1.5516 | | 1.5462 | 3.03 | 1355000 | 1.5519 | | 1.5464 | 3.05 | 1360000 | 1.5593 | | 1.5457 | 3.06 | 1365000 | 1.5576 | | 1.5441 | 3.07 | 1370000 | 1.5653 | | 1.544 | 3.08 | 1375000 | 1.5662 | | 1.5467 | 3.09 | 1380000 | 1.5611 | | 1.5439 | 3.1 | 1385000 | 1.5635 | | 1.5449 | 3.11 | 1390000 | 1.5467 | | 1.5417 | 3.12 | 1395000 | 1.5495 | | 1.5428 | 3.14 | 1400000 | 1.5552 | | 1.5432 | 3.15 | 1405000 | 1.5347 | | 1.5401 | 3.16 | 1410000 | 1.5394 | | 1.5391 | 3.17 | 1415000 | 1.5497 | | 1.539 | 3.18 | 1420000 | 1.5431 | | 1.5368 | 3.19 | 1425000 | 1.5479 | | 1.5365 | 3.2 | 1430000 | 1.5513 | | 1.5327 | 3.21 | 1435000 | 1.5467 | | 1.5337 | 3.23 | 1440000 | 1.5477 | | 1.5317 | 3.24 | 1445000 | 1.5398 | | 1.5315 | 3.25 | 1450000 | 1.5481 | | 1.532 | 3.26 | 1455000 | 1.5385 | | 1.5312 | 3.27 | 1460000 | 1.5520 | | 1.5328 | 3.28 | 1465000 | 1.5423 | | 1.5288 | 3.29 | 1470000 | 1.5489 | | 1.5271 | 3.3 | 1475000 | 1.5395 | | 1.5273 | 3.31 | 1480000 | 1.5335 | | 1.5235 | 3.33 | 1485000 | 1.5381 | | 1.5224 | 3.34 | 1490000 | 1.5289 | | 1.5206 | 3.35 | 1495000 | 1.5331 | | 1.5189 | 3.36 | 1500000 | 1.5343 | | 1.5152 | 3.37 | 1505000 | 1.5246 | | 1.5225 | 3.38 | 1510000 | 1.5280 | | 1.5168 | 3.39 | 1515000 | 1.5315 | | 1.5161 | 3.4 | 1520000 | 1.5284 | | 1.5111 | 3.42 | 1525000 | 1.5278 | | 1.5154 | 3.43 | 1530000 | 1.5148 | | 1.515 | 3.44 | 1535000 | 1.5286 | | 1.5117 | 3.45 | 1540000 | 1.5291 | | 1.5099 | 3.46 | 1545000 | 1.5320 | | 1.5097 | 3.47 | 1550000 | 1.5323 | | 1.5075 | 3.48 | 1555000 | 1.5157 | | 1.5059 | 3.49 | 1560000 | 1.5214 | | 1.5011 | 3.51 | 1565000 | 1.5199 | | 1.5074 | 3.52 | 1570000 | 1.5114 | | 1.5033 | 3.53 | 1575000 | 1.5145 | | 1.5009 | 3.54 | 1580000 | 1.5184 | | 1.4994 | 3.55 | 1585000 | 1.5125 | | 1.5041 | 3.56 | 1590000 | 1.5048 | | 1.5002 | 3.57 | 1595000 | 1.5156 | | 1.4967 | 3.58 | 1600000 | 1.5176 | | 1.4923 | 3.59 | 1605000 | 1.5128 | | 1.495 | 3.61 | 1610000 | 1.5188 | | 1.4929 | 3.62 | 1615000 | 1.5149 | | 1.4921 | 3.63 | 1620000 | 1.5097 | | 1.4916 | 3.64 | 1625000 | 1.5161 | | 1.4852 | 3.65 | 1630000 | 1.5134 | | 1.4881 | 3.66 | 1635000 | 1.5101 | | 1.4873 | 3.67 | 1640000 | 1.5027 | | 1.4911 | 3.68 | 1645000 | 1.4968 | | 1.488 | 3.7 | 1650000 | 1.4962 | | 1.4842 | 3.71 | 1655000 | 1.5030 | | 1.4829 | 3.72 | 1660000 | 1.5041 | | 1.4816 | 3.73 | 1665000 | 1.5076 | | 1.479 | 3.74 | 1670000 | 1.5029 | | 1.4768 | 3.75 | 1675000 | 1.5053 | | 1.4769 | 3.76 | 1680000 | 1.5026 | | 1.4781 | 3.77 | 1685000 | 1.5016 | | 1.4781 | 3.79 | 1690000 | 1.5034 | | 1.4777 | 3.8 | 1695000 | 1.4976 | | 1.4736 | 3.81 | 1700000 | 1.5002 | | 1.4715 | 3.82 | 1705000 | 1.4995 | | 1.4716 | 3.83 | 1710000 | 1.4996 | | 1.4648 | 3.84 | 1715000 | 1.4952 | | 1.4711 | 3.85 | 1720000 | 1.4934 | | 1.4682 | 3.86 | 1725000 | 1.4965 | | 1.4659 | 3.87 | 1730000 | 1.4932 | | 1.4689 | 3.89 | 1735000 | 1.4920 | | 1.4656 | 3.9 | 1740000 | 1.4910 | | 1.4666 | 3.91 | 1745000 | 1.4893 | | 1.4611 | 3.92 | 1750000 | 1.4888 | | 1.4623 | 3.93 | 1755000 | 1.4898 | | 1.4637 | 3.94 | 1760000 | 1.4909 | | 1.4585 | 3.95 | 1765000 | 1.4858 | | 1.4586 | 3.96 | 1770000 | 1.4847 | | 1.4579 | 3.98 | 1775000 | 1.4841 | | 1.458 | 3.99 | 1780000 | 1.4840 | | 1.4572 | 4.0 | 1785000 | 1.4832 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
JamesStratford/Pidrow-bot-DialoGPT-Small
a15a37a6c2e665ba4d71a8489cc67350f7ed58b2
2022-06-22T10:47:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
JamesStratford
null
JamesStratford/Pidrow-bot-DialoGPT-Small
25
null
transformers
7,709
--- tags: - conversational --- # Pidrow bot
dayyass/qaner-conll-bert-base-uncased
88a17463e8140fab4b14a6f6dba57d6599e293ee
2022-06-22T14:06:56.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
dayyass
null
dayyass/qaner-conll-bert-base-uncased
25
1
transformers
7,710
Entry not found
Aalaa/opt-125m-custom-data
2a7dd73190663f91a6754a49c5ebe37c8a8290e3
2022-06-29T09:32:01.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-generation
false
Aalaa
null
Aalaa/opt-125m-custom-data
25
null
transformers
7,711
--- license: other tags: - generated_from_trainer model-index: - name: opt-125m-custom-data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-custom-data This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 480 | 2.9889 | | 3.1368 | 2.0 | 960 | 2.9625 | | 2.8629 | 3.0 | 1440 | 2.9594 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
projecte-aina/roberta-base-ca-v2-cased-ner
7ace853c8d4ba530bd52e104296c3768930e22aa
2022-07-25T06:52:13.000Z
[ "pytorch", "roberta", "token-classification", "ca", "dataset:projecte-aina/ancora-ca-ner", "arxiv:1907.11692", "transformers", "catalan", "named entity recognition", "ner", "CaText", "Catalan Textual Corpus", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
projecte-aina
null
projecte-aina/roberta-base-ca-v2-cased-ner
25
null
transformers
7,712
--- language: - ca license: apache-2.0 tags: - "catalan" - "named entity recognition" - "ner" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/ancora-ca-ner" metrics: - f1 model-index: - name: roberta-base-ca-v2-cased-ner results: - task: type: token-classification dataset: type: projecte-aina/ancora-ca-ner name: Ancora-ca-NER metrics: - name: F1 type: f1 value: 0.8945 widget: - text: "Em dic Lluïsa i visc a Santa Maria del Camí." - text: "L'Aina, la Berta i la Norma són molt amigues." - text: "El Martí llegeix el Cavall Fort." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Named Entity Recognition. ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-uses-and-limitations) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Funding](#funding) - [Contributions](#contributions) ## Model description The **roberta-base-ca-v2-cased-ner** is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). ## Intended Uses and Limitations **roberta-base-ca-v2-cased-ner** model can be used to recognize Named Entities in the provided text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to Use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("ner", model="projecte-aina/roberta-base-ca-v2-cased-ner") example = "Em dic Lluïsa i visc a Santa Maria del Camí." ner_results = nlp(example) pprint(ner_results) ``` ## Training ### Training data We used the NER dataset in Catalan called [Ancora-ca-NER](https://huggingface.co/datasets/projecte-aina/ancora-ca-ner) for training and evaluation. ### Training Procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and Metrics This model was finetuned maximizing F1 score. ### Evaluation results We evaluated the _roberta-base-ca-v2-cased-ner_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines: | Model | Ancora-ca-ner (F1)| | ------------|:-------------| | roberta-base-ca-v2-cased-ner | **89.45** | | roberta-base-ca-cased-ner | 88.94 | | mBERT | 87.36 | | XLM-RoBERTa | 88.07 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
projecte-aina/roberta-base-ca-v2-cased-sts
9a9b37ef377ab5947d5c4fd890dfabba0302cec1
2022-07-25T06:51:14.000Z
[ "pytorch", "roberta", "text-classification", "ca", "dataset:projecte-aina/sts-ca", "arxiv:1907.11692", "transformers", "catalan", "semantic textual similarity", "sts-ca", "CaText", "Catalan Textual Corpus", "license:apache-2.0", "model-index" ]
text-classification
false
projecte-aina
null
projecte-aina/roberta-base-ca-v2-cased-sts
25
null
transformers
7,713
--- pipeline_tag: text-classification language: - ca license: apache-2.0 tags: - "catalan" - "semantic textual similarity" - "sts-ca" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/sts-ca" metrics: - "combined_score" model-index: - name: roberta-base-ca-v2-cased-sts results: - task: type: text-classification dataset: type: projecte-aina/sts-ca name: STS-ca metrics: - name: Combined score type: combined_score value: 0.7907 --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Semantic Textual Similarity. ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-uses-and-limitations) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Funding](#funding) - [Contributions](#contributions) ## Model description The **roberta-base-ca-v2-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). ## Intended Uses and Limitations **roberta-base-ca-v2-cased-sts** model can be used to assess the similarity between two snippets of text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code: ```python from transformers import pipeline, AutoTokenizer from scipy.special import logit model = 'projecte-aina/roberta-base-ca-v2-cased-sts' tokenizer = AutoTokenizer.from_pretrained(model) pipe = pipeline('text-classification', model=model, tokenizer=tokenizer) def prepare(sentence_pairs): sentence_pairs_prep = [] for s1, s2 in sentence_pairs: sentence_pairs_prep.append(f"{tokenizer.cls_token} {s1}{tokenizer.sep_token}{tokenizer.sep_token} {s2}{tokenizer.sep_token}") return sentence_pairs_prep sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir volant."), ("M'agrades.", "T'estimo."), ("M'agrada el sol i la calor", "A la Garrotxa plou molt.")] predictions = pipe(prepare(sentence_pairs), add_special_tokens=False) # convert back to scores to the original 0 and 5 interval for prediction in predictions: prediction['score'] = logit(prediction['score']) print(predictions) ``` Expected output: ``` [{'label': 'SIMILARITY', 'score': 2.118301674983813}, {'label': 'SIMILARITY', 'score': 2.1799755855125853}, {'label': 'SIMILARITY', 'score': 0.9511617858568939}] ``` <sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._ ## Training ### Training data We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation. ### Training Procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set, and then evaluated it on the test set. ## Evaluation ### Variable and Metrics This model was finetuned maximizing the average score between the Pearson and Spearman correlations. ## Evaluation results We evaluated the _roberta-base-ca-v2-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines: | Model | STS-ca (Combined score) | | ------------|:-------------| | roberta-base-ca-v2-cased-sts | 79.07 | | roberta-base-ca-cased-sts | **80.19** | | mBERT | 74.26 | | XLM-RoBERTa | 61.61 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Contributions [N/A]
amanbawa96/bert-base-uncase-contracts
53d4cc39541b9b3da626199718bd8c52a45d4f5d
2022-06-30T23:05:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
amanbawa96
null
amanbawa96/bert-base-uncase-contracts
25
null
transformers
7,714
Bert Base Uncased Contract model trained on CUAD Dataset The Dataset can be downloaded from [Here](https://www.atticusprojectai.org/cuad).
arize-ai/XLM-RoBERTa-xtreme-en
cf0f0e64d4c85fba8c66f2f1702efef628d29e7b
2022-07-01T01:48:00.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme_en", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
arize-ai
null
arize-ai/XLM-RoBERTa-xtreme-en
25
null
transformers
7,715
--- license: mit tags: - generated_from_trainer datasets: - xtreme_en metrics: - accuracy - f1 widget: - text: "My name is Julia, I study at Imperial College, in London" example_title: "Example 1" - text: "My name is Sarah and I live in Paris" example_title: "Example 2" - text: "My name is Clara and I live in Berkeley, California" example_title: "Example 3" model-index: - name: XLM-RoBERTa-xtreme-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme_en type: xtreme_en args: default metrics: - name: Accuracy type: accuracy value: 0.9109484079686702 - name: F1 type: f1 value: 0.7544312444026322 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLM-RoBERTa-xtreme-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme_en dataset. It achieves the following results on the evaluation set: - Loss: 0.2838 - Accuracy: 0.9109 - F1: 0.7544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6502 | 1.0 | 235 | 0.3328 | 0.8995 | 0.7251 | | 0.3239 | 2.0 | 470 | 0.2897 | 0.9101 | 0.7473 | | 0.2644 | 3.0 | 705 | 0.2838 | 0.9109 | 0.7544 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False__roberta-base
c8b743327d731a80dbd7677951e01e4beb58a643
2022-07-01T10:20:47.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False__roberta-base
25
null
transformers
7,716
Entry not found
djagatiya/ner-albert-base-v2-ontonotesv5-englishv4
654ec67cf670a60afef166fcbcc9e91157f813d1
2022-07-03T11:28:08.000Z
[ "pytorch", "albert", "token-classification", "dataset:djagatiya/ner-ontonotes-v5-eng-v4", "transformers", "autotrain_compatible" ]
token-classification
false
djagatiya
null
djagatiya/ner-albert-base-v2-ontonotesv5-englishv4
25
null
transformers
7,717
--- tags: - token-classification datasets: - djagatiya/ner-ontonotes-v5-eng-v4 widget: - text: "On September 1st George won 1 dollar while watching Game of Thrones." --- # (NER) ALBERT-base-v2 : conll2012_ontonotesv5-english-v4 This `ALBERT-base-v2` NER model was finetuned on `conll2012_ontonotesv5` version `english-v4` dataset. <br> Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information. ## Evaluation - Precision: 86.20 - Recall: 86.18 - F1-Score: 86.19 > check out this [eval.log](eval.log) file for evaluation metrics and classification report. ``` precision recall f1-score support CARDINAL 0.84 0.83 0.83 935 DATE 0.84 0.87 0.86 1602 EVENT 0.61 0.52 0.56 63 FAC 0.54 0.59 0.56 135 GPE 0.95 0.94 0.95 2240 LANGUAGE 0.85 0.50 0.63 22 LAW 0.56 0.57 0.57 40 LOC 0.61 0.65 0.63 179 MONEY 0.85 0.88 0.86 314 NORP 0.88 0.92 0.90 841 ORDINAL 0.78 0.86 0.81 195 ORG 0.84 0.81 0.82 1795 PERCENT 0.88 0.87 0.88 349 PERSON 0.94 0.92 0.93 1988 PRODUCT 0.57 0.53 0.55 76 QUANTITY 0.77 0.81 0.79 105 TIME 0.59 0.66 0.62 212 WORK_OF_ART 0.60 0.52 0.56 166 micro avg 0.86 0.86 0.86 11257 macro avg 0.75 0.74 0.74 11257 weighted avg 0.86 0.86 0.86 11257 ```
ccarvajal/beto-emoji
c8ed44514746fbb40d902faf20167173f0be2f47
2022-07-08T03:35:39.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers" ]
text-classification
false
ccarvajal
null
ccarvajal/beto-emoji
25
null
transformers
7,718
--- language: - es --- # beto-emoji Fine-tunning [BETO](https://github.com/dccuchile/beto) for emoji-prediction. ## Repository Details with training and a use example are shown in [github.com/camilocarvajalreyes/beto-emoji](https://github.com/camilocarvajalreyes/beto-emoji). A deeper analysis of this and other models on the full dataset can be found in [github.com/furrutiav/data-mining-2022](https://github.com/furrutiav/data-mining-2022). We have used this model for a project for [CC5205 Data Mining](https://github.com/dccuchile/CC5205) course. ## Example Inspired by model card from [cardiffnlp/twitter-roberta-base-emoji](https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji). ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"ccarvajal/beto-emoji" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/camilocarvajalreyes/beto-emoji/main/es_mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "que viva españa" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output ```python 1) 🇪🇸 0.2508 2) 😍 0.238 3) 👌 0.2225 4) 😂 0.0806 5) ❤ 0.0489 6) 😁 0.0415 7) 😜 0.0232 8) 😎 0.0229 9) 😊 0.0156 10) 😉 0.0119 11) 💜 0.0079 12) 💕 0.0077 13) 💪 0.0066 14) 💘 0.0054 15) 💙 0.0052 16) 💞 0.005 17) 😘 0.0034 18) 🎶 0.0022 19) ✨ 0.0007 ``` ## Results in test set precision recall f1-score support ❤ 0.39 0.43 0.41 2141 😍 0.29 0.39 0.33 1408 😂 0.51 0.51 0.51 1499 💕 0.09 0.05 0.06 352 😊 0.12 0.23 0.16 514 😘 0.24 0.23 0.24 397 💪 0.37 0.43 0.40 307 😉 0.15 0.17 0.16 453 👌 0.09 0.16 0.11 180 🇪🇸 0.46 0.46 0.46 424 😎 0.12 0.11 0.11 339 💙 0.36 0.02 0.04 413 💜 0.00 0.00 0.00 235 😜 0.04 0.02 0.02 274 💞 0.00 0.00 0.00 93 ✨ 0.26 0.12 0.17 416 🎶 0.25 0.24 0.24 212 💘 0.00 0.00 0.00 134 😁 0.05 0.03 0.04 209 accuracy 0.30 10000 macro_avg 0.20 0.19 0.18 10000 weighted avg 0.29 0.30 0.29 10000 [Another example](https://github.com/camilocarvajalreyes/beto-emoji/blob/main/attention_visualisation.ipynb) with a visualisation of the attention modules within this model is carried out using [bertviz](https://github.com/jessevig/bertviz). ## Reproducibility The Multilingual Emoji Prediction dataset (Barbieri et al. 2010) consists of tweets in English and Spanish that originally had a single emoji, which is later used as a tag. Test and trial sets can be downloaded [here](https://github.com/fvancesco/Semeval2018-Task2-Emoji-Detection/blob/master/dataset/Semeval2018-Task2-EmojiPrediction.zip?raw=true), but the train set needs to be downloaded using a [twitter crawler](https://github.com/fra82/twitter-crawler/blob/master/semeval2018task2TwitterCrawlerHOWTO.md). The goal is to predict that single emoji that was originally in the tweet using the text in it (out of a fixed set of possible emojis, 20 for English and 19 for Spanish). Training parameters: ```python training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01 ) ```
ryo0634/luke-base-full-20201201
81132447ab2e71523f7d3424f5ca4a081de99a64
2022-07-03T16:09:24.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/luke-base-full-20201201
25
null
transformers
7,719
Entry not found
ClassCat/roberta-base-french
5bca559ed63b8ee656a4b2d01c18b5c730997bb7
2022-07-08T07:34:58.000Z
[ "pytorch", "roberta", "fill-mask", "fr", "dataset:wikipedia", "dataset:cc100", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ClassCat
null
ClassCat/roberta-base-french
25
1
transformers
7,720
--- language: fr license: cc-by-sa-4.0 datasets: - wikipedia - cc100 widget: - text: "Je vais à la <mask>." - text: "J'aime le <mask>." - text: "J'ai ouvert la <mask>." - text: "Je m'appelle <mask>." - text: "J'ai beaucoup d'<mask>." --- ## RoBERTa French base model (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses RoBERTa base setttings except vocabulary size. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * [wiki40b/fr](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bfr) (French Wikipedia) * Subset of [CC-100/fr](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-base-french') unmasker("Je vais à la <mask>.") ```
KevinChoi/dpr-context_encoder-klue-roberta-base
236cd1829873679c9f9ac88cfcc79ac16b2c7f45
2022-07-06T03:55:31.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KevinChoi
null
KevinChoi/dpr-context_encoder-klue-roberta-base
25
null
transformers
7,721
Entry not found
mikesong724/deberta-wiki-2010
2e299beaf61b91e08c79e078380a2395d5526675
2022-07-07T03:29:19.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mikesong724
null
mikesong724/deberta-wiki-2010
25
null
transformers
7,722
DeBERTa trained from scratch continued training from https://huggingface.co/mikesong724/deberta-wiki-2006 Source data: https://dumps.wikimedia.org/archive/2010/ Tools used: https://github.com/mikesong724/Point-in-Time-Language-Model 2010 wiki archive 6.1 GB trained 18 epochs = 108GB + 2006 (65GB) GLUE benchmark cola (3e): matthews corr: 0.3640 sst2 (3e): acc: 0.9106 mrpc (5e): F1: 0.8505, acc: 0.7794 stsb (3e): pearson: 0.8339, spearman: 0.8312 qqp (3e): acc: 0.8965, F1: 0.8604 mnli (3e): acc_mm: 0.8023 qnli (3e): acc: 0.8889 rte (3e): acc: 0.5271 wnli (5e): acc: 0.3380
bhadresh-savani/bertweet-base-finetuned-emotion
1662c8787098816246419044f8a2b12a1735aa83
2022-07-14T07:00:52.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
bhadresh-savani
null
bhadresh-savani/bertweet-base-finetuned-emotion
25
null
transformers
7,723
--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bertweet-base-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.929 - name: F1 type: f1 value: 0.9295613935787139 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.925 verified: true - name: Precision Macro type: precision value: 0.8722017563353339 verified: true - name: Precision Micro type: precision value: 0.925 verified: true - name: Precision Weighted type: precision value: 0.9283646705517916 verified: true - name: Recall Macro type: recall value: 0.8982480793145559 verified: true - name: Recall Micro type: recall value: 0.925 verified: true - name: Recall Weighted type: recall value: 0.925 verified: true - name: F1 Macro type: f1 value: 0.883488774573809 verified: true - name: F1 Micro type: f1 value: 0.925 verified: true - name: F1 Weighted type: f1 value: 0.9259820821054494 verified: true - name: loss type: loss value: 0.18158096075057983 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-emotion This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1737 - Accuracy: 0.929 - F1: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9469 | 1.0 | 250 | 0.3643 | 0.895 | 0.8921 | | 0.2807 | 2.0 | 500 | 0.2173 | 0.9245 | 0.9252 | | 0.1749 | 3.0 | 750 | 0.1859 | 0.926 | 0.9266 | | 0.1355 | 4.0 | 1000 | 0.1737 | 0.929 | 0.9296 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
shaneweisz/DialoGPT-finetuned-gab-multiCONAN
174212e1a82ecbc11a8fc50230ce1b25c6226cff
2022-07-12T14:36:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
shaneweisz
null
shaneweisz/DialoGPT-finetuned-gab-multiCONAN
25
null
transformers
7,724
Entry not found
Hamzaaa/xlsr-wav2vec-speech-emotion-recognition-finetuned-Savee
a3356a0307bbe29e90e13d61d979c121eb83ab48
2022-07-14T08:52:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/xlsr-wav2vec-speech-emotion-recognition-finetuned-Savee
25
null
transformers
7,725
Entry not found
Team-PIXEL/pixel-base-finetuned-squadv1
f517f215cbbc8849db9c4bc8cc4966855468eb71
2022-07-14T13:05:00.000Z
[ "pytorch", "pixel", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-squadv1
25
null
transformers
7,726
--- tags: - generated_from_trainer datasets: - squad model-index: - name: pixel-base-finetuned-squadv1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-squad-v1 This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
haisona3/longformer-base-4096-finetuned-1-epoch-512
6151c9818e482287ad47e7993183f13624ba8ead
2022-07-18T01:01:48.000Z
[ "pytorch", "tensorboard", "longformer", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
haisona3
null
haisona3/longformer-base-4096-finetuned-1-epoch-512
25
null
transformers
7,727
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: longformer-base-4096-finetuned-squad2-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-base-4096-finetuned-squad2-finetuned-squad2 This model is a fine-tuned version of [haisona3/longformer-base-4096-finetuned-squad2](https://huggingface.co/haisona3/longformer-base-4096-finetuned-squad2) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pysentimiento/robertuito-pos
d75b5813e91e8c19c07d64f08b69d60099e95328
2022-07-21T11:22:45.000Z
[ "pytorch", "roberta", "token-classification", "es", "arxiv:2106.09462", "arxiv:2111.09453", "transformers", "twitter", "pos-tagging", "autotrain_compatible" ]
token-classification
false
pysentimiento
null
pysentimiento/robertuito-pos
25
null
transformers
7,728
--- language: - es tags: - twitter - pos-tagging --- # POS Tagging model for Spanish/English ## robertuito-pos Repository: [https://github.com/pysentimiento/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) Model trained with the Spanish/English split of the [LinCE NER corpus](https://ritual.uh.edu/lince/), a code-switched benchmark . Base model is [RoBERTuito](https://github.com/pysentimiento/robertuito), a RoBERTa model trained in Spanish tweets. ## Results Results are taken from the LinCE leaderboard | Model | Sentiment | NER | POS | |:-----------------------|:----------------|:-------------------|:--------| | RoBERTuito | **60.6** | 68.5 | 97.2 | | XLM Large | -- | **69.5** | **97.2** | | XLM Base | -- | 64.9 | 97.0 | | C2S mBERT | 59.1 | 64.6 | 96.9 | | mBERT | 56.4 | 64.0 | 97.1 | | BERT | 58.4 | 61.1 | 96.9 | | BETO | 56.5 | -- | -- | ## Citation If you use this model in your research, please cite pysentimiento, RoBERTuito and LinCE papers: ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{perez2021robertuito, title={RoBERTuito: a pre-trained language model for social media text in Spanish}, author={Juan Manuel Pérez and Damián A. Furman and Laura Alonso Alemany and Franco Luque}, year={2021}, eprint={2111.09453}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{aguilar2020lince, title={LinCE: A Centralized Benchmark for Linguistic Code-switching Evaluation}, author={Aguilar, Gustavo and Kar, Sudipta and Solorio, Thamar}, booktitle={Proceedings of the 12th Language Resources and Evaluation Conference}, pages={1803--1813}, year={2020} } ```
google/ddpm-cat-256
34e20c9840f5865b26b3cd335f6a1bee4bd5f29b
2022-07-21T15:00:17.000Z
[ "diffusers", "arxiv:2006.11239", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ddpm-cat-256
25
null
diffusers
7,729
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-cat-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm()["sample"] # save image image[0].save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_3.png)
51la5/QMSUM-keyphrase-gen
1003893f7c9c2c784bc1e908d3deafc6d9d5b657
2022-07-22T10:08:10.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
51la5
null
51la5/QMSUM-keyphrase-gen
25
null
transformers
7,730
Entry not found
oliverguhr/wav2vec2-base-german-cv9
62829c379e83f02093fe998686c898bfcae2df98
2022-07-25T09:34:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_9_0", "transformers", "mozilla-foundation/common_voice_9_0", "generated_from_trainer", "license:mit", "model-index" ]
automatic-speech-recognition
false
oliverguhr
null
oliverguhr/wav2vec2-base-german-cv9
25
null
transformers
7,731
--- language: - de license: mit tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: wav2vec2-base-german-cv9 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: de metrics: - name: Test WER type: wer value: 10.565782902002716 - name: Test CER type: cer value: 2.6226824852959657 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: de metrics: - name: Test WER (+LM) type: wer value: 7.996088831362508 - name: Test CER (+LM) type: cer value: 2.1515717711623326 --- # wav2vec2-base-german-cv9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - Wer: 0.1209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.6827 | 1.0 | 3557 | 0.6695 | 0.6247 | | 0.3992 | 2.0 | 7114 | 0.3738 | 0.3936 | | 0.2611 | 3.0 | 10671 | 0.3011 | 0.3177 | | 0.2536 | 4.0 | 14228 | 0.2672 | 0.2749 | | 0.1943 | 5.0 | 17785 | 0.2487 | 0.2480 | | 0.2004 | 6.0 | 21342 | 0.2246 | 0.2268 | | 0.1605 | 7.0 | 24899 | 0.2176 | 0.2120 | | 0.1579 | 8.0 | 28456 | 0.2046 | 0.2024 | | 0.1668 | 9.0 | 32013 | 0.2027 | 0.1944 | | 0.1338 | 10.0 | 35570 | 0.1968 | 0.1854 | | 0.1478 | 11.0 | 39127 | 0.1963 | 0.1823 | | 0.1177 | 12.0 | 42684 | 0.1956 | 0.1800 | | 0.1245 | 13.0 | 46241 | 0.1889 | 0.1732 | | 0.1124 | 14.0 | 49798 | 0.1868 | 0.1714 | | 0.1112 | 15.0 | 53355 | 0.1805 | 0.1650 | | 0.1209 | 16.0 | 56912 | 0.1860 | 0.1614 | | 0.1002 | 17.0 | 60469 | 0.1828 | 0.1604 | | 0.118 | 18.0 | 64026 | 0.1832 | 0.1580 | | 0.0974 | 19.0 | 67583 | 0.1771 | 0.1555 | | 0.1007 | 20.0 | 71140 | 0.1812 | 0.1532 | | 0.0866 | 21.0 | 74697 | 0.1752 | 0.1504 | | 0.0901 | 22.0 | 78254 | 0.1690 | 0.1477 | | 0.0964 | 23.0 | 81811 | 0.1773 | 0.1489 | | 0.085 | 24.0 | 85368 | 0.1776 | 0.1456 | | 0.0945 | 25.0 | 88925 | 0.1786 | 0.1428 | | 0.0804 | 26.0 | 92482 | 0.1737 | 0.1429 | | 0.0832 | 27.0 | 96039 | 0.1789 | 0.1394 | | 0.0683 | 28.0 | 99596 | 0.1741 | 0.1390 | | 0.0761 | 29.0 | 103153 | 0.1688 | 0.1379 | | 0.0833 | 30.0 | 106710 | 0.1726 | 0.1370 | | 0.0753 | 31.0 | 110267 | 0.1774 | 0.1353 | | 0.08 | 32.0 | 113824 | 0.1734 | 0.1344 | | 0.0644 | 33.0 | 117381 | 0.1737 | 0.1334 | | 0.0745 | 34.0 | 120938 | 0.1763 | 0.1335 | | 0.0629 | 35.0 | 124495 | 0.1761 | 0.1311 | | 0.0654 | 36.0 | 128052 | 0.1718 | 0.1302 | | 0.0656 | 37.0 | 131609 | 0.1697 | 0.1301 | | 0.0643 | 38.0 | 135166 | 0.1716 | 0.1279 | | 0.0683 | 39.0 | 138723 | 0.1777 | 0.1279 | | 0.0587 | 40.0 | 142280 | 0.1735 | 0.1271 | | 0.0693 | 41.0 | 145837 | 0.1780 | 0.1260 | | 0.0532 | 42.0 | 149394 | 0.1724 | 0.1245 | | 0.0594 | 43.0 | 152951 | 0.1736 | 0.1250 | | 0.0544 | 44.0 | 156508 | 0.1744 | 0.1238 | | 0.0559 | 45.0 | 160065 | 0.1770 | 0.1232 | | 0.0557 | 46.0 | 163622 | 0.1766 | 0.1231 | | 0.0521 | 47.0 | 167179 | 0.1751 | 0.1220 | | 0.0591 | 48.0 | 170736 | 0.1724 | 0.1217 | | 0.0507 | 49.0 | 174293 | 0.1753 | 0.1212 | | 0.0577 | 50.0 | 177850 | 0.1742 | 0.1209 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
ai4bharat/IndicBERTv2-alpha-TyDiQA
a0880f65a2c3d24240046f4b84257bb600c7443f
2022-07-27T11:22:47.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ai4bharat
null
ai4bharat/IndicBERTv2-alpha-TyDiQA
25
null
transformers
7,732
Entry not found
spicard/small-10
2fddb9184d8cd2312da25ce20e30b3b1439d65ba
2022-07-26T16:40:18.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
spicard
null
spicard/small-10
25
null
transformers
7,733
Entry not found
AbidHasan95/movieHunt2
b6fe88e4e4494fac296d48005d56ef4ba7063188
2022-02-10T19:57:57.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
AbidHasan95
null
AbidHasan95/movieHunt2
24
null
transformers
7,734
Entry not found
BigSalmon/GPT2HardArticleEasyArticle
dab38cda75421cfdccd8a21d14ec533d6b39e322
2021-05-21T09:31:52.000Z
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/GPT2HardArticleEasyArticle
24
null
transformers
7,735
Entry not found
Ching/negation_detector
b45f4e2e4ec707564027da0861a86c4d9855ef05
2021-10-18T10:32:43.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Ching
null
Ching/negation_detector
24
null
transformers
7,736
This question answering model was fine tuned to detect negation expressions How to use: question: negation context: That is not safe! Answer: not question: negation context: Weren't we going to go to the moon? Answer: Weren't
ChristopherA08/IndoELECTRA
ccebcb76014a75179ba37840782832a72004aa8f
2021-02-04T06:23:59.000Z
[ "pytorch", "electra", "pretraining", "id", "dataset:oscar", "transformers" ]
null
false
ChristopherA08
null
ChristopherA08/IndoELECTRA
24
null
transformers
7,737
--- language: id datasets: - oscar --- # IndoBERT (Indonesian BERT Model) ## Model description ELECTRA is a new method for self-supervised language representation learning. This repository contains the pre-trained Electra Base model (tensorflow 1.15.0) trained in a Large Indonesian corpus (~16GB of raw text | ~2B indonesian words). IndoELECTRA is a pre-trained language model based on ELECTRA architecture for the Indonesian Language. This model is base version which use electra-base config. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ChristopherA08/IndoELECTRA") model = AutoModel.from_pretrained("ChristopherA08/IndoELECTRA") tokenizer.encode("hai aku mau makan.") [2, 8078, 1785, 2318, 1946, 18, 4] ``` ## Training procedure The training of the model has been performed using Google's original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models.
DingleyMaillotUrgell/homer-bot
bbd1433f89817e468ccea770cb9dadd9a535e280
2022-03-24T21:13:37.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational" ]
conversational
false
DingleyMaillotUrgell
null
DingleyMaillotUrgell/homer-bot
24
0
transformers
7,738
--- tags: - conversational language: - en --- # HomerBot: A conversational chatbot imitating Homer Simpson This model is a fine-tuned [DialoGPT](https://huggingface.co/microsoft/DialoGPT-medium) (medium version) on Simpsons [scripts](https://www.kaggle.com/datasets/pierremegret/dialogue-lines-of-the-simpsons). More specifically, we fine-tune DialoGPT-medium for 3 epochs on 10K **(character utterance, Homer's response)** pairs For more details, check out our git [repo](https://github.com/jesseDingley/HomerBot) containing all the code. ### How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("DingleyMaillotUrgell/homer-bot") model = AutoModelForCausalLM.from_pretrained("DingleyMaillotUrgell/homer-bot") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User: ") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8 ) # print last outpput tokens from bot print("Homer: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
EthanChen0418/few-shot-model-five-classes
da60c05fb3328e9a41275b31db9fe73f45d1523c
2021-08-04T13:04:58.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
EthanChen0418
null
EthanChen0418/few-shot-model-five-classes
24
null
transformers
7,739
Entry not found
Ghana-NLP/distilabena-base-akuapem-twi-cased
f1d586ce2848b67894bbcabf7fce4b63825103c2
2020-10-22T06:04:27.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ghana-NLP
null
Ghana-NLP/distilabena-base-akuapem-twi-cased
24
null
transformers
7,740
Entry not found
Harveenchadha/indictrans
637f125f737760febd79d096cb47393e175ebd5c
2021-12-17T18:10:03.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Harveenchadha
null
Harveenchadha/indictrans
24
null
transformers
7,741
**Work in progress**
Helsinki-NLP/opus-mt-alv-en
db2e7d8fa1edda0c395e03b813b45d91f6144d5b
2021-01-18T07:46:50.000Z
[ "pytorch", "marian", "text2text-generation", "sn", "rw", "wo", "ig", "sg", "ee", "zu", "lg", "ts", "ln", "ny", "yo", "rn", "xh", "alv", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-alv-en
24
null
transformers
7,742
--- language: - sn - rw - wo - ig - sg - ee - zu - lg - ts - ln - ny - yo - rn - xh - alv - en tags: - translation license: apache-2.0 --- ### alv-eng * source group: Atlantic-Congo languages * target group: English * OPUS readme: [alv-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/alv-eng/README.md) * model: transformer * source language(s): ewe fuc fuv ibo kin lin lug nya run sag sna swh toi_Latn tso umb wol xho yor zul * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/alv-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/alv-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/alv-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ewe-eng.ewe.eng | 6.3 | 0.328 | | Tatoeba-test.ful-eng.ful.eng | 0.4 | 0.108 | | Tatoeba-test.ibo-eng.ibo.eng | 4.5 | 0.196 | | Tatoeba-test.kin-eng.kin.eng | 30.7 | 0.511 | | Tatoeba-test.lin-eng.lin.eng | 2.8 | 0.213 | | Tatoeba-test.lug-eng.lug.eng | 3.4 | 0.140 | | Tatoeba-test.multi.eng | 20.9 | 0.376 | | Tatoeba-test.nya-eng.nya.eng | 38.7 | 0.492 | | Tatoeba-test.run-eng.run.eng | 24.5 | 0.417 | | Tatoeba-test.sag-eng.sag.eng | 5.5 | 0.177 | | Tatoeba-test.sna-eng.sna.eng | 26.9 | 0.412 | | Tatoeba-test.swa-eng.swa.eng | 4.9 | 0.196 | | Tatoeba-test.toi-eng.toi.eng | 3.9 | 0.147 | | Tatoeba-test.tso-eng.tso.eng | 76.7 | 0.957 | | Tatoeba-test.umb-eng.umb.eng | 4.0 | 0.195 | | Tatoeba-test.wol-eng.wol.eng | 3.7 | 0.170 | | Tatoeba-test.xho-eng.xho.eng | 38.9 | 0.556 | | Tatoeba-test.yor-eng.yor.eng | 25.1 | 0.412 | | Tatoeba-test.zul-eng.zul.eng | 46.1 | 0.623 | ### System Info: - hf_name: alv-eng - source_languages: alv - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/alv-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['sn', 'rw', 'wo', 'ig', 'sg', 'ee', 'zu', 'lg', 'ts', 'ln', 'ny', 'yo', 'rn', 'xh', 'alv', 'en'] - src_constituents: {'sna', 'kin', 'wol', 'ibo', 'swh', 'sag', 'ewe', 'zul', 'fuc', 'lug', 'tso', 'lin', 'nya', 'yor', 'run', 'xho', 'fuv', 'toi_Latn', 'umb'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/alv-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/alv-eng/opus2m-2020-07-31.test.txt - src_alpha3: alv - tgt_alpha3: eng - short_pair: alv-en - chrF2_score: 0.376 - bleu: 20.9 - brevity_penalty: 1.0 - ref_len: 15208.0 - src_name: Atlantic-Congo languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: alv - tgt_alpha2: en - prefer_old: False - long_pair: alv-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-cel-en
5de5d6405a061244be33449468458a8af5343934
2021-01-18T07:54:08.000Z
[ "pytorch", "marian", "text2text-generation", "gd", "ga", "br", "kw", "gv", "cy", "cel", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cel-en
24
null
transformers
7,743
--- language: - gd - ga - br - kw - gv - cy - cel - en tags: - translation license: apache-2.0 --- ### cel-eng * source group: Celtic languages * target group: English * OPUS readme: [cel-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cel-eng/README.md) * model: transformer * source language(s): bre cor cym gla gle glv * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bre-eng.bre.eng | 17.2 | 0.385 | | Tatoeba-test.cor-eng.cor.eng | 3.0 | 0.172 | | Tatoeba-test.cym-eng.cym.eng | 41.5 | 0.582 | | Tatoeba-test.gla-eng.gla.eng | 15.4 | 0.330 | | Tatoeba-test.gle-eng.gle.eng | 50.8 | 0.668 | | Tatoeba-test.glv-eng.glv.eng | 11.0 | 0.297 | | Tatoeba-test.multi.eng | 22.8 | 0.398 | ### System Info: - hf_name: cel-eng - source_languages: cel - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cel-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['gd', 'ga', 'br', 'kw', 'gv', 'cy', 'cel', 'en'] - src_constituents: {'gla', 'gle', 'bre', 'cor', 'glv', 'cym'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opus2m-2020-07-31.test.txt - src_alpha3: cel - tgt_alpha3: eng - short_pair: cel-en - chrF2_score: 0.39799999999999996 - bleu: 22.8 - brevity_penalty: 1.0 - ref_len: 42097.0 - src_name: Celtic languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: cel - tgt_alpha2: en - prefer_old: False - long_pair: cel-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-gl
b72cd3b6bef693f9bf4a024e1db18b88d7a4f9d5
2021-09-09T21:35:35.000Z
[ "pytorch", "marian", "text2text-generation", "en", "gl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-gl
24
null
transformers
7,744
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-gl * source languages: en * target languages: gl * OPUS readme: [en-gl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-gl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-gl/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-gl/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-gl/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.gl | 36.4 | 0.572 |
Helsinki-NLP/opus-mt-en-lg
a0f5fff204854b2832969499a61ee05164cbfa2c
2021-09-09T21:36:52.000Z
[ "pytorch", "marian", "text2text-generation", "en", "lg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-lg
24
1
transformers
7,745
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-lg * source languages: en * target languages: lg * OPUS readme: [en-lg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-lg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-lg/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lg/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lg/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.lg | 30.4 | 0.543 | | Tatoeba.en.lg | 5.7 | 0.386 |
Helsinki-NLP/opus-mt-es-el
62475171998f80c7e466f33e0321650dd9aa7438
2021-09-09T21:42:04.000Z
[ "pytorch", "marian", "text2text-generation", "es", "el", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-el
24
null
transformers
7,746
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-el * source languages: es * target languages: el * OPUS readme: [es-el](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-el/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-29.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-el/opus-2020-01-29.zip) * test set translations: [opus-2020-01-29.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-el/opus-2020-01-29.test.txt) * test set scores: [opus-2020-01-29.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-el/opus-2020-01-29.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.el | 48.6 | 0.661 |
Helsinki-NLP/opus-mt-hi-ur
30f8d77a8003744072305a44e2e6d07aa3ba11e4
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "hi", "ur", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hi-ur
24
null
transformers
7,747
--- language: - hi - ur tags: - translation license: apache-2.0 --- ### hin-urd * source group: Hindi * target group: Urdu * OPUS readme: [hin-urd](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hin-urd/README.md) * model: transformer-align * source language(s): hin * target language(s): urd * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hin.urd | 12.4 | 0.393 | ### System Info: - hf_name: hin-urd - source_languages: hin - target_languages: urd - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hin-urd/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hi', 'ur'] - src_constituents: {'hin'} - tgt_constituents: {'urd'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.test.txt - src_alpha3: hin - tgt_alpha3: urd - short_pair: hi-ur - chrF2_score: 0.39299999999999996 - bleu: 12.4 - brevity_penalty: 1.0 - ref_len: 1618.0 - src_name: Hindi - tgt_name: Urdu - train_date: 2020-06-16 - src_alpha2: hi - tgt_alpha2: ur - prefer_old: False - long_pair: hin-urd - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-mfe-en
0df7b162d732a66544619408f94c9ca1e4b1d7bf
2021-09-10T13:57:25.000Z
[ "pytorch", "marian", "text2text-generation", "mfe", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-mfe-en
24
null
transformers
7,748
--- tags: - translation license: apache-2.0 --- ### opus-mt-mfe-en * source languages: mfe * target languages: en * OPUS readme: [mfe-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/mfe-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/mfe-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/mfe-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/mfe-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.mfe.en | 39.9 | 0.552 |
KBLab/bert-base-swedish-cased-neriob
e9faae17dbe01f726df3fb2e03cb45a74909a7ac
2021-05-18T21:20:00.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
KBLab
null
KBLab/bert-base-swedish-cased-neriob
24
null
transformers
7,749
Entry not found
LegolasTheElf/Wav2Vec2_XLSR_Bengali_1b
825776a02eb76a560e28bb2ddd4d0b545172f997
2022-01-27T02:23:29.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
LegolasTheElf
null
LegolasTheElf/Wav2Vec2_XLSR_Bengali_1b
24
null
transformers
7,750
Entry not found
Luciano/bertimbau-base-lener_br
20c96be10d975181d1fce2e91a321a559e0eadc5
2022-06-28T12:01:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "pt", "dataset:lener_br", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Luciano
null
Luciano/bertimbau-base-lener_br
24
2
transformers
7,751
--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model_index: - name: bertimbau-base-lener_br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br args: lener_br metric: name: Accuracy type: accuracy value: 0.9692504609383333 model-index: - name: Luciano/bertimbau-base-lener_br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: test metrics: - name: Accuracy type: accuracy value: 0.9824282794418222 verified: true - name: Precision type: precision value: 0.9877557596262284 verified: true - name: Recall type: recall value: 0.9870401674313772 verified: true - name: F1 type: f1 value: 0.9873978338768773 verified: true - name: loss type: loss value: 0.11542011797428131 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertimbau-base-lener_br This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Precision: 0.8501 - Recall: 0.9138 - F1: 0.8808 - Accuracy: 0.9693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0686 | 1.0 | 1957 | 0.1399 | 0.7759 | 0.8669 | 0.8189 | 0.9641 | | 0.0437 | 2.0 | 3914 | 0.1457 | 0.7997 | 0.8938 | 0.8441 | 0.9623 | | 0.0313 | 3.0 | 5871 | 0.1675 | 0.8466 | 0.8744 | 0.8603 | 0.9651 | | 0.0201 | 4.0 | 7828 | 0.1621 | 0.8713 | 0.8839 | 0.8775 | 0.9718 | | 0.0137 | 5.0 | 9785 | 0.1811 | 0.7783 | 0.9159 | 0.8415 | 0.9645 | | 0.0105 | 6.0 | 11742 | 0.1836 | 0.8568 | 0.9009 | 0.8783 | 0.9692 | | 0.0105 | 7.0 | 13699 | 0.1649 | 0.8339 | 0.9125 | 0.8714 | 0.9725 | | 0.0059 | 8.0 | 15656 | 0.2298 | 0.8501 | 0.9138 | 0.8808 | 0.9693 | | 0.0051 | 9.0 | 17613 | 0.2210 | 0.8437 | 0.9045 | 0.8731 | 0.9693 | | 0.0061 | 10.0 | 19570 | 0.2499 | 0.8627 | 0.8946 | 0.8784 | 0.9681 | | 0.0041 | 11.0 | 21527 | 0.1985 | 0.8560 | 0.9052 | 0.8799 | 0.9720 | | 0.003 | 12.0 | 23484 | 0.2204 | 0.8498 | 0.9065 | 0.8772 | 0.9699 | | 0.0014 | 13.0 | 25441 | 0.2152 | 0.8425 | 0.9067 | 0.8734 | 0.9709 | | 0.0005 | 14.0 | 27398 | 0.2317 | 0.8553 | 0.8987 | 0.8765 | 0.9705 | | 0.0015 | 15.0 | 29355 | 0.2436 | 0.8543 | 0.8989 | 0.8760 | 0.9700 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
Luciano/gpt2-small-portuguese-finetuned-tcu-acordaos
204addc7ee9d526586292c781bde10aeed33614b
2022-02-18T10:22:01.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "pt", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Luciano
null
Luciano/gpt2-small-portuguese-finetuned-tcu-acordaos
24
null
transformers
7,752
--- language: - pt license: mit tags: - generated_from_trainer model-index: - name: gpt2-small-portuguese-finetuned-tcu-acordaos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-portuguese-finetuned-tcu-acordaos This model is a fine-tuned version of [pierreguillou/gpt2-small-portuguese](https://huggingface.co/pierreguillou/gpt2-small-portuguese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3435 | 1.0 | 658 | 1.8346 | | 1.8668 | 2.0 | 1316 | 1.7141 | | 1.7573 | 3.0 | 1974 | 1.6841 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
RecordedFuture/Swedish-NER
436f9d59ada004b5bbae5f351005c4fd9bd43bbb
2021-05-24T12:03:54.000Z
[ "pytorch", "bert", "token-classification", "sv", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
RecordedFuture
null
RecordedFuture/Swedish-NER
24
null
transformers
7,753
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis, Sentiment targets. [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases a Named Entity Recognition(NER) model for entety detection in Swedish. The model is based on [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) and finetuned on data collected from various internet sources and forums. The model has been trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Available tags * Location * Organization * Person * Religion * Title ### Evaluation metrics The model had the following metrics when evaluated on test data originating from the same domain as the training data. #### F1-score | Loc | Org | Per | Nat | Rel | Tit | Total | |------|------|------|------|------|------|-------| | 0.91 | 0.88 | 0.96 | 0.95 | 0.91 | 0.84 | 0.92 |
StivenLancheros/bert-base-spanish-wwm-cased-finetuned-ner-false
385bf0087febad5d0c408fa3897b2d6a4a1e64bc
2021-11-23T10:27:20.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2002", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/bert-base-spanish-wwm-cased-finetuned-ner-false
24
null
transformers
7,754
--- tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-ner-false results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 args: es metrics: - name: Precision type: precision value: 0.8527941844616084 - name: Recall type: recall value: 0.8625919117647058 - name: F1 type: f1 value: 0.8576650673977612 - name: Accuracy type: accuracy value: 0.9780246773614496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-ner-false This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1154 - Precision: 0.8528 - Recall: 0.8626 - F1: 0.8577 - Accuracy: 0.9780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1072 | 1.0 | 833 | 0.0905 | 0.8432 | 0.8451 | 0.8442 | 0.9779 | | 0.0347 | 2.0 | 1666 | 0.0934 | 0.8592 | 0.8612 | 0.8602 | 0.9782 | | 0.0218 | 3.0 | 2499 | 0.1078 | 0.8537 | 0.8568 | 0.8553 | 0.9776 | | 0.0106 | 4.0 | 3332 | 0.1154 | 0.8528 | 0.8626 | 0.8577 | 0.9780 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
TODBERT/TOD-BERT-MLM-V1
34178a6c57ace7efbf9423aae288804eb163f326
2021-05-19T11:32:32.000Z
[ "pytorch", "tf", "jax", "bert", "transformers" ]
null
false
TODBERT
null
TODBERT/TOD-BERT-MLM-V1
24
null
transformers
7,755
Entry not found
Tymoteusz/distilbert-base-uncased-kaggle-readability
a3629dbe7697aaf4c1667b45af001a9d3ce7098f
2021-08-10T21:09:07.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Tymoteusz
null
Tymoteusz/distilbert-base-uncased-kaggle-readability
24
1
transformers
7,756
Entry not found
af-ai-center/bert-large-swedish-uncased
0b4d7e18946709ef6303d597fd6020457ae42701
2021-05-18T23:14:05.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
af-ai-center
null
af-ai-center/bert-large-swedish-uncased
24
null
transformers
7,757
Entry not found
airKlizz/mt5-base-wikinewssum-english-1000
965abb6d7793e41d2987461f8c0e9c8dfbe4bb7e
2021-12-31T12:29:07.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-english-1000
24
1
transformers
7,758
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-english-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-english-1000 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4724 - Rouge1: 7.7389 - Rouge2: 3.1606 - Rougel: 6.3317 - Rougelsum: 7.2487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 125 | 2.6981 | 7.1504 | 2.6253 | 5.8261 | 6.7427 | | No log | 2.0 | 250 | 2.5597 | 7.4666 | 2.9362 | 6.0965 | 6.9699 | | No log | 3.0 | 375 | 2.5145 | 7.4599 | 2.9449 | 6.0941 | 6.9734 | | No log | 4.0 | 500 | 2.4904 | 7.5063 | 2.975 | 6.137 | 7.0027 | | No log | 5.0 | 625 | 2.4904 | 7.6027 | 3.0582 | 6.2161 | 7.0832 | | No log | 6.0 | 750 | 2.4801 | 7.7601 | 3.1916 | 6.3689 | 7.2686 | | No log | 7.0 | 875 | 2.4737 | 7.7162 | 3.1332 | 6.3113 | 7.2283 | | No log | 8.0 | 1000 | 2.4724 | 7.7389 | 3.1606 | 6.3317 | 7.2487 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
alaggung/bart-rl
09ef92f05c2fa9e0e9fb9ea7805947053e8aeb11
2022-01-13T17:18:17.000Z
[ "pytorch", "tf", "bart", "text2text-generation", "ko", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
alaggung
null
alaggung/bart-rl
24
null
transformers
7,759
--- language: - ko tags: - summarization widget: - text: "[BOS]밥 ㄱ?[SEP]고고고고 뭐 먹을까?[SEP]어제 김치찌개 먹어서 한식말고 딴 거[SEP]그럼 돈까스 어때?[SEP]오 좋다 1시 학관 앞으로 오셈[SEP]ㅇㅋ[EOS]" inference: parameters: max_length: 64 top_k: 5 --- # BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-r3f](https://huggingface.co/alaggung/bart-r3f) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123
a41d734d99baf52cc5e0db6c8d38f72b17b0f534
2021-05-22T04:14:37.000Z
[ "pytorch", "albert", "token-classification", "bn", "dataset:albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664", "transformers", "autonlp", "autotrain_compatible" ]
token-classification
false
albertvillanova
null
albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123
24
2
transformers
7,760
--- tags: autonlp language: bn widget: - text: "I love AutoNLP 🤗" datasets: - albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 1301123 ## Validation Metrics - Loss: 0.14097803831100464 - Accuracy: 0.9740097463451206 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
allenai/longformer-scico
30022f11e6d9c4231b64d1495f1ff11b973a4c10
2021-09-30T10:04:33.000Z
[ "pytorch", "longformer", "text-classification", "en", "dataset:allenai/scico", "transformers", "longformer-scico", "license:apache-2.0" ]
text-classification
false
allenai
null
allenai/longformer-scico
24
1
transformers
7,761
--- language: en tags: - longformer - longformer-scico license: apache-2.0 datasets: - allenai/scico inference: false --- # Longformer for SciCo This model is the `unified` model discussed in the paper [SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts (AKBC 2021)](https://openreview.net/forum?id=OFLbgUP04nC) that formulates the task of hierarchical cross-document coreference resolution (H-CDCR) as a multiclass problem. The model takes as input two mentions `m1` and `m2` with their corresponding context and outputs 4 scores: * 0: not related * 1: `m1` and `m2` corefer * 2: `m1` is a parent of `m2` * 3: `m1` is a child of `m2`. We provide the following code as an example to set the global attention on the special tokens: `<s>`, `<m>` and `</m>`. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained('allenai/longformer-scico') model = AutoModelForSequenceClassification.from_pretrained('allenai/longformer-scico') start_token = tokenizer.convert_tokens_to_ids("<m>") end_token = tokenizer.convert_tokens_to_ids("</m>") def get_global_attention(input_ids): global_attention_mask = torch.zeros(input_ids.shape) global_attention_mask[:, 0] = 1 # global attention to the CLS token start = torch.nonzero(input_ids == start_token) # global attention to the <m> token end = torch.nonzero(input_ids == end_token) # global attention to the </m> token globs = torch.cat((start, end)) value = torch.ones(globs.shape[0]) global_attention_mask.index_put_(tuple(globs.t()), value) return global_attention_mask m1 = "In this paper we present the results of an experiment in <m> automatic concept and definition extraction </m> from written sources of law using relatively simple natural methods." m2 = "This task is important since many natural language processing (NLP) problems, such as <m> information extraction </m>, summarization and dialogue." inputs = m1 + " </s></s> " + m2 tokens = tokenizer(inputs, return_tensors='pt') global_attention_mask = get_global_attention(tokens['input_ids']) with torch.no_grad(): output = model(tokens['input_ids'], tokens['attention_mask'], global_attention_mask) scores = torch.softmax(output.logits, dim=-1) # tensor([[0.0818, 0.0023, 0.0019, 0.9139]]) -- m1 is a child of m2 ``` **Note:** There is a slight difference between this model and the original model presented in the [paper](https://openreview.net/forum?id=OFLbgUP04nC). The original model includes a single linear layer on top of the `<s>` token (equivalent to `[CLS]`) while this model includes a two-layers MLP to be in line with `LongformerForSequenceClassification`. The original repository can be found [here](https://github.com/ariecattan/scico). # Citation ```python @inproceedings{ cattan2021scico, title={SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts}, author={Arie Cattan and Sophie Johnson and Daniel S Weld and Ido Dagan and Iz Beltagy and Doug Downey and Tom Hope}, booktitle={3rd Conference on Automated Knowledge Base Construction}, year={2021}, url={https://openreview.net/forum?id=OFLbgUP04nC} } ```
bhavikardeshna/xlm-roberta-base-arabic
155506a3f20d9c89857dce72140d6c8f7e655016
2021-12-21T11:41:04.000Z
[ "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/xlm-roberta-base-arabic
24
1
transformers
7,762
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
cambridgeltl/simctg_english_wikipedia
8976b60a827627d10ec618291a0e935eeca14903
2022-06-25T19:45:09.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:2202.06417", "transformers" ]
text-generation
false
cambridgeltl
null
cambridgeltl/simctg_english_wikipedia
24
null
transformers
7,763
This model provides a GPT-2 language model trained with SimCTG on the English Wikipedia based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_english_wikipedia' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prefix_text = r"Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities" print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.6, 128 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output)) ''' Prefix is: Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities Output: ---------------------------------------------------------------------------------------------------- Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities they produce, such as honey, corn, sorghum, and other crops. In some cases, the production of insects is a way to increase income for the owner or his family. This type of farming has been described as "an economic system that benefits all people regardless of race, sex, or social status" (p. 9). A large number of farmers in North America, Europe, and South America have used the method of farming for food production in order to feed their families and livestock. The most common method of farming is by hand-cropping, which consists of cutting a hole in the ground and using a saw ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
camembert/camembert-base-ccnet-4gb
940db5c122b766bb82b5e2e6290c6d82c04bb515
2020-12-11T21:35:11.000Z
[ "pytorch", "camembert", "fr", "arxiv:1911.03894", "transformers" ]
null
false
camembert
null
camembert/camembert-base-ccnet-4gb
24
null
transformers
7,764
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-ccnet-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-ccnet-4gb", tokenizer="camembert/camembert-base-ccnet-4gb") results = camembert_fill_mask("Le camembert est-il <mask> ?") # results #[{'sequence': '<s> Le camembert est-il sain?</s>', 'score': 0.07001790404319763, 'token': 10286}, #{'sequence': '<s> Le camembert est-il français?</s>', 'score': 0.057594332844018936, 'token': 384}, #{'sequence': '<s> Le camembert est-il bon?</s>', 'score': 0.04098724573850632, 'token': 305}, #{'sequence': '<s> Le camembert est-il périmé?</s>', 'score': 0.03486393392086029, 'token': 30862}, #{'sequence': '<s> Le camembert est-il cher?</s>', 'score': 0.021535946056246758, 'token': 1604}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[ 0.0331, 0.0095, -0.2776, ..., 0.2875, -0.0827, -0.2467], # [-0.1348, 0.0478, -0.5409, ..., 0.8330, 0.0467, 0.0662], # [ 0.0920, -0.0264, 0.0177, ..., 0.1112, 0.0108, -0.1123], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-ccnet-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0144, 0.1855, 0.4895, ..., -0.1537, 0.0107, -0.2293], # [-0.6664, -0.0880, -0.1539, ..., 0.3635, 0.4047, 0.1258], # [ 0.0511, 0.0540, 0.2545, ..., 0.0709, -0.0288, -0.0779], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
cardiffnlp/bertweet-base-stance-feminist
09bcb891e6443cea7d7aa85a84510d9485880b94
2021-05-20T14:57:14.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/bertweet-base-stance-feminist
24
null
transformers
7,765
congcongwang/bart-base-en-zh
5374572a6370dee233695aa209cf75a5917ff658
2020-10-04T21:16:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
congcongwang
null
congcongwang/bart-base-en-zh
24
null
transformers
7,766
Entry not found
congcongwang/distilgpt2_fine_tuned_coder
04eff431ef11d99e25142edb2e5aeee4ee0e36ad
2021-05-21T15:04:51.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
congcongwang
null
congcongwang/distilgpt2_fine_tuned_coder
24
1
transformers
7,767
Entry not found
dbmdz/flair-clef-hipe-german-base
1bd0a25e12823de125082e5bc70ff5c818f237d3
2021-04-09T13:00:18.000Z
[ "pytorch", "de", "arxiv:2011.06993", "arxiv:2010.10392", "flair", "token-classification", "sequence-tagger-model", "license:mit" ]
token-classification
false
dbmdz
null
dbmdz/flair-clef-hipe-german-base
24
null
flair
7,768
--- tags: - flair - token-classification - sequence-tagger-model language: de widget: - text: "Herr Oberst Brunner ist nämlich Hauptagent für den Kanton Zürich." license: mit --- # Triple E - Effective Ensembling of Embeddings and Language Models for NER of Historical German Based on [our paper](http://ceur-ws.org/Vol-2696/paper_173.pdf) we release a new baseline model for the German [CLEF-HIPE shared task](https://impresso.github.io/CLEF-HIPE-2020/). In contrast to the models used in the paper, we manually sentence-segmented and normalize hyphenations and trained a NER model using the German Europeana BERT model. Additionally, we perform experiments with different context sizes. This approach is described in more detail in [this paper](https://arxiv.org/abs/2011.06993). # Results The results with different context sizes can be seen in the following table: | Model | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | -------------------------- | --------------- | --------------- | --------------- | ------------------- | --------------- | --------------- | German Europeana BERT | (81.45) / 76.92 | (**81.53**) / 77.03 | (80.49) / 77.83 | (80.88) / 77.19 | (81.39) / 77.00 | (81.15 ± 0.45) / 77.19 ± 0.34 | German Europeana BERT (16) | (**82.56**) / 77.38 | (81.19) / 77.76 | (80.99) / 76.34 | (81.27) / 77.70 | (81.28) / 77.22 | (81.46 ± 0.63) / 77.28 ± 0.57 | German Europeana BERT (32) | (**82.04**) / 78.50 | (81.14) / 76.56 | (81.81) / 78.28 | (81.50) / 76.90 | (81.64) / 77.94 | (81.63 ± 0.34) / 77.64 ± 0.86 | German Europeana BERT (64) | (81.21) / 78.39 | (81.27) / 75.98 | (**81.88**) / 78.40 | (81.66) / 77.35 | (81.29) / 76.70 | (81.46 ± 0.29) / 77.36 ± 1.06 | German Europeana BERT (80) | (82.13) / 77.77 | (81.31) / 76.81 | (82.09) / 78.69 | (**82.30**) / 76.79 | (80.65) / 77.10 | (81.70 ± 0.70) / 77.43 ± 0.81 For model upload, we choose the best model on development score: 82.56 with a context length of 16. ## Comparisons The following figure shows the results with different context sized (on development dataset): ![German CLEF-HIPE Development Results](figures/clef_hipe_f1_score_development.png) We perform "Almost Stochastic Order" tests as proposed in the ["Deep Dominance - How to Properly Compare Deep Neural Models"](https://www.aclweb.org/anthology/P19-1266/) paper. The heatmap figure is heavily inspired by the ["CharacterBERT"](https://arxiv.org/abs/2010.10392) paper. ![Almost Stochastic Order Tests on Development set](figures/clef_hipe_asd_development.png)
emrecan/bert-base-multilingual-cased-allnli_tr
25f8e4b3271467c419a73e0e293d3299db775534
2021-12-03T20:46:47.000Z
[ "pytorch", "bert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:mit" ]
zero-shot-classification
false
emrecan
null
emrecan/bert-base-multilingual-cased-allnli_tr
24
null
transformers
7,769
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: mit datasets: - nli_tr metrics: - accuracy widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased_allnli_tr This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6144 - Accuracy: 0.7662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8623 | 0.03 | 1000 | 0.9076 | 0.5917 | | 0.7528 | 0.07 | 2000 | 0.8587 | 0.6119 | | 0.7074 | 0.1 | 3000 | 0.7867 | 0.6647 | | 0.6949 | 0.14 | 4000 | 0.7474 | 0.6772 | | 0.6681 | 0.17 | 5000 | 0.7661 | 0.6814 | | 0.6597 | 0.2 | 6000 | 0.7264 | 0.6943 | | 0.6495 | 0.24 | 7000 | 0.7841 | 0.6781 | | 0.6323 | 0.27 | 8000 | 0.7256 | 0.6952 | | 0.6308 | 0.31 | 9000 | 0.7319 | 0.6958 | | 0.6254 | 0.34 | 10000 | 0.7054 | 0.7004 | | 0.6233 | 0.37 | 11000 | 0.7069 | 0.7085 | | 0.6165 | 0.41 | 12000 | 0.6880 | 0.7181 | | 0.6033 | 0.44 | 13000 | 0.6844 | 0.7197 | | 0.6014 | 0.48 | 14000 | 0.6753 | 0.7129 | | 0.5947 | 0.51 | 15000 | 0.7000 | 0.7039 | | 0.5965 | 0.54 | 16000 | 0.6708 | 0.7263 | | 0.5979 | 0.58 | 17000 | 0.6562 | 0.7285 | | 0.5787 | 0.61 | 18000 | 0.6554 | 0.7297 | | 0.58 | 0.65 | 19000 | 0.6544 | 0.7315 | | 0.574 | 0.68 | 20000 | 0.6549 | 0.7339 | | 0.5751 | 0.71 | 21000 | 0.6545 | 0.7289 | | 0.5659 | 0.75 | 22000 | 0.6467 | 0.7371 | | 0.5732 | 0.78 | 23000 | 0.6448 | 0.7362 | | 0.5637 | 0.82 | 24000 | 0.6520 | 0.7355 | | 0.5648 | 0.85 | 25000 | 0.6412 | 0.7345 | | 0.5622 | 0.88 | 26000 | 0.6350 | 0.7358 | | 0.5579 | 0.92 | 27000 | 0.6347 | 0.7393 | | 0.5518 | 0.95 | 28000 | 0.6417 | 0.7392 | | 0.5547 | 0.99 | 29000 | 0.6321 | 0.7437 | | 0.524 | 1.02 | 30000 | 0.6430 | 0.7412 | | 0.4982 | 1.05 | 31000 | 0.6253 | 0.7458 | | 0.5002 | 1.09 | 32000 | 0.6316 | 0.7418 | | 0.4993 | 1.12 | 33000 | 0.6197 | 0.7487 | | 0.4963 | 1.15 | 34000 | 0.6307 | 0.7462 | | 0.504 | 1.19 | 35000 | 0.6272 | 0.7480 | | 0.4922 | 1.22 | 36000 | 0.6410 | 0.7433 | | 0.5016 | 1.26 | 37000 | 0.6295 | 0.7461 | | 0.4957 | 1.29 | 38000 | 0.6183 | 0.7506 | | 0.4883 | 1.32 | 39000 | 0.6261 | 0.7502 | | 0.4985 | 1.36 | 40000 | 0.6315 | 0.7496 | | 0.4885 | 1.39 | 41000 | 0.6189 | 0.7529 | | 0.4909 | 1.43 | 42000 | 0.6189 | 0.7473 | | 0.4894 | 1.46 | 43000 | 0.6314 | 0.7433 | | 0.4912 | 1.49 | 44000 | 0.6184 | 0.7446 | | 0.4851 | 1.53 | 45000 | 0.6258 | 0.7461 | | 0.4879 | 1.56 | 46000 | 0.6286 | 0.7480 | | 0.4907 | 1.6 | 47000 | 0.6196 | 0.7512 | | 0.4884 | 1.63 | 48000 | 0.6157 | 0.7526 | | 0.4755 | 1.66 | 49000 | 0.6056 | 0.7591 | | 0.4811 | 1.7 | 50000 | 0.5977 | 0.7582 | | 0.4787 | 1.73 | 51000 | 0.5915 | 0.7621 | | 0.4779 | 1.77 | 52000 | 0.6014 | 0.7583 | | 0.4767 | 1.8 | 53000 | 0.6041 | 0.7623 | | 0.4737 | 1.83 | 54000 | 0.6093 | 0.7563 | | 0.4836 | 1.87 | 55000 | 0.6001 | 0.7568 | | 0.4765 | 1.9 | 56000 | 0.6109 | 0.7601 | | 0.4776 | 1.94 | 57000 | 0.6046 | 0.7599 | | 0.4769 | 1.97 | 58000 | 0.5970 | 0.7568 | | 0.4654 | 2.0 | 59000 | 0.6147 | 0.7614 | | 0.4144 | 2.04 | 60000 | 0.6439 | 0.7566 | | 0.4101 | 2.07 | 61000 | 0.6373 | 0.7527 | | 0.4192 | 2.11 | 62000 | 0.6136 | 0.7575 | | 0.4128 | 2.14 | 63000 | 0.6283 | 0.7560 | | 0.4204 | 2.17 | 64000 | 0.6187 | 0.7625 | | 0.4114 | 2.21 | 65000 | 0.6127 | 0.7621 | | 0.4097 | 2.24 | 66000 | 0.6188 | 0.7626 | | 0.4129 | 2.28 | 67000 | 0.6156 | 0.7639 | | 0.4085 | 2.31 | 68000 | 0.6232 | 0.7616 | | 0.4074 | 2.34 | 69000 | 0.6240 | 0.7605 | | 0.409 | 2.38 | 70000 | 0.6153 | 0.7591 | | 0.4046 | 2.41 | 71000 | 0.6375 | 0.7587 | | 0.4117 | 2.45 | 72000 | 0.6145 | 0.7629 | | 0.4002 | 2.48 | 73000 | 0.6279 | 0.7610 | | 0.4042 | 2.51 | 74000 | 0.6176 | 0.7646 | | 0.4055 | 2.55 | 75000 | 0.6277 | 0.7643 | | 0.4021 | 2.58 | 76000 | 0.6196 | 0.7642 | | 0.4081 | 2.62 | 77000 | 0.6127 | 0.7659 | | 0.408 | 2.65 | 78000 | 0.6237 | 0.7638 | | 0.3997 | 2.68 | 79000 | 0.6190 | 0.7636 | | 0.4093 | 2.72 | 80000 | 0.6152 | 0.7648 | | 0.4095 | 2.75 | 81000 | 0.6155 | 0.7627 | | 0.4088 | 2.79 | 82000 | 0.6130 | 0.7641 | | 0.4063 | 2.82 | 83000 | 0.6072 | 0.7646 | | 0.3978 | 2.85 | 84000 | 0.6128 | 0.7662 | | 0.4034 | 2.89 | 85000 | 0.6157 | 0.7627 | | 0.4044 | 2.92 | 86000 | 0.6127 | 0.7661 | | 0.403 | 2.96 | 87000 | 0.6126 | 0.7664 | | 0.4033 | 2.99 | 88000 | 0.6144 | 0.7662 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
ericzhou/DialoGPT-Medium-Rick_v2
61a36944dbe5d692bf8640d4b39997b78bc28980
2022-01-20T05:06:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ericzhou
null
ericzhou/DialoGPT-Medium-Rick_v2
24
1
transformers
7,770
--- tags: - conversational --- # rick
facebook/s2t-wav2vec2-large-en-ca
12c8a3c9ccae1f0ae603e758d42b9caa31390a6b
2021-11-14T20:39:29.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "en", "ca", "dataset:covost2", "dataset:librispeech_asr", "arxiv:2104.06678", "transformers", "audio", "speech-translation", "speech2text2", "license:mit" ]
automatic-speech-recognition
false
facebook
null
facebook/s2t-wav2vec2-large-en-ca
24
2
transformers
7,771
--- language: - en - ca datasets: - covost2 - librispeech_asr tags: - audio - speech-translation - automatic-speech-recognition - speech2text2 license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Common Voice 1 src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 - example_title: Common Voice 2 src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_99989.mp3 - example_title: Common Voice 3 src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_9999.mp3 --- # S2T2-Wav2Vec2-CoVoST2-EN-CA-ST `s2t-wav2vec2-large-en-ca` is a Speech to Text Transformer model trained for end-to-end Speech Translation (ST). The S2T2 model was proposed in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/pdf/2104.06678.pdf) and officially released in [Fairseq](https://github.com/pytorch/fairseq/blob/6f847c8654d56b4d1b1fbacec027f47419426ddb/fairseq/models/wav2vec/wav2vec2_asr.py#L266). ## Model description S2T2 is a transformer-based seq2seq (speech encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech Translation (ST). It uses a pretrained [Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html) as the encoder and a transformer-based decoder. The model is trained with standard autoregressive cross-entropy loss and generates the translations autoregressively. ## Intended uses & limitations This model can be used for end-to-end English speech to Catalan text translation. See the [model hub](https://huggingface.co/models?filter=speech2text2) to look for other S2T2 checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. You can use the model directly via the ASR pipeline ```python from datasets import load_dataset from transformers import pipeline librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") asr = pipeline("automatic-speech-recognition", model="facebook/s2t-wav2vec2-large-en-ca", feature_extractor="facebook/s2t-wav2vec2-large-en-ca") translation = asr(librispeech_en[0]["file"]) ``` or step-by-step as follows: ```python import torch from transformers import Speech2Text2Processor, SpeechEncoderDecoder from datasets import load_dataset import soundfile as sf model = SpeechEncoderDecoder.from_pretrained("facebook/s2t-wav2vec2-large-en-ca") processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-ca") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) inputs = processor(ds["speech"][0], sampling_rate=16_000, return_tensors="pt") generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"]) transcription = processor.batch_decode(generated_ids) ``` ## Evaluation results CoVoST-V2 test results for en-ca (BLEU score): **34.1** For more information, please have a look at the [official paper](https://arxiv.org/pdf/2104.06678.pdf) - especially row 10 of Table 2. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2104-06678, author = {Changhan Wang and Anne Wu and Juan Miguel Pino and Alexei Baevski and Michael Auli and Alexis Conneau}, title = {Large-Scale Self- and Semi-Supervised Learning for Speech Translation}, journal = {CoRR}, volume = {abs/2104.06678}, year = {2021}, url = {https://arxiv.org/abs/2104.06678}, archivePrefix = {arXiv}, eprint = {2104.06678}, timestamp = {Thu, 12 Aug 2021 15:37:06 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2104-06678.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
fenrhjen/camembert_aux_amandes
539ebd04389c079ea44818f0334f99e1fb255ccb
2020-12-20T18:22:33.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
fenrhjen
null
fenrhjen/camembert_aux_amandes
24
null
transformers
7,772
flair/frame-english-fast
c9f6e94c9a7f077645d348c7c4985d0ee992b7eb
2021-03-02T22:01:45.000Z
[ "pytorch", "en", "dataset:ontonotes", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
flair
null
flair/frame-english-fast
24
null
flair
7,773
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - ontonotes widget: - text: "George returned to Berlin to return his hat." --- ## English Verb Disambiguation in Flair (fast model) This is the fast verb disambiguation model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **88,27** (Ontonotes) - predicts [Proposition Bank verb frames](http://verbs.colorado.edu/propbank/framesets-english-aliases/). Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/frame-english-fast") # make example sentence sentence = Sentence("George returned to Berlin to return his hat.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following frame tags are found:') # iterate over entities and print for entity in sentence.get_spans('frame'): print(entity) ``` This yields the following output: ``` Span [2]: "returned" [− Labels: return.01 (0.9867)] Span [6]: "return" [− Labels: return.02 (0.4741)] ``` So, the word "*returned*" is labeled as **return.01** (as in *go back somewhere*) while "*return*" is labeled as **return.02** (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus = ColumnCorpus( "resources/tasks/srl", column_format={1: "text", 11: "frame"} ) # 2. what tag do we want to predict? tag_type = 'frame' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ BytePairEmbeddings("en"), FlairEmbeddings("news-forward-fast"), FlairEmbeddings("news-backward-fast"), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/frame-english-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2019flair, title={FLAIR: An easy-to-use framework for state-of-the-art NLP}, author={Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland}, booktitle={{NAACL} 2019, 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)}, pages={54--59}, year={2019} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
glob-asr/wav2vec2-large-xls-r-300m-guarani-small
e601b22ad2f2d7b24031b3ac127878acad1e3fb6
2022-03-24T11:52:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gn", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
glob-asr
null
glob-asr/wav2vec2-large-xls-r-300m-guarani-small
24
null
transformers
7,774
--- language: - gn license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - gn - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-guarani-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-guarani-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4964 - Wer: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.65 | 100 | 1.1326 | 1.0 | | 1.6569 | 13.32 | 200 | 0.5264 | 0.6478 | | 1.6569 | 19.97 | 300 | 0.5370 | 0.6261 | | 0.2293 | 26.65 | 400 | 0.4964 | 0.5957 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
harshit345/xlsr_wav2vec_english
a34f5311c459b1b6ba67c65bab537856fecca2c5
2021-12-11T21:22:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
harshit345
null
harshit345/xlsr_wav2vec_english
24
null
transformers
7,775
--- language: en datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 English by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 21.53 - name: Test CER type: cer value: 9.66 --- # Wav2vec2-Large-English Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows... Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: ```python from asrecognition import ASREngine asr = ASREngine("fr", model_path="jonatasgrosman/wav2vec2-large-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = asr.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL | | DO YOU MEAN IT? | W MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation The model can be evaluated as follows on the English (en) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well. Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** | | wav2vec2-large-xlsr-53-greek | 18.99% | 10.60% | | wav2vec2-large-xlsr-53-hindi | 20.01% | 9.66% | | wav2vec2-large-960h-lv60-english | 22.03% | 10.39% | | wav2vec2-base-100h-lv60-english | 24.97% | 11.14% | |
henryk/bert-base-multilingual-cased-finetuned-polish-squad1
515774f2646efcb7fb7f7016ce0045db9069c8e6
2021-05-19T19:04:09.000Z
[ "pytorch", "jax", "bert", "question-answering", "pl", "transformers", "autotrain_compatible" ]
question-answering
false
henryk
null
henryk/bert-base-multilingual-cased-finetuned-polish-squad1
24
null
transformers
7,776
--- language: pl --- # Multilingual + Polish SQuAD1.1 This model is the multilingual model provided by the Google research team with a fine-tuned polish Q&A downstream task. ## Details of the language model Language model ([**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md)): 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias. ## Details of the downstream task Using the `mtranslate` Python module, [**SQuAD1.1**](https://rajpurkar.github.io/SQuAD-explorer/) was machine-translated. In order to find the start tokens, the direct translations of the answers were searched in the corresponding paragraphs. Due to the different translations depending on the context (missing context in the pure answer), the answer could not always be found in the text, and thus a loss of question-answer examples occurred. This is a potential problem where errors can occur in the data set. | Dataset | # Q&A | | ---------------------- | ----- | | SQuAD1.1 Train | 87.7 K | | Polish SQuAD1.1 Train | 39.5 K | | SQuAD1.1 Dev | 10.6 K | | Polish SQuAD1.1 Dev | 2.6 K | ## Model benchmark | Model | EM | F1 | | ---------------------- | ----- | ----- | | [SlavicBERT](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) | **60.89** | 71.68 | | [polBERT](https://huggingface.co/dkleczek/bert-base-polish-uncased-v1) | 57.46 | 68.87 | | [multiBERT](https://huggingface.co/bert-base-multilingual-cased) | 60.67 | **71.89** | | [xlm](https://huggingface.co/xlm-mlm-100-1280) | 47.98 | 59.42 | ## Model training The model was trained on a **Tesla V100** GPU with the following command: ```python export SQUAD_DIR=path/to/pl_squad python run_squad.py --model_type bert \ --model_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --train_file $SQUAD_DIR/pl_squadv1_train_clean.json \ --predict_file $SQUAD_DIR/pl_squadv1_dev_clean.json \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps=8000 \ --output_dir ../../output \ --overwrite_cache \ --overwrite_output_dir ``` **Results**: {'exact': 60.670731707317074, 'f1': 71.8952193697293, 'total': 2624, 'HasAns_exact': 60.670731707317074, 'HasAns_f1': 71.8952193697293, 'HasAns_total': 2624, 'best_exact': 60.670731707317074, 'best_exact_thresh': 0.0, 'best_f1': 71.8952193697293, 'best_f1_thresh': 0.0} ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="henryk/bert-base-multilingual-cased-finetuned-polish-squad1", tokenizer="henryk/bert-base-multilingual-cased-finetuned-polish-squad1" ) qa_pipeline({ 'context': "Warszawa jest największym miastem w Polsce pod względem liczby ludności i powierzchni", 'question': "Jakie jest największe miasto w Polsce?"}) ``` # Output: ```json { "score": 0.9988, "start": 0, "end": 8, "answer": "Warszawa" } ``` ## Contact Please do not hesitate to contact me via [LinkedIn](https://www.linkedin.com/in/henryk-borzymowski-0755a2167/) if you want to discuss or get access to the Polish version of SQuAD.
hfl/cino-base-v2
4e4eb5114da7a9eef6e3bcdeb997c20090afb4e8
2022-01-24T10:34:45.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "zh", "bo", "kk", "ko", "mn", "ug", "yue", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
hfl
null
hfl/cino-base-v2
24
2
transformers
7,777
--- language: - zh - bo - kk - ko - mn - ug - yue license: "apache-2.0" --- ## CINO: Pre-trained Language Models for Chinese Minority Languages(中国少数民族预训练模型) Multilingual Pre-trained Language Model, such as mBERT, XLM-R, provide multilingual and cross-lingual ability for language understanding. We have seen rapid progress on building multilingual PLMs in recent year. However, there is a lack of contributions on building PLMs on Chines minority languages, which hinders researchers from building powerful NLP systems. To address the absence of Chinese minority PLMs, Joint Laboratory of HIT and iFLYTEK Research (HFL) proposes CINO (Chinese-miNOrity pre-trained language model), which is built on XLM-R with additional pre-training using Chinese minority corpus, such as - Chinese,中文(zh) - Tibetan,藏语(bo) - Mongolian (Uighur form),蒙语(mn) - Uyghur,维吾尔语(ug) - Kazakh (Arabic form),哈萨克语(kk) - Korean,朝鲜语(ko) - Zhuang,壮语 - Cantonese,粤语(yue) Please read our GitHub repository for more details (Chinese): https://github.com/ymcui/Chinese-Minority-PLM You may also interested in, Chinese MacBERT: https://github.com/ymcui/MacBERT Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA Chinese XLNet: https://github.com/ymcui/Chinese-XLNet Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology
huggingtweets/bts_bighit
0c1065599374b90b4c1a8511cb5750d3b3dbf04b
2021-05-21T21:16:26.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bts_bighit
24
null
transformers
7,778
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318205976110010371/hvlZiocy_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">BTS_official 🤖 AI Bot </div> <div style="font-size: 15px">@bts_bighit bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bts_bighit's tweets](https://twitter.com/bts_bighit). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 807 | | Short tweets | 17 | | Tweets kept | 2424 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/346cr95o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bts_bighit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bts_bighit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/marsneedsmilfs
4d127bd9d236bf511240d2a81b3a3d283fe3d299
2021-05-22T13:32:30.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/marsneedsmilfs
24
null
transformers
7,779
--- language: en thumbnail: https://www.huggingtweets.com/marsneedsmilfs/1614121336301/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358993374590750724/2DLIr0yk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">nial 🤖 AI Bot </div> <div style="font-size: 15px">@marsneedsmilfs bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@marsneedsmilfs's tweets](https://twitter.com/marsneedsmilfs). | Data | Quantity | | --- | --- | | Tweets downloaded | 3159 | | Retweets | 1127 | | Short tweets | 633 | | Tweets kept | 1399 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/utrzu0cc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marsneedsmilfs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1avwfygo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1avwfygo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marsneedsmilfs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/murderlinart
bd04e04172eed23e8fc6525eaf5c91553be360b5
2021-05-22T15:30:57.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/murderlinart
24
null
transformers
7,780
--- language: en thumbnail: https://www.huggingtweets.com/murderlinart/1617904433043/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378075236109811712/6wkJc-3m_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">AJ 🍀 🤖 AI Bot </div> <div style="font-size: 15px">@murderlinart bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@murderlinart's tweets](https://twitter.com/murderlinart). | Data | Quantity | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 1141 | | Short tweets | 544 | | Tweets kept | 1545 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/b0hhcnrk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @murderlinart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a7qsqyy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a7qsqyy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/murderlinart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/qtsheepgirl
b7d4d93e4e20e5eb736ac4b93ee38fb7bc5a6ef7
2021-05-22T20:00:14.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/qtsheepgirl
24
null
transformers
7,781
--- language: en thumbnail: https://www.huggingtweets.com/qtsheepgirl/1614111306823/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357323547606188040/0l2qcUWr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ashleigh🎄💜💛💜💛💜💛💜💛💜 🤖 AI Bot </div> <div style="font-size: 15px">@qtsheepgirl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@qtsheepgirl's tweets](https://twitter.com/qtsheepgirl). | Data | Quantity | | --- | --- | | Tweets downloaded | 1338 | | Retweets | 233 | | Short tweets | 407 | | Tweets kept | 698 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21akccjl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @qtsheepgirl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f5eimxf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f5eimxf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/qtsheepgirl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/stefrappeneau
94b7d3d0fe718dc49b9c1749a546a566e77a7cc7
2021-05-23T00:00:31.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/stefrappeneau
24
null
transformers
7,782
--- language: en thumbnail: https://www.huggingtweets.com/stefrappeneau/1609353045656/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1202294057281740800/SnPHZMvt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Stephane Rappeneau 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@stefrappeneau bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@stefrappeneau's tweets](https://twitter.com/stefrappeneau). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3208</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>297</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>86</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2825</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qa7ycwy3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stefrappeneau's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b1exumr4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b1exumr4/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/stefrappeneau'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/thatonequeen
004f7bf25e2ba212625fed2ed5b9fd6097fdce73
2021-05-23T01:12:51.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thatonequeen
24
null
transformers
7,783
--- language: en thumbnail: https://www.huggingtweets.com/thatonequeen/1612629006703/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357903571333701634/pqawe_iI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Black Lives Still Matter 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@thatonequeen bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@thatonequeen's tweets](https://twitter.com/thatonequeen). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3183</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>449</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>511</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2223</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h37t2gnh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thatonequeen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bs8r2sf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bs8r2sf/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/thatonequeen'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
iarfmoose/roberta-small-bulgarian-ner
80a25716df202d7b2295d0c0a5dea0b615125565
2021-05-20T16:51:18.000Z
[ "pytorch", "tf", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
iarfmoose
null
iarfmoose/roberta-small-bulgarian-ner
24
null
transformers
7,784
Entry not found
izumi-lab/electra-small-paper-japanese-discriminator
caba5a2f83aa6fe6686317a12b46d5436d3089de
2022-03-19T09:40:02.000Z
[ "pytorch", "electra", "pretraining", "ja", "dataset:wikipedia", "arxiv:2003.10555", "transformers", "license:cc-by-sa-4.0" ]
null
false
izumi-lab
null
izumi-lab/electra-small-paper-japanese-discriminator
24
1
transformers
7,785
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA small Japanese discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is 1/4 of the size of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2021fin-bert-electra, title={金融文書を用いた事前学習言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Trained Language Model Using Financial Documents}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第27回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27}, pages={5-10}, year={2021} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
jamarju/roberta-large-bne-squad-2.0-es
93ad0184d0ed7a0771388a046e662b8f30917f01
2021-08-05T14:59:41.000Z
[ "pytorch", "roberta", "question-answering", "es", "dataset:squad_es", "transformers", "autotrain_compatible" ]
question-answering
false
jamarju
null
jamarju/roberta-large-bne-squad-2.0-es
24
null
transformers
7,786
--- language: - es datasets: - squad_es widget: - text: "¿Quién era el duque en la batalla de Hastings?" context: "La dinastía normanda tuvo un gran impacto político, cultural y militar en la Europa medieval e incluso en el Cercano Oriente. Los normandos eran famosos por su espíritu marcial y, finalmente, por su piedad cristiana, convirtiéndose en exponentes de la ortodoxia católica en la que se asimilaron. Adoptaron la lengua galorromance de la tierra franca que establecieron, siendo su dialecto conocido como francés normando, normando o normando, una lengua literaria importante. El ducado de Normandía, que formaron por tratado con la corona francesa, fue un gran feudo de la Francia medieval, y bajo Ricardo I de Normandía se forjó en un principado cohesionado y formidable en la tenencia feudal. Los normandos se caracterizan tanto por su cultura, como por su singular arquitectura románica y sus tradiciones musicales, y por sus importantes logros e innovaciones militares. Aventureros normandos fundaron el Reino de Sicilia bajo Roger II después de conquistar el sur de Italia con los sarracenos y bizantinos, y una expedición en nombre de su duque, Guillermo el Conquistador, condujo a la conquista normanda de Inglaterra. La influencia cultural y militar normanda se extendió desde estos nuevos centros europeos a los estados cruzados del Cercano Oriente, donde su príncipe Bohemundo I fundó el Principado de Antioquía en el Levante mediterráneo, a Escocia y Gales en Gran Bretaña." --- This is the [BSC-TeMU/roberta-large-bne](https://huggingface.co/BSC-TeMU/roberta-large-bne) model ([source](https://github.com/PlanTL-SANIDAD/lm-spanish)) trained on the [squad_es v2.0.0](https://huggingface.co/datasets/squad_es) dataset ([source](https://github.com/ccasimiro88/TranslateAlignRetrieve)). Current achievement: em=60.21, f1=68.61 Results: ``` { "epoch": 4.0, "eval_HasAns_exact": 48.44804318488529, "eval_HasAns_f1": 65.24520506718169, "eval_HasAns_total": 5928, "eval_NoAns_exact": 71.97301854974705, "eval_NoAns_f1": 71.97301854974705, "eval_NoAns_total": 5930, "eval_best_exact": 60.22094788328555, "eval_best_exact_thresh": 0.0, "eval_best_f1": 68.6181122987237, "eval_best_f1_thresh": 0.0, "eval_exact": 60.2125147579693, "eval_f1": 68.60967917340695, "eval_samples": 12203, "eval_total": 11858 } ``` Training script: ``` python -m torch.distributed.launch --nproc_per_node=3 ./run_qa.py \ --model_name_or_path BSC-TeMU/roberta-large-bne \ --dataset_name squad_es \ --dataset_config_name v2.0.0 \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./models/roberta-large-bne-finetuned-squad-es/ \ --per_device_eval_batch_size=24 \ --per_device_train_batch_size=12 \ --version_2_with_negative \ --ddp_find_unused_parameters=False \ ```
jeniya/BERTOverflow_stackoverflow_github
9fb82ec57c8b7573cf340bad5f629c5c3fe484a1
2021-05-19T20:48:44.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
jeniya
null
jeniya/BERTOverflow_stackoverflow_github
24
1
transformers
7,787
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). We would like to thank [Wuwei Lan](https://lanwuwei.github.io/) for helping us in training this model. #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("jeniya/BERTOverflow") model = AutoModelForTokenClassification.from_pretrained("jeniya/BERTOverflow") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
joaoalvarenga/wav2vec2-large-xlsr-portuguese-a
a33b4944859db06f54bc71c51ffedf27f4c8a3ec
2021-07-06T09:23:08.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-large-xlsr-portuguese-a
24
null
transformers
7,788
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: JoaoAlvarenga XLSR Wav2Vec2 Large 53 Portuguese A results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 15.037146% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (wer)**: 15.037146% ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
k-partha/decision_bert_bio
e8862263aac91883c0f6f668ef95481ccfc05b18
2022-01-29T03:36:59.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2109.06402", "transformers" ]
text-classification
false
k-partha
null
k-partha/decision_bert_bio
24
null
transformers
7,789
Rates Twitter biographies on decision-making preference: Thinking or Feeling. Roughly corresponds to [agreeableness.](https://en.wikipedia.org/wiki/Agreeableness) Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Remember that models employ pure statistical reasoning (and may consequently make no sense sometimes.) Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
manandey/wav2vec2-large-xlsr-mongolian
31defd0d8a9e8429a5abe60421a99ccb373566b9
2021-07-06T11:37:29.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mn", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
manandey
null
manandey/wav2vec2-large-xlsr-mongolian
24
null
transformers
7,790
--- language: mn datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Mongolian by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice mn type: common_voice args: mn metrics: - name: Test WER type: wer value: 43.08 --- # Wav2Vec2-Large-XLSR-53-Mongolian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "mn", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-mongolian") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-mongolian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "mn", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-mongolian") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-mongolian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 43.08% ## Training The Common Voice `train`, `validation` datasets were used for training.
michaelrglass/albert-base-rci-tabmcq-row
39e2686999689e8ae7a7ec946c3a8402cd43d379
2021-06-16T16:09:19.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
michaelrglass
null
michaelrglass/albert-base-rci-tabmcq-row
24
null
transformers
7,791
Entry not found
nightingal3/bert-finetuned-wsc
50045b9df90e0729a5555d15fb36549887c25d12
2021-10-19T16:09:06.000Z
[ "pytorch", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
nightingal3
null
nightingal3/bert-finetuned-wsc
24
null
transformers
7,792
Entry not found
patrickvonplaten/wav2vec2-2-bart-large
b8a94de6a635a54503433156e91e98a04982cf21
2021-12-29T15:49:52.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers", "librispeech_asr", "generated_from_trainer", "asr_seq2esq", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-2-bart-large
24
5
transformers
7,793
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - asr_seq2esq widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac - example_title: Common Voice sample src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 model-index: - name: wav2vec2-2-bart-large results: [] --- To rerun this experiment, please clone this directory and run: ```bash python create_model.py ``` followed by ```bash ./run_librispeech.sh ``` <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2-bart-large This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) and [bart-large](https://huggingface.co/facebook/bart-large) on the librispeech_asr - clean dataset. It achieves the following results on the evaluation set: - Loss: 0.3204 - Wer: 0.0486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - gradient_accumulation_steps: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
piotr-rybak/poleval2021-task4-plt5-base-qa
a33abe7bfca7ccb3a33a4442e2e86cdddf2606cd
2021-09-23T17:39:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
piotr-rybak
null
piotr-rybak/poleval2021-task4-plt5-base-qa
24
null
transformers
7,794
Entry not found
r3dhummingbird/DialoGPT-medium-neku
ea721e0c3619d5e8e5ef115ec1f7548471b1bacd
2021-06-08T02:57:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
r3dhummingbird
null
r3dhummingbird/DialoGPT-medium-neku
24
3
transformers
7,795
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
rsvp-ai/bertserini-bert-large-squad
9e1d057d6c6cd5f2bec4b2e564e16506d49e43e0
2021-05-19T00:44:05.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rsvp-ai
null
rsvp-ai/bertserini-bert-large-squad
24
null
transformers
7,796
Entry not found
s3h/gec-token-classification-arabert
05608103287647fcdc3dfdc965a4bb0a7e81a4ec
2022-01-04T18:55:01.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
s3h
null
s3h/gec-token-classification-arabert
24
null
transformers
7,797
Entry not found
shreeshaaithal/whatsapp-medium-bot-2
3fed305673c563c9f6ce02c1c46f48050d1d506b
2021-07-07T06:28:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
shreeshaaithal
null
shreeshaaithal/whatsapp-medium-bot-2
24
null
transformers
7,798
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on WhatsApp chats This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on WhatsApp chats or you can train this model on [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). feel free to ask me questions on discord server [discord server](https://discord.gg/Gqhje8Z7DX) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("harrydonni/whatsapp-medium-bot-2") model = AutoModelWithLMHead.from_pretrained("harrydonni/whatsapp-medium-bot-2") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Messi: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` this is done by shreesha thank you......
sismetanin/xlm_roberta_large-ru-sentiment-rureviews
66882479d2401daf57c7b0960583d7d995296e76
2021-02-25T23:52:40.000Z
[ "pytorch", "xlm-roberta", "text-classification", "ru", "transformers", "sentiment analysis", "Russian" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_large-ru-sentiment-rureviews
24
null
transformers
7,799
--- language: - ru tags: - sentiment analysis - Russian --- ## XLM-RoBERTa-Large-ru-sentiment-RuReviews XLM-RoBERTa-Large-ru-sentiment-RuReviews is a [XLM-RoBERTa-Large](https://huggingface.co/xlm-roberta-large) model fine-tuned on [RuReviews dataset](https://github.com/sismetanin/rureviews) of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @INPROCEEDINGS{Smetanin2019Sentiment, author={Sergey Smetanin and Michail Komarov}, booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)}, title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks}, year={2019}, volume={01}, pages={482-486}, doi={10.1109/CBI.2019.00062}, ISSN={2378-1963}, month={July} } ```