modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
BSC-TeMU/roberta-large-bne-capitel-pos
6ddd4a469f2a48870891d043ed34abe962a9f16a
2021-10-21T10:31:47.000Z
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "pos", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
BSC-TeMU
null
BSC-TeMU/roberta-large-bne-capitel-pos
26
3
transformers
7,500
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "pos" datasets: - "bne" - "capitel" metrics: - "f1" widget: - text: "Festival de San Sebastián: Johnny Depp recibirá el premio Donostia en pleno rifirrafe judicial con Amber Heard" - text: "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto." - text: "Gracias a los datos de la BNE, se ha podido lograr este modelo del lenguaje." - text: "El Tribunal Superior de Justicia se pronunció ayer: \"Hay base legal dentro del marco jurídico actual\"." --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-pos # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Part of Speech (POS) dataset RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 2). ## Evaluation and results F1 Score: 0.9851 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
933447601c98ddcc59e5a79fe03d2a8d0e124d89
2022-02-03T15:17:21.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
BatuhanYilmaz
null
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
26
null
transformers
7,501
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-ner
36e7d767d339b7ed97e8861245db2aef8cb4aa03
2021-10-17T11:13:27.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-da-ner
26
null
transformers
7,502
--- language: - ar license: apache-2.0 widget: - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع" --- # CAMeLBERT-DA NER Model ## Model description **CAMeLBERT-DA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-da-ner') >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-da-ner') >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع") [{'word': 'أبوظبي', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'الإمارات', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'العربية', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'المتحدة', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
Cameron/BERT-mdgender-convai-binary
beb052a4dc3e234ff1dc25d3e28820d69532d722
2021-05-18T17:30:21.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-mdgender-convai-binary
26
null
transformers
7,503
Entry not found
CouchCat/ma_sa_v7_distil
43770a92bed3d5bb5a8da1472eadb83dfd365006
2021-02-15T23:19:57.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "sentiment-analysis", "license:mit" ]
text-classification
false
CouchCat
null
CouchCat/ma_sa_v7_distil
26
null
transformers
7,504
--- language: en license: mit tags: - sentiment-analysis widget: - text: "I am disappointed in the terrible quality of my dress" --- ### Description A Sentiment Analysis model trained on customer feedback data using DistilBert. Possible sentiments are: * negative * neutral * positive ### Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_sa_v7_distil") model = AutoModelForSequenceClassification.from_pretrained("CouchCat/ma_sa_v7_distil") ```
Davlan/xlm-roberta-large-masakhaner
36e6b01b4ebd3afc282e0ce198d0a04ddbfd58a8
2022-06-27T11:50:50.000Z
[ "pytorch", "tf", "xlm-roberta", "token-classification", "amh", "hau", "ibo", "kin", "lug", "luo", "pcm", "swa", "wol", "yor", "multilingual", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
false
Davlan
null
Davlan/xlm-roberta-large-masakhaner
26
null
transformers
7,505
Hugging Face's logo --- language: - amh - hau - ibo - kin - lug - luo - pcm - swa - wol - yor - multilingual datasets: - masakhaner --- # xlm-roberta-large-masakhaner ## Model description **xlm-roberta-large-masakhaner** is the first **Named Entity Recognition** model for 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/xlm-roberta-large-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/xlm-roberta-large-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 10 African NER datasets (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- amh |75.76 hau |91.75 ibo |86.26 kin |76.38 lug |84.64 luo |80.65 pcm |89.55 swa |89.48 wol |70.70 yor |82.05 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
DrMatters/rubert_cased
58badf1655b5856f08b90eb14313fa4a3405ece9
2021-05-19T11:14:32.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
DrMatters
null
DrMatters/rubert_cased
26
null
transformers
7,506
Entry not found
EleutherAI/enformer-191k_corr_coef_obj
5c9d4159c1815c487b206367493033d113fa3eea
2022-02-23T12:17:55.000Z
[ "pytorch", "enformer", "transformers", "license:apache-2.0" ]
null
false
EleutherAI
null
EleutherAI/enformer-191k_corr_coef_obj
26
null
transformers
7,507
--- license: apache-2.0 inference: false --- # Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 196,608 basepairs, target length 896, with shift augmentation but without reverse complement, on poisson loss objective. Final human pearson R of ~0.49. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
Elron/bleurt-base-128
3dabe1a4ba7ca2041f5455262780ab797f0f7d0b
2021-10-04T13:24:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Elron
null
Elron/bleurt-base-128
26
1
transformers
7,508
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-base-128") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-base-128") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([0.3598, 0.0723]) ```
HJK/PickupLineGenerator
9f62120ac2b28ef67731c4e5d41073d09a02b560
2021-05-21T10:05:21.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
HJK
null
HJK/PickupLineGenerator
26
null
transformers
7,509
basically, it makes pickup lines https://huggingface.co/gpt2
Helsinki-NLP/opus-mt-bem-en
8175ad6e29c44d6aa61a3cc3e0cc6b89432be48e
2021-09-09T21:27:03.000Z
[ "pytorch", "marian", "text2text-generation", "bem", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bem-en
26
null
transformers
7,510
--- tags: - translation license: apache-2.0 --- ### opus-mt-bem-en * source languages: bem * target languages: en * OPUS readme: [bem-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bem-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/bem-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bem.en | 33.4 | 0.491 |
Helsinki-NLP/opus-mt-en-niu
f52877dc5488bf560017c19e65a545112d7a8ec8
2021-09-09T21:38:01.000Z
[ "pytorch", "marian", "text2text-generation", "en", "niu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-niu
26
null
transformers
7,511
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-niu * source languages: en * target languages: niu * OPUS readme: [en-niu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-niu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-niu/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-niu/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-niu/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.niu | 53.0 | 0.698 |
Helsinki-NLP/opus-mt-es-hr
27f3c1660c42cb2fc6267a557debf6cfbeaae583
2021-09-09T21:42:54.000Z
[ "pytorch", "marian", "text2text-generation", "es", "hr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-hr
26
null
transformers
7,512
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-hr * source languages: es * target languages: hr * OPUS readme: [es-hr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-hr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-hr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-hr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-hr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.hr | 21.7 | 0.459 |
Helsinki-NLP/opus-mt-ine-ine
82a5f65abdd0e196b05112464ff3dd552d484283
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ine-ine
26
null
transformers
7,513
--- language: - ca - es - os - ro - fy - cy - sc - is - yi - lb - an - sq - fr - ht - rm - ps - af - uk - sl - lt - bg - be - gd - si - en - br - mk - or - mr - ru - fo - co - oc - pl - gl - nb - bn - id - hy - da - gv - nl - pt - hi - as - kw - ga - sv - gu - wa - lv - el - it - hr - ur - nn - de - cs - ine tags: - translation license: apache-2.0 --- ### ine-ine * source group: Indo-European languages * target group: Indo-European languages * OPUS readme: [ine-ine](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-ine/README.md) * model: transformer * source language(s): afr afr_Arab aln ang_Latn arg asm ast awa bel bel_Latn ben bho bjn bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell eng enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye hye_Latn ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Grek lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pcd pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus rus_Latn san_Deva scn sco sgs sin slv snd_Arab spa sqi srd srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza * target language(s): afr afr_Arab aln ang_Latn arg asm ast awa bel bel_Latn ben bho bjn bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell eng enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye hye_Latn ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Grek lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pcd pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus rus_Latn san_Deva scn sco sgs sin slv snd_Arab spa sqi srd srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | euelections_dev2019.de-fr-deufra.deu.fra | 19.2 | 0.482 | | euelections_dev2019.fr-de-fradeu.fra.deu | 15.8 | 0.470 | | newsdev2014-enghin.eng.hin | 4.0 | 0.245 | | newsdev2014-hineng.hin.eng | 6.8 | 0.301 | | newsdev2016-enro-engron.eng.ron | 17.3 | 0.470 | | newsdev2016-enro-roneng.ron.eng | 26.0 | 0.534 | | newsdev2017-enlv-englav.eng.lav | 12.1 | 0.416 | | newsdev2017-enlv-laveng.lav.eng | 15.9 | 0.443 | | newsdev2019-engu-engguj.eng.guj | 2.5 | 0.200 | | newsdev2019-engu-gujeng.guj.eng | 7.1 | 0.302 | | newsdev2019-enlt-englit.eng.lit | 10.6 | 0.407 | | newsdev2019-enlt-liteng.lit.eng | 14.9 | 0.428 | | newsdiscussdev2015-enfr-engfra.eng.fra | 22.6 | 0.507 | | newsdiscussdev2015-enfr-fraeng.fra.eng | 23.5 | 0.495 | | newsdiscusstest2015-enfr-engfra.eng.fra | 25.1 | 0.528 | | newsdiscusstest2015-enfr-fraeng.fra.eng | 26.4 | 0.517 | | newssyscomb2009-cesdeu.ces.deu | 13.1 | 0.432 | | newssyscomb2009-ceseng.ces.eng | 18.4 | 0.463 | | newssyscomb2009-cesfra.ces.fra | 15.5 | 0.452 | | newssyscomb2009-cesita.ces.ita | 14.8 | 0.458 | | newssyscomb2009-cesspa.ces.spa | 18.4 | 0.462 | | newssyscomb2009-deuces.deu.ces | 10.5 | 0.381 | | newssyscomb2009-deueng.deu.eng | 19.5 | 0.467 | | newssyscomb2009-deufra.deu.fra | 16.4 | 0.459 | | newssyscomb2009-deuita.deu.ita | 15.5 | 0.456 | | newssyscomb2009-deuspa.deu.spa | 18.4 | 0.466 | | newssyscomb2009-engces.eng.ces | 11.9 | 0.394 | | newssyscomb2009-engdeu.eng.deu | 13.9 | 0.446 | | newssyscomb2009-engfra.eng.fra | 20.7 | 0.502 | | newssyscomb2009-engita.eng.ita | 21.3 | 0.516 | | newssyscomb2009-engspa.eng.spa | 22.3 | 0.506 | | newssyscomb2009-fraces.fra.ces | 11.5 | 0.390 | | newssyscomb2009-fradeu.fra.deu | 13.4 | 0.437 | | newssyscomb2009-fraeng.fra.eng | 22.8 | 0.499 | | newssyscomb2009-fraita.fra.ita | 22.2 | 0.533 | | newssyscomb2009-fraspa.fra.spa | 26.2 | 0.539 | | newssyscomb2009-itaces.ita.ces | 12.3 | 0.397 | | newssyscomb2009-itadeu.ita.deu | 13.3 | 0.436 | | newssyscomb2009-itaeng.ita.eng | 24.7 | 0.517 | | newssyscomb2009-itafra.ita.fra | 24.0 | 0.528 | | newssyscomb2009-itaspa.ita.spa | 26.3 | 0.537 | | newssyscomb2009-spaces.spa.ces | 12.0 | 0.400 | | newssyscomb2009-spadeu.spa.deu | 13.9 | 0.440 | | newssyscomb2009-spaeng.spa.eng | 22.9 | 0.509 | | newssyscomb2009-spafra.spa.fra | 24.2 | 0.538 | | newssyscomb2009-spaita.spa.ita | 24.5 | 0.547 | | news-test2008-cesdeu.ces.deu | 12.0 | 0.422 | | news-test2008-cesfra.ces.fra | 15.1 | 0.444 | | news-test2008-cesspa.ces.spa | 16.4 | 0.451 | | news-test2008-deuces.deu.ces | 9.9 | 0.369 | | news-test2008-deueng.deu.eng | 18.0 | 0.456 | | news-test2008-deufra.deu.fra | 16.4 | 0.453 | | news-test2008-deuspa.deu.spa | 17.0 | 0.452 | | news-test2008-engces.eng.ces | 10.5 | 0.375 | | news-test2008-engdeu.eng.deu | 14.5 | 0.439 | | news-test2008-engfra.eng.fra | 18.9 | 0.481 | | news-test2008-engspa.eng.spa | 20.9 | 0.491 | | news-test2008-fraces.fra.ces | 10.7 | 0.380 | | news-test2008-fradeu.fra.deu | 13.8 | 0.435 | | news-test2008-fraeng.fra.eng | 19.8 | 0.479 | | news-test2008-fraspa.fra.spa | 24.8 | 0.522 | | news-test2008-spaces.spa.ces | 11.0 | 0.380 | | news-test2008-spadeu.spa.deu | 14.0 | 0.433 | | news-test2008-spaeng.spa.eng | 20.6 | 0.488 | | news-test2008-spafra.spa.fra | 23.3 | 0.518 | | newstest2009-cesdeu.ces.deu | 12.9 | 0.427 | | newstest2009-ceseng.ces.eng | 17.0 | 0.456 | | newstest2009-cesfra.ces.fra | 15.4 | 0.447 | | newstest2009-cesita.ces.ita | 14.9 | 0.454 | | newstest2009-cesspa.ces.spa | 17.1 | 0.458 | | newstest2009-deuces.deu.ces | 10.3 | 0.370 | | newstest2009-deueng.deu.eng | 17.7 | 0.458 | | newstest2009-deufra.deu.fra | 15.9 | 0.447 | | newstest2009-deuita.deu.ita | 14.7 | 0.446 | | newstest2009-deuspa.deu.spa | 17.2 | 0.453 | | newstest2009-engces.eng.ces | 11.0 | 0.387 | | newstest2009-engdeu.eng.deu | 13.6 | 0.440 | | newstest2009-engfra.eng.fra | 20.3 | 0.496 | | newstest2009-engita.eng.ita | 20.8 | 0.509 | | newstest2009-engspa.eng.spa | 21.9 | 0.503 | | newstest2009-fraces.fra.ces | 11.3 | 0.385 | | newstest2009-fradeu.fra.deu | 14.0 | 0.436 | | newstest2009-fraeng.fra.eng | 21.8 | 0.496 | | newstest2009-fraita.fra.ita | 22.1 | 0.526 | | newstest2009-fraspa.fra.spa | 24.8 | 0.525 | | newstest2009-itaces.ita.ces | 11.5 | 0.382 | | newstest2009-itadeu.ita.deu | 13.3 | 0.430 | | newstest2009-itaeng.ita.eng | 23.6 | 0.508 | | newstest2009-itafra.ita.fra | 22.9 | 0.516 | | newstest2009-itaspa.ita.spa | 25.4 | 0.529 | | newstest2009-spaces.spa.ces | 11.3 | 0.386 | | newstest2009-spadeu.spa.deu | 13.5 | 0.434 | | newstest2009-spaeng.spa.eng | 22.4 | 0.500 | | newstest2009-spafra.spa.fra | 23.2 | 0.520 | | newstest2009-spaita.spa.ita | 24.0 | 0.538 | | newstest2010-cesdeu.ces.deu | 13.1 | 0.431 | | newstest2010-ceseng.ces.eng | 16.9 | 0.459 | | newstest2010-cesfra.ces.fra | 15.6 | 0.450 | | newstest2010-cesspa.ces.spa | 18.5 | 0.467 | | newstest2010-deuces.deu.ces | 11.4 | 0.387 | | newstest2010-deueng.deu.eng | 19.6 | 0.481 | | newstest2010-deufra.deu.fra | 17.7 | 0.471 | | newstest2010-deuspa.deu.spa | 20.0 | 0.478 | | newstest2010-engces.eng.ces | 11.4 | 0.393 | | newstest2010-engdeu.eng.deu | 15.1 | 0.448 | | newstest2010-engfra.eng.fra | 21.4 | 0.506 | | newstest2010-engspa.eng.spa | 25.0 | 0.525 | | newstest2010-fraces.fra.ces | 11.1 | 0.386 | | newstest2010-fradeu.fra.deu | 14.2 | 0.442 | | newstest2010-fraeng.fra.eng | 22.6 | 0.507 | | newstest2010-fraspa.fra.spa | 26.6 | 0.542 | | newstest2010-spaces.spa.ces | 12.2 | 0.396 | | newstest2010-spadeu.spa.deu | 15.1 | 0.445 | | newstest2010-spaeng.spa.eng | 24.3 | 0.521 | | newstest2010-spafra.spa.fra | 24.8 | 0.536 | | newstest2011-cesdeu.ces.deu | 13.1 | 0.423 | | newstest2011-ceseng.ces.eng | 18.2 | 0.463 | | newstest2011-cesfra.ces.fra | 17.4 | 0.458 | | newstest2011-cesspa.ces.spa | 18.9 | 0.464 | | newstest2011-deuces.deu.ces | 11.2 | 0.376 | | newstest2011-deueng.deu.eng | 18.3 | 0.464 | | newstest2011-deufra.deu.fra | 17.0 | 0.457 | | newstest2011-deuspa.deu.spa | 19.2 | 0.464 | | newstest2011-engces.eng.ces | 12.4 | 0.395 | | newstest2011-engdeu.eng.deu | 14.5 | 0.437 | | newstest2011-engfra.eng.fra | 23.6 | 0.522 | | newstest2011-engspa.eng.spa | 26.6 | 0.530 | | newstest2011-fraces.fra.ces | 12.5 | 0.394 | | newstest2011-fradeu.fra.deu | 14.2 | 0.433 | | newstest2011-fraeng.fra.eng | 24.3 | 0.521 | | newstest2011-fraspa.fra.spa | 29.1 | 0.551 | | newstest2011-spaces.spa.ces | 12.3 | 0.390 | | newstest2011-spadeu.spa.deu | 14.4 | 0.435 | | newstest2011-spaeng.spa.eng | 25.0 | 0.521 | | newstest2011-spafra.spa.fra | 25.6 | 0.537 | | newstest2012-cesdeu.ces.deu | 13.1 | 0.420 | | newstest2012-ceseng.ces.eng | 17.5 | 0.457 | | newstest2012-cesfra.ces.fra | 16.8 | 0.452 | | newstest2012-cesrus.ces.rus | 11.2 | 0.379 | | newstest2012-cesspa.ces.spa | 18.1 | 0.457 | | newstest2012-deuces.deu.ces | 11.2 | 0.368 | | newstest2012-deueng.deu.eng | 19.4 | 0.472 | | newstest2012-deufra.deu.fra | 17.7 | 0.464 | | newstest2012-deurus.deu.rus | 10.3 | 0.370 | | newstest2012-deuspa.deu.spa | 19.6 | 0.467 | | newstest2012-engces.eng.ces | 11.1 | 0.375 | | newstest2012-engdeu.eng.deu | 14.6 | 0.440 | | newstest2012-engfra.eng.fra | 22.4 | 0.512 | | newstest2012-engrus.eng.rus | 17.6 | 0.452 | | newstest2012-engspa.eng.spa | 26.5 | 0.527 | | newstest2012-fraces.fra.ces | 11.9 | 0.383 | | newstest2012-fradeu.fra.deu | 14.6 | 0.437 | | newstest2012-fraeng.fra.eng | 24.3 | 0.516 | | newstest2012-frarus.fra.rus | 11.9 | 0.393 | | newstest2012-fraspa.fra.spa | 28.3 | 0.545 | | newstest2012-rusces.rus.ces | 9.0 | 0.340 | | newstest2012-rusdeu.rus.deu | 10.0 | 0.383 | | newstest2012-ruseng.rus.eng | 22.4 | 0.492 | | newstest2012-rusfra.rus.fra | 13.3 | 0.427 | | newstest2012-russpa.rus.spa | 16.6 | 0.437 | | newstest2012-spaces.spa.ces | 11.9 | 0.381 | | newstest2012-spadeu.spa.deu | 14.8 | 0.440 | | newstest2012-spaeng.spa.eng | 26.5 | 0.534 | | newstest2012-spafra.spa.fra | 25.0 | 0.539 | | newstest2012-sparus.spa.rus | 12.4 | 0.401 | | newstest2013-cesdeu.ces.deu | 14.3 | 0.434 | | newstest2013-ceseng.ces.eng | 18.5 | 0.463 | | newstest2013-cesfra.ces.fra | 16.6 | 0.444 | | newstest2013-cesrus.ces.rus | 13.6 | 0.406 | | newstest2013-cesspa.ces.spa | 18.2 | 0.455 | | newstest2013-deuces.deu.ces | 11.7 | 0.380 | | newstest2013-deueng.deu.eng | 20.9 | 0.481 | | newstest2013-deufra.deu.fra | 18.1 | 0.460 | | newstest2013-deurus.deu.rus | 11.7 | 0.384 | | newstest2013-deuspa.deu.spa | 19.4 | 0.463 | | newstest2013-engces.eng.ces | 12.7 | 0.394 | | newstest2013-engdeu.eng.deu | 16.7 | 0.455 | | newstest2013-engfra.eng.fra | 22.7 | 0.499 | | newstest2013-engrus.eng.rus | 13.3 | 0.408 | | newstest2013-engspa.eng.spa | 23.6 | 0.506 | | newstest2013-fraces.fra.ces | 11.8 | 0.379 | | newstest2013-fradeu.fra.deu | 15.6 | 0.446 | | newstest2013-fraeng.fra.eng | 23.6 | 0.506 | | newstest2013-frarus.fra.rus | 12.9 | 0.399 | | newstest2013-fraspa.fra.spa | 25.3 | 0.519 | | newstest2013-rusces.rus.ces | 11.6 | 0.376 | | newstest2013-rusdeu.rus.deu | 12.4 | 0.410 | | newstest2013-ruseng.rus.eng | 17.8 | 0.448 | | newstest2013-rusfra.rus.fra | 14.8 | 0.434 | | newstest2013-russpa.rus.spa | 17.9 | 0.446 | | newstest2013-spaces.spa.ces | 12.5 | 0.391 | | newstest2013-spadeu.spa.deu | 15.9 | 0.449 | | newstest2013-spaeng.spa.eng | 24.0 | 0.518 | | newstest2013-spafra.spa.fra | 24.3 | 0.522 | | newstest2013-sparus.spa.rus | 13.9 | 0.411 | | newstest2014-csen-ceseng.ces.eng | 19.0 | 0.475 | | newstest2014-deen-deueng.deu.eng | 19.2 | 0.468 | | newstest2014-fren-fraeng.fra.eng | 23.9 | 0.521 | | newstest2014-hien-enghin.eng.hin | 5.9 | 0.268 | | newstest2014-hien-hineng.hin.eng | 8.8 | 0.348 | | newstest2014-ruen-ruseng.rus.eng | 19.1 | 0.475 | | newstest2015-encs-ceseng.ces.eng | 17.9 | 0.450 | | newstest2015-encs-engces.eng.ces | 12.1 | 0.392 | | newstest2015-ende-deueng.deu.eng | 21.1 | 0.480 | | newstest2015-ende-engdeu.eng.deu | 18.7 | 0.475 | | newstest2015-enru-engrus.eng.rus | 15.4 | 0.431 | | newstest2015-enru-ruseng.rus.eng | 18.1 | 0.454 | | newstest2016-encs-ceseng.ces.eng | 18.6 | 0.465 | | newstest2016-encs-engces.eng.ces | 13.3 | 0.403 | | newstest2016-ende-deueng.deu.eng | 24.0 | 0.508 | | newstest2016-ende-engdeu.eng.deu | 21.4 | 0.494 | | newstest2016-enro-engron.eng.ron | 16.8 | 0.457 | | newstest2016-enro-roneng.ron.eng | 24.9 | 0.522 | | newstest2016-enru-engrus.eng.rus | 13.7 | 0.417 | | newstest2016-enru-ruseng.rus.eng | 17.3 | 0.453 | | newstest2017-encs-ceseng.ces.eng | 16.7 | 0.444 | | newstest2017-encs-engces.eng.ces | 10.9 | 0.375 | | newstest2017-ende-deueng.deu.eng | 21.5 | 0.484 | | newstest2017-ende-engdeu.eng.deu | 17.5 | 0.464 | | newstest2017-enlv-englav.eng.lav | 9.1 | 0.388 | | newstest2017-enlv-laveng.lav.eng | 11.5 | 0.404 | | newstest2017-enru-engrus.eng.rus | 14.8 | 0.432 | | newstest2017-enru-ruseng.rus.eng | 19.3 | 0.467 | | newstest2018-encs-ceseng.ces.eng | 17.1 | 0.450 | | newstest2018-encs-engces.eng.ces | 10.9 | 0.380 | | newstest2018-ende-deueng.deu.eng | 26.0 | 0.518 | | newstest2018-ende-engdeu.eng.deu | 24.3 | 0.514 | | newstest2018-enru-engrus.eng.rus | 12.5 | 0.417 | | newstest2018-enru-ruseng.rus.eng | 16.4 | 0.443 | | newstest2019-csde-cesdeu.ces.deu | 13.9 | 0.432 | | newstest2019-decs-deuces.deu.ces | 11.7 | 0.383 | | newstest2019-deen-deueng.deu.eng | 22.2 | 0.483 | | newstest2019-defr-deufra.deu.fra | 20.1 | 0.496 | | newstest2019-encs-engces.eng.ces | 12.3 | 0.389 | | newstest2019-ende-engdeu.eng.deu | 22.0 | 0.497 | | newstest2019-engu-engguj.eng.guj | 3.1 | 0.208 | | newstest2019-enlt-englit.eng.lit | 7.8 | 0.369 | | newstest2019-enru-engrus.eng.rus | 14.6 | 0.408 | | newstest2019-frde-fradeu.fra.deu | 16.4 | 0.483 | | newstest2019-guen-gujeng.guj.eng | 6.1 | 0.288 | | newstest2019-lten-liteng.lit.eng | 16.9 | 0.456 | | newstest2019-ruen-ruseng.rus.eng | 20.2 | 0.468 | | Tatoeba-test.afr-ang.afr.ang | 16.0 | 0.152 | | Tatoeba-test.afr-ces.afr.ces | 10.2 | 0.333 | | Tatoeba-test.afr-dan.afr.dan | 32.6 | 0.651 | | Tatoeba-test.afr-deu.afr.deu | 34.5 | 0.556 | | Tatoeba-test.afr-eng.afr.eng | 48.1 | 0.638 | | Tatoeba-test.afr-enm.afr.enm | 10.2 | 0.416 | | Tatoeba-test.afr-fra.afr.fra | 41.9 | 0.612 | | Tatoeba-test.afr-fry.afr.fry | 0.0 | 0.112 | | Tatoeba-test.afr-gos.afr.gos | 0.3 | 0.068 | | Tatoeba-test.afr-isl.afr.isl | 12.2 | 0.419 | | Tatoeba-test.afr-ita.afr.ita | 48.7 | 0.637 | | Tatoeba-test.afr-lat.afr.lat | 8.4 | 0.407 | | Tatoeba-test.afr-ltz.afr.ltz | 19.0 | 0.357 | | Tatoeba-test.afr-mkd.afr.mkd | 0.0 | 0.238 | | Tatoeba-test.afr-msa.afr.msa | 1.4 | 0.080 | | Tatoeba-test.afr-nld.afr.nld | 45.7 | 0.643 | | Tatoeba-test.afr-nor.afr.nor | 55.3 | 0.687 | | Tatoeba-test.afr-pol.afr.pol | 39.3 | 0.563 | | Tatoeba-test.afr-por.afr.por | 33.9 | 0.586 | | Tatoeba-test.afr-ron.afr.ron | 22.6 | 0.475 | | Tatoeba-test.afr-rus.afr.rus | 32.1 | 0.525 | | Tatoeba-test.afr-spa.afr.spa | 44.1 | 0.611 | | Tatoeba-test.afr-swe.afr.swe | 71.6 | 0.814 | | Tatoeba-test.afr-ukr.afr.ukr | 31.0 | 0.481 | | Tatoeba-test.afr-yid.afr.yid | 100.0 | 1.000 | | Tatoeba-test.ang-afr.ang.afr | 0.0 | 0.133 | | Tatoeba-test.ang-ces.ang.ces | 5.5 | 0.129 | | Tatoeba-test.ang-dan.ang.dan | 22.2 | 0.345 | | Tatoeba-test.ang-deu.ang.deu | 6.3 | 0.251 | | Tatoeba-test.ang-eng.ang.eng | 7.9 | 0.255 | | Tatoeba-test.ang-enm.ang.enm | 0.8 | 0.133 | | Tatoeba-test.ang-fao.ang.fao | 16.0 | 0.086 | | Tatoeba-test.ang-fra.ang.fra | 6.0 | 0.185 | | Tatoeba-test.ang-gos.ang.gos | 0.6 | 0.000 | | Tatoeba-test.ang-isl.ang.isl | 16.0 | 0.102 | | Tatoeba-test.ang-ita.ang.ita | 13.2 | 0.301 | | Tatoeba-test.ang-kur.ang.kur | 7.6 | 0.062 | | Tatoeba-test.ang-lad.ang.lad | 0.2 | 0.025 | | Tatoeba-test.ang-lat.ang.lat | 6.6 | 0.198 | | Tatoeba-test.ang-ltz.ang.ltz | 5.5 | 0.121 | | Tatoeba-test.ang-por.ang.por | 11.4 | 0.498 | | Tatoeba-test.ang-rus.ang.rus | 2.4 | 0.103 | | Tatoeba-test.ang-spa.ang.spa | 8.1 | 0.249 | | Tatoeba-test.ang-ukr.ang.ukr | 16.4 | 0.195 | | Tatoeba-test.ang-yid.ang.yid | 1.1 | 0.117 | | Tatoeba-test.arg-eng.arg.eng | 28.2 | 0.394 | | Tatoeba-test.arg-fra.arg.fra | 39.8 | 0.445 | | Tatoeba-test.arg-spa.arg.spa | 52.3 | 0.608 | | Tatoeba-test.asm-dan.asm.dan | 8.6 | 0.261 | | Tatoeba-test.asm-deu.asm.deu | 19.2 | 0.629 | | Tatoeba-test.asm-eng.asm.eng | 18.2 | 0.369 | | Tatoeba-test.asm-fra.asm.fra | 4.3 | 0.145 | | Tatoeba-test.asm-hin.asm.hin | 4.5 | 0.366 | | Tatoeba-test.asm-ita.asm.ita | 12.1 | 0.310 | | Tatoeba-test.asm-zza.asm.zza | 8.1 | 0.050 | | Tatoeba-test.ast-deu.ast.deu | 30.1 | 0.463 | | Tatoeba-test.ast-eng.ast.eng | 27.6 | 0.441 | | Tatoeba-test.ast-fra.ast.fra | 29.4 | 0.501 | | Tatoeba-test.ast-gos.ast.gos | 2.6 | 0.030 | | Tatoeba-test.ast-nds.ast.nds | 10.0 | 0.280 | | Tatoeba-test.ast-nld.ast.nld | 100.0 | 1.000 | | Tatoeba-test.ast-por.ast.por | 100.0 | 1.000 | | Tatoeba-test.ast-rus.ast.rus | 35.9 | 0.682 | | Tatoeba-test.ast-spa.ast.spa | 41.7 | 0.601 | | Tatoeba-test.awa-eng.awa.eng | 2.4 | 0.201 | | Tatoeba-test.bel-bul.bel.bul | 53.7 | 0.808 | | Tatoeba-test.bel-ces.bel.ces | 27.6 | 0.483 | | Tatoeba-test.bel-cym.bel.cym | 32.6 | 0.449 | | Tatoeba-test.bel-dan.bel.dan | 29.1 | 0.506 | | Tatoeba-test.bel-deu.bel.deu | 29.5 | 0.522 | | Tatoeba-test.bel-eng.bel.eng | 31.8 | 0.512 | | Tatoeba-test.bel-fra.bel.fra | 30.9 | 0.527 | | Tatoeba-test.bel-hbs.bel.hbs | 39.3 | 0.608 | | Tatoeba-test.bel-ita.bel.ita | 32.8 | 0.540 | | Tatoeba-test.bel-kur.bel.kur | 12.7 | 0.178 | | Tatoeba-test.bel-lad.bel.lad | 4.5 | 0.185 | | Tatoeba-test.bel-lat.bel.lat | 3.7 | 0.251 | | Tatoeba-test.bel-mkd.bel.mkd | 19.3 | 0.531 | | Tatoeba-test.bel-msa.bel.msa | 1.0 | 0.147 | | Tatoeba-test.bel-nld.bel.nld | 27.1 | 0.481 | | Tatoeba-test.bel-nor.bel.nor | 37.0 | 0.494 | | Tatoeba-test.bel-pol.bel.pol | 34.8 | 0.565 | | Tatoeba-test.bel-por.bel.por | 21.7 | 0.401 | | Tatoeba-test.bel-rus.bel.rus | 42.3 | 0.643 | | Tatoeba-test.bel-spa.bel.spa | 28.2 | 0.534 | | Tatoeba-test.bel-ukr.bel.ukr | 41.6 | 0.643 | | Tatoeba-test.bel-yid.bel.yid | 2.9 | 0.254 | | Tatoeba-test.ben-deu.ben.deu | 34.6 | 0.408 | | Tatoeba-test.ben-eng.ben.eng | 26.5 | 0.430 | | Tatoeba-test.ben-fra.ben.fra | 21.6 | 0.466 | | Tatoeba-test.ben-ita.ben.ita | 26.8 | 0.424 | | Tatoeba-test.ben-spa.ben.spa | 28.9 | 0.473 | | Tatoeba-test.bho-eng.bho.eng | 21.0 | 0.384 | | Tatoeba-test.bho-fra.bho.fra | 100.0 | 1.000 | | Tatoeba-test.bre-ces.bre.ces | 2.2 | 0.178 | | Tatoeba-test.bre-deu.bre.deu | 7.7 | 0.296 | | Tatoeba-test.bre-eng.bre.eng | 13.6 | 0.309 | | Tatoeba-test.bre-fra.bre.fra | 8.6 | 0.251 | | Tatoeba-test.bre-ita.bre.ita | 12.2 | 0.272 | | Tatoeba-test.bre-msa.bre.msa | 0.9 | 0.081 | | Tatoeba-test.bre-nld.bre.nld | 3.0 | 0.217 | | Tatoeba-test.bre-nor.bre.nor | 1.4 | 0.158 | | Tatoeba-test.bul-bel.bul.bel | 14.1 | 0.582 | | Tatoeba-test.bul-ces.bul.ces | 52.8 | 0.725 | | Tatoeba-test.bul-dan.bul.dan | 66.9 | 0.951 | | Tatoeba-test.bul-deu.bul.deu | 31.2 | 0.530 | | Tatoeba-test.bul-ell.bul.ell | 29.1 | 0.497 | | Tatoeba-test.bul-eng.bul.eng | 36.5 | 0.547 | | Tatoeba-test.bul-enm.bul.enm | 5.3 | 0.299 | | Tatoeba-test.bul-fas.bul.fas | 8.9 | 0.511 | | Tatoeba-test.bul-fra.bul.fra | 36.1 | 0.558 | | Tatoeba-test.bul-hbs.bul.hbs | 100.0 | 1.000 | | Tatoeba-test.bul-ita.bul.ita | 24.5 | 0.479 | | Tatoeba-test.bul-lad.bul.lad | 8.1 | 0.302 | | Tatoeba-test.bul-lat.bul.lat | 13.4 | 0.337 | | Tatoeba-test.bul-mkd.bul.mkd | 38.2 | 0.811 | | Tatoeba-test.bul-msa.bul.msa | 15.0 | 0.431 | | Tatoeba-test.bul-nld.bul.nld | 31.8 | 0.505 | | Tatoeba-test.bul-nor.bul.nor | 66.9 | 0.951 | | Tatoeba-test.bul-pol.bul.pol | 24.4 | 0.461 | | Tatoeba-test.bul-por.bul.por | 29.2 | 0.484 | | Tatoeba-test.bul-ron.bul.ron | 42.7 | 0.776 | | Tatoeba-test.bul-rus.bul.rus | 28.7 | 0.522 | | Tatoeba-test.bul-spa.bul.spa | 32.1 | 0.520 | | Tatoeba-test.bul-swe.bul.swe | 66.9 | 0.611 | | Tatoeba-test.bul-ukr.bul.ukr | 34.3 | 0.567 | | Tatoeba-test.bul-yid.bul.yid | 13.7 | 0.163 | | Tatoeba-test.cat-deu.cat.deu | 31.0 | 0.523 | | Tatoeba-test.cat-ell.cat.ell | 17.0 | 0.423 | | Tatoeba-test.cat-eng.cat.eng | 39.4 | 0.582 | | Tatoeba-test.cat-enm.cat.enm | 5.3 | 0.370 | | Tatoeba-test.cat-fao.cat.fao | 16.0 | 0.301 | | Tatoeba-test.cat-fra.cat.fra | 41.0 | 0.606 | | Tatoeba-test.cat-ita.cat.ita | 39.8 | 0.626 | | Tatoeba-test.cat-nld.cat.nld | 35.9 | 0.555 | | Tatoeba-test.cat-pol.cat.pol | 23.0 | 0.456 | | Tatoeba-test.cat-por.cat.por | 38.9 | 0.618 | | Tatoeba-test.cat-ron.cat.ron | 16.0 | 0.311 | | Tatoeba-test.cat-rus.cat.rus | 28.8 | 0.507 | | Tatoeba-test.cat-spa.cat.spa | 55.2 | 0.731 | | Tatoeba-test.cat-swe.cat.swe | 100.0 | 1.000 | | Tatoeba-test.cat-ukr.cat.ukr | 30.8 | 0.512 | | Tatoeba-test.cat-yid.cat.yid | 100.0 | 1.000 | | Tatoeba-test.ces-afr.ces.afr | 17.0 | 0.426 | | Tatoeba-test.ces-ang.ces.ang | 3.3 | 0.165 | | Tatoeba-test.ces-bel.ces.bel | 23.3 | 0.466 | | Tatoeba-test.ces-bre.ces.bre | 0.7 | 0.126 | | Tatoeba-test.ces-bul.ces.bul | 45.2 | 0.690 | | Tatoeba-test.ces-cor.ces.cor | 3.4 | 0.072 | | Tatoeba-test.ces-dan.ces.dan | 12.7 | 0.706 | | Tatoeba-test.ces-deu.ces.deu | 32.2 | 0.526 | | Tatoeba-test.ces-ell.ces.ell | 24.4 | 0.422 | | Tatoeba-test.ces-eng.ces.eng | 33.8 | 0.529 | | Tatoeba-test.ces-enm.ces.enm | 1.7 | 0.157 | | Tatoeba-test.ces-fao.ces.fao | 3.7 | 0.252 | | Tatoeba-test.ces-fas.ces.fas | 20.1 | 0.229 | | Tatoeba-test.ces-fra.ces.fra | 36.9 | 0.564 | | Tatoeba-test.ces-fry.ces.fry | 7.7 | 0.338 | | Tatoeba-test.ces-grc.ces.grc | 0.6 | 0.011 | | Tatoeba-test.ces-hbs.ces.hbs | 39.7 | 0.580 | | Tatoeba-test.ces-hsb.ces.hsb | 7.0 | 0.230 | | Tatoeba-test.ces-ita.ces.ita | 28.2 | 0.516 | | Tatoeba-test.ces-lad.ces.lad | 1.7 | 0.303 | | Tatoeba-test.ces-lat.ces.lat | 6.5 | 0.304 | | Tatoeba-test.ces-ltz.ces.ltz | 6.6 | 0.202 | | Tatoeba-test.ces-mkd.ces.mkd | 31.4 | 0.586 | | Tatoeba-test.ces-msa.ces.msa | 6.4 | 0.312 | | Tatoeba-test.ces-nds.ces.nds | 19.9 | 0.468 | | Tatoeba-test.ces-nld.ces.nld | 35.1 | 0.535 | | Tatoeba-test.ces-nor.ces.nor | 41.7 | 0.610 | | Tatoeba-test.ces-pol.ces.pol | 30.5 | 0.530 | | Tatoeba-test.ces-por.ces.por | 33.0 | 0.533 | | Tatoeba-test.ces-ron.ces.ron | 9.9 | 0.406 | | Tatoeba-test.ces-rus.ces.rus | 36.9 | 0.564 | | Tatoeba-test.ces-slv.ces.slv | 4.1 | 0.236 | | Tatoeba-test.ces-spa.ces.spa | 33.3 | 0.531 | | Tatoeba-test.ces-swe.ces.swe | 51.4 | 0.586 | | Tatoeba-test.ces-swg.ces.swg | 4.8 | 0.118 | | Tatoeba-test.ces-ukr.ces.ukr | 34.6 | 0.522 | | Tatoeba-test.ces-yid.ces.yid | 2.1 | 0.252 | | Tatoeba-test.cor-ces.cor.ces | 8.9 | 0.233 | | Tatoeba-test.cor-cym.cor.cym | 6.7 | 0.205 | | Tatoeba-test.cor-deu.cor.deu | 4.8 | 0.211 | | Tatoeba-test.cor-ell.cor.ell | 3.4 | 0.182 | | Tatoeba-test.cor-eng.cor.eng | 4.4 | 0.193 | | Tatoeba-test.cor-fra.cor.fra | 5.0 | 0.221 | | Tatoeba-test.cor-ita.cor.ita | 6.6 | 0.211 | | Tatoeba-test.cor-nld.cor.nld | 9.3 | 0.221 | | Tatoeba-test.cor-nor.cor.nor | 19.6 | 0.282 | | Tatoeba-test.cor-pol.cor.pol | 2.9 | 0.171 | | Tatoeba-test.cor-por.cor.por | 4.3 | 0.187 | | Tatoeba-test.cor-rus.cor.rus | 2.4 | 0.154 | | Tatoeba-test.cor-spa.cor.spa | 3.6 | 0.187 | | Tatoeba-test.cos-deu.cos.deu | 0.0 | 0.877 | | Tatoeba-test.cos-eng.cos.eng | 39.2 | 0.473 | | Tatoeba-test.cos-fra.cos.fra | 19.0 | 0.352 | | Tatoeba-test.cos-pms.cos.pms | 1.6 | 0.066 | | Tatoeba-test.csb-deu.csb.deu | 17.5 | 0.336 | | Tatoeba-test.csb-eng.csb.eng | 14.0 | 0.347 | | Tatoeba-test.csb-spa.csb.spa | 3.8 | 0.278 | | Tatoeba-test.cym-bel.cym.bel | 100.0 | 1.000 | | Tatoeba-test.cym-cor.cym.cor | 0.0 | 0.014 | | Tatoeba-test.cym-deu.cym.deu | 32.6 | 0.507 | | Tatoeba-test.cym-eng.cym.eng | 33.1 | 0.496 | | Tatoeba-test.cym-fra.cym.fra | 27.0 | 0.447 | | Tatoeba-test.cym-gla.cym.gla | 5.7 | 0.223 | | Tatoeba-test.cym-gle.cym.gle | 13.1 | 0.380 | | Tatoeba-test.cym-glv.cym.glv | 5.3 | 0.186 | | Tatoeba-test.cym-ita.cym.ita | 28.3 | 0.498 | | Tatoeba-test.cym-lat.cym.lat | 3.7 | 0.185 | | Tatoeba-test.cym-msa.cym.msa | 8.0 | 0.067 | | Tatoeba-test.cym-nor.cym.nor | 37.5 | 0.603 | | Tatoeba-test.cym-pol.cym.pol | 37.8 | 0.488 | | Tatoeba-test.cym-rus.cym.rus | 32.1 | 0.480 | | Tatoeba-test.cym-spa.cym.spa | 31.6 | 0.523 | | Tatoeba-test.cym-yid.cym.yid | 4.8 | 0.072 | | Tatoeba-test.dan-afr.dan.afr | 40.5 | 0.774 | | Tatoeba-test.dan-ang.dan.ang | 1.2 | 0.066 | | Tatoeba-test.dan-asm.dan.asm | 13.1 | 0.156 | | Tatoeba-test.dan-bel.dan.bel | 27.2 | 0.746 | | Tatoeba-test.dan-bul.dan.bul | 35.4 | 0.529 | | Tatoeba-test.dan-ces.dan.ces | 19.0 | 0.349 | | Tatoeba-test.dan-deu.dan.deu | 35.8 | 0.582 | | Tatoeba-test.dan-ell.dan.ell | 19.0 | 0.337 | | Tatoeba-test.dan-eng.dan.eng | 43.4 | 0.609 | | Tatoeba-test.dan-enm.dan.enm | 18.1 | 0.515 | | Tatoeba-test.dan-fao.dan.fao | 9.7 | 0.162 | | Tatoeba-test.dan-fas.dan.fas | 14.1 | 0.410 | | Tatoeba-test.dan-fra.dan.fra | 47.0 | 0.640 | | Tatoeba-test.dan-gos.dan.gos | 2.6 | 0.195 | | Tatoeba-test.dan-isl.dan.isl | 12.2 | 0.344 | | Tatoeba-test.dan-ita.dan.ita | 36.3 | 0.589 | | Tatoeba-test.dan-kur.dan.kur | 3.5 | 0.270 | | Tatoeba-test.dan-lad.dan.lad | 0.4 | 0.096 | | Tatoeba-test.dan-lat.dan.lat | 3.9 | 0.376 | | Tatoeba-test.dan-lav.dan.lav | 68.7 | 0.786 | | Tatoeba-test.dan-ltz.dan.ltz | 71.4 | 0.554 | | Tatoeba-test.dan-mar.dan.mar | 3.7 | 0.220 | | Tatoeba-test.dan-nds.dan.nds | 4.9 | 0.219 | | Tatoeba-test.dan-nld.dan.nld | 47.2 | 0.650 | | Tatoeba-test.dan-nor.dan.nor | 58.8 | 0.749 | | Tatoeba-test.dan-pol.dan.pol | 27.1 | 0.527 | | Tatoeba-test.dan-por.dan.por | 41.5 | 0.616 | | Tatoeba-test.dan-ron.dan.ron | 100.0 | 1.000 | | Tatoeba-test.dan-rus.dan.rus | 30.8 | 0.518 | | Tatoeba-test.dan-spa.dan.spa | 36.6 | 0.578 | | Tatoeba-test.dan-swe.dan.swe | 53.8 | 0.696 | | Tatoeba-test.dan-swg.dan.swg | 4.8 | 0.184 | | Tatoeba-test.dan-ukr.dan.ukr | 15.9 | 0.489 | | Tatoeba-test.dan-urd.dan.urd | 21.7 | 0.544 | | Tatoeba-test.dan-yid.dan.yid | 13.0 | 0.252 | | Tatoeba-test.deu-afr.deu.afr | 37.5 | 0.566 | | Tatoeba-test.deu-ang.deu.ang | 0.6 | 0.131 | | Tatoeba-test.deu-asm.deu.asm | 20.0 | 0.580 | | Tatoeba-test.deu-ast.deu.ast | 16.5 | 0.389 | | Tatoeba-test.deu-bel.deu.bel | 19.6 | 0.450 | | Tatoeba-test.deu-ben.deu.ben | 34.5 | 0.319 | | Tatoeba-test.deu-bre.deu.bre | 3.2 | 0.196 | | Tatoeba-test.deu-bul.deu.bul | 32.6 | 0.517 | | Tatoeba-test.deu-cat.deu.cat | 28.4 | 0.503 | | Tatoeba-test.deu-ces.deu.ces | 24.3 | 0.465 | | Tatoeba-test.deu-cor.deu.cor | 0.2 | 0.043 | | Tatoeba-test.deu-cos.deu.cos | 2.4 | 0.020 | | Tatoeba-test.deu-csb.deu.csb | 4.4 | 0.178 | | Tatoeba-test.deu-cym.deu.cym | 11.3 | 0.378 | | Tatoeba-test.deu-dan.deu.dan | 37.8 | 0.579 | | Tatoeba-test.deu-dsb.deu.dsb | 0.1 | 0.082 | | Tatoeba-test.deu-egl.deu.egl | 3.3 | 0.050 | | Tatoeba-test.deu-ell.deu.ell | 27.1 | 0.485 | | Tatoeba-test.deu-eng.deu.eng | 34.7 | 0.539 | | Tatoeba-test.deu-enm.deu.enm | 6.7 | 0.331 | | Tatoeba-test.deu-fas.deu.fas | 4.5 | 0.235 | | Tatoeba-test.deu-fra.deu.fra | 31.9 | 0.527 | | Tatoeba-test.deu-frr.deu.frr | 0.2 | 0.101 | | Tatoeba-test.deu-fry.deu.fry | 13.7 | 0.358 | | Tatoeba-test.deu-gla.deu.gla | 7.2 | 0.304 | | Tatoeba-test.deu-gle.deu.gle | 8.9 | 0.349 | | Tatoeba-test.deu-glg.deu.glg | 28.9 | 0.513 | | Tatoeba-test.deu-gos.deu.gos | 0.7 | 0.157 | | Tatoeba-test.deu-got.deu.got | 0.2 | 0.010 | | Tatoeba-test.deu-grc.deu.grc | 0.1 | 0.005 | | Tatoeba-test.deu-gsw.deu.gsw | 0.2 | 0.073 | | Tatoeba-test.deu-hbs.deu.hbs | 23.2 | 0.470 | | Tatoeba-test.deu-hin.deu.hin | 12.5 | 0.367 | | Tatoeba-test.deu-hsb.deu.hsb | 5.4 | 0.249 | | Tatoeba-test.deu-hye.deu.hye | 12.9 | 0.263 | | Tatoeba-test.deu-isl.deu.isl | 16.5 | 0.395 | | Tatoeba-test.deu-ita.deu.ita | 29.2 | 0.536 | | Tatoeba-test.deu-ksh.deu.ksh | 0.6 | 0.092 | | Tatoeba-test.deu-kur.deu.kur | 11.2 | 0.183 | | Tatoeba-test.deu-lad.deu.lad | 0.3 | 0.112 | | Tatoeba-test.deu-lat.deu.lat | 6.4 | 0.301 | | Tatoeba-test.deu-lav.deu.lav | 29.6 | 0.502 | | Tatoeba-test.deu-lit.deu.lit | 17.4 | 0.445 | | Tatoeba-test.deu-ltz.deu.ltz | 18.5 | 0.380 | | Tatoeba-test.deu-mar.deu.mar | 7.9 | 0.245 | | Tatoeba-test.deu-mkd.deu.mkd | 21.9 | 0.449 | | Tatoeba-test.deu-msa.deu.msa | 21.9 | 0.478 | | Tatoeba-test.deu-nds.deu.nds | 13.6 | 0.391 | | Tatoeba-test.deu-nld.deu.nld | 37.2 | 0.574 | | Tatoeba-test.deu-nor.deu.nor | 34.5 | 0.562 | | Tatoeba-test.deu-oci.deu.oci | 4.7 | 0.261 | | Tatoeba-test.deu-orv.deu.orv | 0.2 | 0.006 | | Tatoeba-test.deu-pdc.deu.pdc | 0.6 | 0.064 | | Tatoeba-test.deu-pms.deu.pms | 0.2 | 0.064 | | Tatoeba-test.deu-pol.deu.pol | 23.6 | 0.477 | | Tatoeba-test.deu-por.deu.por | 25.1 | 0.480 | | Tatoeba-test.deu-prg.deu.prg | 0.2 | 0.070 | | Tatoeba-test.deu-roh.deu.roh | 0.2 | 0.059 | | Tatoeba-test.deu-rom.deu.rom | 5.2 | 0.179 | | Tatoeba-test.deu-ron.deu.ron | 25.7 | 0.484 | | Tatoeba-test.deu-rus.deu.rus | 27.1 | 0.494 | | Tatoeba-test.deu-scn.deu.scn | 1.6 | 0.076 | | Tatoeba-test.deu-sco.deu.sco | 10.8 | 0.281 | | Tatoeba-test.deu-slv.deu.slv | 8.1 | 0.251 | | Tatoeba-test.deu-spa.deu.spa | 31.5 | 0.534 | | Tatoeba-test.deu-stq.deu.stq | 0.6 | 0.144 | | Tatoeba-test.deu-swe.deu.swe | 39.1 | 0.572 | | Tatoeba-test.deu-swg.deu.swg | 0.1 | 0.088 | | Tatoeba-test.deu-tgk.deu.tgk | 13.1 | 0.406 | | Tatoeba-test.deu-ukr.deu.ukr | 27.2 | 0.489 | | Tatoeba-test.deu-urd.deu.urd | 13.4 | 0.350 | | Tatoeba-test.deu-yid.deu.yid | 6.0 | 0.262 | | Tatoeba-test.dsb-deu.dsb.deu | 14.1 | 0.366 | | Tatoeba-test.dsb-eng.dsb.eng | 19.0 | 0.424 | | Tatoeba-test.dsb-nld.dsb.nld | 15.4 | 0.342 | | Tatoeba-test.dsb-pol.dsb.pol | 15.2 | 0.315 | | Tatoeba-test.dsb-rus.dsb.rus | 35.4 | 0.394 | | Tatoeba-test.dsb-spa.dsb.spa | 12.6 | 0.401 | | Tatoeba-test.egl-deu.egl.deu | 2.9 | 0.168 | | Tatoeba-test.egl-eng.egl.eng | 5.2 | 0.207 | | Tatoeba-test.egl-fra.egl.fra | 6.4 | 0.215 | | Tatoeba-test.egl-ita.egl.ita | 1.6 | 0.180 | | Tatoeba-test.egl-spa.egl.spa | 3.9 | 0.199 | | Tatoeba-test.ell-bul.ell.bul | 26.6 | 0.483 | | Tatoeba-test.ell-cat.ell.cat | 20.2 | 0.398 | | Tatoeba-test.ell-ces.ell.ces | 12.1 | 0.380 | | Tatoeba-test.ell-cor.ell.cor | 0.7 | 0.039 | | Tatoeba-test.ell-dan.ell.dan | 53.7 | 0.513 | | Tatoeba-test.ell-deu.ell.deu | 30.5 | 0.503 | | Tatoeba-test.ell-eng.ell.eng | 43.1 | 0.589 | | Tatoeba-test.ell-enm.ell.enm | 12.7 | 0.541 | | Tatoeba-test.ell-fas.ell.fas | 5.3 | 0.210 | | Tatoeba-test.ell-fra.ell.fra | 39.5 | 0.563 | | Tatoeba-test.ell-glg.ell.glg | 11.6 | 0.343 | | Tatoeba-test.ell-ita.ell.ita | 30.9 | 0.524 | | Tatoeba-test.ell-msa.ell.msa | 57.6 | 0.572 | | Tatoeba-test.ell-nds.ell.nds | 4.9 | 0.244 | | Tatoeba-test.ell-nld.ell.nld | 38.0 | 0.562 | | Tatoeba-test.ell-nor.ell.nor | 40.8 | 0.615 | | Tatoeba-test.ell-pap.ell.pap | 72.6 | 0.846 | | Tatoeba-test.ell-pol.ell.pol | 26.8 | 0.514 | | Tatoeba-test.ell-por.ell.por | 27.1 | 0.493 | | Tatoeba-test.ell-rus.ell.rus | 30.8 | 0.512 | | Tatoeba-test.ell-spa.ell.spa | 30.8 | 0.475 | | Tatoeba-test.ell-swe.ell.swe | 36.0 | 0.521 | | Tatoeba-test.ell-ukr.ell.ukr | 12.6 | 0.364 | | Tatoeba-test.ell-yid.ell.yid | 100.0 | 1.000 | | Tatoeba-test.eng-afr.eng.afr | 46.1 | 0.633 | | Tatoeba-test.eng-ang.eng.ang | 5.1 | 0.136 | | Tatoeba-test.eng-arg.eng.arg | 5.1 | 0.199 | | Tatoeba-test.eng-asm.eng.asm | 0.8 | 0.208 | | Tatoeba-test.eng-ast.eng.ast | 16.8 | 0.380 | | Tatoeba-test.eng-awa.eng.awa | 0.2 | 0.002 | | Tatoeba-test.eng-bel.eng.bel | 16.6 | 0.415 | | Tatoeba-test.eng-ben.eng.ben | 7.0 | 0.321 | | Tatoeba-test.eng-bho.eng.bho | 0.2 | 0.003 | | Tatoeba-test.eng-bre.eng.bre | 6.6 | 0.251 | | Tatoeba-test.eng-bul.eng.bul | 31.5 | 0.513 | | Tatoeba-test.eng-cat.eng.cat | 33.5 | 0.550 | | Tatoeba-test.eng-ces.eng.ces | 25.6 | 0.466 | | Tatoeba-test.eng-cor.eng.cor | 0.1 | 0.035 | | Tatoeba-test.eng-cos.eng.cos | 0.8 | 0.135 | | Tatoeba-test.eng-csb.eng.csb | 1.4 | 0.194 | | Tatoeba-test.eng-cym.eng.cym | 18.8 | 0.422 | | Tatoeba-test.eng-dan.eng.dan | 41.2 | 0.591 | | Tatoeba-test.eng-deu.eng.deu | 27.9 | 0.503 | | Tatoeba-test.eng-dsb.eng.dsb | 0.7 | 0.125 | | Tatoeba-test.eng-egl.eng.egl | 0.1 | 0.062 | | Tatoeba-test.eng-ell.eng.ell | 30.7 | 0.540 | | Tatoeba-test.eng-enm.eng.enm | 4.9 | 0.283 | | Tatoeba-test.eng-ext.eng.ext | 3.9 | 0.217 | | Tatoeba-test.eng-fao.eng.fao | 5.9 | 0.276 | | Tatoeba-test.eng-fas.eng.fas | 4.8 | 0.239 | | Tatoeba-test.eng-fra.eng.fra | 34.6 | 0.551 | | Tatoeba-test.eng-frm.eng.frm | 0.2 | 0.099 | | Tatoeba-test.eng-frr.eng.frr | 5.5 | 0.040 | | Tatoeba-test.eng-fry.eng.fry | 13.1 | 0.357 | | Tatoeba-test.eng-gcf.eng.gcf | 0.4 | 0.085 | | Tatoeba-test.eng-gla.eng.gla | 7.4 | 0.293 | | Tatoeba-test.eng-gle.eng.gle | 20.0 | 0.415 | | Tatoeba-test.eng-glg.eng.glg | 29.9 | 0.528 | | Tatoeba-test.eng-glv.eng.glv | 5.9 | 0.220 | | Tatoeba-test.eng-gos.eng.gos | 0.5 | 0.137 | | Tatoeba-test.eng-got.eng.got | 0.1 | 0.009 | | Tatoeba-test.eng-grc.eng.grc | 0.0 | 0.005 | | Tatoeba-test.eng-gsw.eng.gsw | 0.5 | 0.103 | | Tatoeba-test.eng-guj.eng.guj | 6.4 | 0.241 | | Tatoeba-test.eng-hat.eng.hat | 28.2 | 0.460 | | Tatoeba-test.eng-hbs.eng.hbs | 26.0 | 0.485 | | Tatoeba-test.eng-hif.eng.hif | 0.8 | 0.228 | | Tatoeba-test.eng-hin.eng.hin | 11.2 | 0.364 | | Tatoeba-test.eng-hsb.eng.hsb | 10.6 | 0.277 | | Tatoeba-test.eng-hye.eng.hye | 10.9 | 0.307 | | Tatoeba-test.eng-isl.eng.isl | 13.8 | 0.368 | | Tatoeba-test.eng-ita.eng.ita | 33.8 | 0.571 | | Tatoeba-test.eng-jdt.eng.jdt | 3.0 | 0.007 | | Tatoeba-test.eng-kok.eng.kok | 4.8 | 0.005 | | Tatoeba-test.eng-ksh.eng.ksh | 0.4 | 0.092 | | Tatoeba-test.eng-kur.eng.kur | 9.0 | 0.174 | | Tatoeba-test.eng-lad.eng.lad | 0.5 | 0.144 | | Tatoeba-test.eng-lah.eng.lah | 0.1 | 0.000 | | Tatoeba-test.eng-lat.eng.lat | 7.7 | 0.333 | | Tatoeba-test.eng-lav.eng.lav | 25.1 | 0.480 | | Tatoeba-test.eng-lij.eng.lij | 0.4 | 0.101 | | Tatoeba-test.eng-lit.eng.lit | 21.0 | 0.492 | | Tatoeba-test.eng-lld.eng.lld | 0.5 | 0.143 | | Tatoeba-test.eng-lmo.eng.lmo | 0.5 | 0.135 | | Tatoeba-test.eng-ltz.eng.ltz | 15.6 | 0.345 | | Tatoeba-test.eng-mai.eng.mai | 9.3 | 0.251 | | Tatoeba-test.eng-mar.eng.mar | 9.5 | 0.326 | | Tatoeba-test.eng-mfe.eng.mfe | 54.1 | 0.747 | | Tatoeba-test.eng-mkd.eng.mkd | 29.8 | 0.503 | | Tatoeba-test.eng-msa.eng.msa | 20.0 | 0.449 | | Tatoeba-test.eng-mwl.eng.mwl | 9.3 | 0.231 | | Tatoeba-test.eng-nds.eng.nds | 12.2 | 0.357 | | Tatoeba-test.eng-nep.eng.nep | 0.2 | 0.003 | | Tatoeba-test.eng-nld.eng.nld | 37.1 | 0.570 | | Tatoeba-test.eng-non.eng.non | 0.5 | 0.078 | | Tatoeba-test.eng-nor.eng.nor | 38.4 | 0.575 | | Tatoeba-test.eng-oci.eng.oci | 4.8 | 0.249 | | Tatoeba-test.eng-ori.eng.ori | 2.8 | 0.185 | | Tatoeba-test.eng-orv.eng.orv | 0.1 | 0.011 | | Tatoeba-test.eng-oss.eng.oss | 2.6 | 0.166 | | Tatoeba-test.eng-pan.eng.pan | 2.6 | 0.214 | | Tatoeba-test.eng-pap.eng.pap | 39.8 | 0.566 | | Tatoeba-test.eng-pdc.eng.pdc | 1.0 | 0.131 | | Tatoeba-test.eng-pms.eng.pms | 0.9 | 0.124 | | Tatoeba-test.eng-pol.eng.pol | 26.2 | 0.500 | | Tatoeba-test.eng-por.eng.por | 31.5 | 0.545 | | Tatoeba-test.eng-prg.eng.prg | 0.2 | 0.088 | | Tatoeba-test.eng-pus.eng.pus | 0.4 | 0.108 | | Tatoeba-test.eng-roh.eng.roh | 1.8 | 0.192 | | Tatoeba-test.eng-rom.eng.rom | 7.6 | 0.313 | | Tatoeba-test.eng-ron.eng.ron | 27.6 | 0.508 | | Tatoeba-test.eng-rue.eng.rue | 0.1 | 0.011 | | Tatoeba-test.eng-rus.eng.rus | 28.6 | 0.496 | | Tatoeba-test.eng-san.eng.san | 2.0 | 0.098 | | Tatoeba-test.eng-scn.eng.scn | 0.9 | 0.080 | | Tatoeba-test.eng-sco.eng.sco | 24.5 | 0.501 | | Tatoeba-test.eng-sgs.eng.sgs | 1.3 | 0.105 | | Tatoeba-test.eng-sin.eng.sin | 3.0 | 0.178 | | Tatoeba-test.eng-slv.eng.slv | 12.5 | 0.298 | | Tatoeba-test.eng-snd.eng.snd | 1.7 | 0.214 | | Tatoeba-test.eng-spa.eng.spa | 36.3 | 0.575 | | Tatoeba-test.eng-sqi.eng.sqi | 22.1 | 0.459 | | Tatoeba-test.eng-stq.eng.stq | 5.2 | 0.316 | | Tatoeba-test.eng-swe.eng.swe | 42.4 | 0.591 | | Tatoeba-test.eng-swg.eng.swg | 0.6 | 0.145 | | Tatoeba-test.eng-tgk.eng.tgk | 1.9 | 0.255 | | Tatoeba-test.eng-tly.eng.tly | 0.3 | 0.054 | | Tatoeba-test.eng-ukr.eng.ukr | 27.3 | 0.478 | | Tatoeba-test.eng-urd.eng.urd | 7.0 | 0.310 | | Tatoeba-test.eng-vec.eng.vec | 0.9 | 0.116 | | Tatoeba-test.eng-wln.eng.wln | 4.0 | 0.164 | | Tatoeba-test.eng-yid.eng.yid | 5.9 | 0.260 | | Tatoeba-test.eng-zza.eng.zza | 0.4 | 0.071 | | Tatoeba-test.enm-afr.enm.afr | 20.1 | 0.420 | | Tatoeba-test.enm-ang.enm.ang | 0.6 | 0.057 | | Tatoeba-test.enm-bul.enm.bul | 22.8 | 0.278 | | Tatoeba-test.enm-cat.enm.cat | 9.0 | 0.360 | | Tatoeba-test.enm-ces.enm.ces | 19.0 | 0.324 | | Tatoeba-test.enm-dan.enm.dan | 35.8 | 0.523 | | Tatoeba-test.enm-deu.enm.deu | 35.7 | 0.495 | | Tatoeba-test.enm-ell.enm.ell | 42.7 | 0.644 | | Tatoeba-test.enm-eng.enm.eng | 22.4 | 0.477 | | Tatoeba-test.enm-fas.enm.fas | 4.3 | 0.141 | | Tatoeba-test.enm-fra.enm.fra | 9.0 | 0.345 | | Tatoeba-test.enm-fry.enm.fry | 16.0 | 0.289 | | Tatoeba-test.enm-gle.enm.gle | 4.1 | 0.143 | | Tatoeba-test.enm-gos.enm.gos | 3.0 | 0.247 | | Tatoeba-test.enm-hbs.enm.hbs | 11.6 | 0.294 | | Tatoeba-test.enm-isl.enm.isl | 19.0 | 0.220 | | Tatoeba-test.enm-ita.enm.ita | 4.8 | 0.188 | | Tatoeba-test.enm-ksh.enm.ksh | 6.1 | 0.136 | | Tatoeba-test.enm-kur.enm.kur | 16.0 | 0.054 | | Tatoeba-test.enm-lad.enm.lad | 0.7 | 0.124 | | Tatoeba-test.enm-lat.enm.lat | 5.4 | 0.238 | | Tatoeba-test.enm-mwl.enm.mwl | 10.5 | 0.155 | | Tatoeba-test.enm-nds.enm.nds | 18.6 | 0.427 | | Tatoeba-test.enm-nld.enm.nld | 38.9 | 0.611 | | Tatoeba-test.enm-nor.enm.nor | 6.8 | 0.276 | | Tatoeba-test.enm-oci.enm.oci | 10.5 | 0.138 | | Tatoeba-test.enm-por.enm.por | 12.7 | 0.088 | | Tatoeba-test.enm-ron.enm.ron | 7.6 | 0.109 | | Tatoeba-test.enm-rus.enm.rus | 18.8 | 0.254 | | Tatoeba-test.enm-spa.enm.spa | 21.4 | 0.339 | | Tatoeba-test.enm-ukr.enm.ukr | 4.0 | 0.440 | | Tatoeba-test.enm-yid.enm.yid | 5.3 | 0.231 | | Tatoeba-test.ext-eng.ext.eng | 24.9 | 0.420 | | Tatoeba-test.fao-ang.fao.ang | 0.0 | 0.056 | | Tatoeba-test.fao-cat.fao.cat | 16.0 | 0.171 | | Tatoeba-test.fao-ces.fao.ces | 2.1 | 0.258 | | Tatoeba-test.fao-dan.fao.dan | 43.5 | 0.557 | | Tatoeba-test.fao-eng.fao.eng | 21.3 | 0.402 | | Tatoeba-test.fao-fra.fao.fra | 3.0 | 0.164 | | Tatoeba-test.fao-gos.fao.gos | 12.7 | 0.142 | | Tatoeba-test.fao-isl.fao.isl | 10.5 | 0.131 | | Tatoeba-test.fao-msa.fao.msa | 0.6 | 0.087 | | Tatoeba-test.fao-nor.fao.nor | 26.2 | 0.443 | | Tatoeba-test.fao-pol.fao.pol | 3.6 | 0.176 | | Tatoeba-test.fao-swe.fao.swe | 0.0 | 0.632 | | Tatoeba-test.fas-bul.fas.bul | 5.8 | 0.163 | | Tatoeba-test.fas-ces.fas.ces | 14.5 | 0.104 | | Tatoeba-test.fas-dan.fas.dan | 53.7 | 0.504 | | Tatoeba-test.fas-deu.fas.deu | 8.5 | 0.311 | | Tatoeba-test.fas-ell.fas.ell | 8.7 | 0.259 | | Tatoeba-test.fas-eng.fas.eng | 10.3 | 0.303 | | Tatoeba-test.fas-enm.fas.enm | 1.3 | 0.006 | | Tatoeba-test.fas-fra.fas.fra | 8.6 | 0.331 | | Tatoeba-test.fas-ita.fas.ita | 7.2 | 0.301 | | Tatoeba-test.fas-lad.fas.lad | 0.4 | 0.074 | | Tatoeba-test.fas-lat.fas.lat | 14.4 | 0.256 | | Tatoeba-test.fas-msa.fas.msa | 9.8 | 0.325 | | Tatoeba-test.fas-nds.fas.nds | 6.6 | 0.127 | | Tatoeba-test.fas-nld.fas.nld | 50.0 | 0.657 | | Tatoeba-test.fas-pol.fas.pol | 4.5 | 0.223 | | Tatoeba-test.fas-por.fas.por | 8.6 | 0.316 | | Tatoeba-test.fas-ron.fas.ron | 19.1 | 0.445 | | Tatoeba-test.fas-rus.fas.rus | 9.8 | 0.313 | | Tatoeba-test.fas-spa.fas.spa | 9.1 | 0.318 | | Tatoeba-test.fas-ukr.fas.ukr | 4.8 | 0.213 | | Tatoeba-test.fas-yid.fas.yid | 2.0 | 0.138 | | Tatoeba-test.fra-afr.fra.afr | 49.7 | 0.630 | | Tatoeba-test.fra-ang.fra.ang | 1.0 | 0.105 | | Tatoeba-test.fra-arg.fra.arg | 0.0 | 0.011 | | Tatoeba-test.fra-asm.fra.asm | 4.1 | 0.194 | | Tatoeba-test.fra-ast.fra.ast | 23.0 | 0.410 | | Tatoeba-test.fra-bel.fra.bel | 22.2 | 0.448 | | Tatoeba-test.fra-ben.fra.ben | 6.4 | 0.341 | | Tatoeba-test.fra-bho.fra.bho | 1.2 | 0.035 | | Tatoeba-test.fra-bre.fra.bre | 3.4 | 0.204 | | Tatoeba-test.fra-bul.fra.bul | 31.2 | 0.528 | | Tatoeba-test.fra-cat.fra.cat | 33.9 | 0.570 | | Tatoeba-test.fra-ces.fra.ces | 26.9 | 0.490 | | Tatoeba-test.fra-cor.fra.cor | 0.2 | 0.039 | | Tatoeba-test.fra-cos.fra.cos | 0.3 | 0.061 | | Tatoeba-test.fra-cym.fra.cym | 17.3 | 0.455 | | Tatoeba-test.fra-dan.fra.dan | 47.1 | 0.634 | | Tatoeba-test.fra-deu.fra.deu | 31.1 | 0.530 | | Tatoeba-test.fra-egl.fra.egl | 0.7 | 0.061 | | Tatoeba-test.fra-ell.fra.ell | 32.4 | 0.544 | | Tatoeba-test.fra-eng.fra.eng | 40.1 | 0.583 | | Tatoeba-test.fra-enm.fra.enm | 5.1 | 0.207 | | Tatoeba-test.fra-fao.fra.fao | 1.8 | 0.304 | | Tatoeba-test.fra-fas.fra.fas | 5.6 | 0.233 | | Tatoeba-test.fra-frm.fra.frm | 0.3 | 0.149 | | Tatoeba-test.fra-frr.fra.frr | 6.4 | 0.412 | | Tatoeba-test.fra-fry.fra.fry | 11.4 | 0.357 | | Tatoeba-test.fra-gcf.fra.gcf | 0.1 | 0.067 | | Tatoeba-test.fra-gla.fra.gla | 9.1 | 0.316 | | Tatoeba-test.fra-gle.fra.gle | 16.8 | 0.416 | | Tatoeba-test.fra-glg.fra.glg | 34.5 | 0.562 | | Tatoeba-test.fra-gos.fra.gos | 5.5 | 0.204 | | Tatoeba-test.fra-got.fra.got | 0.2 | 0.001 | | Tatoeba-test.fra-grc.fra.grc | 0.1 | 0.006 | | Tatoeba-test.fra-hat.fra.hat | 20.8 | 0.424 | | Tatoeba-test.fra-hbs.fra.hbs | 28.9 | 0.511 | | Tatoeba-test.fra-hin.fra.hin | 5.1 | 0.336 | | Tatoeba-test.fra-hye.fra.hye | 11.5 | 0.401 | | Tatoeba-test.fra-isl.fra.isl | 17.2 | 0.362 | | Tatoeba-test.fra-ita.fra.ita | 37.7 | 0.606 | | Tatoeba-test.fra-ksh.fra.ksh | 2.8 | 0.148 | | Tatoeba-test.fra-kur.fra.kur | 14.3 | 0.188 | | Tatoeba-test.fra-lad.fra.lad | 0.4 | 0.129 | | Tatoeba-test.fra-lat.fra.lat | 2.8 | 0.258 | | Tatoeba-test.fra-lav.fra.lav | 30.3 | 0.490 | | Tatoeba-test.fra-lij.fra.lij | 0.3 | 0.099 | | Tatoeba-test.fra-lit.fra.lit | 18.3 | 0.461 | | Tatoeba-test.fra-lld.fra.lld | 0.6 | 0.185 | | Tatoeba-test.fra-lmo.fra.lmo | 1.2 | 0.163 | | Tatoeba-test.fra-ltz.fra.ltz | 15.3 | 0.385 | | Tatoeba-test.fra-mar.fra.mar | 45.7 | 0.393 | | Tatoeba-test.fra-mkd.fra.mkd | 29.5 | 0.498 | | Tatoeba-test.fra-msa.fra.msa | 19.4 | 0.456 | | Tatoeba-test.fra-nds.fra.nds | 12.9 | 0.356 | | Tatoeba-test.fra-nld.fra.nld | 33.0 | 0.532 | | Tatoeba-test.fra-non.fra.non | 1.2 | 0.072 | | Tatoeba-test.fra-nor.fra.nor | 35.1 | 0.553 | | Tatoeba-test.fra-oci.fra.oci | 6.8 | 0.313 | | Tatoeba-test.fra-orv.fra.orv | 0.2 | 0.004 | | Tatoeba-test.fra-oss.fra.oss | 3.6 | 0.112 | | Tatoeba-test.fra-pap.fra.pap | 78.3 | 0.917 | | Tatoeba-test.fra-pcd.fra.pcd | 0.1 | 0.084 | | Tatoeba-test.fra-pms.fra.pms | 0.3 | 0.117 | | Tatoeba-test.fra-pol.fra.pol | 22.4 | 0.468 | | Tatoeba-test.fra-por.fra.por | 33.0 | 0.559 | | Tatoeba-test.fra-prg.fra.prg | 0.6 | 0.084 | | Tatoeba-test.fra-roh.fra.roh | 5.9 | 0.278 | | Tatoeba-test.fra-rom.fra.rom | 4.2 | 0.257 | | Tatoeba-test.fra-ron.fra.ron | 29.7 | 0.531 | | Tatoeba-test.fra-rus.fra.rus | 28.8 | 0.498 | | Tatoeba-test.fra-scn.fra.scn | 0.4 | 0.056 | | Tatoeba-test.fra-sco.fra.sco | 1.7 | 0.222 | | Tatoeba-test.fra-slv.fra.slv | 2.4 | 0.207 | | Tatoeba-test.fra-spa.fra.spa | 38.6 | 0.598 | | Tatoeba-test.fra-sqi.fra.sqi | 23.9 | 0.455 | | Tatoeba-test.fra-srd.fra.srd | 1.2 | 0.159 | | Tatoeba-test.fra-swe.fra.swe | 44.2 | 0.609 | | Tatoeba-test.fra-swg.fra.swg | 2.4 | 0.123 | | Tatoeba-test.fra-tgk.fra.tgk | 2.8 | 0.244 | | Tatoeba-test.fra-tly.fra.tly | 0.5 | 0.034 | | Tatoeba-test.fra-ukr.fra.ukr | 26.7 | 0.474 | | Tatoeba-test.fra-urd.fra.urd | 2.3 | 0.333 | | Tatoeba-test.fra-vec.fra.vec | 0.6 | 0.088 | | Tatoeba-test.fra-wln.fra.wln | 5.3 | 0.178 | | Tatoeba-test.fra-yid.fra.yid | 8.7 | 0.271 | | Tatoeba-test.frm-eng.frm.eng | 19.2 | 0.394 | | Tatoeba-test.frm-fra.frm.fra | 12.3 | 0.482 | | Tatoeba-test.frr-deu.frr.deu | 8.3 | 0.286 | | Tatoeba-test.frr-eng.frr.eng | 6.1 | 0.181 | | Tatoeba-test.frr-fra.frr.fra | 12.7 | 0.535 | | Tatoeba-test.frr-fry.frr.fry | 4.1 | 0.144 | | Tatoeba-test.frr-gos.frr.gos | 0.5 | 0.033 | | Tatoeba-test.frr-nds.frr.nds | 12.4 | 0.127 | | Tatoeba-test.frr-nld.frr.nld | 6.9 | 0.233 | | Tatoeba-test.frr-stq.frr.stq | 0.5 | 0.045 | | Tatoeba-test.fry-afr.fry.afr | 0.0 | 0.244 | | Tatoeba-test.fry-ces.fry.ces | 4.2 | 0.280 | | Tatoeba-test.fry-deu.fry.deu | 21.7 | 0.448 | | Tatoeba-test.fry-eng.fry.eng | 22.9 | 0.431 | | Tatoeba-test.fry-enm.fry.enm | 10.7 | 0.140 | | Tatoeba-test.fry-fra.fry.fra | 31.8 | 0.455 | | Tatoeba-test.fry-frr.fry.frr | 0.5 | 0.040 | | Tatoeba-test.fry-gos.fry.gos | 0.7 | 0.204 | | Tatoeba-test.fry-ita.fry.ita | 34.8 | 0.528 | | Tatoeba-test.fry-lat.fry.lat | 8.1 | 0.318 | | Tatoeba-test.fry-ltz.fry.ltz | 21.4 | 0.324 | | Tatoeba-test.fry-msa.fry.msa | 0.1 | 0.000 | | Tatoeba-test.fry-nds.fry.nds | 6.6 | 0.127 | | Tatoeba-test.fry-nld.fry.nld | 35.7 | 0.576 | | Tatoeba-test.fry-nor.fry.nor | 32.6 | 0.511 | | Tatoeba-test.fry-pol.fry.pol | 17.7 | 0.342 | | Tatoeba-test.fry-por.fry.por | 12.1 | 0.304 | | Tatoeba-test.fry-rus.fry.rus | 31.7 | 0.438 | | Tatoeba-test.fry-spa.fry.spa | 30.6 | 0.479 | | Tatoeba-test.fry-stq.fry.stq | 0.5 | 0.156 | | Tatoeba-test.fry-swe.fry.swe | 27.5 | 0.247 | | Tatoeba-test.fry-ukr.fry.ukr | 16.1 | 0.330 | | Tatoeba-test.fry-yid.fry.yid | 4.0 | 0.167 | | Tatoeba-test.gcf-eng.gcf.eng | 13.2 | 0.257 | | Tatoeba-test.gcf-fra.gcf.fra | 6.0 | 0.241 | | Tatoeba-test.gcf-lad.gcf.lad | 0.0 | 0.170 | | Tatoeba-test.gcf-por.gcf.por | 0.0 | 0.427 | | Tatoeba-test.gcf-rus.gcf.rus | 0.0 | 1.000 | | Tatoeba-test.gcf-spa.gcf.spa | 31.8 | 0.374 | | Tatoeba-test.gla-cym.gla.cym | 11.5 | 0.416 | | Tatoeba-test.gla-deu.gla.deu | 15.1 | 0.348 | | Tatoeba-test.gla-eng.gla.eng | 17.5 | 0.329 | | Tatoeba-test.gla-fra.gla.fra | 13.1 | 0.346 | | Tatoeba-test.gla-ita.gla.ita | 12.1 | 0.306 | | Tatoeba-test.gla-ksh.gla.ksh | 8.0 | 0.035 | | Tatoeba-test.gla-pol.gla.pol | 20.8 | 0.299 | | Tatoeba-test.gla-por.gla.por | 13.7 | 0.355 | | Tatoeba-test.gla-rus.gla.rus | 24.7 | 0.423 | | Tatoeba-test.gla-spa.gla.spa | 12.7 | 0.322 | | Tatoeba-test.gle-cym.gle.cym | 7.8 | 0.288 | | Tatoeba-test.gle-deu.gle.deu | 13.5 | 0.390 | | Tatoeba-test.gle-eng.gle.eng | 32.0 | 0.490 | | Tatoeba-test.gle-enm.gle.enm | 5.0 | 0.135 | | Tatoeba-test.gle-fra.gle.fra | 18.0 | 0.403 | | Tatoeba-test.gle-glv.gle.glv | 16.9 | 0.377 | | Tatoeba-test.gle-kur.gle.kur | 0.0 | 0.077 | | Tatoeba-test.gle-lad.gle.lad | 2.4 | 0.328 | | Tatoeba-test.gle-ron.gle.ron | 0.0 | 0.673 | | Tatoeba-test.gle-rus.gle.rus | 2.5 | 0.139 | | Tatoeba-test.gle-spa.gle.spa | 24.5 | 0.458 | | Tatoeba-test.gle-yid.gle.yid | 13.3 | 0.324 | | Tatoeba-test.glg-deu.glg.deu | 30.4 | 0.539 | | Tatoeba-test.glg-ell.glg.ell | 30.2 | 0.448 | | Tatoeba-test.glg-eng.glg.eng | 37.9 | 0.571 | | Tatoeba-test.glg-fra.glg.fra | 45.8 | 0.627 | | Tatoeba-test.glg-ita.glg.ita | 31.1 | 0.561 | | Tatoeba-test.glg-nld.glg.nld | 36.2 | 0.573 | | Tatoeba-test.glg-pol.glg.pol | 22.7 | 0.524 | | Tatoeba-test.glg-por.glg.por | 47.4 | 0.674 | | Tatoeba-test.glg-rus.glg.rus | 28.4 | 0.465 | | Tatoeba-test.glg-spa.glg.spa | 53.2 | 0.704 | | Tatoeba-test.glv-cym.glv.cym | 1.4 | 0.140 | | Tatoeba-test.glv-eng.glv.eng | 3.2 | 0.104 | | Tatoeba-test.glv-gle.glv.gle | 9.9 | 0.243 | | Tatoeba-test.gos-afr.gos.afr | 6.2 | 0.269 | | Tatoeba-test.gos-ang.gos.ang | 0.0 | 0.056 | | Tatoeba-test.gos-ast.gos.ast | 6.6 | 0.107 | | Tatoeba-test.gos-dan.gos.dan | 12.0 | 0.356 | | Tatoeba-test.gos-deu.gos.deu | 15.7 | 0.384 | | Tatoeba-test.gos-eng.gos.eng | 14.8 | 0.320 | | Tatoeba-test.gos-enm.gos.enm | 4.1 | 0.292 | | Tatoeba-test.gos-fao.gos.fao | 19.0 | 0.111 | | Tatoeba-test.gos-fra.gos.fra | 8.4 | 0.321 | | Tatoeba-test.gos-frr.gos.frr | 0.9 | 0.064 | | Tatoeba-test.gos-fry.gos.fry | 13.5 | 0.361 | | Tatoeba-test.gos-isl.gos.isl | 8.2 | 0.228 | | Tatoeba-test.gos-ita.gos.ita | 31.9 | 0.610 | | Tatoeba-test.gos-kur.gos.kur | 0.0 | 0.050 | | Tatoeba-test.gos-lad.gos.lad | 0.5 | 0.010 | | Tatoeba-test.gos-lat.gos.lat | 4.5 | 0.206 | | Tatoeba-test.gos-ltz.gos.ltz | 4.2 | 0.220 | | Tatoeba-test.gos-nds.gos.nds | 3.9 | 0.202 | | Tatoeba-test.gos-nld.gos.nld | 16.8 | 0.389 | | Tatoeba-test.gos-rus.gos.rus | 5.2 | 0.298 | | Tatoeba-test.gos-spa.gos.spa | 24.7 | 0.406 | | Tatoeba-test.gos-stq.gos.stq | 0.4 | 0.137 | | Tatoeba-test.gos-swe.gos.swe | 16.8 | 0.310 | | Tatoeba-test.gos-ukr.gos.ukr | 5.4 | 0.370 | | Tatoeba-test.gos-yid.gos.yid | 4.3 | 0.170 | | Tatoeba-test.got-deu.got.deu | 0.6 | 0.044 | | Tatoeba-test.got-eng.got.eng | 0.1 | 0.050 | | Tatoeba-test.got-fra.got.fra | 0.2 | 0.064 | | Tatoeba-test.got-nor.got.nor | 3.1 | 0.013 | | Tatoeba-test.got-spa.got.spa | 0.2 | 0.050 | | Tatoeba-test.grc-ces.grc.ces | 2.7 | 0.155 | | Tatoeba-test.grc-deu.grc.deu | 4.7 | 0.198 | | Tatoeba-test.grc-eng.grc.eng | 1.9 | 0.146 | | Tatoeba-test.grc-fra.grc.fra | 12.8 | 0.234 | | Tatoeba-test.grc-lat.grc.lat | 0.5 | 0.114 | | Tatoeba-test.grc-por.grc.por | 0.8 | 0.163 | | Tatoeba-test.grc-spa.grc.spa | 2.4 | 0.141 | | Tatoeba-test.gsw-deu.gsw.deu | 12.6 | 0.393 | | Tatoeba-test.gsw-eng.gsw.eng | 15.9 | 0.322 | | Tatoeba-test.gsw-spa.gsw.spa | 19.0 | 0.308 | | Tatoeba-test.guj-eng.guj.eng | 15.9 | 0.301 | | Tatoeba-test.guj-spa.guj.spa | 14.7 | 0.250 | | Tatoeba-test.hat-eng.hat.eng | 38.5 | 0.522 | | Tatoeba-test.hat-fra.hat.fra | 17.6 | 0.424 | | Tatoeba-test.hat-nld.hat.nld | 32.0 | 0.472 | | Tatoeba-test.hat-spa.hat.spa | 31.2 | 0.496 | | Tatoeba-test.hbs-bel.hbs.bel | 40.1 | 0.579 | | Tatoeba-test.hbs-bul.hbs.bul | 100.0 | 1.000 | | Tatoeba-test.hbs-ces.hbs.ces | 27.8 | 0.543 | | Tatoeba-test.hbs-deu.hbs.deu | 32.9 | 0.545 | | Tatoeba-test.hbs-eng.hbs.eng | 38.6 | 0.563 | | Tatoeba-test.hbs-enm.hbs.enm | 2.3 | 0.299 | | Tatoeba-test.hbs-fra.hbs.fra | 33.3 | 0.548 | | Tatoeba-test.hbs-ita.hbs.ita | 37.9 | 0.602 | | Tatoeba-test.hbs-lat.hbs.lat | 9.8 | 0.289 | | Tatoeba-test.hbs-mkd.hbs.mkd | 38.0 | 0.718 | | Tatoeba-test.hbs-nor.hbs.nor | 31.8 | 0.528 | | Tatoeba-test.hbs-pol.hbs.pol | 31.7 | 0.548 | | Tatoeba-test.hbs-por.hbs.por | 28.1 | 0.484 | | Tatoeba-test.hbs-rus.hbs.rus | 38.9 | 0.596 | | Tatoeba-test.hbs-spa.hbs.spa | 38.6 | 0.589 | | Tatoeba-test.hbs-swe.hbs.swe | 100.0 | 1.000 | | Tatoeba-test.hbs-ukr.hbs.ukr | 36.0 | 0.557 | | Tatoeba-test.hbs-urd.hbs.urd | 8.1 | 0.441 | | Tatoeba-test.hif-eng.hif.eng | 8.9 | 0.439 | | Tatoeba-test.hin-asm.hin.asm | 8.8 | 0.288 | | Tatoeba-test.hin-deu.hin.deu | 26.1 | 0.414 | | Tatoeba-test.hin-eng.hin.eng | 25.5 | 0.440 | | Tatoeba-test.hin-fra.hin.fra | 30.1 | 0.449 | | Tatoeba-test.hin-mar.hin.mar | 12.6 | 0.412 | | Tatoeba-test.hin-nor.hin.nor | 9.9 | 0.416 | | Tatoeba-test.hin-pol.hin.pol | 8.4 | 0.289 | | Tatoeba-test.hin-rus.hin.rus | 21.2 | 0.395 | | Tatoeba-test.hin-spa.hin.spa | 25.9 | 0.384 | | Tatoeba-test.hin-swe.hin.swe | 100.0 | 1.000 | | Tatoeba-test.hin-urd.hin.urd | 10.4 | 0.376 | | Tatoeba-test.hsb-ces.hsb.ces | 18.1 | 0.373 | | Tatoeba-test.hsb-deu.hsb.deu | 24.4 | 0.467 | | Tatoeba-test.hsb-eng.hsb.eng | 42.9 | 0.583 | | Tatoeba-test.hsb-spa.hsb.spa | 19.5 | 0.444 | | Tatoeba-test.hye-deu.hye.deu | 11.6 | 0.323 | | Tatoeba-test.hye-eng.hye.eng | 22.1 | 0.398 | | Tatoeba-test.hye-fra.hye.fra | 32.1 | 0.386 | | Tatoeba-test.hye-rus.hye.rus | 21.9 | 0.407 | | Tatoeba-test.hye-spa.hye.spa | 29.3 | 0.476 | | Tatoeba-test.isl-afr.isl.afr | 40.5 | 0.708 | | Tatoeba-test.isl-ang.isl.ang | 0.0 | 0.034 | | Tatoeba-test.isl-dan.isl.dan | 38.1 | 0.582 | | Tatoeba-test.isl-deu.isl.deu | 31.8 | 0.511 | | Tatoeba-test.isl-eng.isl.eng | 29.8 | 0.483 | | Tatoeba-test.isl-enm.isl.enm | 39.8 | 0.336 | | Tatoeba-test.isl-fao.isl.fao | 26.3 | 0.441 | | Tatoeba-test.isl-fra.isl.fra | 27.3 | 0.469 | | Tatoeba-test.isl-gos.isl.gos | 1.9 | 0.047 | | Tatoeba-test.isl-ita.isl.ita | 28.9 | 0.501 | | Tatoeba-test.isl-lat.isl.lat | 2.6 | 0.135 | | Tatoeba-test.isl-lav.isl.lav | 59.6 | 0.740 | | Tatoeba-test.isl-msa.isl.msa | 0.1 | 0.012 | | Tatoeba-test.isl-nor.isl.nor | 40.2 | 0.566 | | Tatoeba-test.isl-pol.isl.pol | 19.7 | 0.358 | | Tatoeba-test.isl-por.isl.por | 17.4 | 0.465 | | Tatoeba-test.isl-rus.isl.rus | 18.0 | 0.386 | | Tatoeba-test.isl-spa.isl.spa | 30.7 | 0.496 | | Tatoeba-test.isl-stq.isl.stq | 10.7 | 0.133 | | Tatoeba-test.isl-swe.isl.swe | 38.1 | 0.539 | | Tatoeba-test.ita-afr.ita.afr | 53.2 | 0.676 | | Tatoeba-test.ita-ang.ita.ang | 3.8 | 0.125 | | Tatoeba-test.ita-asm.ita.asm | 3.4 | 0.252 | | Tatoeba-test.ita-bel.ita.bel | 24.2 | 0.460 | | Tatoeba-test.ita-ben.ita.ben | 12.1 | 0.427 | | Tatoeba-test.ita-bre.ita.bre | 4.7 | 0.287 | | Tatoeba-test.ita-bul.ita.bul | 27.8 | 0.482 | | Tatoeba-test.ita-cat.ita.cat | 40.6 | 0.608 | | Tatoeba-test.ita-ces.ita.ces | 23.1 | 0.450 | | Tatoeba-test.ita-cor.ita.cor | 0.8 | 0.060 | | Tatoeba-test.ita-cym.ita.cym | 10.1 | 0.375 | | Tatoeba-test.ita-dan.ita.dan | 38.9 | 0.577 | | Tatoeba-test.ita-deu.ita.deu | 31.7 | 0.539 | | Tatoeba-test.ita-egl.ita.egl | 0.2 | 0.061 | | Tatoeba-test.ita-ell.ita.ell | 31.5 | 0.539 | | Tatoeba-test.ita-eng.ita.eng | 47.4 | 0.633 | | Tatoeba-test.ita-enm.ita.enm | 6.4 | 0.247 | | Tatoeba-test.ita-fas.ita.fas | 4.2 | 0.236 | | Tatoeba-test.ita-fra.ita.fra | 46.6 | 0.642 | | Tatoeba-test.ita-fry.ita.fry | 20.0 | 0.409 | | Tatoeba-test.ita-gla.ita.gla | 7.8 | 0.312 | | Tatoeba-test.ita-glg.ita.glg | 36.3 | 0.577 | | Tatoeba-test.ita-gos.ita.gos | 1.1 | 0.030 | | Tatoeba-test.ita-hbs.ita.hbs | 39.4 | 0.595 | | Tatoeba-test.ita-isl.ita.isl | 18.5 | 0.408 | | Tatoeba-test.ita-kur.ita.kur | 1.9 | 0.160 | | Tatoeba-test.ita-lad.ita.lad | 1.0 | 0.178 | | Tatoeba-test.ita-lat.ita.lat | 7.1 | 0.320 | | Tatoeba-test.ita-lav.ita.lav | 29.0 | 0.511 | | Tatoeba-test.ita-lij.ita.lij | 0.2 | 0.107 | | Tatoeba-test.ita-lit.ita.lit | 20.7 | 0.475 | | Tatoeba-test.ita-ltz.ita.ltz | 20.6 | 0.373 | | Tatoeba-test.ita-msa.ita.msa | 14.3 | 0.409 | | Tatoeba-test.ita-nds.ita.nds | 13.3 | 0.378 | | Tatoeba-test.ita-nld.ita.nld | 37.8 | 0.578 | | Tatoeba-test.ita-nor.ita.nor | 35.7 | 0.578 | | Tatoeba-test.ita-oci.ita.oci | 11.0 | 0.369 | | Tatoeba-test.ita-orv.ita.orv | 1.2 | 0.010 | | Tatoeba-test.ita-pms.ita.pms | 0.2 | 0.110 | | Tatoeba-test.ita-pol.ita.pol | 25.9 | 0.507 | | Tatoeba-test.ita-por.ita.por | 36.8 | 0.597 | | Tatoeba-test.ita-ron.ita.ron | 34.3 | 0.574 | | Tatoeba-test.ita-rus.ita.rus | 28.5 | 0.494 | | Tatoeba-test.ita-slv.ita.slv | 11.7 | 0.364 | | Tatoeba-test.ita-spa.ita.spa | 46.3 | 0.653 | | Tatoeba-test.ita-sqi.ita.sqi | 21.9 | 0.418 | | Tatoeba-test.ita-swe.ita.swe | 37.7 | 0.562 | | Tatoeba-test.ita-ukr.ita.ukr | 33.1 | 0.538 | | Tatoeba-test.ita-vec.ita.vec | 0.8 | 0.095 | | Tatoeba-test.ita-yid.ita.yid | 10.3 | 0.280 | | Tatoeba-test.jdt-eng.jdt.eng | 3.9 | 0.098 | | Tatoeba-test.kok-eng.kok.eng | 5.0 | 0.217 | | Tatoeba-test.ksh-deu.ksh.deu | 12.2 | 0.357 | | Tatoeba-test.ksh-eng.ksh.eng | 4.1 | 0.237 | | Tatoeba-test.ksh-enm.ksh.enm | 5.3 | 0.299 | | Tatoeba-test.ksh-fra.ksh.fra | 15.3 | 0.322 | | Tatoeba-test.ksh-gla.ksh.gla | 0.0 | 0.095 | | Tatoeba-test.ksh-spa.ksh.spa | 11.3 | 0.272 | | Tatoeba-test.kur-ang.kur.ang | 0.0 | 0.069 | | Tatoeba-test.kur-bel.kur.bel | 35.4 | 0.540 | | Tatoeba-test.kur-dan.kur.dan | 24.3 | 0.509 | | Tatoeba-test.kur-deu.kur.deu | 12.0 | 0.226 | | Tatoeba-test.kur-eng.kur.eng | 10.0 | 0.205 | | Tatoeba-test.kur-enm.kur.enm | 5.5 | 0.048 | | Tatoeba-test.kur-fra.kur.fra | 16.5 | 0.236 | | Tatoeba-test.kur-gle.kur.gle | 7.6 | 0.081 | | Tatoeba-test.kur-gos.kur.gos | 1.6 | 0.013 | | Tatoeba-test.kur-ita.kur.ita | 11.4 | 0.362 | | Tatoeba-test.kur-lad.kur.lad | 0.2 | 0.067 | | Tatoeba-test.kur-lat.kur.lat | 6.1 | 0.240 | | Tatoeba-test.kur-lld.kur.lld | 1.9 | 0.161 | | Tatoeba-test.kur-nld.kur.nld | 3.3 | 0.155 | | Tatoeba-test.kur-nor.kur.nor | 31.9 | 0.184 | | Tatoeba-test.kur-pol.kur.pol | 5.0 | 0.230 | | Tatoeba-test.kur-por.kur.por | 37.0 | 0.295 | | Tatoeba-test.kur-rus.kur.rus | 1.3 | 0.184 | | Tatoeba-test.kur-spa.kur.spa | 39.1 | 0.426 | | Tatoeba-test.kur-swe.kur.swe | 4.3 | 0.206 | | Tatoeba-test.kur-yid.kur.yid | 2.1 | 0.164 | | Tatoeba-test.lad-ang.lad.ang | 1.4 | 0.046 | | Tatoeba-test.lad-bel.lad.bel | 9.7 | 0.330 | | Tatoeba-test.lad-bul.lad.bul | 35.4 | 0.529 | | Tatoeba-test.lad-ces.lad.ces | 33.1 | 0.604 | | Tatoeba-test.lad-dan.lad.dan | 15.4 | 0.325 | | Tatoeba-test.lad-deu.lad.deu | 19.3 | 0.405 | | Tatoeba-test.lad-eng.lad.eng | 23.1 | 0.421 | | Tatoeba-test.lad-enm.lad.enm | 2.2 | 0.173 | | Tatoeba-test.lad-fas.lad.fas | 5.2 | 0.194 | | Tatoeba-test.lad-fra.lad.fra | 26.3 | 0.405 | | Tatoeba-test.lad-gcf.lad.gcf | 0.0 | 0.170 | | Tatoeba-test.lad-gle.lad.gle | 21.4 | 0.347 | | Tatoeba-test.lad-gos.lad.gos | 1.2 | 0.058 | | Tatoeba-test.lad-ita.lad.ita | 22.7 | 0.479 | | Tatoeba-test.lad-kur.lad.kur | 2.4 | 0.190 | | Tatoeba-test.lad-lat.lad.lat | 3.4 | 0.239 | | Tatoeba-test.lad-ltz.lad.ltz | 45.5 | 0.580 | | Tatoeba-test.lad-nds.lad.nds | 23.0 | 0.690 | | Tatoeba-test.lad-nld.lad.nld | 33.5 | 0.449 | | Tatoeba-test.lad-nor.lad.nor | 66.9 | 0.951 | | Tatoeba-test.lad-pol.lad.pol | 0.0 | 0.076 | | Tatoeba-test.lad-por.lad.por | 27.5 | 0.448 | | Tatoeba-test.lad-ron.lad.ron | 78.3 | 0.693 | | Tatoeba-test.lad-rus.lad.rus | 6.5 | 0.308 | | Tatoeba-test.lad-sco.lad.sco | 0.0 | 0.179 | | Tatoeba-test.lad-slv.lad.slv | 59.5 | 0.602 | | Tatoeba-test.lad-spa.lad.spa | 37.0 | 0.553 | | Tatoeba-test.lad-swe.lad.swe | 66.9 | 0.783 | | Tatoeba-test.lad-ukr.lad.ukr | 8.1 | 0.282 | | Tatoeba-test.lad-yid.lad.yid | 4.8 | 0.212 | | Tatoeba-test.lah-eng.lah.eng | 5.0 | 0.237 | | Tatoeba-test.lat-afr.lat.afr | 100.0 | 1.000 | | Tatoeba-test.lat-ang.lat.ang | 0.9 | 0.068 | | Tatoeba-test.lat-bel.lat.bel | 10.6 | 0.284 | | Tatoeba-test.lat-bul.lat.bul | 27.5 | 0.481 | | Tatoeba-test.lat-ces.lat.ces | 15.6 | 0.331 | | Tatoeba-test.lat-cym.lat.cym | 2.9 | 0.203 | | Tatoeba-test.lat-dan.lat.dan | 29.4 | 0.479 | | Tatoeba-test.lat-deu.lat.deu | 19.9 | 0.391 | | Tatoeba-test.lat-eng.lat.eng | 20.5 | 0.396 | | Tatoeba-test.lat-enm.lat.enm | 1.0 | 0.082 | | Tatoeba-test.lat-fas.lat.fas | 7.9 | 0.407 | | Tatoeba-test.lat-fra.lat.fra | 9.3 | 0.286 | | Tatoeba-test.lat-fry.lat.fry | 7.1 | 0.192 | | Tatoeba-test.lat-gos.lat.gos | 3.6 | 0.150 | | Tatoeba-test.lat-grc.lat.grc | 0.2 | 0.001 | | Tatoeba-test.lat-hbs.lat.hbs | 15.1 | 0.322 | | Tatoeba-test.lat-isl.lat.isl | 8.3 | 0.108 | | Tatoeba-test.lat-ita.lat.ita | 20.7 | 0.415 | | Tatoeba-test.lat-kur.lat.kur | 7.9 | 0.260 | | Tatoeba-test.lat-lad.lat.lad | 0.2 | 0.087 | | Tatoeba-test.lat-lit.lat.lit | 5.6 | 0.301 | | Tatoeba-test.lat-ltz.lat.ltz | 10.2 | 0.352 | | Tatoeba-test.lat-nld.lat.nld | 24.3 | 0.444 | | Tatoeba-test.lat-nor.lat.nor | 14.5 | 0.338 | | Tatoeba-test.lat-orv.lat.orv | 0.1 | 0.006 | | Tatoeba-test.lat-pol.lat.pol | 21.8 | 0.412 | | Tatoeba-test.lat-por.lat.por | 12.2 | 0.336 | | Tatoeba-test.lat-ron.lat.ron | 12.7 | 0.343 | | Tatoeba-test.lat-rus.lat.rus | 16.6 | 0.362 | | Tatoeba-test.lat-sco.lat.sco | 3.2 | 0.215 | | Tatoeba-test.lat-spa.lat.spa | 18.9 | 0.414 | | Tatoeba-test.lat-swe.lat.swe | 53.4 | 0.708 | | Tatoeba-test.lat-ukr.lat.ukr | 14.0 | 0.343 | | Tatoeba-test.lat-yid.lat.yid | 2.1 | 0.182 | | Tatoeba-test.lav-dan.lav.dan | 100.0 | 1.000 | | Tatoeba-test.lav-deu.lav.deu | 34.5 | 0.540 | | Tatoeba-test.lav-eng.lav.eng | 33.6 | 0.520 | | Tatoeba-test.lav-fra.lav.fra | 40.5 | 0.598 | | Tatoeba-test.lav-isl.lav.isl | 72.7 | 0.770 | | Tatoeba-test.lav-ita.lav.ita | 30.5 | 0.570 | | Tatoeba-test.lav-lav.lav.lav | 5.7 | 0.362 | | Tatoeba-test.lav-lit.lav.lit | 23.5 | 0.504 | | Tatoeba-test.lav-mkd.lav.mkd | 13.7 | 0.550 | | Tatoeba-test.lav-pol.lav.pol | 37.6 | 0.551 | | Tatoeba-test.lav-rus.lav.rus | 32.5 | 0.517 | | Tatoeba-test.lav-slv.lav.slv | 8.6 | 0.483 | | Tatoeba-test.lav-spa.lav.spa | 26.6 | 0.511 | | Tatoeba-test.lav-swe.lav.swe | 95.1 | 0.958 | | Tatoeba-test.lav-ukr.lav.ukr | 9.0 | 0.488 | | Tatoeba-test.lij-eng.lij.eng | 6.8 | 0.251 | | Tatoeba-test.lij-fra.lij.fra | 12.2 | 0.329 | | Tatoeba-test.lij-ita.lij.ita | 10.4 | 0.366 | | Tatoeba-test.lit-deu.lit.deu | 25.7 | 0.472 | | Tatoeba-test.lit-eng.lit.eng | 37.5 | 0.551 | | Tatoeba-test.lit-fra.lit.fra | 32.1 | 0.489 | | Tatoeba-test.lit-ita.lit.ita | 22.3 | 0.460 | | Tatoeba-test.lit-lat.lit.lat | 7.4 | 0.195 | | Tatoeba-test.lit-lav.lit.lav | 22.6 | 0.378 | | Tatoeba-test.lit-mkd.lit.mkd | 9.7 | 0.282 | | Tatoeba-test.lit-msa.lit.msa | 7.2 | 0.374 | | Tatoeba-test.lit-pol.lit.pol | 30.9 | 0.529 | | Tatoeba-test.lit-por.lit.por | 25.0 | 0.439 | | Tatoeba-test.lit-rus.lit.rus | 30.6 | 0.504 | | Tatoeba-test.lit-slv.lit.slv | 8.6 | 0.331 | | Tatoeba-test.lit-spa.lit.spa | 32.9 | 0.516 | | Tatoeba-test.lit-ukr.lit.ukr | 19.6 | 0.371 | | Tatoeba-test.lit-yid.lit.yid | 6.5 | 0.360 | | Tatoeba-test.lld-eng.lld.eng | 13.7 | 0.310 | | Tatoeba-test.lld-fra.lld.fra | 13.1 | 0.368 | | Tatoeba-test.lld-kur.lld.kur | 3.4 | 0.064 | | Tatoeba-test.lld-spa.lld.spa | 9.3 | 0.351 | | Tatoeba-test.lmo-eng.lmo.eng | 22.3 | 0.323 | | Tatoeba-test.lmo-fra.lmo.fra | 10.9 | 0.333 | | Tatoeba-test.ltz-afr.ltz.afr | 49.5 | 0.589 | | Tatoeba-test.ltz-ang.ltz.ang | 0.0 | 0.051 | | Tatoeba-test.ltz-ces.ltz.ces | 9.7 | 0.353 | | Tatoeba-test.ltz-dan.ltz.dan | 65.1 | 0.463 | | Tatoeba-test.ltz-deu.ltz.deu | 35.6 | 0.533 | | Tatoeba-test.ltz-eng.ltz.eng | 33.7 | 0.448 | | Tatoeba-test.ltz-fra.ltz.fra | 24.3 | 0.451 | | Tatoeba-test.ltz-fry.ltz.fry | 23.4 | 0.621 | | Tatoeba-test.ltz-gos.ltz.gos | 0.5 | 0.104 | | Tatoeba-test.ltz-ita.ltz.ita | 14.2 | 0.412 | | Tatoeba-test.ltz-lad.ltz.lad | 7.8 | 0.179 | | Tatoeba-test.ltz-lat.ltz.lat | 7.6 | 0.106 | | Tatoeba-test.ltz-nld.ltz.nld | 32.4 | 0.488 | | Tatoeba-test.ltz-nor.ltz.nor | 27.8 | 0.599 | | Tatoeba-test.ltz-por.ltz.por | 12.7 | 0.319 | | Tatoeba-test.ltz-rus.ltz.rus | 18.0 | 0.392 | | Tatoeba-test.ltz-spa.ltz.spa | 15.6 | 0.458 | | Tatoeba-test.ltz-stq.ltz.stq | 0.6 | 0.065 | | Tatoeba-test.ltz-swe.ltz.swe | 32.5 | 0.403 | | Tatoeba-test.ltz-yid.ltz.yid | 1.4 | 0.236 | | Tatoeba-test.mai-eng.mai.eng | 49.8 | 0.429 | | Tatoeba-test.mai-spa.mai.spa | 18.6 | 0.460 | | Tatoeba-test.mar-dan.mar.dan | 5.1 | 0.230 | | Tatoeba-test.mar-deu.mar.deu | 14.2 | 0.379 | | Tatoeba-test.mar-eng.mar.eng | 20.0 | 0.422 | | Tatoeba-test.mar-fra.mar.fra | 40.7 | 0.470 | | Tatoeba-test.mar-hin.mar.hin | 7.3 | 0.407 | | Tatoeba-test.mar-rus.mar.rus | 35.4 | 0.638 | | Tatoeba-test.mfe-eng.mfe.eng | 49.0 | 0.615 | | Tatoeba-test.mkd-afr.mkd.afr | 42.7 | 0.655 | | Tatoeba-test.mkd-bel.mkd.bel | 9.7 | 0.362 | | Tatoeba-test.mkd-bul.mkd.bul | 61.6 | 0.819 | | Tatoeba-test.mkd-ces.mkd.ces | 15.0 | 0.506 | | Tatoeba-test.mkd-deu.mkd.deu | 31.0 | 0.548 | | Tatoeba-test.mkd-eng.mkd.eng | 35.8 | 0.524 | | Tatoeba-test.mkd-fra.mkd.fra | 30.2 | 0.486 | | Tatoeba-test.mkd-hbs.mkd.hbs | 32.5 | 0.589 | | Tatoeba-test.mkd-lav.mkd.lav | 16.6 | 0.557 | | Tatoeba-test.mkd-lit.mkd.lit | 11.6 | 0.395 | | Tatoeba-test.mkd-nld.mkd.nld | 42.7 | 0.680 | | Tatoeba-test.mkd-pol.mkd.pol | 53.7 | 0.833 | | Tatoeba-test.mkd-por.mkd.por | 10.1 | 0.492 | | Tatoeba-test.mkd-ron.mkd.ron | 9.7 | 0.196 | | Tatoeba-test.mkd-rus.mkd.rus | 24.7 | 0.727 | | Tatoeba-test.mkd-spa.mkd.spa | 43.2 | 0.601 | | Tatoeba-test.mkd-swe.mkd.swe | 23.6 | 0.361 | | Tatoeba-test.mkd-ukr.mkd.ukr | 42.7 | 0.864 | | Tatoeba-test.msa-afr.msa.afr | 3.4 | 0.323 | | Tatoeba-test.msa-bel.msa.bel | 17.1 | 0.418 | | Tatoeba-test.msa-bre.msa.bre | 1.8 | 0.199 | | Tatoeba-test.msa-bul.msa.bul | 11.9 | 0.258 | | Tatoeba-test.msa-ces.msa.ces | 3.4 | 0.115 | | Tatoeba-test.msa-cym.msa.cym | 0.0 | 0.000 | | Tatoeba-test.msa-deu.msa.deu | 23.5 | 0.470 | | Tatoeba-test.msa-ell.msa.ell | 19.7 | 0.490 | | Tatoeba-test.msa-eng.msa.eng | 27.8 | 0.472 | | Tatoeba-test.msa-fao.msa.fao | 2.0 | 0.232 | | Tatoeba-test.msa-fas.msa.fas | 5.9 | 0.241 | | Tatoeba-test.msa-fra.msa.fra | 25.9 | 0.465 | | Tatoeba-test.msa-fry.msa.fry | 1.7 | 0.195 | | Tatoeba-test.msa-isl.msa.isl | 3.4 | 0.228 | | Tatoeba-test.msa-ita.msa.ita | 23.4 | 0.481 | | Tatoeba-test.msa-lit.msa.lit | 11.5 | 0.304 | | Tatoeba-test.msa-msa.msa.msa | 5.8 | 0.243 | | Tatoeba-test.msa-nld.msa.nld | 20.9 | 0.442 | | Tatoeba-test.msa-nor.msa.nor | 14.8 | 0.431 | | Tatoeba-test.msa-pap.msa.pap | 83.8 | 0.946 | | Tatoeba-test.msa-pol.msa.pol | 9.1 | 0.349 | | Tatoeba-test.msa-por.msa.por | 15.4 | 0.385 | | Tatoeba-test.msa-ron.msa.ron | 3.4 | 0.195 | | Tatoeba-test.msa-rus.msa.rus | 18.8 | 0.401 | | Tatoeba-test.msa-san.msa.san | 0.0 | 0.056 | | Tatoeba-test.msa-spa.msa.spa | 22.6 | 0.451 | | Tatoeba-test.msa-ukr.msa.ukr | 5.7 | 0.267 | | Tatoeba-test.msa-urd.msa.urd | 8.0 | 0.102 | | Tatoeba-test.multi.multi | 30.8 | 0.509 | | Tatoeba-test.mwl-eng.mwl.eng | 22.8 | 0.416 | | Tatoeba-test.mwl-enm.mwl.enm | 7.0 | 0.321 | | Tatoeba-test.mwl-por.mwl.por | 35.4 | 0.561 | | Tatoeba-test.nds-ast.nds.ast | 42.7 | 0.835 | | Tatoeba-test.nds-ces.nds.ces | 38.3 | 0.491 | | Tatoeba-test.nds-dan.nds.dan | 18.5 | 0.399 | | Tatoeba-test.nds-deu.nds.deu | 32.6 | 0.552 | | Tatoeba-test.nds-ell.nds.ell | 18.1 | 0.426 | | Tatoeba-test.nds-eng.nds.eng | 28.9 | 0.480 | | Tatoeba-test.nds-enm.nds.enm | 6.9 | 0.198 | | Tatoeba-test.nds-fas.nds.fas | 6.6 | 0.187 | | Tatoeba-test.nds-fra.nds.fra | 31.9 | 0.498 | | Tatoeba-test.nds-frr.nds.frr | 0.5 | 0.000 | | Tatoeba-test.nds-fry.nds.fry | 0.0 | 0.023 | | Tatoeba-test.nds-gos.nds.gos | 1.2 | 0.148 | | Tatoeba-test.nds-ita.nds.ita | 28.5 | 0.505 | | Tatoeba-test.nds-lad.nds.lad | 7.8 | 0.164 | | Tatoeba-test.nds-nld.nds.nld | 38.2 | 0.584 | | Tatoeba-test.nds-nor.nds.nor | 42.8 | 0.612 | | Tatoeba-test.nds-pol.nds.pol | 15.3 | 0.405 | | Tatoeba-test.nds-por.nds.por | 26.0 | 0.447 | | Tatoeba-test.nds-ron.nds.ron | 0.0 | 0.353 | | Tatoeba-test.nds-rus.nds.rus | 24.3 | 0.440 | | Tatoeba-test.nds-spa.nds.spa | 31.7 | 0.527 | | Tatoeba-test.nds-swg.nds.swg | 0.1 | 0.080 | | Tatoeba-test.nds-ukr.nds.ukr | 20.1 | 0.464 | | Tatoeba-test.nds-yid.nds.yid | 42.8 | 0.365 | | Tatoeba-test.nep-eng.nep.eng | 2.1 | 0.161 | | Tatoeba-test.nld-afr.nld.afr | 50.1 | 0.670 | | Tatoeba-test.nld-ast.nld.ast | 42.7 | 0.835 | | Tatoeba-test.nld-bel.nld.bel | 17.5 | 0.410 | | Tatoeba-test.nld-bre.nld.bre | 3.2 | 0.189 | | Tatoeba-test.nld-bul.nld.bul | 28.7 | 0.468 | | Tatoeba-test.nld-cat.nld.cat | 31.9 | 0.546 | | Tatoeba-test.nld-ces.nld.ces | 24.4 | 0.504 | | Tatoeba-test.nld-cor.nld.cor | 0.6 | 0.048 | | Tatoeba-test.nld-dan.nld.dan | 49.1 | 0.660 | | Tatoeba-test.nld-deu.nld.deu | 38.3 | 0.589 | | Tatoeba-test.nld-dsb.nld.dsb | 0.2 | 0.084 | | Tatoeba-test.nld-ell.nld.ell | 35.3 | 0.528 | | Tatoeba-test.nld-eng.nld.eng | 42.4 | 0.602 | | Tatoeba-test.nld-enm.nld.enm | 6.1 | 0.269 | | Tatoeba-test.nld-fas.nld.fas | 18.6 | 0.459 | | Tatoeba-test.nld-fra.nld.fra | 35.7 | 0.549 | | Tatoeba-test.nld-frr.nld.frr | 2.8 | 0.099 | | Tatoeba-test.nld-fry.nld.fry | 19.2 | 0.438 | | Tatoeba-test.nld-glg.nld.glg | 35.0 | 0.576 | | Tatoeba-test.nld-gos.nld.gos | 0.5 | 0.129 | | Tatoeba-test.nld-hat.nld.hat | 26.8 | 0.418 | | Tatoeba-test.nld-ita.nld.ita | 35.3 | 0.580 | | Tatoeba-test.nld-kur.nld.kur | 4.2 | 0.147 | | Tatoeba-test.nld-lad.nld.lad | 0.7 | 0.101 | | Tatoeba-test.nld-lat.nld.lat | 6.7 | 0.314 | | Tatoeba-test.nld-ltz.nld.ltz | 17.6 | 0.384 | | Tatoeba-test.nld-mkd.nld.mkd | 0.0 | 0.238 | | Tatoeba-test.nld-msa.nld.msa | 3.6 | 0.210 | | Tatoeba-test.nld-nds.nld.nds | 15.9 | 0.405 | | Tatoeba-test.nld-nor.nld.nor | 42.4 | 0.618 | | Tatoeba-test.nld-oci.nld.oci | 9.0 | 0.306 | | Tatoeba-test.nld-pap.nld.pap | 38.9 | 0.531 | | Tatoeba-test.nld-pol.nld.pol | 25.8 | 0.498 | | Tatoeba-test.nld-por.nld.por | 31.7 | 0.535 | | Tatoeba-test.nld-ron.nld.ron | 26.6 | 0.495 | | Tatoeba-test.nld-rus.nld.rus | 30.0 | 0.512 | | Tatoeba-test.nld-sco.nld.sco | 4.3 | 0.299 | | Tatoeba-test.nld-spa.nld.spa | 35.0 | 0.560 | | Tatoeba-test.nld-stq.nld.stq | 1.6 | 0.201 | | Tatoeba-test.nld-swe.nld.swe | 72.2 | 0.801 | | Tatoeba-test.nld-swg.nld.swg | 5.0 | 0.129 | | Tatoeba-test.nld-ukr.nld.ukr | 26.2 | 0.481 | | Tatoeba-test.nld-wln.nld.wln | 3.5 | 0.133 | | Tatoeba-test.nld-yid.nld.yid | 11.5 | 0.293 | | Tatoeba-test.non-eng.non.eng | 30.3 | 0.471 | | Tatoeba-test.non-fra.non.fra | 90.1 | 0.839 | | Tatoeba-test.nor-afr.nor.afr | 50.0 | 0.638 | | Tatoeba-test.nor-bel.nor.bel | 42.2 | 0.467 | | Tatoeba-test.nor-bre.nor.bre | 3.2 | 0.188 | | Tatoeba-test.nor-bul.nor.bul | 35.4 | 0.529 | | Tatoeba-test.nor-ces.nor.ces | 38.0 | 0.627 | | Tatoeba-test.nor-cor.nor.cor | 3.2 | 0.072 | | Tatoeba-test.nor-cym.nor.cym | 14.7 | 0.465 | | Tatoeba-test.nor-dan.nor.dan | 59.0 | 0.757 | | Tatoeba-test.nor-deu.nor.deu | 32.4 | 0.560 | | Tatoeba-test.nor-ell.nor.ell | 29.9 | 0.507 | | Tatoeba-test.nor-eng.nor.eng | 40.8 | 0.585 | | Tatoeba-test.nor-enm.nor.enm | 4.2 | 0.303 | | Tatoeba-test.nor-fao.nor.fao | 10.0 | 0.345 | | Tatoeba-test.nor-fra.nor.fra | 38.4 | 0.572 | | Tatoeba-test.nor-fry.nor.fry | 18.7 | 0.375 | | Tatoeba-test.nor-got.nor.got | 10.7 | 0.015 | | Tatoeba-test.nor-hbs.nor.hbs | 21.7 | 0.465 | | Tatoeba-test.nor-hin.nor.hin | 14.8 | 0.307 | | Tatoeba-test.nor-isl.nor.isl | 23.2 | 0.445 | | Tatoeba-test.nor-ita.nor.ita | 35.2 | 0.594 | | Tatoeba-test.nor-kur.nor.kur | 10.7 | 0.037 | | Tatoeba-test.nor-lad.nor.lad | 6.6 | 0.370 | | Tatoeba-test.nor-lat.nor.lat | 3.6 | 0.261 | | Tatoeba-test.nor-ltz.nor.ltz | 12.2 | 0.404 | | Tatoeba-test.nor-msa.nor.msa | 8.0 | 0.442 | | Tatoeba-test.nor-nds.nor.nds | 20.3 | 0.466 | | Tatoeba-test.nor-nld.nor.nld | 39.1 | 0.598 | | Tatoeba-test.nor-nor.nor.nor | 49.0 | 0.698 | | Tatoeba-test.nor-pol.nor.pol | 26.3 | 0.515 | | Tatoeba-test.nor-por.nor.por | 31.0 | 0.543 | | Tatoeba-test.nor-ron.nor.ron | 28.0 | 0.475 | | Tatoeba-test.nor-rus.nor.rus | 28.1 | 0.513 | | Tatoeba-test.nor-slv.nor.slv | 1.2 | 0.193 | | Tatoeba-test.nor-spa.nor.spa | 38.2 | 0.598 | | Tatoeba-test.nor-swe.nor.swe | 58.8 | 0.741 | | Tatoeba-test.nor-ukr.nor.ukr | 29.1 | 0.515 | | Tatoeba-test.nor-yid.nor.yid | 42.6 | 0.473 | | Tatoeba-test.oci-deu.oci.deu | 11.2 | 0.346 | | Tatoeba-test.oci-eng.oci.eng | 13.4 | 0.331 | | Tatoeba-test.oci-enm.oci.enm | 5.3 | 0.206 | | Tatoeba-test.oci-fra.oci.fra | 19.6 | 0.423 | | Tatoeba-test.oci-ita.oci.ita | 24.5 | 0.493 | | Tatoeba-test.oci-nld.oci.nld | 22.5 | 0.408 | | Tatoeba-test.oci-pol.oci.pol | 8.8 | 0.322 | | Tatoeba-test.oci-rus.oci.rus | 16.4 | 0.387 | | Tatoeba-test.oci-spa.oci.spa | 20.4 | 0.442 | | Tatoeba-test.oci-yid.oci.yid | 66.9 | 0.968 | | Tatoeba-test.ori-eng.ori.eng | 3.9 | 0.168 | | Tatoeba-test.ori-rus.ori.rus | 9.1 | 0.175 | | Tatoeba-test.orv-deu.orv.deu | 5.8 | 0.256 | | Tatoeba-test.orv-eng.orv.eng | 8.4 | 0.243 | | Tatoeba-test.orv-fra.orv.fra | 8.9 | 0.244 | | Tatoeba-test.orv-ita.orv.ita | 8.1 | 0.297 | | Tatoeba-test.orv-lat.orv.lat | 1.2 | 0.207 | | Tatoeba-test.orv-pol.orv.pol | 11.6 | 0.338 | | Tatoeba-test.orv-rus.orv.rus | 8.2 | 0.234 | | Tatoeba-test.orv-spa.orv.spa | 7.8 | 0.331 | | Tatoeba-test.orv-ukr.orv.ukr | 6.4 | 0.217 | | Tatoeba-test.oss-eng.oss.eng | 5.8 | 0.230 | | Tatoeba-test.oss-fra.oss.fra | 10.8 | 0.279 | | Tatoeba-test.oss-rus.oss.rus | 6.0 | 0.225 | | Tatoeba-test.pan-eng.pan.eng | 6.1 | 0.256 | | Tatoeba-test.pap-ell.pap.ell | 0.0 | 0.626 | | Tatoeba-test.pap-eng.pap.eng | 45.7 | 0.586 | | Tatoeba-test.pap-fra.pap.fra | 43.9 | 0.589 | | Tatoeba-test.pap-msa.pap.msa | 0.0 | 0.347 | | Tatoeba-test.pap-nld.pap.nld | 41.9 | 0.587 | | Tatoeba-test.pcd-fra.pcd.fra | 14.4 | 0.365 | | Tatoeba-test.pcd-spa.pcd.spa | 5.8 | 0.274 | | Tatoeba-test.pdc-deu.pdc.deu | 33.0 | 0.474 | | Tatoeba-test.pdc-eng.pdc.eng | 36.1 | 0.479 | | Tatoeba-test.pms-cos.pms.cos | 0.7 | 0.026 | | Tatoeba-test.pms-deu.pms.deu | 13.1 | 0.310 | | Tatoeba-test.pms-eng.pms.eng | 8.8 | 0.296 | | Tatoeba-test.pms-fra.pms.fra | 13.0 | 0.309 | | Tatoeba-test.pms-ita.pms.ita | 10.0 | 0.327 | | Tatoeba-test.pms-pol.pms.pol | 15.2 | 0.304 | | Tatoeba-test.pms-spa.pms.spa | 10.4 | 0.352 | | Tatoeba-test.pol-afr.pol.afr | 40.2 | 0.589 | | Tatoeba-test.pol-bel.pol.bel | 24.8 | 0.503 | | Tatoeba-test.pol-bul.pol.bul | 29.4 | 0.508 | | Tatoeba-test.pol-cat.pol.cat | 20.3 | 0.416 | | Tatoeba-test.pol-ces.pol.ces | 28.0 | 0.489 | | Tatoeba-test.pol-cor.pol.cor | 1.3 | 0.052 | | Tatoeba-test.pol-cym.pol.cym | 7.0 | 0.347 | | Tatoeba-test.pol-dan.pol.dan | 37.0 | 0.551 | | Tatoeba-test.pol-deu.pol.deu | 29.1 | 0.508 | | Tatoeba-test.pol-dsb.pol.dsb | 0.8 | 0.070 | | Tatoeba-test.pol-ell.pol.ell | 32.3 | 0.519 | | Tatoeba-test.pol-eng.pol.eng | 34.1 | 0.531 | | Tatoeba-test.pol-fao.pol.fao | 1.2 | 0.234 | | Tatoeba-test.pol-fas.pol.fas | 6.5 | 0.208 | | Tatoeba-test.pol-fra.pol.fra | 30.8 | 0.510 | | Tatoeba-test.pol-fry.pol.fry | 7.2 | 0.287 | | Tatoeba-test.pol-gla.pol.gla | 14.6 | 0.301 | | Tatoeba-test.pol-glg.pol.glg | 18.4 | 0.498 | | Tatoeba-test.pol-hbs.pol.hbs | 31.8 | 0.546 | | Tatoeba-test.pol-hin.pol.hin | 3.5 | 0.193 | | Tatoeba-test.pol-isl.pol.isl | 11.4 | 0.336 | | Tatoeba-test.pol-ita.pol.ita | 28.5 | 0.522 | | Tatoeba-test.pol-kur.pol.kur | 2.6 | 0.134 | | Tatoeba-test.pol-lad.pol.lad | 16.0 | 0.265 | | Tatoeba-test.pol-lat.pol.lat | 7.2 | 0.311 | | Tatoeba-test.pol-lav.pol.lav | 22.9 | 0.450 | | Tatoeba-test.pol-lit.pol.lit | 21.2 | 0.493 | | Tatoeba-test.pol-mkd.pol.mkd | 38.0 | 0.718 | | Tatoeba-test.pol-msa.pol.msa | 2.2 | 0.173 | | Tatoeba-test.pol-nds.pol.nds | 14.4 | 0.370 | | Tatoeba-test.pol-nld.pol.nld | 30.6 | 0.501 | | Tatoeba-test.pol-nor.pol.nor | 33.3 | 0.536 | | Tatoeba-test.pol-oci.pol.oci | 4.0 | 0.282 | | Tatoeba-test.pol-orv.pol.orv | 0.4 | 0.005 | | Tatoeba-test.pol-pms.pol.pms | 1.3 | 0.032 | | Tatoeba-test.pol-por.pol.por | 25.9 | 0.491 | | Tatoeba-test.pol-prg.pol.prg | 0.0 | 0.083 | | Tatoeba-test.pol-ron.pol.ron | 26.5 | 0.487 | | Tatoeba-test.pol-rus.pol.rus | 34.7 | 0.550 | | Tatoeba-test.pol-slv.pol.slv | 7.4 | 0.256 | | Tatoeba-test.pol-spa.pol.spa | 30.7 | 0.516 | | Tatoeba-test.pol-swe.pol.swe | 35.0 | 0.530 | | Tatoeba-test.pol-ukr.pol.ukr | 32.8 | 0.538 | | Tatoeba-test.pol-urd.pol.urd | 5.6 | 0.381 | | Tatoeba-test.pol-yid.pol.yid | 4.8 | 0.146 | | Tatoeba-test.por-afr.por.afr | 48.1 | 0.653 | | Tatoeba-test.por-ang.por.ang | 8.4 | 0.213 | | Tatoeba-test.por-ast.por.ast | 42.7 | 0.835 | | Tatoeba-test.por-bel.por.bel | 9.7 | 0.539 | | Tatoeba-test.por-bul.por.bul | 41.5 | 0.569 | | Tatoeba-test.por-cat.por.cat | 36.9 | 0.612 | | Tatoeba-test.por-ces.por.ces | 29.0 | 0.526 | | Tatoeba-test.por-cor.por.cor | 0.8 | 0.049 | | Tatoeba-test.por-dan.por.dan | 51.4 | 0.668 | | Tatoeba-test.por-deu.por.deu | 30.8 | 0.532 | | Tatoeba-test.por-ell.por.ell | 33.8 | 0.556 | | Tatoeba-test.por-eng.por.eng | 44.5 | 0.622 | | Tatoeba-test.por-enm.por.enm | 10.7 | 0.190 | | Tatoeba-test.por-fas.por.fas | 4.5 | 0.273 | | Tatoeba-test.por-fra.por.fra | 43.0 | 0.625 | | Tatoeba-test.por-fry.por.fry | 8.9 | 0.365 | | Tatoeba-test.por-gcf.por.gcf | 16.0 | 0.079 | | Tatoeba-test.por-gla.por.gla | 12.1 | 0.315 | | Tatoeba-test.por-glg.por.glg | 49.2 | 0.700 | | Tatoeba-test.por-grc.por.grc | 0.1 | 0.004 | | Tatoeba-test.por-hbs.por.hbs | 39.2 | 0.575 | | Tatoeba-test.por-isl.por.isl | 15.5 | 0.387 | | Tatoeba-test.por-ita.por.ita | 39.9 | 0.637 | | Tatoeba-test.por-kur.por.kur | 3.0 | 0.133 | | Tatoeba-test.por-lad.por.lad | 0.6 | 0.172 | | Tatoeba-test.por-lat.por.lat | 5.4 | 0.325 | | Tatoeba-test.por-lit.por.lit | 18.8 | 0.418 | | Tatoeba-test.por-ltz.por.ltz | 16.8 | 0.569 | | Tatoeba-test.por-mkd.por.mkd | 27.3 | 0.571 | | Tatoeba-test.por-msa.por.msa | 7.6 | 0.327 | | Tatoeba-test.por-mwl.por.mwl | 30.5 | 0.559 | | Tatoeba-test.por-nds.por.nds | 14.2 | 0.370 | | Tatoeba-test.por-nld.por.nld | 35.6 | 0.558 | | Tatoeba-test.por-nor.por.nor | 38.0 | 0.587 | | Tatoeba-test.por-pol.por.pol | 25.5 | 0.510 | | Tatoeba-test.por-roh.por.roh | 5.5 | 0.058 | | Tatoeba-test.por-ron.por.ron | 32.0 | 0.557 | | Tatoeba-test.por-rus.por.rus | 26.8 | 0.493 | | Tatoeba-test.por-spa.por.spa | 48.7 | 0.686 | | Tatoeba-test.por-swe.por.swe | 43.4 | 0.612 | | Tatoeba-test.por-ukr.por.ukr | 27.5 | 0.500 | | Tatoeba-test.por-yid.por.yid | 9.3 | 0.293 | | Tatoeba-test.prg-deu.prg.deu | 2.2 | 0.183 | | Tatoeba-test.prg-eng.prg.eng | 1.3 | 0.179 | | Tatoeba-test.prg-fra.prg.fra | 2.3 | 0.183 | | Tatoeba-test.prg-pol.prg.pol | 0.5 | 0.173 | | Tatoeba-test.prg-spa.prg.spa | 3.4 | 0.200 | | Tatoeba-test.pus-eng.pus.eng | 1.6 | 0.166 | | Tatoeba-test.roh-deu.roh.deu | 8.3 | 0.311 | | Tatoeba-test.roh-eng.roh.eng | 9.5 | 0.361 | | Tatoeba-test.roh-fra.roh.fra | 8.8 | 0.415 | | Tatoeba-test.roh-por.roh.por | 21.4 | 0.347 | | Tatoeba-test.roh-spa.roh.spa | 13.3 | 0.434 | | Tatoeba-test.rom-deu.rom.deu | 2.9 | 0.204 | | Tatoeba-test.rom-eng.rom.eng | 5.3 | 0.243 | | Tatoeba-test.rom-fra.rom.fra | 6.5 | 0.194 | | Tatoeba-test.ron-afr.ron.afr | 30.2 | 0.667 | | Tatoeba-test.ron-bul.ron.bul | 35.4 | 0.493 | | Tatoeba-test.ron-cat.ron.cat | 23.6 | 0.542 | | Tatoeba-test.ron-ces.ron.ces | 10.6 | 0.344 | | Tatoeba-test.ron-dan.ron.dan | 12.7 | 0.652 | | Tatoeba-test.ron-deu.ron.deu | 32.1 | 0.524 | | Tatoeba-test.ron-eng.ron.eng | 38.4 | 0.566 | | Tatoeba-test.ron-enm.ron.enm | 5.3 | 0.351 | | Tatoeba-test.ron-fas.ron.fas | 7.3 | 0.338 | | Tatoeba-test.ron-fra.ron.fra | 38.0 | 0.571 | | Tatoeba-test.ron-gle.ron.gle | 10.7 | 0.116 | | Tatoeba-test.ron-ita.ron.ita | 36.2 | 0.587 | | Tatoeba-test.ron-lad.ron.lad | 2.4 | 0.233 | | Tatoeba-test.ron-lat.ron.lat | 6.5 | 0.368 | | Tatoeba-test.ron-mkd.ron.mkd | 27.5 | 0.484 | | Tatoeba-test.ron-msa.ron.msa | 0.8 | 0.082 | | Tatoeba-test.ron-nds.ron.nds | 9.7 | 0.168 | | Tatoeba-test.ron-nld.ron.nld | 32.5 | 0.522 | | Tatoeba-test.ron-nor.ron.nor | 45.2 | 0.656 | | Tatoeba-test.ron-pol.ron.pol | 32.2 | 0.554 | | Tatoeba-test.ron-por.ron.por | 33.6 | 0.577 | | Tatoeba-test.ron-rus.ron.rus | 33.3 | 0.536 | | Tatoeba-test.ron-slv.ron.slv | 19.0 | 0.113 | | Tatoeba-test.ron-spa.ron.spa | 40.8 | 0.605 | | Tatoeba-test.ron-swe.ron.swe | 12.7 | 0.288 | | Tatoeba-test.ron-yid.ron.yid | 19.7 | 0.285 | | Tatoeba-test.rue-eng.rue.eng | 18.7 | 0.359 | | Tatoeba-test.rue-spa.rue.spa | 30.1 | 0.455 | | Tatoeba-test.rus-afr.rus.afr | 34.7 | 0.540 | | Tatoeba-test.rus-ang.rus.ang | 0.0 | 0.042 | | Tatoeba-test.rus-ast.rus.ast | 42.7 | 0.835 | | Tatoeba-test.rus-bel.rus.bel | 35.0 | 0.587 | | Tatoeba-test.rus-bul.rus.bul | 30.8 | 0.534 | | Tatoeba-test.rus-cat.rus.cat | 27.9 | 0.512 | | Tatoeba-test.rus-ces.rus.ces | 33.8 | 0.537 | | Tatoeba-test.rus-cor.rus.cor | 0.4 | 0.038 | | Tatoeba-test.rus-cym.rus.cym | 7.6 | 0.384 | | Tatoeba-test.rus-dan.rus.dan | 37.9 | 0.559 | | Tatoeba-test.rus-deu.rus.deu | 31.3 | 0.528 | | Tatoeba-test.rus-dsb.rus.dsb | 16.0 | 0.060 | | Tatoeba-test.rus-ell.rus.ell | 29.0 | 0.512 | | Tatoeba-test.rus-eng.rus.eng | 37.6 | 0.553 | | Tatoeba-test.rus-enm.rus.enm | 1.6 | 0.138 | | Tatoeba-test.rus-fas.rus.fas | 4.2 | 0.278 | | Tatoeba-test.rus-fra.rus.fra | 33.0 | 0.524 | | Tatoeba-test.rus-fry.rus.fry | 16.3 | 0.308 | | Tatoeba-test.rus-gcf.rus.gcf | 10.7 | 0.045 | | Tatoeba-test.rus-gla.rus.gla | 22.3 | 0.427 | | Tatoeba-test.rus-gle.rus.gle | 5.9 | 0.310 | | Tatoeba-test.rus-glg.rus.glg | 20.6 | 0.459 | | Tatoeba-test.rus-gos.rus.gos | 1.5 | 0.152 | | Tatoeba-test.rus-hbs.rus.hbs | 31.0 | 0.546 | | Tatoeba-test.rus-hin.rus.hin | 5.5 | 0.326 | | Tatoeba-test.rus-hye.rus.hye | 12.7 | 0.365 | | Tatoeba-test.rus-isl.rus.isl | 9.0 | 0.320 | | Tatoeba-test.rus-ita.rus.ita | 26.6 | 0.495 | | Tatoeba-test.rus-kur.rus.kur | 5.6 | 0.210 | | Tatoeba-test.rus-lad.rus.lad | 1.0 | 0.169 | | Tatoeba-test.rus-lat.rus.lat | 7.9 | 0.328 | | Tatoeba-test.rus-lav.rus.lav | 31.1 | 0.519 | | Tatoeba-test.rus-lit.rus.lit | 22.0 | 0.489 | | Tatoeba-test.rus-ltz.rus.ltz | 19.4 | 0.263 | | Tatoeba-test.rus-mar.rus.mar | 19.0 | 0.217 | | Tatoeba-test.rus-mkd.rus.mkd | 38.5 | 0.662 | | Tatoeba-test.rus-msa.rus.msa | 6.6 | 0.305 | | Tatoeba-test.rus-nds.rus.nds | 11.5 | 0.350 | | Tatoeba-test.rus-nld.rus.nld | 31.1 | 0.517 | | Tatoeba-test.rus-nor.rus.nor | 31.2 | 0.528 | | Tatoeba-test.rus-oci.rus.oci | 4.9 | 0.261 | | Tatoeba-test.rus-ori.rus.ori | 7.3 | 0.325 | | Tatoeba-test.rus-orv.rus.orv | 0.0 | 0.008 | | Tatoeba-test.rus-oss.rus.oss | 4.8 | 0.198 | | Tatoeba-test.rus-pol.rus.pol | 31.3 | 0.540 | | Tatoeba-test.rus-por.rus.por | 24.5 | 0.476 | | Tatoeba-test.rus-ron.rus.ron | 25.7 | 0.492 | | Tatoeba-test.rus-slv.rus.slv | 20.7 | 0.400 | | Tatoeba-test.rus-spa.rus.spa | 30.9 | 0.526 | | Tatoeba-test.rus-swe.rus.swe | 32.0 | 0.507 | | Tatoeba-test.rus-ukr.rus.ukr | 41.1 | 0.622 | | Tatoeba-test.rus-urd.rus.urd | 7.1 | 0.367 | | Tatoeba-test.rus-yid.rus.yid | 4.7 | 0.253 | | Tatoeba-test.san-eng.san.eng | 2.5 | 0.167 | | Tatoeba-test.san-msa.san.msa | 11.7 | 0.217 | | Tatoeba-test.scn-deu.scn.deu | 3.9 | 0.224 | | Tatoeba-test.scn-eng.scn.eng | 40.7 | 0.420 | | Tatoeba-test.scn-fra.scn.fra | 2.1 | 0.134 | | Tatoeba-test.scn-spa.scn.spa | 3.4 | 0.244 | | Tatoeba-test.sco-deu.sco.deu | 17.2 | 0.310 | | Tatoeba-test.sco-eng.sco.eng | 32.8 | 0.524 | | Tatoeba-test.sco-fra.sco.fra | 5.7 | 0.254 | | Tatoeba-test.sco-lad.sco.lad | 5.3 | 0.023 | | Tatoeba-test.sco-lat.sco.lat | 3.5 | 0.237 | | Tatoeba-test.sco-nld.sco.nld | 11.9 | 0.335 | | Tatoeba-test.sgs-eng.sgs.eng | 23.7 | 0.300 | | Tatoeba-test.sgs-spa.sgs.spa | 0.0 | 0.146 | | Tatoeba-test.sin-eng.sin.eng | 14.1 | 0.313 | | Tatoeba-test.slv-ces.slv.ces | 33.2 | 0.528 | | Tatoeba-test.slv-deu.slv.deu | 33.4 | 0.518 | | Tatoeba-test.slv-eng.slv.eng | 29.9 | 0.489 | | Tatoeba-test.slv-fra.slv.fra | 19.5 | 0.405 | | Tatoeba-test.slv-ita.slv.ita | 28.6 | 0.499 | | Tatoeba-test.slv-lad.slv.lad | 5.5 | 0.296 | | Tatoeba-test.slv-lav.slv.lav | 18.0 | 0.546 | | Tatoeba-test.slv-lit.slv.lit | 18.0 | 0.452 | | Tatoeba-test.slv-nor.slv.nor | 20.3 | 0.406 | | Tatoeba-test.slv-pol.slv.pol | 33.1 | 0.541 | | Tatoeba-test.slv-ron.slv.ron | 12.4 | 0.348 | | Tatoeba-test.slv-rus.slv.rus | 33.4 | 0.519 | | Tatoeba-test.slv-spa.slv.spa | 32.9 | 0.503 | | Tatoeba-test.slv-swe.slv.swe | 14.8 | 0.095 | | Tatoeba-test.slv-ukr.slv.ukr | 30.1 | 0.471 | | Tatoeba-test.snd-eng.snd.eng | 12.7 | 0.377 | | Tatoeba-test.spa-afr.spa.afr | 46.9 | 0.624 | | Tatoeba-test.spa-ang.spa.ang | 1.1 | 0.143 | | Tatoeba-test.spa-arg.spa.arg | 21.6 | 0.446 | | Tatoeba-test.spa-ast.spa.ast | 28.1 | 0.526 | | Tatoeba-test.spa-bel.spa.bel | 22.8 | 0.466 | | Tatoeba-test.spa-ben.spa.ben | 16.9 | 0.442 | | Tatoeba-test.spa-bul.spa.bul | 30.8 | 0.510 | | Tatoeba-test.spa-cat.spa.cat | 49.1 | 0.696 | | Tatoeba-test.spa-ces.spa.ces | 27.2 | 0.497 | | Tatoeba-test.spa-cor.spa.cor | 0.5 | 0.049 | | Tatoeba-test.spa-csb.spa.csb | 5.3 | 0.204 | | Tatoeba-test.spa-cym.spa.cym | 22.4 | 0.476 | | Tatoeba-test.spa-dan.spa.dan | 39.3 | 0.581 | | Tatoeba-test.spa-deu.spa.deu | 30.9 | 0.531 | | Tatoeba-test.spa-dsb.spa.dsb | 0.7 | 0.109 | | Tatoeba-test.spa-egl.spa.egl | 0.9 | 0.060 | | Tatoeba-test.spa-ell.spa.ell | 28.9 | 0.487 | | Tatoeba-test.spa-eng.spa.eng | 41.0 | 0.595 | | Tatoeba-test.spa-enm.spa.enm | 13.9 | 0.188 | | Tatoeba-test.spa-fas.spa.fas | 7.9 | 0.244 | | Tatoeba-test.spa-fra.spa.fra | 41.4 | 0.610 | | Tatoeba-test.spa-fry.spa.fry | 15.8 | 0.397 | | Tatoeba-test.spa-gcf.spa.gcf | 7.0 | 0.060 | | Tatoeba-test.spa-gla.spa.gla | 7.4 | 0.303 | | Tatoeba-test.spa-gle.spa.gle | 22.2 | 0.415 | | Tatoeba-test.spa-glg.spa.glg | 48.8 | 0.683 | | Tatoeba-test.spa-gos.spa.gos | 1.7 | 0.181 | | Tatoeba-test.spa-got.spa.got | 0.3 | 0.010 | | Tatoeba-test.spa-grc.spa.grc | 0.1 | 0.005 | | Tatoeba-test.spa-gsw.spa.gsw | 5.6 | 0.051 | | Tatoeba-test.spa-guj.spa.guj | 15.0 | 0.365 | | Tatoeba-test.spa-hat.spa.hat | 19.9 | 0.409 | | Tatoeba-test.spa-hbs.spa.hbs | 33.2 | 0.529 | | Tatoeba-test.spa-hin.spa.hin | 16.1 | 0.331 | | Tatoeba-test.spa-hsb.spa.hsb | 5.1 | 0.240 | | Tatoeba-test.spa-hye.spa.hye | 13.5 | 0.357 | | Tatoeba-test.spa-isl.spa.isl | 18.0 | 0.410 | | Tatoeba-test.spa-ita.spa.ita | 42.7 | 0.646 | | Tatoeba-test.spa-ksh.spa.ksh | 0.4 | 0.088 | | Tatoeba-test.spa-kur.spa.kur | 5.6 | 0.237 | | Tatoeba-test.spa-lad.spa.lad | 0.9 | 0.157 | | Tatoeba-test.spa-lat.spa.lat | 9.0 | 0.382 | | Tatoeba-test.spa-lav.spa.lav | 23.7 | 0.510 | | Tatoeba-test.spa-lit.spa.lit | 22.4 | 0.477 | | Tatoeba-test.spa-lld.spa.lld | 0.4 | 0.119 | | Tatoeba-test.spa-ltz.spa.ltz | 34.1 | 0.531 | | Tatoeba-test.spa-mai.spa.mai | 29.4 | 0.416 | | Tatoeba-test.spa-mkd.spa.mkd | 37.1 | 0.568 | | Tatoeba-test.spa-msa.spa.msa | 14.0 | 0.405 | | Tatoeba-test.spa-nds.spa.nds | 15.4 | 0.390 | | Tatoeba-test.spa-nld.spa.nld | 34.0 | 0.550 | | Tatoeba-test.spa-nor.spa.nor | 41.1 | 0.608 | | Tatoeba-test.spa-oci.spa.oci | 8.0 | 0.353 | | Tatoeba-test.spa-orv.spa.orv | 0.4 | 0.010 | | Tatoeba-test.spa-pcd.spa.pcd | 0.2 | 0.060 | | Tatoeba-test.spa-pms.spa.pms | 0.6 | 0.122 | | Tatoeba-test.spa-pol.spa.pol | 26.3 | 0.498 | | Tatoeba-test.spa-por.spa.por | 41.6 | 0.638 | | Tatoeba-test.spa-prg.spa.prg | 0.3 | 0.095 | | Tatoeba-test.spa-roh.spa.roh | 4.0 | 0.219 | | Tatoeba-test.spa-ron.spa.ron | 31.9 | 0.550 | | Tatoeba-test.spa-rue.spa.rue | 0.2 | 0.013 | | Tatoeba-test.spa-rus.spa.rus | 29.4 | 0.510 | | Tatoeba-test.spa-scn.spa.scn | 1.6 | 0.086 | | Tatoeba-test.spa-sgs.spa.sgs | 16.0 | 0.111 | | Tatoeba-test.spa-slv.spa.slv | 9.2 | 0.269 | | Tatoeba-test.spa-stq.spa.stq | 8.4 | 0.375 | | Tatoeba-test.spa-swe.spa.swe | 39.5 | 0.572 | | Tatoeba-test.spa-ukr.spa.ukr | 27.8 | 0.495 | | Tatoeba-test.spa-wln.spa.wln | 2.9 | 0.220 | | Tatoeba-test.spa-yid.spa.yid | 10.0 | 0.296 | | Tatoeba-test.sqi-eng.sqi.eng | 30.9 | 0.499 | | Tatoeba-test.sqi-fra.sqi.fra | 29.9 | 0.545 | | Tatoeba-test.sqi-ita.sqi.ita | 24.5 | 0.484 | | Tatoeba-test.srd-fra.srd.fra | 5.8 | 0.347 | | Tatoeba-test.stq-deu.stq.deu | 16.7 | 0.426 | | Tatoeba-test.stq-eng.stq.eng | 8.4 | 0.370 | | Tatoeba-test.stq-frr.stq.frr | 0.6 | 0.032 | | Tatoeba-test.stq-fry.stq.fry | 9.3 | 0.283 | | Tatoeba-test.stq-gos.stq.gos | 0.3 | 0.126 | | Tatoeba-test.stq-isl.stq.isl | 0.0 | 0.102 | | Tatoeba-test.stq-ltz.stq.ltz | 4.0 | 0.175 | | Tatoeba-test.stq-nld.stq.nld | 13.2 | 0.398 | | Tatoeba-test.stq-spa.stq.spa | 7.0 | 0.345 | | Tatoeba-test.stq-yid.stq.yid | 5.0 | 0.110 | | Tatoeba-test.swe-afr.swe.afr | 63.1 | 0.831 | | Tatoeba-test.swe-bul.swe.bul | 35.4 | 0.529 | | Tatoeba-test.swe-cat.swe.cat | 38.5 | 0.528 | | Tatoeba-test.swe-ces.swe.ces | 32.8 | 0.380 | | Tatoeba-test.swe-dan.swe.dan | 54.5 | 0.702 | | Tatoeba-test.swe-deu.swe.deu | 36.7 | 0.570 | | Tatoeba-test.swe-ell.swe.ell | 32.9 | 0.541 | | Tatoeba-test.swe-eng.swe.eng | 44.9 | 0.606 | | Tatoeba-test.swe-fao.swe.fao | 0.0 | 0.877 | | Tatoeba-test.swe-fra.swe.fra | 43.2 | 0.605 | | Tatoeba-test.swe-fry.swe.fry | 42.7 | 0.402 | | Tatoeba-test.swe-gos.swe.gos | 4.8 | 0.253 | | Tatoeba-test.swe-hbs.swe.hbs | 39.3 | 0.591 | | Tatoeba-test.swe-hin.swe.hin | 31.6 | 0.617 | | Tatoeba-test.swe-isl.swe.isl | 21.2 | 0.559 | | Tatoeba-test.swe-ita.swe.ita | 33.1 | 0.548 | | Tatoeba-test.swe-kur.swe.kur | 1.4 | 0.144 | | Tatoeba-test.swe-lad.swe.lad | 6.6 | 0.373 | | Tatoeba-test.swe-lat.swe.lat | 4.5 | 0.453 | | Tatoeba-test.swe-lav.swe.lav | 73.4 | 0.828 | | Tatoeba-test.swe-ltz.swe.ltz | 25.5 | 0.440 | | Tatoeba-test.swe-mkd.swe.mkd | 0.0 | 0.124 | | Tatoeba-test.swe-nld.swe.nld | 71.9 | 0.742 | | Tatoeba-test.swe-nor.swe.nor | 59.5 | 0.742 | | Tatoeba-test.swe-pol.swe.pol | 25.9 | 0.497 | | Tatoeba-test.swe-por.swe.por | 31.3 | 0.546 | | Tatoeba-test.swe-ron.swe.ron | 100.0 | 1.000 | | Tatoeba-test.swe-rus.swe.rus | 28.6 | 0.495 | | Tatoeba-test.swe-slv.swe.slv | 19.0 | 0.116 | | Tatoeba-test.swe-spa.swe.spa | 37.1 | 0.569 | | Tatoeba-test.swe-yid.swe.yid | 13.9 | 0.336 | | Tatoeba-test.swg-ces.swg.ces | 16.5 | 0.438 | | Tatoeba-test.swg-dan.swg.dan | 20.1 | 0.468 | | Tatoeba-test.swg-deu.swg.deu | 8.0 | 0.316 | | Tatoeba-test.swg-eng.swg.eng | 13.0 | 0.300 | | Tatoeba-test.swg-fra.swg.fra | 15.3 | 0.296 | | Tatoeba-test.swg-nds.swg.nds | 0.9 | 0.199 | | Tatoeba-test.swg-nld.swg.nld | 4.9 | 0.287 | | Tatoeba-test.swg-yid.swg.yid | 1.9 | 0.194 | | Tatoeba-test.tgk-deu.tgk.deu | 45.2 | 0.574 | | Tatoeba-test.tgk-eng.tgk.eng | 7.8 | 0.271 | | Tatoeba-test.tgk-fra.tgk.fra | 9.6 | 0.273 | | Tatoeba-test.tly-eng.tly.eng | 0.9 | 0.102 | | Tatoeba-test.tly-fra.tly.fra | 4.4 | 0.054 | | Tatoeba-test.ukr-afr.ukr.afr | 48.3 | 0.646 | | Tatoeba-test.ukr-ang.ukr.ang | 1.4 | 0.034 | | Tatoeba-test.ukr-bel.ukr.bel | 36.7 | 0.601 | | Tatoeba-test.ukr-bul.ukr.bul | 40.4 | 0.601 | | Tatoeba-test.ukr-cat.ukr.cat | 33.9 | 0.538 | | Tatoeba-test.ukr-ces.ukr.ces | 33.1 | 0.524 | | Tatoeba-test.ukr-dan.ukr.dan | 25.8 | 0.469 | | Tatoeba-test.ukr-deu.ukr.deu | 34.0 | 0.543 | | Tatoeba-test.ukr-ell.ukr.ell | 23.0 | 0.493 | | Tatoeba-test.ukr-eng.ukr.eng | 36.1 | 0.538 | | Tatoeba-test.ukr-enm.ukr.enm | 3.6 | 0.400 | | Tatoeba-test.ukr-fas.ukr.fas | 5.3 | 0.240 | | Tatoeba-test.ukr-fra.ukr.fra | 32.0 | 0.519 | | Tatoeba-test.ukr-fry.ukr.fry | 13.6 | 0.318 | | Tatoeba-test.ukr-gos.ukr.gos | 3.8 | 0.199 | | Tatoeba-test.ukr-hbs.ukr.hbs | 33.4 | 0.547 | | Tatoeba-test.ukr-ita.ukr.ita | 32.6 | 0.546 | | Tatoeba-test.ukr-lad.ukr.lad | 1.4 | 0.166 | | Tatoeba-test.ukr-lat.ukr.lat | 8.0 | 0.314 | | Tatoeba-test.ukr-lav.ukr.lav | 10.7 | 0.520 | | Tatoeba-test.ukr-lit.ukr.lit | 59.9 | 0.631 | | Tatoeba-test.ukr-mkd.ukr.mkd | 38.0 | 0.718 | | Tatoeba-test.ukr-msa.ukr.msa | 2.5 | 0.213 | | Tatoeba-test.ukr-nds.ukr.nds | 11.0 | 0.368 | | Tatoeba-test.ukr-nld.ukr.nld | 33.0 | 0.524 | | Tatoeba-test.ukr-nor.ukr.nor | 40.4 | 0.574 | | Tatoeba-test.ukr-orv.ukr.orv | 0.1 | 0.008 | | Tatoeba-test.ukr-pol.ukr.pol | 32.7 | 0.553 | | Tatoeba-test.ukr-por.ukr.por | 26.8 | 0.496 | | Tatoeba-test.ukr-rus.ukr.rus | 45.7 | 0.651 | | Tatoeba-test.ukr-slv.ukr.slv | 11.8 | 0.263 | | Tatoeba-test.ukr-spa.ukr.spa | 31.7 | 0.528 | | Tatoeba-test.ukr-yid.ukr.yid | 3.6 | 0.196 | | Tatoeba-test.urd-dan.urd.dan | 36.7 | 0.586 | | Tatoeba-test.urd-deu.urd.deu | 17.1 | 0.451 | | Tatoeba-test.urd-eng.urd.eng | 17.1 | 0.375 | | Tatoeba-test.urd-fra.urd.fra | 38.1 | 0.565 | | Tatoeba-test.urd-hbs.urd.hbs | 0.0 | 1.000 | | Tatoeba-test.urd-hin.urd.hin | 14.0 | 0.404 | | Tatoeba-test.urd-msa.urd.msa | 1.5 | 0.014 | | Tatoeba-test.urd-pol.urd.pol | 68.7 | 0.695 | | Tatoeba-test.urd-rus.urd.rus | 25.8 | 0.314 | | Tatoeba-test.vec-eng.vec.eng | 13.6 | 0.319 | | Tatoeba-test.vec-fra.vec.fra | 48.3 | 0.680 | | Tatoeba-test.vec-ita.vec.ita | 28.3 | 0.454 | | Tatoeba-test.wln-eng.wln.eng | 4.4 | 0.206 | | Tatoeba-test.wln-fra.wln.fra | 8.0 | 0.282 | | Tatoeba-test.wln-nld.wln.nld | 5.2 | 0.237 | | Tatoeba-test.wln-spa.wln.spa | 9.9 | 0.395 | | Tatoeba-test.yid-afr.yid.afr | 35.4 | 0.868 | | Tatoeba-test.yid-ang.yid.ang | 0.8 | 0.077 | | Tatoeba-test.yid-bel.yid.bel | 4.9 | 0.240 | | Tatoeba-test.yid-bul.yid.bul | 11.3 | 0.054 | | Tatoeba-test.yid-cat.yid.cat | 19.0 | 0.583 | | Tatoeba-test.yid-ces.yid.ces | 5.4 | 0.320 | | Tatoeba-test.yid-cym.yid.cym | 6.3 | 0.239 | | Tatoeba-test.yid-dan.yid.dan | 12.8 | 0.341 | | Tatoeba-test.yid-deu.yid.deu | 17.5 | 0.382 | | Tatoeba-test.yid-ell.yid.ell | 42.7 | 0.797 | | Tatoeba-test.yid-eng.yid.eng | 15.5 | 0.338 | | Tatoeba-test.yid-enm.yid.enm | 2.3 | 0.176 | | Tatoeba-test.yid-fas.yid.fas | 4.5 | 0.207 | | Tatoeba-test.yid-fra.yid.fra | 18.9 | 0.367 | | Tatoeba-test.yid-fry.yid.fry | 6.0 | 0.156 | | Tatoeba-test.yid-gle.yid.gle | 32.2 | 0.448 | | Tatoeba-test.yid-gos.yid.gos | 1.3 | 0.142 | | Tatoeba-test.yid-ita.yid.ita | 15.3 | 0.363 | | Tatoeba-test.yid-kur.yid.kur | 3.2 | 0.166 | | Tatoeba-test.yid-lad.yid.lad | 0.1 | 0.090 | | Tatoeba-test.yid-lat.yid.lat | 1.8 | 0.206 | | Tatoeba-test.yid-lit.yid.lit | 27.8 | 0.560 | | Tatoeba-test.yid-ltz.yid.ltz | 4.2 | 0.316 | | Tatoeba-test.yid-nds.yid.nds | 24.6 | 0.466 | | Tatoeba-test.yid-nld.yid.nld | 24.5 | 0.431 | | Tatoeba-test.yid-nor.yid.nor | 5.0 | 0.318 | | Tatoeba-test.yid-oci.yid.oci | 19.0 | 0.390 | | Tatoeba-test.yid-pol.yid.pol | 15.0 | 0.258 | | Tatoeba-test.yid-por.yid.por | 7.4 | 0.326 | | Tatoeba-test.yid-ron.yid.ron | 12.3 | 0.325 | | Tatoeba-test.yid-rus.yid.rus | 14.2 | 0.324 | | Tatoeba-test.yid-spa.yid.spa | 16.1 | 0.369 | | Tatoeba-test.yid-stq.yid.stq | 3.2 | 0.125 | | Tatoeba-test.yid-swe.yid.swe | 55.9 | 0.672 | | Tatoeba-test.yid-swg.yid.swg | 0.3 | 0.083 | | Tatoeba-test.yid-ukr.yid.ukr | 7.2 | 0.383 | | Tatoeba-test.zza-asm.zza.asm | 0.0 | 0.102 | | Tatoeba-test.zza-eng.zza.eng | 1.9 | 0.135 | ### System Info: - hf_name: ine-ine - source_languages: ine - target_languages: ine - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-ine/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] - src_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} - tgt_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.test.txt - src_alpha3: ine - tgt_alpha3: ine - short_pair: ine-ine - chrF2_score: 0.509 - bleu: 30.8 - brevity_penalty: 0.9890000000000001 - ref_len: 69953.0 - src_name: Indo-European languages - tgt_name: Indo-European languages - train_date: 2020-07-27 - src_alpha2: ine - tgt_alpha2: ine - prefer_old: False - long_pair: ine-ine - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-mkh-en
325cb2363f097b102d7599b518ba64d8bf98de3a
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "vi", "km", "mkh", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-mkh-en
26
null
transformers
7,514
--- language: - vi - km - mkh - en tags: - translation license: apache-2.0 --- ### mkh-eng * source group: Mon-Khmer languages * target group: English * OPUS readme: [mkh-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/mkh-eng/README.md) * model: transformer * source language(s): kha khm khm_Latn mnw vie vie_Hani * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/mkh-eng/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/mkh-eng/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/mkh-eng/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kha-eng.kha.eng | 0.5 | 0.108 | | Tatoeba-test.khm-eng.khm.eng | 8.5 | 0.206 | | Tatoeba-test.mnw-eng.mnw.eng | 0.7 | 0.110 | | Tatoeba-test.multi.eng | 24.5 | 0.407 | | Tatoeba-test.vie-eng.vie.eng | 34.4 | 0.529 | ### System Info: - hf_name: mkh-eng - source_languages: mkh - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/mkh-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'km', 'mkh', 'en'] - src_constituents: {'vie_Hani', 'mnw', 'vie', 'kha', 'khm_Latn', 'khm'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/mkh-eng/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/mkh-eng/opus-2020-07-27.test.txt - src_alpha3: mkh - tgt_alpha3: eng - short_pair: mkh-en - chrF2_score: 0.40700000000000003 - bleu: 24.5 - brevity_penalty: 1.0 - ref_len: 33985.0 - src_name: Mon-Khmer languages - tgt_name: English - train_date: 2020-07-27 - src_alpha2: mkh - tgt_alpha2: en - prefer_old: False - long_pair: mkh-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-nl-fi
9c2749217bb778e6d77a7bffba719d98a27c7f10
2021-09-10T13:59:15.000Z
[ "pytorch", "marian", "text2text-generation", "nl", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nl-fi
26
null
transformers
7,515
--- tags: - translation license: apache-2.0 --- ### opus-mt-nl-fi * source languages: nl * target languages: fi * OPUS readme: [nl-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nl-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/nl-fi/opus-2020-02-26.zip) * test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-fi/opus-2020-02-26.test.txt) * test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-fi/opus-2020-02-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nl.fi | 28.6 | 0.569 |
Helsinki-NLP/opus-mt-sn-en
122bc773e49e14db353cea778090a95ce2e20f6c
2021-09-10T14:04:04.000Z
[ "pytorch", "marian", "text2text-generation", "sn", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sn-en
26
null
transformers
7,516
--- tags: - translation license: apache-2.0 --- ### opus-mt-sn-en * source languages: sn * target languages: en * OPUS readme: [sn-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sn-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sn-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sn-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sn-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sn.en | 51.8 | 0.648 |
Helsinki-NLP/opus-mt-xh-en
6a5f51b69435fc8f618c0b9c1711d6dd322c5661
2021-09-11T10:52:20.000Z
[ "pytorch", "marian", "text2text-generation", "xh", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-xh-en
26
null
transformers
7,517
--- tags: - translation license: apache-2.0 --- ### opus-mt-xh-en * source languages: xh * target languages: en * OPUS readme: [xh-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/xh-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/xh-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.xh.en | 45.8 | 0.610 |
Helsinki-NLP/opus-tatoeba-fr-it
ece0ee5246a0e21bba190007872250a79cc262bd
2021-11-11T17:41:18.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-tatoeba-fr-it
26
null
transformers
7,518
--- language: - fr - it tags: - translation license: apache-2.0 --- ### fr-it * source group: French * target group: Italian * OPUS readme: [fra-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-ita/README.md) * model: transformer-align * source language(s): fra * target language(s): ita * raw source language(s): fra * raw target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opusTCv20210807-2021-11-11.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.zip) * test set translations: [opusTCv20210807-2021-11-11.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.test.txt) * test set scores: [opusTCv20210807-2021-11-11.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test-v2021-08-07.fra-ita | 54.8 | 0.737 | 10000 | 61517 | 0.953 | ### System Info: - hf_name: fr-it - source_languages: fra - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'it'] - src_constituents: ('French', {'fra'}) - tgt_constituents: ('Italian', {'ita'}) - src_multilingual: False - tgt_multilingual: False - long_pair: fra-ita - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.test.txt - src_alpha3: fra - tgt_alpha3: ita - chrF2_score: 0.737 - bleu: 54.8 - src_name: French - tgt_name: Italian - train_date: 2021-11-11 00:00:00 - src_alpha2: fr - tgt_alpha2: it - prefer_old: False - short_pair: fr-it - helsinki_git_sha: 7ab0c987850187e0b10342bfc616cd47c027ba18 - transformers_git_sha: df1f94eb4a18b1a27d27e32040b60a17410d516e - port_machine: LM0-400-22516.local - port_time: 2021-11-11-19:40
KoichiYasuoka/bert-large-japanese-upos
45d90ca233f9496c9aacfaa6407e510fb7901122
2022-05-23T21:51:21.000Z
[ "pytorch", "bert", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/bert-large-japanese-upos
26
1
transformers
7,519
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # bert-large-japanese-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-large-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-large-japanese-char-extended). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
Kowsher/bert-base-bangla-ner
185e29349c9687fa704c12f8d9a5dd494a422b08
2021-08-08T10:35:26.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Kowsher
null
Kowsher/bert-base-bangla-ner
26
null
transformers
7,520
Entry not found
NLPC-UOM/SinBERT-small
f0eaaed69eaba28a4f98eaa31b92713c5c01e1db
2022-04-29T05:04:13.000Z
[ "pytorch", "roberta", "fill-mask", "si", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
NLPC-UOM
null
NLPC-UOM/SinBERT-small
26
1
transformers
7,521
--- license: mit language: - si --- This is SinBERT-small model. SinBERT models are pretrained on a large Sinhala monolingual corpus (sin-cc-15M) using RoBERTa. If you use this model, please cite *BERTifying Sinhala - A Comprehensive Analysis of Pre-trained Language Models for Sinhala Text Classification, LREC 2022*
NYTK/text-generation-poem-petofi-gpt2-small-hungarian
d338bd8974e927955d676045a95980cde2d21d66
2022-02-14T13:34:21.000Z
[ "pytorch", "gpt2", "text-generation", "hu", "transformers", "license:gpl" ]
text-generation
false
NYTK
null
NYTK/text-generation-poem-petofi-gpt2-small-hungarian
26
1
transformers
7,522
--- language: - hu tags: - text-generation license: gpl widget: - text: "Szegeden, január végén," --- # Hungarian GPT-2 poem generator in Petőfi style For further models, scripts and details, see [our repository](https://github.com/nytud/neural-models) or [our demo site](https://juniper.nytud.hu/demo/nlp). - Pretrained on Hungarian Wikipedia - Finetuned on Petőfi Sándor összes költeményei ## Results | Model | Perplexity | | ------------- | ------------- | | **GPT-2 poem** | **47.46** | | GPT-2 news | 22.06 | ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-gpt2, title = {{"Az invazív medvék nem tolerálják a suzukis agressziót" - Magyar GPT-2 kísérleti modell}}, booktitle = {XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year = {2022}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Magyarország}, author = {{Yang Zijian Győző}}, pages = {463--476} } ```
SEBIS/code_trans_t5_small_commit_generation_multitask_finetune
ccb87cb56e45b0e940a1753c219bc82d1e3dd320
2021-06-23T10:15:17.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_commit_generation_multitask_finetune
26
null
transformers
7,523
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the git commit message generation task for the java commit changes. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_commit_generation_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_commit_generation_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/commit%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 8,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing commit changes. ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_trans_en_sv_small_finetuned
59e08a5da640a659ab998f79b390e2289602c01b
2021-06-23T09:40:43.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_en_sv_small_finetuned
26
null
transformers
7,524
--- language: English Swedish tags: - translation English Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "any operations cofinanced in the framework of" --- # legal_t5_small_trans_en_sv_small_finetuned model Model on translating legal text from English to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_en_sv_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_en_sv_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from English to Swedish. ### How to use Here is how to use this model to translate legal text from English to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_en_sv_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_en_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "any operations cofinanced in the framework of" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_trans_en_sv_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_en_sv_small_finetuned | 48.126| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
ShengdingHu/sst2
894b64b74eab3740d4e91840a826f939c2e6baf7
2022-04-26T11:16:23.000Z
[ "pytorch", "tensorboard", "big_bird", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ShengdingHu
null
ShengdingHu/sst2
26
null
transformers
7,525
Entry not found
addy88/programming-lang-identifier
8b13668b138d4dbd1cce7d5febc4261bcdd7cf24
2022-01-04T04:22:07.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
addy88
null
addy88/programming-lang-identifier
26
null
transformers
7,526
This model is funetune version of Codebert in roberta. On CodeSearchNet. ### Quick start: from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("addy88/programming-lang-identifier") model = AutoModelForSequenceClassification.from_pretrained("addy88/programming-lang-identifier") input_ids = tokenizer.encode(CODE_TO_IDENTIFY) logits = model(input_ids)[0] language_idx = logits.argmax() # index for the resulting label ###
akdeniz27/mDeBERTa-v3-base-turkish-ner
0548ce8e7f7ddcc165e12cd9cfcac01a6490fbbf
2021-11-25T20:32:19.000Z
[ "pytorch", "deberta-v2", "token-classification", "tr", "transformers", "autotrain_compatible" ]
token-classification
false
akdeniz27
null
akdeniz27/mDeBERTa-v3-base-turkish-ner
26
null
transformers
7,527
--- language: tr widget: - text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı." --- # Turkish Named Entity Recognition (NER) Model This model is the fine-tuned version of "microsoft/mDeBERTa-v3-base" (a multilingual version of DeBERTa V3) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "microsoft/mdeberta-v3-base" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 2 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mDeBERTa-v3-base-turkish-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * f1: 0.95 * precision: 0.94 * recall: 0.96
allenai/hvila-block-layoutlm-finetuned-grotoap2
c2c2e944ea28883b5a8184d76354e53c6064b83d
2021-09-27T22:59:48.000Z
[ "pytorch", "hierarchical_model", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
allenai
null
allenai/hvila-block-layoutlm-finetuned-grotoap2
26
null
transformers
7,528
Entry not found
anuragshas/wav2vec2-large-xlsr-as
d69474818224e8ecf85d09954eb0079467587ad0
2022-01-14T16:41:25.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "as", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-as
26
null
transformers
7,529
--- language: as datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Assamese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice as type: common_voice args: as metrics: - name: Test WER type: wer value: 69.63 --- # Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "as", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Assamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "as", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\”\\়\\।]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub('’ ',' ',batch["sentence"]) batch["sentence"] = re.sub(' ‘',' ',batch["sentence"]) batch["sentence"] = re.sub('’|‘','\'',batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 69.63 % ## Training The Common Voice `train` and `validation` datasets were used for training.
arjuntheprogrammer/distilbert-base-multilingual-cased-sentiment-2
fc07afdd922e42e34c67464e895d5a0e4f2565e8
2022-02-02T15:16:39.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
arjuntheprogrammer
null
arjuntheprogrammer/distilbert-base-multilingual-cased-sentiment-2
26
null
transformers
7,530
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 model-index: - name: distilbert-base-multilingual-cased-sentiment-2 results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Accuracy type: accuracy value: 0.7614 - name: F1 type: f1 value: 0.7614 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-sentiment-2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5882 - Accuracy: 0.7614 - F1: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa
ff8dd3f1de9be2cd3cf57783ae27f9972a55ede8
2021-12-22T10:33:50.000Z
[ "pytorch", "roberta", "text-classification", "dataset:indonlu", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ayameRushia
null
ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa
26
null
transformers
7,531
--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy model-index: - name: roberta-base-indonesian-sentiment-analysis-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9349206349206349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-indonesian-sentiment-analysis-smsa This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 - Accuracy: 0.9349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7582 | 1.0 | 688 | 0.3280 | 0.8786 | | 0.3225 | 2.0 | 1376 | 0.2398 | 0.9206 | | 0.2057 | 3.0 | 2064 | 0.2574 | 0.9230 | | 0.1642 | 4.0 | 2752 | 0.2820 | 0.9302 | | 0.1266 | 5.0 | 3440 | 0.3344 | 0.9317 | | 0.0608 | 6.0 | 4128 | 0.3543 | 0.9341 | | 0.058 | 7.0 | 4816 | 0.4252 | 0.9349 | | 0.0315 | 8.0 | 5504 | 0.4736 | 0.9310 | | 0.0166 | 9.0 | 6192 | 0.4649 | 0.9349 | | 0.0143 | 10.0 | 6880 | 0.4648 | 0.9341 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
bakrianoo/t5-arabic-large
f60d15333498962977d518ec27331d35bc17fdbf
2021-06-26T17:09:24.000Z
[ "pytorch", "t5", "text2text-generation", "Arabic", "dataset:mc4", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
bakrianoo
null
bakrianoo/t5-arabic-large
26
null
transformers
7,532
--- language: Arabic datasets: - mc4 license: apache-2.0 --- ## Arabic T5 Large Model A customized T5 Model for Arabic and English Task. It could be used as an alternative for `google/mt5-large` model, as it's much smaller and only targets Arabic and English based tasks. ### About T5 ``` T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ``` [Read More](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
bipin/malayalam-news-classifier
b14c5e159c1811bcaec8bd213142493252cc4f94
2021-07-21T13:40:25.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "malayalam", "license:mit" ]
text-classification
false
bipin
null
bipin/malayalam-news-classifier
26
2
transformers
7,533
--- license: mit tags: - text-classification - roberta - malayalam - pytorch widget: - text: "2032 ഒളിമ്പിക്‌സിന് ബ്രിസ്‌ബെയ്ന്‍ വേദിയാകും; ഗെയിംസിന് വേദിയാകുന്ന മൂന്നാമത്തെ ഓസ്‌ട്രേലിയന്‍ നഗരം" --- ## Malayalam news classifier ### Overview This model is trained on top of [MalayalamBert](https://huggingface.co/eliasedwin7/MalayalamBERT) for the task of classifying malayalam news headlines. Presently, the following news categories are supported: * Business * Sports * Entertainment ### Dataset The dataset used for training this model can be found [here](https://www.kaggle.com/disisbig/malyalam-news-dataset). ### Using the model with HF pipeline ```python from transformers import pipeline news_headline = "ക്രിപ്‌റ്റോ ഇടപാടുകളുടെ വിവരങ്ങൾ ആവശ്യപ്പെട്ട് ആദായനികുതി വകുപ്പ് നോട്ടീസയച്ചു" model = pipeline(task="text-classification", model="bipin/malayalam-news-classifier") model(news_headline) # Output # [{'label': 'business', 'score': 0.9979357123374939}] ``` ### Contact For feedback and questions, feel free to contact via twitter [@bkrish_](https://twitter.com/bkrish_)
cl-tohoku/roberta-base-japanese
626ec58f01e6aa050dde737d1e5f41654c89e489
2021-09-21T09:31:46.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-tohoku
null
cl-tohoku/roberta-base-japanese
26
null
transformers
7,534
Entry not found
codesj/empathic-concern
be3878da3f8bf9d739dc51d19e54cb360a8116d6
2021-11-15T15:10:47.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
codesj
null
codesj/empathic-concern
26
null
transformers
7,535
Entry not found
daekeun-ml/koelectra-small-v3-nsmc
7d03233da5e3fefe54ed4eb20d9d94d45d180fe1
2022-02-13T06:22:54.000Z
[ "pytorch", "electra", "text-classification", "ko", "dataset:nsmc", "transformers", "classification", "license:mit" ]
text-classification
false
daekeun-ml
null
daekeun-ml/koelectra-small-v3-nsmc
26
null
transformers
7,536
--- language: - ko tags: - classification license: mit datasets: - nsmc metrics: - accuracy - f1 - precision - recall- accuracy --- # Sentiment Binary Classification (fine-tuning with KoELECTRA-Small-v3 model and Naver Sentiment Movie Corpus dataset) ## Usage (Amazon SageMaker inference applicable) It uses the interface of the SageMaker Inference Toolkit as is, so it can be easily deployed to SageMaker Endpoint. ### inference_nsmc.py ```python import json import sys import logging import torch from torch import nn from transformers import ElectraConfig from transformers import ElectraModel, AutoTokenizer, ElectraTokenizer, ElectraForSequenceClassification logging.basicConfig( level=logging.INFO, format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s', handlers=[ logging.FileHandler(filename='tmp.log'), logging.StreamHandler(sys.stdout) ] ) logger = logging.getLogger(__name__) max_seq_length = 128 classes = ['Neg', 'Pos'] tokenizer = AutoTokenizer.from_pretrained("daekeun-ml/koelectra-small-v3-nsmc") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def model_fn(model_path=None): #### # If you have your own trained model # Huggingface pre-trained model: 'monologg/koelectra-small-v3-discriminator' #### #config = ElectraConfig.from_json_file(f'{model_path}/config.json') #model = ElectraForSequenceClassification.from_pretrained(f'{model_path}/model.pth', config=config) # Download model from the Huggingface hub model = ElectraForSequenceClassification.from_pretrained('daekeun-ml/koelectra-small-v3-nsmc') model.to(device) return model def input_fn(input_data, content_type="application/jsonlines"): data_str = input_data.decode("utf-8") jsonlines = data_str.split("\n") transformed_inputs = [] for jsonline in jsonlines: text = json.loads(jsonline)["text"][0] logger.info("input text: {}".format(text)) encode_plus_token = tokenizer.encode_plus( text, max_length=max_seq_length, add_special_tokens=True, return_token_type_ids=False, padding="max_length", return_attention_mask=True, return_tensors="pt", truncation=True, ) transformed_inputs.append(encode_plus_token) return transformed_inputs def predict_fn(transformed_inputs, model): predicted_classes = [] for data in transformed_inputs: data = data.to(device) output = model(**data) softmax_fn = nn.Softmax(dim=1) softmax_output = softmax_fn(output[0]) _, prediction = torch.max(softmax_output, dim=1) predicted_class_idx = prediction.item() predicted_class = classes[predicted_class_idx] score = softmax_output[0][predicted_class_idx] logger.info("predicted_class: {}".format(predicted_class)) prediction_dict = {} prediction_dict["predicted_label"] = predicted_class prediction_dict['score'] = score.cpu().detach().numpy().tolist() jsonline = json.dumps(prediction_dict) logger.info("jsonline: {}".format(jsonline)) predicted_classes.append(jsonline) predicted_classes_jsonlines = "\n".join(predicted_classes) return predicted_classes_jsonlines def output_fn(outputs, accept="application/jsonlines"): return outputs, accept ``` ### test.py ```python >>> from inference_nsmc import model_fn, input_fn, predict_fn, output_fn >>> with open('samples/nsmc.txt', mode='rb') as file: >>> model_input_data = file.read() >>> model = model_fn() >>> transformed_inputs = input_fn(model_input_data) >>> predicted_classes_jsonlines = predict_fn(transformed_inputs, model) >>> model_outputs = output_fn(predicted_classes_jsonlines) >>> print(model_outputs[0]) [{inference_nsmc.py:47} INFO - input text: 이 영화는 최고의 영화입니다 [{inference_nsmc.py:47} INFO - input text: 최악이에요. 배우의 연기력도 좋지 않고 내용도 너무 허접합니다 [{inference_nsmc.py:77} INFO - predicted_class: Pos [{inference_nsmc.py:84} INFO - jsonline: {"predicted_label": "Pos", "score": 0.9619030952453613} [{inference_nsmc.py:77} INFO - predicted_class: Neg [{inference_nsmc.py:84} INFO - jsonline: {"predicted_label": "Neg", "score": 0.9994170665740967} {"predicted_label": "Pos", "score": 0.9619030952453613} {"predicted_label": "Neg", "score": 0.9994170665740967} ``` ### Sample data (samples/nsmc.txt) ``` {"text": ["이 영화는 최고의 영화입니다"]} {"text": ["최악이에요. 배우의 연기력도 좋지 않고 내용도 너무 허접합니다"]} ``` ## References - KoELECTRA: https://github.com/monologg/KoELECTRA - Naver Sentiment Movie Corpus Dataset: https://github.com/e9t/nsmc
dbmdz/electra-base-turkish-cased-generator
d743f2f14112ced2d7ecd9cd3a6eb623b67be35c
2020-05-12T11:54:58.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/electra-base-turkish-cased-generator
26
null
transformers
7,537
Entry not found
dropout05/t5-tiny
a078917e9be9c9c653ddc8397b5a61c1cc0a1012
2022-02-02T19:11:43.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
dropout05
null
dropout05/t5-tiny
26
null
transformers
7,538
--- license: apache-2.0 ---
eunjin/kogpt2-finetuned-wellness
d8f79be7e2971828a2a269453927649c8ce0d6dd
2021-06-10T12:32:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
eunjin
null
eunjin/kogpt2-finetuned-wellness
26
null
transformers
7,539
* skt/kogpt2-base-v2에 wellness 및 일상챗봇 데이터를 fine-tuning한 모델입니다. * 유사한 정신건강 상담 도메인에서 바로 사용 가능합니다. * 깃허브 사이트를 참조해주세요! https://github.com/eunjiinkim/WellnessChatbot
ffsouza/tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
050c773cc8312ff52f0780ed148623cc63d00c79
2021-11-30T16:02:14.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
26
null
transformers
7,540
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.4656 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.2268 | 1.0 | 76290 | 8.4656 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
gfdgdfgdg/arap_qa_bert_large_v2
ecda3a63abebf8bf9df8b8369037996bf910f8c9
2021-08-09T12:52:24.000Z
[ "pytorch", "bert", "question-answering", "ar", "transformers", "autotrain_compatible" ]
question-answering
false
gfdgdfgdg
null
gfdgdfgdg/arap_qa_bert_large_v2
26
null
transformers
7,541
--- language: - ar widget: - text: "أين يعيش محمد ؟" context: "اسمي محمد وأنا أعيش في سوريا" - text: "ما العدد الذري للهيدروجين ؟" context: "الهيدروجين هو عنصر كيميائي عدده الذري 1 ، وهو غاز عديم الرائحة واللون وهو سريع الاشتعال" - text: "ما خواص الهيدروجين ؟" context: "الهيدروجين هو عنصر كيميائي عدده الذري 1 ، وهو غاز عديم الرائحة واللون وهو سريع الاشتعال" ---
google/t5-11b-ssm-wq
91862905ed9515c5e86f1d5dfcc2c529212ecdb5
2020-12-07T08:46:12.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:web_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-11b-ssm-wq
26
1
transformers
7,542
--- language: en datasets: - c4 - wikipedia - web_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Web Questions (WQ)](https://huggingface.co/datasets/web_questions). **Note**: The model was fine-tuned on 100% of the train splits of [Web Questions (WQ)](https://huggingface.co/datasets/web_questions) for 10k steps. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Web Questions - Test Set |Id | link | Exact Match | |---|---|---| |**T5-11b**|**https://huggingface.co/google/t5-11b-ssm-wq**|**44.7**| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-wq|43.5| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-11b-ssm-wq") t5_tok = AutoTokenizer.from_pretrained("google/t5-11b-ssm-wq") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
huggingtweets/14werewolfvevo
e109cae8b231744821655e7a2ea9adc36c2cdb52
2021-05-21T16:28:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/14werewolfvevo
26
null
transformers
7,543
--- language: en thumbnail: https://www.huggingtweets.com/14werewolfvevo/1617769919321/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343113335882063873/mITxI5OI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">SIKA MODE | BLM 🤖 AI Bot </div> <div style="font-size: 15px">@14werewolfvevo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@14werewolfvevo's tweets](https://twitter.com/14werewolfvevo). | Data | Quantity | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 170 | | Short tweets | 798 | | Tweets kept | 2261 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ymsdw3a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @14werewolfvevo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1iypm80s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1iypm80s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/14werewolfvevo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/davidgoggins
122f2d567287b77bfa57a6e29239934505404315
2021-05-22T00:53:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/davidgoggins
26
null
transformers
7,544
--- language: en thumbnail: https://www.huggingtweets.com/davidgoggins/1603830361250/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/792165528752140288/liCCmoI2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">David Goggins 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@davidgoggins bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@davidgoggins's tweets](https://twitter.com/davidgoggins). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>557</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>10</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>75</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>472</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3bgqr5vh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @davidgoggins's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/13i4mcyp) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/13i4mcyp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/davidgoggins'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/jschlatt
878fb0fe0d8e787668214110f723d0c186fad9c3
2021-09-23T19:13:50.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jschlatt
26
null
transformers
7,545
--- language: en thumbnail: https://www.huggingtweets.com/jschlatt/1632424426297/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1104281298967904257/KuDWZQfF_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Schlatt</div> <div style="text-align: center; font-size: 14px;">@jschlatt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Schlatt. | Data | Schlatt | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 3 | | Short tweets | 1207 | | Tweets kept | 2040 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ad6fl7e4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jschlatt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24kxtuwd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24kxtuwd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jschlatt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/marsajal
81cf502acb44411e859f7e6ef7da1775e4fc19df
2022-07-07T09:42:16.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/marsajal
26
null
transformers
7,546
--- language: en thumbnail: http://www.huggingtweets.com/marsajal/1657186931820/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1463196823728771079/wZc0m7cd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ajeng🦦</div> <div style="text-align: center; font-size: 14px;">@marsajal</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ajeng🦦. | Data | ajeng🦦 | | --- | --- | | Tweets downloaded | 214 | | Retweets | 37 | | Short tweets | 41 | | Tweets kept | 136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kdiymty/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marsajal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lfk0v9ey) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lfk0v9ey/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marsajal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sexycuckolding
d31fe2d73e60b70cf63dd5326c88631aba96a6f4
2021-08-14T12:11:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/sexycuckolding
26
null
transformers
7,547
--- language: en thumbnail: https://www.huggingtweets.com/sexycuckolding/1628943086648/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1392455809330819072/POjhVAU1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cuckolding (female perspective)</div> <div style="text-align: center; font-size: 14px;">@sexycuckolding</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cuckolding (female perspective). | Data | Cuckolding (female perspective) | | --- | --- | | Tweets downloaded | 2651 | | Retweets | 364 | | Short tweets | 311 | | Tweets kept | 1976 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/120lf3ey/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sexycuckolding's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gmuegp8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gmuegp8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sexycuckolding') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/starbannergames
9252d512ad61e38345affc7583503e0eb8fb6b4f
2021-05-22T23:54:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/starbannergames
26
null
transformers
7,548
--- language: en thumbnail: https://www.huggingtweets.com/starbannergames/1616902434636/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364669962351243273/0wP1cOJ4_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nanda //// Star Banner Games 🤖 AI Bot </div> <div style="font-size: 15px">@starbannergames bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@starbannergames's tweets](https://twitter.com/starbannergames). | Data | Quantity | | --- | --- | | Tweets downloaded | 990 | | Retweets | 134 | | Short tweets | 97 | | Tweets kept | 759 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39zshs8e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @starbannergames's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/292aokzw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/292aokzw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/starbannergames') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ylecun
3575ada0ee67c8e05347c9f043fe2fa99722d57b
2021-05-23T05:03:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ylecun
26
null
transformers
7,549
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2387565623/7gew8nz1z7ik1ch148so_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Yann LeCun 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ylecun bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ylecun's tweets](https://twitter.com/ylecun). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3230</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>968</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>245</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2017</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3a9fwpf1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ylecun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/avykhi3y) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/avykhi3y/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ylecun'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
ishan/distilbert-base-uncased-mnli
5b5436f6f59086b00ac829afecc16d1bd926cbfb
2020-08-21T10:23:40.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:MNLI", "arxiv:1810.04805", "transformers" ]
text-classification
false
ishan
null
ishan/distilbert-base-uncased-mnli
26
null
transformers
7,550
--- language: en thumbnail: tags: - pytorch - text-classification datasets: - MNLI --- # distilbert-base-uncased finetuned on MNLI ## Model Details and Training Data We used the pretrained model from [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) and finetuned it on [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset. The training parameters were kept the same as [Devlin et al., 2019](https://arxiv.org/abs/1810.04805) (learning rate = 2e-5, training epochs = 3, max_sequence_len = 128 and batch_size = 32). ## Evaluation Results The evaluation results are mentioned in the table below. | Test Corpus | Accuracy | |:---:|:---------:| | Matched | 0.8223 | | Mismatched | 0.8216 |
jaketae/hifigan-lj-v1
85caaf4ed15cfb83ba79a994a2266aa892645495
2022-02-23T23:22:01.000Z
[ "pytorch", "hifigan", "en", "dataset:ljspeech", "arxiv:2010.05646", "transformers", "audio", "text-to-speech" ]
text-to-speech
false
jaketae
null
jaketae/hifigan-lj-v1
26
null
transformers
7,551
--- language: en datasets: - ljspeech tags: - audio - text-to-speech --- # HiFi-GAN [HiFi-GAN](https://arxiv.org/abs/2010.05646) vocoder trained on the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/). The modeling code is based on the [official implementation](https://github.com/jik876/hifi-gan) and the [fairseq adaptation](https://github.com/pytorch/fairseq). ## Usage ```python from transformers import AutoModel model = AutoModel.from_pretrained("jaketae/hifigan-lj-v1", trust_remote_code=True) ```
justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
5d61a1b0771e7816cb449f526c93f554ba632926
2021-12-12T20:00:43.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "arxiv:1907.11692", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
justinqbui
null
justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
26
null
transformers
7,552
--- tags: - generated_from_trainer model-index: - name: bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets This model is a further pre-trained version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on masked language modeling using [a kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets) with tweets up until early December. It achieves the following results on the evaluation set (15% from the dataset randomly selected to serve as a test set): - Loss: 1.5089 - Perplexity: 4.64 To use the model, use the inference API. Alternatively, to run locally ``` from transformers import pipeline model = "justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets" pipe = pipeline("fill-mask", model = model) seq = "covid vaccines are <mask> and effective" pipe(seq) ``` ## Model description This model is a further pretrained version of bertweet, which both follow objectives in the [RoBERTa paper](https://arxiv.org/pdf/1907.11692.pdf). While bertweet was only trained with 23M tweets until September, 2020, this model was further pre-trained using 300k tweets with #CovidVaccine. The tokenizer requires the emoji library to be installed. ``` !pip install nltk emoji ``` ## Intended uses & limitations The intended use of this model is for fine-tuning on a downstream task on tasks that are closely related to covid and covid vaccines. This model has many potential biases and limitations, since the model is trained on public tweets, it is bound to recreate biases that people tweet. In order to load the model and tokenizer, run ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets") model = AutoModelForMaskedLM.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets") ``` ## Training and evaluation data This model was further pre-trained on 300k tweets containing #covidvaccines from this [kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets). The evaluation set was 15% of the tweets that were held out from the training data. ## Training procedure See the training notebook found [here](). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5775 | 1.0 | 8931 | 1.5852 | | 1.5715 | 2.0 | 17862 | 1.5701 | | 1.5394 | 3.0 | 26793 | 1.5089 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
kmfoda/wav2vec2-large-xlsr-arabic
cd5511440ff945978f812dc85c8c410e9ca12cdb
2021-07-06T09:45:10.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kmfoda
null
kmfoda/wav2vec2-large-xlsr-arabic
26
null
transformers
7,553
--- language: ar datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Arabic by Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ar type: common_voice args: ar metrics: - name: Test WER type: wer value: 46.77 --- # Wav2Vec2-Large-XLSR-53-Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") resamplers = { # all three sampling rates exist in test split 48000: torchaudio.transforms.Resample(48000, 16000), 44100: torchaudio.transforms.Resample(44100, 16000), 32000: torchaudio.transforms.Resample(32000, 16000), } def prepare_example(example): speech, sampling_rate = torchaudio.load(example["path"]) example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy() return example test_dataset = test_dataset.map(prepare_example) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ar", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\؟\_\؛\ـ\—]' resamplers = { # all three sampling rates exist in test split 48000: torchaudio.transforms.Resample(48000, 16000), 44100: torchaudio.transforms.Resample(44100, 16000), 32000: torchaudio.transforms.Resample(32000, 16000), } def prepare_example(example): speech, sampling_rate = torchaudio.load(example["path"]) example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy() return example test_dataset = test_dataset.map(prepare_example) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 52.53 ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://huggingface.co/kmfoda/wav2vec2-large-xlsr-arabic/tree/main)
kuppuluri/telugu_bertu_tydiqa
b67e93cd5ae0fb5165ca2ed88023cf66d898963f
2021-12-02T18:15:25.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
kuppuluri
null
kuppuluri/telugu_bertu_tydiqa
26
null
transformers
7,554
# Telugu Question-Answering model trained on Tydiqa dataset from Google #### How to use Use the below script from your python terminal as the web interface for inference has few encoding issues for Telugu ```python from transformers.pipelines import pipeline, AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained("kuppuluri/telugu_bertu_tydiqa", clean_text=False, handle_chinese_chars=False, strip_accents=False, wordpieces_prefix='##') nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) result = nlp({'question': question, 'context': context}) ``` ## Training data I used Tydiqa Telugu data from Google https://github.com/google-research-datasets/tydiqa PS: If you find my model useful, I would appreciate a note from you as it would encourage me to continue improving it and also add new models.
maroo93/squad2.0
2f0cb49fb8a12dfa44fd52589874eaacb8a45dfd
2021-05-19T23:09:45.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
maroo93
null
maroo93/squad2.0
26
null
transformers
7,555
Entry not found
mlcorelib/debertav2-base-uncased
55519d4c151b1a15fd62273a084a7313a251e27e
2021-05-01T12:53:51.000Z
[ "pytorch", "tf", "jax", "rust", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
mlcorelib
null
mlcorelib/debertav2-base-uncased
26
null
transformers
7,556
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
monologg/koelectra-v3-klue-sts
cf2810bfb9a91714e9c3b20dfa171ef9adf77770
2022-01-25T09:13:15.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
monologg
null
monologg/koelectra-v3-klue-sts
26
null
transformers
7,557
Entry not found
mustapha/distilgpt2-finetuned-wikitext2
76f63a314a775840ffaaa10ee03e0e615a386388
2021-11-30T09:52:12.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
mustapha
null
mustapha/distilgpt2-finetuned-wikitext2
26
1
transformers
7,558
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
patrickvonplaten/sew-d-small-100k-timit
3ba41fac89042fbac19b762eb3cbc42db3703e16
2021-10-27T17:15:26.000Z
[ "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/sew-d-small-100k-timit
26
null
transformers
7,559
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sew-d-small-100k-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-d-small-100k-timit This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.7541 - Wer: 0.8061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2068 | 0.69 | 100 | 4.0802 | 1.0 | | 2.9805 | 1.38 | 200 | 2.9792 | 1.0 | | 2.9781 | 2.07 | 300 | 2.9408 | 1.0 | | 2.9655 | 2.76 | 400 | 2.9143 | 1.0 | | 2.8953 | 3.45 | 500 | 2.8775 | 1.0 | | 2.7718 | 4.14 | 600 | 2.7787 | 1.0 | | 2.6711 | 4.83 | 700 | 2.6401 | 0.9786 | | 2.6403 | 5.52 | 800 | 2.5435 | 1.0392 | | 2.4052 | 6.21 | 900 | 2.4580 | 1.0706 | | 2.1708 | 6.9 | 1000 | 2.2800 | 1.0090 | | 2.2555 | 7.59 | 1100 | 2.1493 | 0.9579 | | 2.3673 | 8.28 | 1200 | 2.0709 | 0.9051 | | 2.091 | 8.97 | 1300 | 2.0258 | 0.8926 | | 1.8433 | 9.66 | 1400 | 1.9645 | 0.8243 | | 1.6824 | 10.34 | 1500 | 1.9211 | 0.8707 | | 2.2282 | 11.03 | 1600 | 1.8914 | 0.8695 | | 1.9027 | 11.72 | 1700 | 1.8718 | 0.8343 | | 1.6303 | 12.41 | 1800 | 1.8646 | 0.8232 | | 1.648 | 13.1 | 1900 | 1.8297 | 0.8177 | | 2.0429 | 13.79 | 2000 | 1.8127 | 0.8642 | | 1.8833 | 14.48 | 2100 | 1.8005 | 0.8307 | | 1.5996 | 15.17 | 2200 | 1.7926 | 0.8467 | | 1.4876 | 15.86 | 2300 | 1.7795 | 0.8341 | | 1.8925 | 16.55 | 2400 | 1.7716 | 0.8199 | | 1.814 | 17.24 | 2500 | 1.7846 | 0.8086 | | 1.536 | 17.93 | 2600 | 1.7655 | 0.8019 | | 1.4476 | 18.62 | 2700 | 1.7599 | 0.8070 | | 1.7629 | 19.31 | 2800 | 1.7589 | 0.8119 | | 1.7646 | 20.0 | 2900 | 1.7541 | 0.8061 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
rajratnpranesh/DCS_sanskrit_bert
69b6d784189fdd3176e2087303afaee66e828eda
2021-05-20T03:52:51.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
rajratnpranesh
null
rajratnpranesh/DCS_sanskrit_bert
26
null
transformers
7,560
Entry not found
shahrukhx01/roberta-base-squad2-boolq-baseline
ad3bde67e7d2489e15d519fadbeeae733ee91659
2021-09-28T18:18:26.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
shahrukhx01
null
shahrukhx01/roberta-base-squad2-boolq-baseline
26
null
transformers
7,561
## Multiple Prediction Heads * ExtractiveQA Head * Three Class Classification Head, classes => (yes, no, extra_qa) to answer binary questions or direct to ExtractiveQA Head ## BoolQ Validation dataset Evaluation: <br/> support => 3270 <br/> accuracy => 0.73 <br/> macro f1 => 0.71 ## SQuAD Validation dataset Evaluation: <br/> eval_HasAns_exact = 78.0196 <br/> eval_HasAns_f1 = 84.0327 <br/> eval_HasAns_total = 5928 <br/> eval_NoAns_exact = 81.8167 <br/> eval_NoAns_f1 = 81.8167 <br/> eval_NoAns_total = 5945 <br/> eval_best_exact = 79.9208 <br/> eval_best_f1 = 82.9231 <br/> eval_exact = 79.9208 <br/> eval_f1 = 82.9231 <br/> eval_samples = 12165 <br/> eval_total = 11873 ## Uasge in transformers Import the script from [here](https://huggingface.co/shahrukhx01/roberta-base-squad2-boolq-baseline/blob/main/multitask_model.py) ```python from multitask_model import RobertaForMultitaskQA from transformers import RobertaTokenizerFast device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = RobertaForMultitaskQA.from_pretrained( "shahrukhx01/roberta-base-squad2-boolq-baseline", task_labels_map={"squad_v2": 2, "boolq": 3}, ).to(device) tokenizer = RobertaTokenizerFast.from_pretrained("shahrukhx01/roberta-base-squad2-boolq-baseline") ```
sultan/BioM-ELECTRA-Large-Generator
4be3b63c6e32aaafeed9e1877a8f8b683a3a56d0
2021-05-24T21:07:58.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sultan
null
sultan/BioM-ELECTRA-Large-Generator
26
null
transformers
7,562
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description This model was pre-trained on PubMed Abstracts only with biomedical domain vocabulary for 434K steps with a batch size of 4096 on TPUv3-512 unit. Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
tbrasil/classificador_de_atendimento_3_classes_v1.1
c7825e99fb9b49e3f7b6ef33f020f799ac24568d
2021-07-26T17:26:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
tbrasil
null
tbrasil/classificador_de_atendimento_3_classes_v1.1
26
null
transformers
7,563
Entry not found
yoshitomo-matsubara/bert-large-uncased-qnli
6bf3fa14095da060773362e19be89bd7db46b4ca
2021-05-29T21:33:19.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:qnli", "transformers", "qnli", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-large-uncased-qnli
26
null
transformers
7,564
--- language: en tags: - bert - qnli - glue - torchdistill license: apache-2.0 datasets: - qnli metrics: - accuracy --- `bert-large-uncased` fine-tuned on QNLI dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/qnli/ce/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
gustavecortal/gpt-j-fr-covid-news
397ecac9686c226e98af93c9b986e75be3510905
2022-03-10T10:05:27.000Z
[ "pytorch", "gptj", "text-generation", "fr", "dataset:gustavecortal/fr_covid_news", "transformers", "causal-lm", "license:mit" ]
text-generation
false
gustavecortal
null
gustavecortal/gpt-j-fr-covid-news
26
1
transformers
7,565
--- language: fr license: mit tags: - causal-lm - fr datasets: - gustavecortal/fr_covid_news --- ### GPT-J COVID-19 French News with 8-bit weights This is a version of Cedille's GPT-J ([fr-boris](https://huggingface.co/gustavecortal/fr-boris-8bit)) with 6 billion parameters fine-tuned on [COVID-19 French News dataset](https://huggingface.co/datasets/gustavecortal/fr_covid_news) to generate French headlines related to COVID-19. You can generate the model in colab or equivalent desktop gpu (e.g. single 1080Ti) as the model has 8-bit weights. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) This model can be easily loaded using the `GPTJForCausalLM` functionality: ```python from transformers import GPTJForCausalLM model = GPTJForCausalLM.from_pretrained("gustavecortal/gpt-j-fr-covid-news") ``` Remember, you have to Monkey-Patch the model before loading it (see Colab above). ## One thousand AI-generated French headlines related to COVID-19 How not to be disoriented in a pandemic era when faced with an immense flow of information? [This page](https://gustavecortal.com/project/covid) features one thousand AI-generated French headlines related to COVID-19. ## fr-boris Boris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) codebase. Boris was trained on around 78B tokens of French text from the [C4](https://huggingface.co/datasets/c4) dataset. ## Links * [Gustave Cortal](https://twitter.com/gustavecortal)
aicryptogroup/distill-xlm-mrc
41ba30c18793cb527db62b68b47c9e0881e25a4a
2022-04-26T02:40:42.000Z
[ "pytorch", "roberta", "question-answering", "vi", "vn", "en", "dataset:squad", "transformers", "autotrain_compatible" ]
question-answering
false
aicryptogroup
null
aicryptogroup/distill-xlm-mrc
26
null
transformers
7,566
--- language: - vi - vn - en tags: - question-answering - pytorch datasets: - squad pipeline_tag: question-answering metrics: - squad widget: - text: "what is the capital of Vietnam ?" context: "Keeping an ageless charm through centuries, Hanoi - the capital of Vietnam is famous not only for the Old Quarter with narrow and crowded streets but also for the nostalgic feeling that it brings. While Saigon is a young and modern city, the ancient Hanoi is still a true beholder of history." --- ```python from transformers import pipeline model_checkpoint = "aicryptogroup/distill-xlm-mrc" nlp = pipeline('question-answering', model=model_checkpoint, tokenizer=model_checkpoint) QA_input = { 'question': "what is the capital of Vietnam", 'context': "Keeping an ageless charm through centuries, Hanoi - the capital of Vietnam is famous not only for the Old Quarter with narrow and crowded streets but also for the nostalgic feeling that it brings. While Saigon is a young and modern city, the ancient Hanoi is still a true beholder of history." } res = nlp(QA_input) print('pipeline: {}'.format(res))
BigSalmon/MASKGPT2
273e2105628f5a4ef264b86ee582bbd088c705a6
2022-03-23T19:26:53.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/MASKGPT2
26
null
transformers
7,567
``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
gastronomia-para-to2/gastronomia_para_to2
71f14c3b2d495242c2d94d31a2714b6589b7c1c0
2022-06-23T14:55:10.000Z
[ "pytorch", "gpt2", "text-generation", "es", "transformers", "generated_from_trainer", "recipe-generation" ]
text-generation
false
gastronomia-para-to2
null
gastronomia-para-to2/gastronomia_para_to2
26
1
transformers
7,568
--- language: - es tags: - generated_from_trainer - recipe-generation widget: - text: "<RECIPE_START> <INPUT_START> salmón <NEXT_INPUT> zumo de naranja <NEXT_INPUT> aceite de oliva <NEXT_INPUT> sal <NEXT_INPUT> pimienta <INPUT_END> <INGR_START>" - text: "<RECIPE_START> <INPUT_START> harina <NEXT_INPUT> azúcar <NEXT_INPUT> huevos <NEXT_INPUT> chocolate <NEXT_INPUT> levadura Royal <INPUT_END> <INGR_START>" inference: parameters: top_k: 50 top_p: 0.92 do_sample: True num_return_sequences: 3 max_new_tokens: 100 --- # Model description This model is a fine-tuned version of [flax-community/gpt-2-spanish](https://huggingface.co/flax-community/gpt-2-spanish) on a custom dataset (not publicly available). The dataset is made of crawled data from 3 Spanish cooking websites and it contains approximately ~50000 recipes. It achieves the following results on the evaluation set: - Loss: 0.5796 ## Contributors - Julián Cendrero ([jucendrero](https://huggingface.co/jucendrero)) - Silvia Duque ([silBERTa](https://huggingface.co/silBERTa)) ## How to use it ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_checkpoint = 'gastronomia-para-to2/gastronomia_para_to2' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForCausalLM.from_pretrained(model_checkpoint) ``` The tokenizer makes use of the following special tokens to indicate the structure of the recipe: ```python special_tokens = [ '<INPUT_START>', '<NEXT_INPUT>', '<INPUT_END>', '<TITLE_START>', '<TITLE_END>', '<INGR_START>', '<NEXT_INGR>', '<INGR_END>', '<INSTR_START>', '<NEXT_INSTR>', '<INSTR_END>', '<RECIPE_START>', '<RECIPE_END>'] ``` The input should be of the form: ```python <RECIPE_START> <INPUT_START> ingredient_1 <NEXT_INPUT> ingredient_2 <NEXT_INPUT> ... <NEXT_INPUT> ingredient_n <INPUT_END> <INGR_START> ``` We are using the following configuration to generate recipes, but feel free to change parameters as needed: ```python tokenized_input = tokenizer(input, return_tensors='pt') output = model.generate(**tokenized_input, max_length=600, do_sample=True, top_p=0.92, top_k=50, num_return_sequences=3) pre_output = tokenizer.decode(output[0], skip_special_tokens=False) ``` The recipe ends where the \<RECIPE_END\> special token appears for the first time. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6213 | 1.0 | 5897 | 0.6214 | | 0.5905 | 2.0 | 11794 | 0.5995 | | 0.5777 | 3.0 | 17691 | 0.5893 | | 0.574 | 4.0 | 23588 | 0.5837 | | 0.5553 | 5.0 | 29485 | 0.5807 | | 0.5647 | 6.0 | 35382 | 0.5796 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## References The list of special tokens used for generation recipe structure has been taken from: [RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation](https://www.aclweb.org/anthology/2020.inlg-1.4.pdf).
azwierzc/visualbert-vqa-pl-v2
7b22112d72aa33d7a8c6040a4a8405f3df987163
2022-04-08T17:27:22.000Z
[ "pytorch", "visual_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
azwierzc
null
azwierzc/visualbert-vqa-pl-v2
26
null
transformers
7,569
Entry not found
agdsga/nezha-chinese-base-finetuned-product
df319d6a680c2dc1f9f83c81eeed8b471fee13fa
2022-04-08T06:12:55.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
agdsga
null
agdsga/nezha-chinese-base-finetuned-product
26
null
transformers
7,570
--- tags: - generated_from_trainer model-index: - name: nezha-chinese-base-finetuned-product results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nezha-chinese-base-finetuned-product This model is a fine-tuned version of [peterchou/nezha-chinese-base](https://huggingface.co/peterchou/nezha-chinese-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0309 | 1.0 | 6473 | 0.0037 | | 0.0033 | 2.0 | 12946 | 0.0006 | | 0.0017 | 3.0 | 19419 | 0.0004 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
vocab-transformers/distilbert-tokenizer_256k-MLM_best
bfef0b2f4f40bd88744cf1360ef42a5599c9c215
2022-04-11T11:16:06.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-tokenizer_256k-MLM_best
26
null
transformers
7,571
# DistilBERT with 256k token embeddings This model was initialized with a word2vec token embedding matrix with 256k entries, but these token embeddings were updated during MLM. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 1.55M steps (batch size 64). The token embeddings were updated during MLM.
nikhedward/bart-large-cnn-finetuned-multi-news
6c150c04431d453a41e2492a3a425cee806cf9db
2022-04-29T15:22:47.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:multi_news", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
nikhedward
null
nikhedward/bart-large-cnn-finetuned-multi-news
26
null
transformers
7,572
--- license: mit tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: bart-large-cnn-finetuned-multi-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 42.0423 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-multi-news This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.0950 - Rouge1: 42.0423 - Rouge2: 14.8812 - Rougel: 23.3412 - Rougelsum: 36.2613 ## Model description bart-large-cnn fine tuned on sample of multi-news dataset ## Intended uses & limitations The intended use of the model is for downstream summarization tasks but it's limited to input text 1024 words. Any text longer than that would be truncated. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.2037 | 1.0 | 750 | 2.0950 | 42.0423 | 14.8812 | 23.3412 | 36.2613 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Helsinki-NLP/opus-mt-tc-big-sh-en
052ec88282054d9eddfa0da15222852477182abe
2022-06-01T13:01:15.000Z
[ "pytorch", "marian", "text2text-generation", "bs_Latn", "en", "hr", "sh", "sr_Cyrl", "sr_Latn", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-sh-en
26
null
transformers
7,573
--- language: - bs_Latn - en - hr - sh - sr_Cyrl - sr_Latn tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-sh-en results: - task: name: Translation hrv-eng type: translation args: hrv-eng dataset: name: flores101-devtest type: flores_101 args: hrv eng devtest metrics: - name: BLEU type: bleu value: 37.1 - task: name: Translation bos_Latn-eng type: translation args: bos_Latn-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bos_Latn-eng metrics: - name: BLEU type: bleu value: 66.5 - task: name: Translation hbs-eng type: translation args: hbs-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hbs-eng metrics: - name: BLEU type: bleu value: 56.4 - task: name: Translation hrv-eng type: translation args: hrv-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hrv-eng metrics: - name: BLEU type: bleu value: 58.8 - task: name: Translation srp_Cyrl-eng type: translation args: srp_Cyrl-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Cyrl-eng metrics: - name: BLEU type: bleu value: 44.7 - task: name: Translation srp_Latn-eng type: translation args: srp_Latn-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Latn-eng metrics: - name: BLEU type: bleu value: 58.4 --- # opus-mt-tc-big-sh-en Neural machine translation model for translating from Serbo-Croatian (sh) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): bos_Latn hrv srp_Cyrl srp_Latn * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hbs-eng/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT hbs-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hbs-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Ispostavilo se da je istina.", "Ovaj vikend imamo besplatne pozive." ] model_name = "pytorch-models/opus-mt-tc-big-sh-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Turns out it's true. # We got free calls this weekend. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-sh-en") print(pipe("Ispostavilo se da je istina.")) # expected output: Turns out it's true. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hbs-eng/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hbs-eng/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bos_Latn-eng | tatoeba-test-v2021-08-07 | 0.80010 | 66.5 | 301 | 1826 | | hbs-eng | tatoeba-test-v2021-08-07 | 0.71744 | 56.4 | 10017 | 68934 | | hrv-eng | tatoeba-test-v2021-08-07 | 0.73563 | 58.8 | 1480 | 10620 | | srp_Cyrl-eng | tatoeba-test-v2021-08-07 | 0.68248 | 44.7 | 1580 | 10181 | | srp_Latn-eng | tatoeba-test-v2021-08-07 | 0.71781 | 58.4 | 6656 | 46307 | | hrv-eng | flores101-devtest | 0.63948 | 37.1 | 1012 | 24721 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 19:21:10 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-hu-en
11be72afb7594e726e543badd3bd658922afe715
2022-06-01T13:01:06.000Z
[ "pytorch", "marian", "text2text-generation", "en", "hu", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-hu-en
26
null
transformers
7,574
--- language: - en - hu tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-hu-en results: - task: name: Translation hun-eng type: translation args: hun-eng dataset: name: flores101-devtest type: flores_101 args: hun eng devtest metrics: - name: BLEU type: bleu value: 34.6 - task: name: Translation hun-eng type: translation args: hun-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hun-eng metrics: - name: BLEU type: bleu value: 50.4 - task: name: Translation hun-eng type: translation args: hun-eng dataset: name: newstest2009 type: wmt-2009-news args: hun-eng metrics: - name: BLEU type: bleu value: 23.4 --- # opus-mt-tc-big-hu-en Neural machine translation model for translating from Hungarian (hu) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-09 * source language(s): hun * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip) * more information released models: [OPUS-MT hun-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Bárcsak ne láttam volna ilyen borzalmas filmet!", "Iskolában van." ] model_name = "pytorch-models/opus-mt-tc-big-hu-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # I wish I hadn't seen such a terrible movie. # She's at school. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-hu-en") print(pipe("Bárcsak ne láttam volna ilyen borzalmas filmet!")) # expected output: I wish I hadn't seen such a terrible movie. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | hun-eng | tatoeba-test-v2021-08-07 | 0.66644 | 50.4 | 13037 | 94699 | | hun-eng | flores101-devtest | 0.61974 | 34.6 | 1012 | 24721 | | hun-eng | newssyscomb2009 | 0.52563 | 24.7 | 502 | 11818 | | hun-eng | newstest2009 | 0.51698 | 23.4 | 2525 | 65399 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 19:33:38 EEST 2022 * port machine: LM0-400-22516.local
chenshuangcufe/Bert-job
8d613690c9d25ac4ab473f598ba6683ac24c3ec2
2022-04-21T08:10:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
chenshuangcufe
null
chenshuangcufe/Bert-job
26
null
transformers
7,575
Entry not found
doc2query/msmarco-vietnamese-mt5-base-v1
1ac7b8c530c4dcbce052a0f1b7c2beca48ad21f5
2022-04-29T22:06:03.000Z
[ "pytorch", "mt5", "text2text-generation", "vi", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
doc2query
null
doc2query/msmarco-vietnamese-mt5-base-v1
26
1
transformers
7,576
--- language: vi datasets: - unicamp-dl/mmarco widget: - text: "Python (phát âm tiếng Anh: /ˈpaɪθɑːn/) là một ngôn ngữ lập trình bậc cao cho các mục đích lập trình đa năng, do Guido van Rossum tạo ra và lần đầu ra mắt vào năm 1991. Python được thiết kế với ưu điểm mạnh là dễ đọc, dễ học và dễ nhớ. Python là ngôn ngữ có hình thức rất sáng sủa, cấu trúc rõ ràng, thuận tiện cho người mới học lập trình và là ngôn ngữ lập trình dễ học; được dùng rộng rãi trong phát triển trí tuệ nhân tạo. Cấu trúc của Python còn cho phép người sử dụng viết mã lệnh với số lần gõ phím tối thiểu. Vào tháng 7 năm 2018, van Rossum đã từ chức lãnh đạo trong cộng đồng ngôn ngữ Python sau 30 năm làm việc." license: apache-2.0 --- # doc2query/msmarco-vietnamese-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-vietnamese-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python (phát âm tiếng Anh: /ˈpaɪθɑːn/) là một ngôn ngữ lập trình bậc cao cho các mục đích lập trình đa năng, do Guido van Rossum tạo ra và lần đầu ra mắt vào năm 1991. Python được thiết kế với ưu điểm mạnh là dễ đọc, dễ học và dễ nhớ. Python là ngôn ngữ có hình thức rất sáng sủa, cấu trúc rõ ràng, thuận tiện cho người mới học lập trình và là ngôn ngữ lập trình dễ học; được dùng rộng rãi trong phát triển trí tuệ nhân tạo. Cấu trúc của Python còn cho phép người sử dụng viết mã lệnh với số lần gõ phím tối thiểu. Vào tháng 7 năm 2018, van Rossum đã từ chức lãnh đạo trong cộng đồng ngôn ngữ Python sau 30 năm làm việc." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
TehranNLP-org/electra-base-sst2
53949b15b42995131562678a342f48d2280f3dcd
2022-05-03T17:00:04.000Z
[ "pytorch", "electra", "text-classification", "en", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-sst2
26
null
transformers
7,577
--- language: - en license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SEED0042 results: - task: name: Text Classification type: text-classification dataset: name: SST2 type: '' args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9506880733944955 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEED0042 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1754 - Accuracy: 0.9507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2105 | 0.2056 | 0.9358 | | 0.2549 | 2.0 | 4210 | 0.1850 | 0.9438 | | 0.1162 | 3.0 | 6315 | 0.1754 | 0.9507 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
nbasatish/financial-pegasus
1bd55e4aea4a0d7b76581c3f3a5ed738d968c909
2022-05-01T22:36:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
nbasatish
null
nbasatish/financial-pegasus
26
null
transformers
7,578
--- license: apache-2.0 ---
nikitast/multilang-classifier-roberta
475e27c7ccf628507ea7218b86901ad1ecad7a46
2022-07-18T11:34:28.000Z
[ "pytorch", "xlm-roberta", "text-classification", "ru", "uk", "be", "kk", "az", "hy", "ka", "he", "en", "de", "dataset:open_subtitles", "dataset:tatoeba", "dataset:oscar", "transformers", "language classification" ]
text-classification
false
nikitast
null
nikitast/multilang-classifier-roberta
26
null
transformers
7,579
--- language: - ru - uk - be - kk - az - hy - ka - he - en - de tags: - language classification datasets: - open_subtitles - tatoeba - oscar --- # RoBERTa for Multilabel Language Classification ## Training RoBERTa fine-tuned on small parts of Open Subtitles, Oscar and Tatoeba datasets (~9k samples per language). Implemented heuristic algorithm for multilingual training data creation - https://github.com/n1kstep/lang-classifier | data source | language | |-----------------|----------------| | open_subtitles | ka, he, en, de | | oscar | be, kk, az, hu | | tatoeba | ru, uk | ## Validation The metrics obtained from validation on the another part of dataset (~1k samples per language). | Training Loss | Validation Loss | F1-Score | Roc Auc | Accuracy | Support | |---------------|-----------------|----------|----------|----------|---------| | 0.161500 | 0.110949 | 0.947844 | 0.953939 | 0.762063 | 26858 |
Mathilda/T5-paraphrasing
1ffe344dc45b713d3b212ac67ceba7739a1c215f
2022-05-16T15:40:05.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
Mathilda
null
Mathilda/T5-paraphrasing
26
null
transformers
7,580
--- license: afl-3.0 ---
FrGes/xlm-roberta-large-finetuned-EUJAV-datasetA
b2d12c1d77878c92576fd890ec40851946258dba
2022-05-18T11:29:30.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
FrGes
null
FrGes/xlm-roberta-large-finetuned-EUJAV-datasetA
26
null
transformers
7,581
Fine-tuned model based on #XLM-RoBERTa (large-sized model) Data for finetuning: Italian vaccine stance data: 781 training tweets and 281 evaluation tweets #BibTeX entry and citation info to be added
microsoft/cvt-w24-384-22k
a9aa85d4952c0bf1531fdc878b8c04c8cbbb2ec8
2022-05-18T17:18:47.000Z
[ "pytorch", "cvt", "image-classification", "dataset:imagenet-1k", "arxiv:2103.15808", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
microsoft
null
microsoft/cvt-w24-384-22k
26
null
transformers
7,582
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Convolutional Vision Transformer (CvT) CvT-w24 model pre-trained on ImageNet-22k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Wu et al. and first released in [this repository](https://github.com/microsoft/CvT). Disclaimer: The team releasing CvT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, CvtForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-w24-384-22k') model = CvtForImageClassification.from_pretrained('microsoft/cvt-w24-384-22k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
fujiki/t5-large-en2ja
8a3d74abae8d6ff3c4d99e757d1e4da17f419fa3
2022-05-21T14:30:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:cc-by-sa-3.0", "autotrain_compatible" ]
text2text-generation
false
fujiki
null
fujiki/t5-large-en2ja
26
null
transformers
7,583
--- license: cc-by-sa-3.0 ---
ccdv/lsg-bart-base-4096-wcep
203cea7c0c5a1cff5a721d625ddfa62661e563d1
2022-07-25T05:30:19.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:ccdv/WCEP-10", "transformers", "summarization", "model-index", "autotrain_compatible" ]
summarization
false
ccdv
null
ccdv/lsg-bart-base-4096-wcep
26
null
transformers
7,584
--- language: - en tags: - summarization datasets: - ccdv/WCEP-10 metrics: - rouge model-index: - name: ccdv/lsg-bart-base-4096-wcep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-wcep", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-wcep", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe(text, truncation=True, max_length=64, no_repeat_ngram_size=7) ``` # ccdv/lsg-bart-base-4096-wcep This model is a fine-tuned version of [ccdv/lsg-bart-base-4096](https://huggingface.co/ccdv/lsg-bart-base-4096) on the [ccdv/WCEP-10 roberta](https://huggingface.co/datasets/ccdv/WCEP-10) dataset. \ It achieves the following results on the test set: | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 256 | 0 | 768 | 46.02 | 24.23 | 37.38 | 38.72 | | 4096 | Local | 128 | 0 | 384 | 45.43 | 23.86 | 36.94 | 38.30 | | 4096 | Pooling | 128 | 4 | 644 | 45.36 | 23.61 | 36.75 | 38.06 | | 4096 | Stride | 128 | 4 | 644 | 45.87 | 24.31 | 37.41 | 38.70 | | 4096 | Block Stride | 128 | 4 | 644 | 45.78 | 24.16 | 37.20 | 38.48 | | 4096 | Norm | 128 | 4 | 644 | 45.34 | 23.39 | 36.47 | 37.78 | | 4096 | LSH | 128 | 4 | 644 | 45.15 | 23.53 | 36.74 | 38.02 | With smaller block size (lower ressources): | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 64 | 0 | 192 | 44.48 | 22.98 | 36.20 | 37.52 | | 4096 | Local | 32 | 0 | 96 | 43.60 | 22.17 | 35.61 | 36.66 | | 4096 | Pooling | 32 | 4 | 160 | 43.91 | 22.41 | 35.80 | 36.92 | | 4096 | Stride | 32 | 4 | 160 | 44.62 | 23.11 | 36.32 | 37.53 | | 4096 | Block Stride | 32 | 4 | 160 | 44.47 | 23.02 | 36.28 | 37.46 | | 4096 | Norm | 32 | 4 | 160 | 44.45 | 23.03 | 36.10 | 37.33 | | 4096 | LSH | 32 | 4 | 160 | 43.87 | 22.50 | 35.75 | 36.93 | ## Model description The model relies on Local-Sparse-Global attention to handle long sequences: ![attn](attn.png) The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \ The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Generate hyperparameters The following hyperparameters were used during generation: - dataset_name: ccdv/WCEP-10 - dataset_config_name: roberta - eval_batch_size: 8 - eval_samples: 1022 - early_stopping: True - ignore_pad_token_for_loss: True - length_penalty: 2.0 - max_length: 64 - min_length: 0 - num_beams: 5 - no_repeat_ngram_size: None - seed: 123 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6
ericntay/distilbert-base-uncased-finetuned-emotion
6fcf9ab0769e52370ca903119ec5d3e925472d8c
2022-05-26T16:51:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ericntay
null
ericntay/distilbert-base-uncased-finetuned-emotion
26
null
transformers
7,585
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240722191505606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2055 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7795 | 1.0 | 250 | 0.2920 | 0.911 | 0.9079 | | 0.2373 | 2.0 | 500 | 0.2055 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ddobokki/electra-small-sts-cross-encoder
ec59c0d95dbc48687edb445f9e86b2e4c4c39052
2022-05-31T07:52:44.000Z
[ "pytorch", "electra", "text-classification", "ko", "transformers", "sentence_transformers", "cross_encoder" ]
text-classification
false
ddobokki
null
ddobokki/electra-small-sts-cross-encoder
26
null
transformers
7,586
--- language: - ko tags: - sentence_transformers - cross_encoder --- # Example ```python from sentence_transformers import CrossEncoder model = CrossEncoder('ddobokki/electra-small-sts-cross-encoder') model.predict(["그녀는 행복해서 웃었다.", "그녀는 웃겨서 눈물이 났다."]) -> 0.8206561 ``` # Dataset - KorSTS - Train - Test - KLUE STS - Train - Test # Performance | Dataset | Pearson corr.|Spearman corr.| |--|--|--| | KorSTS(test) + KLUE STS(test) | 0.8528 | 0.8504 | # TODO Using KLUE 1.1 train, dev data
rifkat/GPTuz
2a7e6c05772bc155145b37cf904cc88fde2218de
2022-06-09T09:13:55.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "uz", "transformers", "Text Generation", "PyTorch", "TensorFlow", "Transformers", "mit", "license:apache-2.0" ]
text-generation
false
rifkat
null
rifkat/GPTuz
26
null
transformers
7,587
--- language: - uz tags: - Text Generation - PyTorch - TensorFlow - Transformers - mit - uz - gpt2 license: apache-2.0 widget: - text: "Covid-19 га қарши эмлаш бошланди," example_title: "Namuna 1" - text: "Суъний интеллект энг ривожланган" example_title: "Namuna 2" --- <p><b>GPTuzmodel.</b> GPTuz GPT-2 kichik modelga asoslangan Uzbek tili uchun state-of-the-art til modeli. Bu model GPU NVIDIA V100 32GB va 0.53 GB malumotlarni kun.uz dan foydalanilgan holda Transfer Learning va Fine-tuning texnikasi asosida 1 kundan ziyod vaqt davomida o'qitilgan. <p><b>Qanday foydaniladi</b> <pre><code class="language-python"> import torch tokenizer = AutoTokenizer.from_pretrained("arxiv/uzwiki/gpt2-small-uzbek") model = AutoModelWithLMHead.from_pretrained("arxiv/uzwiki/gpt2-small-uzbek") tokenizer.model_max_length=1024 </code></pre> <p><b>Bitta so'z yaratish</b> <pre><code class="language-python"> text = "Covid-19 га қарши эмлаш бошланди," inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) loss, logits = outputs[:2] predicted_index = torch.argmax(logits[0, -1, :]).item() predicted_text = tokenizer.decode([predicted_index]) print('input text:', text) print('predicted text:', predicted_text) </code></pre> <p><b>Bitta to'liq ketma-ketlikni yarating </b> <pre><code class="language-python"> text = "Covid-19 га қарши эмлаш бошланди, " inputs = tokenizer(text, return_tensors="pt") sample_outputs = model.generate(inputs.input_ids, pad_token_id=50256, do_sample=True, max_length=50, # kerakli token raqamini qo'ying top_k=40, num_return_sequences=1) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) </code></pre>
ghadeermobasher/Orignial-BlueBERT-NCBI
76c755792659af70fe151823537327468666b713
2022-06-09T15:18:08.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Orignial-BlueBERT-NCBI
26
null
transformers
7,588
Entry not found
ChainYo/segformer-b1-sidewalk
571324ba0f685ab8304f1f3a89aec92724711021
2022-06-14T16:33:48.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "arxiv:2105.15203", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
ChainYo
null
ChainYo/segformer-b1-sidewalk
26
null
transformers
7,589
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic --- # SegFormer (b1-sized) model fine-tuned on sidewalk-semantic dataset SegFormer model fine-tuned on segments/sidewalk-semantic at resolution 512x512. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor(reduce_labels=True) model = SegformerForSemanticSegmentation.from_pretrained("ChainYo/segformer-sidewalk") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
Shaier/distilbert-base-uncased-continued_training-medqa
10889756a9158acb28372809c661a4b98b5e80c4
2022-06-28T19:04:13.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Shaier
null
Shaier/distilbert-base-uncased-continued_training-medqa
26
null
transformers
7,590
--- tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-continued_training-medqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-continued_training-medqa This model is a fine-tuned version of [Shaier/distilbert-base-uncased-continued_training-medqa](https://huggingface.co/Shaier/distilbert-base-uncased-continued_training-medqa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 220 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 333 | 0.4516 | | No log | 2.0 | 666 | 0.4277 | | No log | 3.0 | 999 | 0.3734 | | No log | 4.0 | 1332 | 0.4083 | | No log | 5.0 | 1665 | 0.4134 | | No log | 6.0 | 1998 | 0.5093 | | No log | 7.0 | 2331 | 0.4639 | | 0.4564 | 8.0 | 2664 | 0.5132 | | 0.4564 | 9.0 | 2997 | 0.3483 | | 0.4564 | 10.0 | 3330 | 0.4174 | | 0.4564 | 11.0 | 3663 | 0.4975 | | 0.4564 | 12.0 | 3996 | 0.4030 | | 0.4564 | 13.0 | 4329 | 0.4476 | | 0.4564 | 14.0 | 4662 | 0.3692 | | 0.4564 | 15.0 | 4995 | 0.4474 | | 0.4533 | 16.0 | 5328 | 0.3289 | | 0.4533 | 17.0 | 5661 | 0.4647 | | 0.4533 | 18.0 | 5994 | 0.4873 | | 0.4533 | 19.0 | 6327 | 0.5323 | | 0.4533 | 20.0 | 6660 | 0.4273 | | 0.4533 | 21.0 | 6993 | 0.3426 | | 0.4533 | 22.0 | 7326 | 0.3892 | | 0.4533 | 23.0 | 7659 | 0.4297 | | 0.4493 | 24.0 | 7992 | 0.4162 | | 0.4493 | 25.0 | 8325 | 0.4424 | | 0.4493 | 26.0 | 8658 | 0.4575 | | 0.4493 | 27.0 | 8991 | 0.4192 | | 0.4493 | 28.0 | 9324 | 0.4151 | | 0.4493 | 29.0 | 9657 | 0.4321 | | 0.4493 | 30.0 | 9990 | 0.4129 | | 0.4493 | 31.0 | 10323 | 0.4869 | | 0.4456 | 32.0 | 10656 | 0.4510 | | 0.4456 | 33.0 | 10989 | 0.5263 | | 0.4456 | 34.0 | 11322 | 0.3908 | | 0.4456 | 35.0 | 11655 | 0.5016 | | 0.4456 | 36.0 | 11988 | 0.4454 | | 0.4456 | 37.0 | 12321 | 0.4011 | | 0.4456 | 38.0 | 12654 | 0.4714 | | 0.4456 | 39.0 | 12987 | 0.4972 | | 0.443 | 40.0 | 13320 | 0.4200 | | 0.443 | 41.0 | 13653 | 0.4659 | | 0.443 | 42.0 | 13986 | 0.4758 | | 0.443 | 43.0 | 14319 | 0.4509 | | 0.443 | 44.0 | 14652 | 0.4211 | | 0.443 | 45.0 | 14985 | 0.4007 | | 0.443 | 46.0 | 15318 | 0.3205 | | 0.443 | 47.0 | 15651 | 0.4479 | | 0.4402 | 48.0 | 15984 | 0.4723 | | 0.4402 | 49.0 | 16317 | 0.4956 | | 0.4402 | 50.0 | 16650 | 0.4103 | | 0.4402 | 51.0 | 16983 | 0.4234 | | 0.4402 | 52.0 | 17316 | 0.4052 | | 0.4402 | 53.0 | 17649 | 0.4033 | | 0.4402 | 54.0 | 17982 | 0.4139 | | 0.4402 | 55.0 | 18315 | 0.3618 | | 0.4372 | 56.0 | 18648 | 0.5102 | | 0.4372 | 57.0 | 18981 | 0.4166 | | 0.4372 | 58.0 | 19314 | 0.4475 | | 0.4372 | 59.0 | 19647 | 0.4259 | | 0.4372 | 60.0 | 19980 | 0.4018 | | 0.4372 | 61.0 | 20313 | 0.5005 | | 0.4372 | 62.0 | 20646 | 0.4445 | | 0.4372 | 63.0 | 20979 | 0.4280 | | 0.434 | 64.0 | 21312 | 0.4533 | | 0.434 | 65.0 | 21645 | 0.3672 | | 0.434 | 66.0 | 21978 | 0.4726 | | 0.434 | 67.0 | 22311 | 0.4084 | | 0.434 | 68.0 | 22644 | 0.4508 | | 0.434 | 69.0 | 22977 | 0.3746 | | 0.434 | 70.0 | 23310 | 0.4703 | | 0.434 | 71.0 | 23643 | 0.4789 | | 0.4314 | 72.0 | 23976 | 0.3963 | | 0.4314 | 73.0 | 24309 | 0.3800 | | 0.4314 | 74.0 | 24642 | 0.5051 | | 0.4314 | 75.0 | 24975 | 0.4245 | | 0.4314 | 76.0 | 25308 | 0.4745 | | 0.4314 | 77.0 | 25641 | 0.4351 | | 0.4314 | 78.0 | 25974 | 0.4367 | | 0.4314 | 79.0 | 26307 | 0.4200 | | 0.4291 | 80.0 | 26640 | 0.4985 | | 0.4291 | 81.0 | 26973 | 0.5058 | | 0.4291 | 82.0 | 27306 | 0.4154 | | 0.4291 | 83.0 | 27639 | 0.4837 | | 0.4291 | 84.0 | 27972 | 0.3865 | | 0.4291 | 85.0 | 28305 | 0.4357 | | 0.4291 | 86.0 | 28638 | 0.3978 | | 0.4291 | 87.0 | 28971 | 0.4413 | | 0.4263 | 88.0 | 29304 | 0.4223 | | 0.4263 | 89.0 | 29637 | 0.4241 | | 0.4263 | 90.0 | 29970 | 0.4525 | | 0.4263 | 91.0 | 30303 | 0.3895 | | 0.4263 | 92.0 | 30636 | 0.4207 | | 0.4263 | 93.0 | 30969 | 0.3217 | | 0.4263 | 94.0 | 31302 | 0.3725 | | 0.4263 | 95.0 | 31635 | 0.4354 | | 0.4239 | 96.0 | 31968 | 0.4169 | | 0.4239 | 97.0 | 32301 | 0.4873 | | 0.4239 | 98.0 | 32634 | 0.4219 | | 0.4239 | 99.0 | 32967 | 0.4984 | | 0.4239 | 100.0 | 33300 | 0.4078 | | 0.4239 | 101.0 | 33633 | 0.4463 | | 0.4239 | 102.0 | 33966 | 0.3371 | | 0.4239 | 103.0 | 34299 | 0.3896 | | 0.422 | 104.0 | 34632 | 0.4743 | | 0.422 | 105.0 | 34965 | 0.4931 | | 0.422 | 106.0 | 35298 | 0.3574 | | 0.422 | 107.0 | 35631 | 0.4127 | | 0.422 | 108.0 | 35964 | 0.3892 | | 0.422 | 109.0 | 36297 | 0.3881 | | 0.422 | 110.0 | 36630 | 0.4221 | | 0.422 | 111.0 | 36963 | 0.3924 | | 0.4204 | 112.0 | 37296 | 0.4067 | | 0.4204 | 113.0 | 37629 | 0.4357 | | 0.4204 | 114.0 | 37962 | 0.4175 | | 0.4204 | 115.0 | 38295 | 0.4424 | | 0.4204 | 116.0 | 38628 | 0.3925 | | 0.4204 | 117.0 | 38961 | 0.4693 | | 0.4204 | 118.0 | 39294 | 0.3503 | | 0.4204 | 119.0 | 39627 | 0.4761 | | 0.4183 | 120.0 | 39960 | 0.3816 | | 0.4183 | 121.0 | 40293 | 0.3903 | | 0.4183 | 122.0 | 40626 | 0.3535 | | 0.4183 | 123.0 | 40959 | 0.4388 | | 0.4183 | 124.0 | 41292 | 0.4519 | | 0.4183 | 125.0 | 41625 | 0.4241 | | 0.4183 | 126.0 | 41958 | 0.4085 | | 0.4183 | 127.0 | 42291 | 0.4836 | | 0.4168 | 128.0 | 42624 | 0.4101 | | 0.4168 | 129.0 | 42957 | 0.4749 | | 0.4168 | 130.0 | 43290 | 0.4022 | | 0.4168 | 131.0 | 43623 | 0.4861 | | 0.4168 | 132.0 | 43956 | 0.4376 | | 0.4168 | 133.0 | 44289 | 0.4597 | | 0.4168 | 134.0 | 44622 | 0.4154 | | 0.4168 | 135.0 | 44955 | 0.4431 | | 0.415 | 136.0 | 45288 | 0.4887 | | 0.415 | 137.0 | 45621 | 0.4229 | | 0.415 | 138.0 | 45954 | 0.3997 | | 0.415 | 139.0 | 46287 | 0.4185 | | 0.415 | 140.0 | 46620 | 0.4633 | | 0.415 | 141.0 | 46953 | 0.4061 | | 0.415 | 142.0 | 47286 | 0.4604 | | 0.415 | 143.0 | 47619 | 0.4047 | | 0.4139 | 144.0 | 47952 | 0.4272 | | 0.4139 | 145.0 | 48285 | 0.4783 | | 0.4139 | 146.0 | 48618 | 0.3954 | | 0.4139 | 147.0 | 48951 | 0.4501 | | 0.4139 | 148.0 | 49284 | 0.4941 | | 0.4139 | 149.0 | 49617 | 0.4112 | | 0.4139 | 150.0 | 49950 | 0.4582 | | 0.4139 | 151.0 | 50283 | 0.4361 | | 0.4126 | 152.0 | 50616 | 0.3535 | | 0.4126 | 153.0 | 50949 | 0.3797 | | 0.4126 | 154.0 | 51282 | 0.4080 | | 0.4126 | 155.0 | 51615 | 0.4049 | | 0.4126 | 156.0 | 51948 | 0.4255 | | 0.4126 | 157.0 | 52281 | 0.4303 | | 0.4126 | 158.0 | 52614 | 0.4950 | | 0.4126 | 159.0 | 52947 | 0.3721 | | 0.4114 | 160.0 | 53280 | 0.2861 | | 0.4114 | 161.0 | 53613 | 0.3775 | | 0.4114 | 162.0 | 53946 | 0.4274 | | 0.4114 | 163.0 | 54279 | 0.3904 | | 0.4114 | 164.0 | 54612 | 0.4687 | | 0.4114 | 165.0 | 54945 | 0.4013 | | 0.4114 | 166.0 | 55278 | 0.4760 | | 0.4114 | 167.0 | 55611 | 0.3554 | | 0.4104 | 168.0 | 55944 | 0.5193 | | 0.4104 | 169.0 | 56277 | 0.4476 | | 0.4104 | 170.0 | 56610 | 0.5011 | | 0.4104 | 171.0 | 56943 | 0.4441 | | 0.4104 | 172.0 | 57276 | 0.4457 | | 0.4104 | 173.0 | 57609 | 0.3792 | | 0.4104 | 174.0 | 57942 | 0.5116 | | 0.4104 | 175.0 | 58275 | 0.4249 | | 0.4097 | 176.0 | 58608 | 0.3804 | | 0.4097 | 177.0 | 58941 | 0.3886 | | 0.4097 | 178.0 | 59274 | 0.4420 | | 0.4097 | 179.0 | 59607 | 0.3573 | | 0.4097 | 180.0 | 59940 | 0.3635 | | 0.4097 | 181.0 | 60273 | 0.4596 | | 0.4097 | 182.0 | 60606 | 0.3674 | | 0.4097 | 183.0 | 60939 | 0.3869 | | 0.409 | 184.0 | 61272 | 0.3909 | | 0.409 | 185.0 | 61605 | 0.4339 | | 0.409 | 186.0 | 61938 | 0.4475 | | 0.409 | 187.0 | 62271 | 0.3218 | | 0.409 | 188.0 | 62604 | 0.3771 | | 0.409 | 189.0 | 62937 | 0.4007 | | 0.409 | 190.0 | 63270 | 0.4520 | | 0.409 | 191.0 | 63603 | 0.3980 | | 0.4077 | 192.0 | 63936 | 0.4572 | | 0.4077 | 193.0 | 64269 | 0.3952 | | 0.4077 | 194.0 | 64602 | 0.4384 | | 0.4077 | 195.0 | 64935 | 0.4795 | | 0.4077 | 196.0 | 65268 | 0.3743 | | 0.4077 | 197.0 | 65601 | 0.4445 | | 0.4077 | 198.0 | 65934 | 0.3925 | | 0.4077 | 199.0 | 66267 | 0.4564 | | 0.4075 | 200.0 | 66600 | 0.4580 | | 0.4075 | 201.0 | 66933 | 0.4446 | | 0.4075 | 202.0 | 67266 | 0.4289 | | 0.4075 | 203.0 | 67599 | 0.3722 | | 0.4075 | 204.0 | 67932 | 0.4810 | | 0.4075 | 205.0 | 68265 | 0.4004 | | 0.4075 | 206.0 | 68598 | 0.4219 | | 0.4075 | 207.0 | 68931 | 0.3926 | | 0.407 | 208.0 | 69264 | 0.6043 | | 0.407 | 209.0 | 69597 | 0.3835 | | 0.407 | 210.0 | 69930 | 0.3791 | | 0.407 | 211.0 | 70263 | 0.4152 | | 0.407 | 212.0 | 70596 | 0.3654 | | 0.407 | 213.0 | 70929 | 0.4434 | | 0.407 | 214.0 | 71262 | 0.3613 | | 0.407 | 215.0 | 71595 | 0.5103 | | 0.4069 | 216.0 | 71928 | 0.3733 | | 0.4069 | 217.0 | 72261 | 0.4881 | | 0.4069 | 218.0 | 72594 | 0.3375 | | 0.4069 | 219.0 | 72927 | 0.4766 | | 0.4069 | 220.0 | 73260 | 0.4604 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
PrimeQA/mt5-base-tydi-question-generator
ac1f94b893b071bff2eee5a26f5ef0a75513f846
2022-07-13T10:38:38.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
PrimeQA
null
PrimeQA/mt5-base-tydi-question-generator
26
null
transformers
7,591
--- license: apache-2.0 --- # Model description This is an [mt5-base](https://huggingface.co/google/mt5-base) model, finetuned to generate questions using [TyDi QA](https://huggingface.co/datasets/tydiqa) dataset. It was trained to take the context and answer as input to generate questions. # Overview *Language model*: mT5-base \ *Language*: Arabic, Bengali, English, Finnish, Indonesian, Korean, Russian, Swahili, Telugu \ *Task*: Question Generation \ *Data*: TyDi QA # Intented use and limitations One can use this model to generate questions. Biases associated with pre-training of mT5 and TyDiQA dataset may be present. ## Usage One can use this model directly in the [PrimeQA](https://github.com/primeqa/primeqa) framework as in this example [notebook](https://github.com/primeqa/primeqa/blob/tableqg/notebooks/qg/tableqg_inference.ipynb). Or ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") model = AutoModelForSeq2SeqLM.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") def get_question(answer, context, max_length=64): input_text = answer +" <<sep>> " + context features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.decode(output[0]) context = "শচীন টেন্ডুলকারকে ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান হিসেবে গণ্য করা হয়।" answer = "শচীন টেন্ডুলকার" get_question(answer, context) # output: ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান কে? ``` ## Citation ```bibtex @inproceedings{xue2021mt5, title={mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer}, author={Xue, Linting and Constant, Noah and Roberts, Adam and Kale, Mihir and Al-Rfou, Rami and Siddhant, Aditya and Barua, Aditya and Raffel, Colin}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, pages={483--498}, year={2021} } ```
djagatiya/ner-roberta-base-ontonotesv5-englishv4
28af6bc088b67380ed35c7eb3ef3a0320149acc1
2022-07-03T11:27:14.000Z
[ "pytorch", "roberta", "token-classification", "dataset:djagatiya/ner-ontonotes-v5-eng-v4", "transformers", "autotrain_compatible" ]
token-classification
false
djagatiya
null
djagatiya/ner-roberta-base-ontonotesv5-englishv4
26
null
transformers
7,592
--- tags: - token-classification datasets: - djagatiya/ner-ontonotes-v5-eng-v4 widget: - text: "On September 1st George won 1 dollar while watching Game of Thrones." --- # (NER) roberta-base : conll2012_ontonotesv5-english-v4 This `roberta-base` NER model was finetuned on `conll2012_ontonotesv5` version `english-v4` dataset. <br> Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information. ## Dataset - conll2012_ontonotesv5 - Language : English - Version : v4 | Dataset | Examples | | --- | --- | | Training | 75187 | | Testing | 9479 | ## Evaluation - Precision: 88.88 - Recall: 90.69 - F1-Score: 89.78 > check out this [eval.log](eval.log) file for evaluation metrics and classification report. ``` precision recall f1-score support CARDINAL 0.84 0.85 0.85 935 DATE 0.85 0.90 0.87 1602 EVENT 0.67 0.76 0.71 63 FAC 0.74 0.72 0.73 135 GPE 0.97 0.96 0.96 2240 LANGUAGE 0.83 0.68 0.75 22 LAW 0.66 0.62 0.64 40 LOC 0.74 0.80 0.77 179 MONEY 0.85 0.89 0.87 314 NORP 0.93 0.96 0.95 841 ORDINAL 0.81 0.89 0.85 195 ORG 0.90 0.91 0.91 1795 PERCENT 0.90 0.92 0.91 349 PERSON 0.95 0.95 0.95 1988 PRODUCT 0.74 0.83 0.78 76 QUANTITY 0.76 0.80 0.78 105 TIME 0.62 0.67 0.65 212 WORK_OF_ART 0.58 0.69 0.63 166 micro avg 0.89 0.91 0.90 11257 macro avg 0.80 0.82 0.81 11257 weighted avg 0.89 0.91 0.90 11257 ``` ## Usage ``` from transformers import pipeline ner_pipeline = pipeline( 'token-classification', model=r'djagatiya/ner-roberta-base-ontonotesv5-englishv4', aggregation_strategy='simple' ) ``` TEST 1 ``` ner_pipeline("India is a beautiful country") ``` ``` # Output [{'entity_group': 'GPE', 'score': 0.99186057, 'word': ' India', 'start': 0, 'end': 5}] ``` TEST 2 ``` ner_pipeline("On September 1st George won 1 dollar while watching Game of Thrones.") ``` ``` # Output [{'entity_group': 'DATE', 'score': 0.99720246, 'word': ' September 1st', 'start': 3, 'end': 16}, {'entity_group': 'PERSON', 'score': 0.99071586, 'word': ' George', 'start': 17, 'end': 23}, {'entity_group': 'MONEY', 'score': 0.9872978, 'word': ' 1 dollar', 'start': 28, 'end': 36}, {'entity_group': 'WORK_OF_ART', 'score': 0.9946732, 'word': ' Game of Thrones', 'start': 52, 'end': 67}] ```
huggingtweets/dinidu
670f083816d5fc3562d7ff6618d4a61989866fa2
2022-07-07T13:00:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dinidu
26
null
transformers
7,593
--- language: en thumbnail: http://www.huggingtweets.com/dinidu/1657198765981/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539625904313360390/RV2fIY5V_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dinidu de Alwis</div> <div style="text-align: center; font-size: 14px;">@dinidu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dinidu de Alwis. | Data | Dinidu de Alwis | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 764 | | Short tweets | 433 | | Tweets kept | 2032 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20j5ss79/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dinidu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21s242x3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21s242x3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dinidu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
malteos/gpt2-xl-german-covid-19
1298d0cdc9d3af23ed07ef3125349e2de3e5edfc
2022-07-08T13:48:32.000Z
[ "pytorch", "gpt2", "text-generation", "de", "transformers", "license:mit" ]
text-generation
false
malteos
null
malteos/gpt2-xl-german-covid-19
26
null
transformers
7,594
--- license: mit language: de widget: - text: "Noch Wochen nach einer Erkrankung an COVID-19 können " --- # German Covid-19 GPT2-XL (1.5B) - Covid-19 specific version of [`malteos/gpt2-xl-wechsel-german`](https://huggingface.co/malteos/gpt2-xl-wechsel-german) - Fine-tuned on 2 GB text from OSCAR filtered for covid related terms. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='malteos/gpt2-xl-german-covid-19') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) ``` ## License MIT
AndyChiang/bert-test
2d299bfe9d01b27ccbadd6ae0f643643604c35a8
2022-07-11T05:50:10.000Z
[ "pytorch", "tf", "bert", "fill-mask", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
fill-mask
false
AndyChiang
null
AndyChiang/bert-test
26
null
transformers
7,595
--- tags: - generated_from_keras_callback model-index: - name: bert-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-test This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
p-christ/testrepo
a205a3f1ee51f9b1784d92a71b31caab4d7f1d7e
2022-07-11T15:55:20.000Z
[ "pytorch", "t5", "text2text-generation", "generic" ]
text2text-generation
false
p-christ
null
p-christ/testrepo
26
null
generic
7,596
--- tags: - text2text-generation library_name: generic --- random test repo
abecode/t5-small-finetuned-emo20q
9606e2a03500b44c351be05ae9c6abe1a71e389e
2022-07-11T17:56:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
abecode
null
abecode/t5-small-finetuned-emo20q
26
1
transformers
7,597
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-emo20q results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-emo20q This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 280 | 2.4896 | 52.8448 | 0.0 | 52.8423 | 52.8708 | 2.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Vikasbhandari/wav2vec2-train
1e017454b6d3fdcae5104b5a1ac5a3411caa8091
2022-07-12T11:51:48.000Z
[ "pytorch", "tf", "jax", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2010.11430", "arxiv:2006.11477", "transformers", "speech", "audio", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Vikasbhandari
null
Vikasbhandari/wav2vec2-train
26
null
transformers
7,598
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-large-960h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 1.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.9 --- # Wav2Vec2-Large-960h-Lv60 + Self-Training [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 960 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60-self** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 1.9 | 3.9 |
thusken/nb-bert-base-user-needs
688bd9f5003ea4d16f66b01eed6a8ae4c2581715
2022-07-15T10:15:43.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index" ]
text-classification
false
thusken
null
thusken/nb-bert-base-user-needs
26
null
transformers
7,599
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: nb-bert-base-user-needs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nb-bert-base-user-needs This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0600 - Accuracy: 0.8479 - F1: 0.8319 - Precision: 0.8315 - Recall: 0.8479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 98 | 1.1222 | 0.6263 | 0.5185 | 0.5076 | 0.6263 | | No log | 2.0 | 196 | 1.0066 | 0.7216 | 0.6436 | 0.5899 | 0.7216 | | No log | 3.0 | 294 | 0.8540 | 0.7577 | 0.7037 | 0.6760 | 0.7577 | | No log | 4.0 | 392 | 0.8621 | 0.7603 | 0.6998 | 0.6568 | 0.7603 | | No log | 5.0 | 490 | 0.8062 | 0.7887 | 0.7500 | 0.7449 | 0.7887 | | 0.91 | 6.0 | 588 | 0.7465 | 0.8041 | 0.7660 | 0.7636 | 0.8041 | | 0.91 | 7.0 | 686 | 0.6324 | 0.8247 | 0.8163 | 0.8187 | 0.8247 | | 0.91 | 8.0 | 784 | 0.7333 | 0.7964 | 0.7703 | 0.7740 | 0.7964 | | 0.91 | 9.0 | 882 | 0.6590 | 0.8325 | 0.8208 | 0.8106 | 0.8325 | | 0.91 | 10.0 | 980 | 0.9854 | 0.8196 | 0.7890 | 0.7920 | 0.8196 | | 0.4246 | 11.0 | 1078 | 0.7023 | 0.8247 | 0.8054 | 0.8138 | 0.8247 | | 0.4246 | 12.0 | 1176 | 0.8995 | 0.8325 | 0.8120 | 0.8068 | 0.8325 | | 0.4246 | 13.0 | 1274 | 0.8589 | 0.8299 | 0.8145 | 0.8058 | 0.8299 | | 0.4246 | 14.0 | 1372 | 0.9859 | 0.8376 | 0.8151 | 0.8123 | 0.8376 | | 0.4246 | 15.0 | 1470 | 0.8452 | 0.8402 | 0.8318 | 0.8341 | 0.8402 | | 0.1637 | 16.0 | 1568 | 1.1156 | 0.8351 | 0.8157 | 0.8196 | 0.8351 | | 0.1637 | 17.0 | 1666 | 1.1514 | 0.8325 | 0.8122 | 0.8218 | 0.8325 | | 0.1637 | 18.0 | 1764 | 1.0092 | 0.8428 | 0.8266 | 0.8320 | 0.8428 | | 0.1637 | 19.0 | 1862 | 1.0368 | 0.8351 | 0.8229 | 0.8287 | 0.8351 | | 0.1637 | 20.0 | 1960 | 1.0600 | 0.8479 | 0.8319 | 0.8315 | 0.8479 | | 0.0391 | 21.0 | 2058 | 1.1046 | 0.8428 | 0.8293 | 0.8269 | 0.8428 | | 0.0391 | 22.0 | 2156 | 1.1178 | 0.8454 | 0.8262 | 0.8280 | 0.8454 | | 0.0391 | 23.0 | 2254 | 1.1103 | 0.8428 | 0.8268 | 0.8295 | 0.8428 | | 0.0391 | 24.0 | 2352 | 1.1179 | 0.8428 | 0.8274 | 0.8313 | 0.8428 | | 0.0391 | 25.0 | 2450 | 1.1134 | 0.8402 | 0.8233 | 0.8254 | 0.8402 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1