modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tanfiona/unicausal-seq-baseline
1f7b3a659ccaea01bdd97445fae9acafab5cc347
2022-07-15T09:55:29.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "license:unknown" ]
text-classification
false
tanfiona
null
tanfiona/unicausal-seq-baseline
26
null
transformers
7,600
--- language: en license: unknown widget: - text: "She fell because he pushed her." example_title: "Causal Example 1" - text: "He pushed her, causing her to fall." example_title: "Causal Example 2" - text: "She fell onto him." example_title: "Non-causal Example 1" - text: "He is Billy and he pushed her." example_title: "Non-causal Example 2" --- Binary causal sentence classification: * LABEL_0 = Non-causal * LABEL_1 = Causal Trained on multiple datasets.
Gunulhona/tbnlimodel_v2
12ead951a7cb226d621a95f5db670e5cce7e9ace
2022-07-20T07:16:08.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
Gunulhona
null
Gunulhona/tbnlimodel_v2
26
null
transformers
7,601
Entry not found
google/ncsnpp-bedroom-256
c62041310b619c4fd85b78865f91ceca135c3993
2022-07-21T14:59:57.000Z
[ "diffusers", "arxiv:2011.13456", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ncsnpp-bedroom-256
26
null
diffusers
7,602
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Score-Based Generative Modeling through Stochastic Differential Equations (SDE) **Paper**: [Score-Based Generative Modeling through Stochastic Differential Equations](https://arxiv.org/abs/2011.13456) **Authors**: Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole **Abstract**: *Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.* ## Inference *SDE* models can use **continous** noise schedulers such as: - [scheduling_sde_ve](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_sde_ve.py) for inference. See the following code: ```python # !pip install diffusers from diffusers import DiffusionPipeline model_id = "google/ncsnpp-bedroom-256" # load model and scheduler sde_ve = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = sde_ve()["sample"] # save image image[0].save("sde_ve_generated_image.png") ``` Please take a look at [pipeline_score_sde_ve](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py) for more details on how to write your own denoising loop. For more information generally on how to use `diffusers` for inference, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ncsnpp-bedroom-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ncsnpp-bedroom-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ncsnpp-bedroom-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ncsnpp-bedroom-256/resolve/main/images/generated_image_3.png)
Evelyn18/roberta-base-spanish-squades-robertav2
bea436a9c0ba6aeeab48f845f123b6c137300781
2022-07-21T16:57:29.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-robertav2
26
null
transformers
7,603
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-robertav2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-robertav2 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 1.8825 | | No log | 2.0 | 12 | 1.7787 | | No log | 3.0 | 18 | 2.0521 | | No log | 4.0 | 24 | 2.2991 | | No log | 5.0 | 30 | 2.4029 | | No log | 6.0 | 36 | 2.4358 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
conan1024hao/cjkbert-base
02c8738f7215aaf7d87f70c0c9cd8085333201fb
2022-07-24T14:31:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
conan1024hao
null
conan1024hao/cjkbert-base
26
1
transformers
7,604
--- license: cc-by-sa-4.0 ---
noob123/original_model
ae53f53a9c91888adc61bf8e2b1ef48fe7960dc9
2022-07-26T15:49:24.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
noob123
null
noob123/original_model
26
null
transformers
7,605
Entry not found
Den4ikAI/dialog_rugpt3
a9832b450cbeac5cf8973d22cf0997e759372ff4
2022-07-26T19:13:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
Den4ikAI
null
Den4ikAI/dialog_rugpt3
26
null
transformers
7,606
--- license: mit laungage: rus --- RUGPT-3 обученная на диалогах с yandex toloka, flibusta Для получения ответа в модели необходимо ввести такой формат данных: "- Привет\n-"
derwahnsinn/gpt2-mediumTarantino
a1b97c5822db4b5eec036df115b1d850152848f5
2022-07-28T19:03:33.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
derwahnsinn
null
derwahnsinn/gpt2-mediumTarantino
26
null
transformers
7,607
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-mediumTarantino results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-mediumTarantino This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0375 - eval_runtime: 23.1892 - eval_samples_per_second: 61.322 - eval_steps_per_second: 7.676 - epoch: 21.0 - step: 3738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 29 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ashishraics/deberta_v3_large_mlm_feedback_prize
c8401bf9cea1d3fc4d474b7f841fcc59f14ef9e6
2022-07-29T16:42:21.000Z
[ "pytorch", "deberta-v2", "feature-extraction", "transformers" ]
feature-extraction
false
ashishraics
null
ashishraics/deberta_v3_large_mlm_feedback_prize
26
null
transformers
7,608
Entry not found
bloom-testing/test-bloomd-350m-8bit-model
2621f4d92a66bdc30ce2e3676227258ec9ba15f5
2022-07-29T23:55:22.000Z
[ "pytorch", "bloom", "feature-extraction", "transformers" ]
feature-extraction
false
bloom-testing
null
bloom-testing/test-bloomd-350m-8bit-model
26
null
transformers
7,609
Entry not found
ArseniyBolotin/bert-multi-PAD-ner
6b99a82f9de864e85fb891f329e4e72845118137
2021-05-18T17:06:50.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ArseniyBolotin
null
ArseniyBolotin/bert-multi-PAD-ner
25
null
transformers
7,610
Entry not found
Ayran/DialoGPT-medium-harry-potter-1-through-3
6bc7a1680c88da1e8a47b237961287daa3ba9608
2021-10-12T17:14:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Ayran
null
Ayran/DialoGPT-medium-harry-potter-1-through-3
25
null
transformers
7,611
--- tags: - conversational --- #DialoGPT medium model (Harry Potter 1-3)
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus6
1f6d9643228adb8463a3dee24b369ec41a3235de
2021-10-17T11:17:53.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus6
25
null
transformers
7,612
--- language: - ar license: apache-2.0 widget: - text: "عامل ايه ؟" --- # CAMeLBERT-Mix DID MADAR Corpus6 Model ## Model description **CAMeLBERT-Mix DID MADAR Corpus6 Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [MADAR Corpus 6](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/) dataset, which includes 6 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix DID MADAR Corpus6 model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar6') >>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟'] >>> did(sentences) [{'label': 'CAI', 'score': 0.9996405839920044}, {'label': 'DOH', 'score': 0.9997853636741638}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
Cameron/BERT-mdgender-convai-ternary
430cb08041e7752a2a0d9678957a0c1c995c1990
2021-05-18T17:31:21.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-mdgender-convai-ternary
25
null
transformers
7,613
Entry not found
Geotrend/bert-base-en-cased
4c6b9131287aaec6e926821c2ccc7eb82dbba0a4
2021-05-18T19:03:33.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-cased
25
null
transformers
7,614
--- language: en datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-de-cased
52e90cc8094abc1c3cdf6fc9fedbc31065f535eb
2021-08-16T13:33:05.000Z
[ "pytorch", "distilbert", "fill-mask", "de", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-de-cased
25
null
transformers
7,615
--- language: de datasets: wikipedia license: apache-2.0 --- # distilbert-base-de-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-de-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
HelloRusk/t5-base-parasci
5847de1c218ee95abbfc20370d4ad19f310ec33d
2021-06-23T02:24:58.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
HelloRusk
null
HelloRusk/t5-base-parasci
25
null
transformers
7,616
Entry not found
Helsinki-NLP/opus-mt-ase-en
31dc31232a3b66fc2802c779cf109a1330440ab3
2021-09-09T21:26:26.000Z
[ "pytorch", "marian", "text2text-generation", "ase", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ase-en
25
null
transformers
7,617
--- tags: - translation license: apache-2.0 --- ### opus-mt-ase-en * source languages: ase * target languages: en * OPUS readme: [ase-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ase-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ase-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ase.en | 99.5 | 0.997 |
Helsinki-NLP/opus-mt-bzs-en
4a0238e6463445a99590c0abe7aed5f2f95e064d
2021-09-09T21:27:59.000Z
[ "pytorch", "marian", "text2text-generation", "bzs", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bzs-en
25
null
transformers
7,618
--- tags: - translation license: apache-2.0 --- ### opus-mt-bzs-en * source languages: bzs * target languages: en * OPUS readme: [bzs-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bzs-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/bzs-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bzs.en | 44.5 | 0.605 |
Helsinki-NLP/opus-mt-da-fr
186e4c938bc1744a9ddbd67073fe572c93a494c8
2021-09-09T21:30:03.000Z
[ "pytorch", "marian", "text2text-generation", "da", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-da-fr
25
null
transformers
7,619
--- tags: - translation license: apache-2.0 --- ### opus-mt-da-fr * source languages: da * target languages: fr * OPUS readme: [da-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.da.fr | 62.2 | 0.751 |
Helsinki-NLP/opus-mt-en-eu
74a16b460e9cf136feb59f58338ee491e087de8a
2021-01-18T08:07:25.000Z
[ "pytorch", "marian", "text2text-generation", "en", "eu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-eu
25
1
transformers
7,620
--- language: - en - eu tags: - translation license: apache-2.0 --- ### eng-eus * source group: English * target group: Basque * OPUS readme: [eng-eus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-eus/README.md) * model: transformer-align * source language(s): eng * target language(s): eus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-eus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-eus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-eus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.eus | 31.8 | 0.590 | ### System Info: - hf_name: eng-eus - source_languages: eng - target_languages: eus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-eus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'eu'] - src_constituents: {'eng'} - tgt_constituents: {'eus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-eus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-eus/opus-2020-06-17.test.txt - src_alpha3: eng - tgt_alpha3: eus - short_pair: en-eu - chrF2_score: 0.59 - bleu: 31.8 - brevity_penalty: 0.9440000000000001 - ref_len: 7080.0 - src_name: English - tgt_name: Basque - train_date: 2020-06-17 - src_alpha2: en - tgt_alpha2: eu - prefer_old: False - long_pair: eng-eus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-gem
50d7941693cfafef0c11fd8a72297571f9df7a20
2021-01-18T08:08:05.000Z
[ "pytorch", "marian", "text2text-generation", "en", "da", "sv", "af", "nn", "fy", "fo", "de", "nb", "nl", "is", "lb", "yi", "gem", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-gem
25
1
transformers
7,621
--- language: - en - da - sv - af - nn - fy - fo - de - nb - nl - is - lb - yi - gem tags: - translation license: apache-2.0 --- ### eng-gem * source group: English * target group: Germanic languages * OPUS readme: [eng-gem](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gem/README.md) * model: transformer * source language(s): eng * target language(s): afr ang_Latn dan deu enm_Latn fao frr fry gos got_Goth gsw isl ksh ltz nds nld nno nob nob_Hebr non_Latn pdc sco stq swe swg yid * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gem/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gem/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gem/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-engdeu.eng.deu | 20.9 | 0.521 | | news-test2008-engdeu.eng.deu | 21.1 | 0.511 | | newstest2009-engdeu.eng.deu | 20.5 | 0.516 | | newstest2010-engdeu.eng.deu | 22.5 | 0.526 | | newstest2011-engdeu.eng.deu | 20.5 | 0.508 | | newstest2012-engdeu.eng.deu | 20.8 | 0.507 | | newstest2013-engdeu.eng.deu | 24.6 | 0.534 | | newstest2015-ende-engdeu.eng.deu | 27.9 | 0.569 | | newstest2016-ende-engdeu.eng.deu | 33.2 | 0.607 | | newstest2017-ende-engdeu.eng.deu | 26.5 | 0.560 | | newstest2018-ende-engdeu.eng.deu | 39.4 | 0.648 | | newstest2019-ende-engdeu.eng.deu | 35.0 | 0.613 | | Tatoeba-test.eng-afr.eng.afr | 56.5 | 0.745 | | Tatoeba-test.eng-ang.eng.ang | 6.7 | 0.154 | | Tatoeba-test.eng-dan.eng.dan | 58.0 | 0.726 | | Tatoeba-test.eng-deu.eng.deu | 40.3 | 0.615 | | Tatoeba-test.eng-enm.eng.enm | 1.4 | 0.215 | | Tatoeba-test.eng-fao.eng.fao | 7.2 | 0.304 | | Tatoeba-test.eng-frr.eng.frr | 5.5 | 0.159 | | Tatoeba-test.eng-fry.eng.fry | 19.4 | 0.433 | | Tatoeba-test.eng-gos.eng.gos | 1.0 | 0.182 | | Tatoeba-test.eng-got.eng.got | 0.3 | 0.012 | | Tatoeba-test.eng-gsw.eng.gsw | 0.9 | 0.130 | | Tatoeba-test.eng-isl.eng.isl | 23.4 | 0.505 | | Tatoeba-test.eng-ksh.eng.ksh | 1.1 | 0.141 | | Tatoeba-test.eng-ltz.eng.ltz | 20.3 | 0.379 | | Tatoeba-test.eng.multi | 46.5 | 0.641 | | Tatoeba-test.eng-nds.eng.nds | 20.6 | 0.458 | | Tatoeba-test.eng-nld.eng.nld | 53.4 | 0.702 | | Tatoeba-test.eng-non.eng.non | 0.6 | 0.166 | | Tatoeba-test.eng-nor.eng.nor | 50.3 | 0.679 | | Tatoeba-test.eng-pdc.eng.pdc | 3.9 | 0.189 | | Tatoeba-test.eng-sco.eng.sco | 33.0 | 0.542 | | Tatoeba-test.eng-stq.eng.stq | 2.3 | 0.274 | | Tatoeba-test.eng-swe.eng.swe | 57.9 | 0.719 | | Tatoeba-test.eng-swg.eng.swg | 1.2 | 0.171 | | Tatoeba-test.eng-yid.eng.yid | 7.2 | 0.304 | ### System Info: - hf_name: eng-gem - source_languages: eng - target_languages: gem - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gem/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'da', 'sv', 'af', 'nn', 'fy', 'fo', 'de', 'nb', 'nl', 'is', 'lb', 'yi', 'gem'] - src_constituents: {'eng'} - tgt_constituents: {'ksh', 'enm_Latn', 'got_Goth', 'stq', 'dan', 'swe', 'afr', 'pdc', 'gos', 'nno', 'fry', 'gsw', 'fao', 'deu', 'swg', 'sco', 'nob', 'nld', 'isl', 'eng', 'ltz', 'nob_Hebr', 'ang_Latn', 'frr', 'non_Latn', 'yid', 'nds'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gem/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gem/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: gem - short_pair: en-gem - chrF2_score: 0.6409999999999999 - bleu: 46.5 - brevity_penalty: 0.9790000000000001 - ref_len: 73328.0 - src_name: English - tgt_name: Germanic languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: gem - prefer_old: False - long_pair: eng-gem - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-gv
75304df76c1de9f4a2502e13edefe5e83b60808b
2021-09-09T21:35:42.000Z
[ "pytorch", "marian", "text2text-generation", "en", "gv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-gv
25
null
transformers
7,622
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-gv * source languages: en * target languages: gv * OPUS readme: [en-gv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-gv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-gv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-gv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-gv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | bible-uedin.en.gv | 70.1 | 0.885 |
Helsinki-NLP/opus-mt-es-fi
418cdb680fcf1499ec9f72e0eece03ea67322e4c
2021-09-09T21:42:19.000Z
[ "pytorch", "marian", "text2text-generation", "es", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-fi
25
null
transformers
7,623
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-fi * source languages: es * target languages: fi * OPUS readme: [es-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-04-12.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-fi/opus-2020-04-12.zip) * test set translations: [opus-2020-04-12.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-fi/opus-2020-04-12.test.txt) * test set scores: [opus-2020-04-12.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-fi/opus-2020-04-12.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.fi | 44.4 | 0.672 |
Helsinki-NLP/opus-mt-es-mk
0313f02ea08ecfcb2abb2c21696918e0d37e2eed
2021-01-18T08:26:44.000Z
[ "pytorch", "marian", "text2text-generation", "es", "mk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-mk
25
null
transformers
7,624
--- language: - es - mk tags: - translation license: apache-2.0 --- ### spa-mkd * source group: Spanish * target group: Macedonian * OPUS readme: [spa-mkd](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-mkd/README.md) * model: transformer-align * source language(s): spa * target language(s): mkd * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-mkd/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-mkd/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-mkd/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.mkd | 48.2 | 0.681 | ### System Info: - hf_name: spa-mkd - source_languages: spa - target_languages: mkd - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-mkd/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'mk'] - src_constituents: {'spa'} - tgt_constituents: {'mkd'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-mkd/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-mkd/opus-2020-06-17.test.txt - src_alpha3: spa - tgt_alpha3: mkd - short_pair: es-mk - chrF2_score: 0.6809999999999999 - bleu: 48.2 - brevity_penalty: 1.0 - ref_len: 1073.0 - src_name: Spanish - tgt_name: Macedonian - train_date: 2020-06-17 - src_alpha2: es - tgt_alpha2: mk - prefer_old: False - long_pair: spa-mkd - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ho-en
30f225f4db385984a9c95e468faaeb54890e606c
2021-09-09T22:10:10.000Z
[ "pytorch", "marian", "text2text-generation", "ho", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ho-en
25
null
transformers
7,625
--- tags: - translation license: apache-2.0 --- ### opus-mt-ho-en * source languages: ho * target languages: en * OPUS readme: [ho-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ho-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ho-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ho-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ho-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ho.en | 26.8 | 0.428 |
Helsinki-NLP/opus-mt-hr-fi
0ad78408cbbecab0c12a5f4062917301dcb7aff9
2021-09-09T22:10:17.000Z
[ "pytorch", "marian", "text2text-generation", "hr", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hr-fi
25
null
transformers
7,626
--- tags: - translation license: apache-2.0 --- ### opus-mt-hr-fi * source languages: hr * target languages: fi * OPUS readme: [hr-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hr-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hr-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hr.fi | 25.0 | 0.519 |
Helsinki-NLP/opus-mt-lua-en
8c17410d2f28979693fc972266320bb3db646712
2021-09-10T13:56:04.000Z
[ "pytorch", "marian", "text2text-generation", "lua", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lua-en
25
null
transformers
7,627
--- tags: - translation license: apache-2.0 --- ### opus-mt-lua-en * source languages: lua * target languages: en * OPUS readme: [lua-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lua-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lua-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lua.en | 34.4 | 0.502 |
Helsinki-NLP/opus-mt-luo-en
7c29e33c07a0a88ec5b54b6df68ac190113147a1
2021-09-10T13:56:44.000Z
[ "pytorch", "marian", "text2text-generation", "luo", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-luo-en
25
null
transformers
7,628
--- tags: - translation license: apache-2.0 --- ### opus-mt-luo-en * source languages: luo * target languages: en * OPUS readme: [luo-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/luo-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/luo-en/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/luo-en/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/luo-en/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.luo.en | 29.1 | 0.452 |
Helsinki-NLP/opus-mt-pag-en
bf41e954aa08a387ae6b72e96d5d7f0bd4e630b0
2021-09-10T14:00:15.000Z
[ "pytorch", "marian", "text2text-generation", "pag", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pag-en
25
null
transformers
7,629
--- tags: - translation license: apache-2.0 --- ### opus-mt-pag-en * source languages: pag * target languages: en * OPUS readme: [pag-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pag-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/pag-en/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pag-en/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pag-en/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pag.en | 42.4 | 0.580 |
Helsinki-NLP/opus-mt-run-en
28b9926db36126b5833968eea417490d5e4d70a1
2021-09-10T14:02:34.000Z
[ "pytorch", "marian", "text2text-generation", "run", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-run-en
25
null
transformers
7,630
--- tags: - translation license: apache-2.0 --- ### opus-mt-run-en * source languages: run * target languages: en * OPUS readme: [run-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/run-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/run-en/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/run-en/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/run-en/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.run.en | 42.7 | 0.583 |
Helsinki-NLP/opus-mt-sk-sv
003fa8e1c1a935225541bcacf43b5bc1e0f5870b
2021-09-10T14:03:35.000Z
[ "pytorch", "marian", "text2text-generation", "sk", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sk-sv
25
null
transformers
7,631
--- tags: - translation license: apache-2.0 --- ### opus-mt-sk-sv * source languages: sk * target languages: sv * OPUS readme: [sk-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sk-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sk-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sk-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sk-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sk.sv | 33.1 | 0.544 |
Helsinki-NLP/opus-mt-tw-fi
d7a5caa6848a5705a603e56ae16f2853a68ab5c1
2021-09-11T10:50:43.000Z
[ "pytorch", "marian", "text2text-generation", "tw", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tw-fi
25
null
transformers
7,632
--- tags: - translation license: apache-2.0 --- ### opus-mt-tw-fi * source languages: tw * target languages: fi * OPUS readme: [tw-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tw-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/tw-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tw.fi | 25.6 | 0.488 |
Intel/bert-base-uncased-sparse-70-unstructured
49d5ae78de4226eb67c37d7b119786732bd6a364
2021-05-24T12:42:47.000Z
[ "pytorch", "bert", "fill-mask", "en", "transformers", "autotrain_compatible" ]
fill-mask
false
Intel
null
Intel/bert-base-uncased-sparse-70-unstructured
25
null
transformers
7,633
--- language: en --- # Sparse BERT base model (uncased) Pretrained model pruned to 70% sparsity. The model is a pruned version of the [BERT base model](https://huggingface.co/bert-base-uncased). ## Intended Use The model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model. To keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros.
ItelAi/Chatbot
af2a3bc7dfaf094f1ff1d4a6574c5542eb3c2194
2021-07-20T01:27:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ItelAi
null
ItelAi/Chatbot
25
null
transformers
7,634
Entry not found
JorisCos/ConvTasNet_Libri2Mix_sepclean_8k
fe2524d2ab745ab0f235804d57155a7e7cfe10ae
2021-09-23T15:48:56.000Z
[ "pytorch", "dataset:Libri2Mix", "dataset:sep_clean", "asteroid", "audio", "ConvTasNet", "audio-to-audio", "license:cc-by-sa-4.0" ]
audio-to-audio
false
JorisCos
null
JorisCos/ConvTasNet_Libri2Mix_sepclean_8k
25
null
asteroid
7,635
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_8k` Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 2 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 14.764543634468069 si_sdr_imp: 14.764029375607246 sdr: 15.29337970745095 sdr_imp: 15.114146605113111 sir: 24.092904661115366 sir_imp: 23.913669683141528 sar: 16.06055906916849 sar_imp: -51.980784441287454 stoi: 0.9311142440593033 stoi_imp: 0.21817376142710482 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
KakoSi/Smolmm3
53dc695c4bf9a794269a5b3b123adfe9f56e8c0a
2021-07-17T08:15:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
KakoSi
null
KakoSi/Smolmm3
25
null
transformers
7,636
--- tags: - conversational --- #my awesome model
LeBenchmark/wav2vec2-FR-2.6K-base
7353dcd1ba8eb09a9b0726c68b2464222086b3c2
2021-11-30T04:23:14.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "fr", "transformers", "license:apache-2.0" ]
feature-extraction
false
LeBenchmark
null
LeBenchmark/wav2vec2-FR-2.6K-base
25
null
transformers
7,637
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 2.6K hours of French speech (no spontaneous speech) LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Task Agnostic and Task Specific Self-Supervised Learning from Speech with LeBenchmark](https://openreview.net/pdf?id=TSvj5dmuSd) ## Model and data descriptions We release four different models that can be found under our HuggingFace organization. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (1K), medium (3K), and large (7K) corpus. A larger one should come later. In short: - [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**). - [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` @article{Evain2021LeBenchmarkAR, title={LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech}, author={Sol{\`e}ne Evain and Ha Nguyen and Hang Le and Marcely Zanon Boito and Salima Mdhaffar and Sina Alisamir and Ziyi Tong and N. Tomashenko and Marco Dinarelli and Titouan Parcollet and A. Allauzen and Y. Est{\`e}ve and B. Lecouteux and F. Portet and S. Rossato and F. Ringeval and D. Schwab and L. Besacier}, journal={ArXiv}, year={2021}, volume={abs/2104.11462} } ```
Norod78/hebrew_poetry-gpt_neo-small
357dac0c1ec3222f4603af5d6b29e86f4bd3c7fd
2022-07-04T07:24:46.000Z
[ "pytorch", "jax", "gpt_neo", "text-generation", "he", "transformers", "license:mit" ]
text-generation
false
Norod78
null
Norod78/hebrew_poetry-gpt_neo-small
25
null
transformers
7,638
--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "פעם אחת לפני שנ" - text: "הים כחול ואני ח" - text: "שם היצירה:" - text: "כשהמכונות" license: mit --- # hebrew_poetry-gpt_neo-small Hebrew poetry text generation model, fined tuned upon [hebrew-gpt_neo-small](https://huggingface.co/Norod78/hebrew-gpt_neo-small) which was trained using [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). Fine-tuning was done using [@minimaxir](https://twitter.com/minimaxir)'s [aitextgen](https://github.com/minimaxir/aitextgen). ## Datasets 1. Text from [New stage](http://stage.co.il/) 2. A dataset containing Hebrew lyrics
SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune
08bb81ae32a9404314c0a384b4e6fdf64c4f3b6c
2021-06-23T04:47:08.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune
25
1
transformers
7,639
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 4000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_multitask_en_sv
1e83e8b6c28ebbf214e43e5372b3c51f42e3fd1f
2021-06-23T11:00:55.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_en_sv
25
null
transformers
7,640
--- language: English Swedish tags: - translation English Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "whereas enlargement to Bulgaria and Romania should be effective in 2007," --- # legal_t5_small_multitask_en_sv model Model on translating legal text from English to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_en_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from English to Swedish. ### How to use Here is how to use this model to translate legal text from English to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_en_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_en_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "whereas enlargement to Bulgaria and Romania should be effective in 2007," pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_en_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_en_sv | 47.968| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SophieTr/fine-tune-Pegasus-large
2c7c8250e812074b8859e6775e4852cb8944e61a
2022-01-26T07:56:10.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
SophieTr
null
SophieTr/fine-tune-Pegasus-large
25
1
transformers
7,641
--- tags: - generated_from_trainer model-index: - name: fine-tune-Pegasus-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-Pegasus-large This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 11.0526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.35e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
TalTechNLP/voxlingua107-epaca-tdnn-ce
2b36d180fc2664918fae6611217cce975391b71c
2021-11-04T13:37:25.000Z
[ "multilingual", "dataset:VoxLingua107", "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "VoxLingua107", "license:apache-2.0" ]
audio-classification
false
TalTechNLP
null
TalTechNLP/voxlingua107-epaca-tdnn-ce
25
2
speechbrain
7,642
--- language: multilingual thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN - VoxLingua107 license: "apache-2.0" datasets: - VoxLingua107 metrics: - Accuracy widget: - example_title: English Sample src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac --- # VoxLingua107 ECAPA-TDNN Spoken Language Identification Model (CE) ## Model description This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. However, it uses more fully connected hidden layers after the embedding layer, and cross-entropy loss was used for training. We observed that this improved the performance of extracted utterance embeddings for downstream tasks. The model can classify a speech utterance according to the language spoken. It covers 107 different languages ( Abkhazian, Afrikaans, Amharic, Arabic, Assamese, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Tibetan, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greek, English, Esperanto, Spanish, Estonian, Basque, Persian, Finnish, Faroese, French, Galician, Guarani, Gujarati, Manx, Hausa, Hawaiian, Hindi, Croatian, Haitian, Hungarian, Armenian, Interlingua, Indonesian, Icelandic, Italian, Hebrew, Japanese, Javanese, Georgian, Kazakh, Central Khmer, Kannada, Korean, Latin, Luxembourgish, Lingala, Lao, Lithuanian, Latvian, Malagasy, Maori, Macedonian, Malayalam, Mongolian, Marathi, Malay, Maltese, Burmese, Nepali, Dutch, Norwegian Nynorsk, Norwegian, Occitan, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sanskrit, Scots, Sindhi, Sinhala, Slovak, Slovenian, Shona, Somali, Albanian, Serbian, Sundanese, Swedish, Swahili, Tamil, Telugu, Tajik, Thai, Turkmen, Tagalog, Turkish, Tatar, Ukrainian, Urdu, Uzbek, Vietnamese, Waray, Yiddish, Yoruba, Mandarin Chinese). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained import EncoderClassifier language_id = EncoderClassifier.from_hparams(source="TalTechNLP/voxlingua107-epaca-tdnn-ce", savedir="tmp") # Download Thai language sample from Omniglot and cvert to suitable form signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3") prediction = language_id.classify_batch(signal) print(prediction) (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01, -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01, -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01, -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01, -2.2128e+01, -2.2822e+01, -3.0888e+01, -3.3564e+01, -2.9906e+01, -2.2392e+01, -2.5573e+01, -2.6443e+01, -3.2429e+01, -3.2652e+01, -3.0030e+01, -2.4607e+01, -2.2967e+01, -2.4396e+01, -2.8578e+01, -2.5153e+01, -2.8475e+01, -2.6409e+01, -2.5230e+01, -2.7957e+01, -2.6298e+01, -2.3609e+01, -2.5863e+01, -2.8225e+01, -2.7225e+01, -3.0486e+01, -2.1185e+01, -2.7938e+01, -3.3155e+01, -1.9076e+01, -2.9181e+01, -2.2160e+01, -1.8352e+01, -2.5866e+01, -3.3636e+01, -4.2016e+00, -3.1581e+01, -3.1894e+01, -2.7834e+01, -2.5429e+01, -3.2235e+01, -3.2280e+01, -2.8786e+01, -2.3366e+01, -2.6047e+01, -2.2075e+01, -2.3770e+01, -2.2518e+01, -2.8101e+01, -2.5745e+01, -2.6441e+01, -2.9822e+01, -2.7109e+01, -3.0225e+01, -2.4566e+01, -2.9268e+01, -2.7651e+01, -3.4221e+01, -2.9026e+01, -2.6009e+01, -3.1968e+01, -3.1747e+01, -2.8156e+01, -2.9025e+01, -2.7756e+01, -2.8052e+01, -2.9341e+01, -2.8806e+01, -2.1636e+01, -2.3992e+01, -2.3794e+01, -3.3743e+01, -2.8332e+01, -2.7465e+01, -1.5085e-02, -2.9094e+01, -2.1444e+01, -2.9780e+01, -3.6046e+01, -3.7401e+01, -3.0888e+01, -3.3172e+01, -1.8931e+01, -2.2679e+01, -3.0225e+01, -2.4995e+01, -2.1028e+01]]), tensor([-0.0151]), tensor([94]), ['th']) # The scores in the prediction[0] tensor can be interpreted as log-likelihoods that # the given utterance belongs to the given language (i.e., the larger the better) # The linear-scale likelihood can be retrieved using the following: print(prediction[1].exp()) tensor([0.9850]) # The identified language ISO code is given in prediction[3] print(prediction[3]) ['th'] # Alternatively, use the utterance embedding extractor: emb = language_id.encode_batch(signal) print(emb.shape) torch.Size([1, 1, 256]) ``` #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on subjective experiments, it doesn't work well on speech with a foreign accent - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model. Training recipe will be published soon. ## Evaluation results Error rate: 6.7% on the VoxLingua107 development dataset ### BibTeX entry and citation info ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ```
Vaibhavbrkn/grammer_classiffication
022d5425a2c542baae2e8ec917d956ae19245684
2021-10-23T06:20:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Vaibhavbrkn
null
Vaibhavbrkn/grammer_classiffication
25
null
transformers
7,643
Entry not found
abhi1nandy2/EManuals_BERT
2e220e9b39d59b3739bdf5f62f0f1fe7634a84fe
2022-01-17T17:12:46.000Z
[ "pytorch", "bert", "fill-mask", "English", "transformers", "EManuals", "customer support", "QA", "autotrain_compatible" ]
fill-mask
false
abhi1nandy2
null
abhi1nandy2/EManuals_BERT
25
null
transformers
7,644
--- language: - English tags: - EManuals - customer support - QA - bert --- Refer to https://aclanthology.org/2021.findings-emnlp.392/ for the paper and https://sites.google.com/view/emanualqa/home for the project website ## Citation Please cite the work if you would like to use it. ``` @inproceedings{nandy-etal-2021-question-answering, title = "Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based {QA} Framework", author = "Nandy, Abhilash and Sharma, Soumya and Maddhashiya, Shubham and Sachdeva, Kapil and Goyal, Pawan and Ganguly, NIloy", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.392", doi = "10.18653/v1/2021.findings-emnlp.392", pages = "4600--4609", abstract = "Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper, we meticulously create a large amount of data connected with E-manuals and develop a suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals, and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40{\%} in ROUGE-L F1 scores over most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.", } ```
addy88/t5-grammar-correction
c33cdd81a911fce70375248118a7e617387fb4ad
2022-01-17T12:09:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
addy88
null
addy88/t5-grammar-correction
25
1
transformers
7,645
### How to use Here is how to use this model in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("addy88/t5-grammar-correction") model = AutoModelForSeq2SeqLM.from_pretrained("addy88/t5-grammar-correction") input_ids = tokenizer('grammar: This sentences has has bads grammar.', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
allenai/hvila-row-layoutlm-finetuned-grotoap2
cc7b102ef8cf72c08af41174b54e0a8edff9b0b6
2021-09-27T23:01:31.000Z
[ "pytorch", "hierarchical_model", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
allenai
null
allenai/hvila-row-layoutlm-finetuned-grotoap2
25
null
transformers
7,646
Entry not found
amoux/roberta-cord19-1M7k
9420b723c2a278b030b94d5ba163c1a2c9b3c3ed
2021-05-20T14:07:22.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "english", "transformers", "autotrain_compatible" ]
fill-mask
false
amoux
null
amoux/roberta-cord19-1M7k
25
null
transformers
7,647
--- language: english thumbnail: https://github.githubassets.com/images/icons/emoji/unicode/2695.png widget: - text: "Lung infiltrates cause significant morbidity and mortality in immunocompromised <mask>." - text: "Tuberculosis appears to be an important <mask> in endemic regions especially in the non-HIV, non-hematologic malignancy group." - text: "For vector-transmitted diseases this places huge significance on vector mortality rates as vectors usually don't <mask> an infection and instead remain infectious for life." - text: "The lung lesions were characterized by bronchointerstitial pneumonia with accumulation of neutrophils, macrophages and necrotic debris in <mask> and bronchiolar lumens and peribronchiolar/perivascular infiltration of inflammatory cells." --- # roberta-cord19-1M7k ![](https://github.githubassets.com/images/icons/emoji/unicode/2695.png) > This model is based on ***RoBERTa*** and was pre-trained on 1.7 million sentences. The training corpus was papers taken from *Semantic Scholar*'s CORD-19 historical releases. Corpus size is `13k` papers, `~60M` tokens. I used the full-text `"body_text"` of the papers in training (details below). #### Usage ```python from transformers import pipeline from transformers import RobertaTokenizerFast, RobertaForMaskedLM tokenizer = RobertaTokenizerFast.from_pretrained("amoux/roberta-cord19-1M7k") model = RobertaForMaskedLM.from_pretrained("amoux/roberta-cord19-1M7k") fillmask = pipeline("fill-mask", model=model, tokenizer=tokenizer) text = "Lung infiltrates cause significant morbidity and mortality in immunocompromised patients." masked_text = text.replace("patients", tokenizer.mask_token) predictions = fillmask(masked_text, top_k=3) ``` - Predicted tokens ```bash [{'sequence': '<s>Lung infiltrates cause significant morbidity and mortality in immunocompromised patients.</s>', 'score': 0.6273621320724487, 'token': 660, 'token_str': 'Ġpatients'}, {'sequence': '<s>Lung infiltrates cause significant morbidity and mortality in immunocompromised individuals.</s>', 'score': 0.19800445437431335, 'token': 1868, 'token_str': 'Ġindividuals'}, {'sequence': '<s>Lung infiltrates cause significant morbidity and mortality in immunocompromised animals.</s>', 'score': 0.022069649770855904, 'token': 1471, 'token_str': 'Ġanimals'}] ``` ## Dataset - About - name: *CORD-19: The Covid-19 Open Research Dataset* - date: *2020-03-18* - md5 | sha1: `a36fe181 | 8fbea927` - text-key: `body_text` - subsets (*total*: `13,202`): - *biorxiv_medrxiv*: `803` - *comm_use_subset*: `9000` - *pmc_custom_license*: `1426` - *noncomm_use_subset*: `1973` - Splits (*ratio: 0.9*) - sentences used for training: `1,687,124` - sentences used for evaluation: `187,459` - Total training steps: `210,890` - Total evaluation steps: `23,433` ## Parameters - Data - block_size: `256` - Training - per_device_train_batch_size: `8` - per_device_eval_batch_size: `8` - gradient_accumulation_steps: `2` - learning_rate: `5e-5` - num_train_epochs: `2` - fp16: `True` - fp16_opt_level: `'01'` - seed: `42` - Output - global_step: `210890` - training_loss: `3.5964575726682155` ## Evaluation - Perplexity: `17.469366079957922` ### Citation > Allen Institute CORD-19 [Historical Releases](https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html) ``` @article{Wang2020CORD19TC, title={CORD-19: The Covid-19 Open Research Dataset}, author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier}, journal={ArXiv}, year={2020} } ```
andi611/bert-base-uncased-ner-conll2003
efdf72fbab7a8c918dca934caeff9d44b425e163
2021-07-07T09:31:59.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
andi611
null
andi611/bert-base-uncased-ner-conll2003
25
null
transformers
7,648
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: bert-base-uncased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.19881805328292054 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 2.1258 - Precision: 0.0269 - Recall: 0.1379 - F1: 0.0451 - Accuracy: 0.1988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 4 | 2.1296 | 0.0270 | 0.1389 | 0.0452 | 0.1942 | | No log | 2.0 | 8 | 2.1258 | 0.0269 | 0.1379 | 0.0451 | 0.1988 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
anechaev/ru_med_gpt3sm_based_on_gpt2
80126d892080920c38889f36aa333e730efb3361
2022-02-08T12:31:37.000Z
[ "pytorch", "gpt2", "text-generation", "ru", "transformers", "PyTorch", "Transformers", "license:mit" ]
text-generation
false
anechaev
null
anechaev/ru_med_gpt3sm_based_on_gpt2
25
null
transformers
7,649
--- language: - ru tags: - PyTorch - Transformers license: mit --- # Medical History Model based on ruGPT2 by @sberbank-ai A simple model for helping medical staff to complete patient's medical histories. Model used pretrained [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2)
anirudh21/xlnet-base-cased-finetuned-rte
e0554de5feda27c36f8d688b66c626fd6efccd0e
2022-01-14T07:04:23.000Z
[ "pytorch", "tensorboard", "xlnet", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/xlnet-base-cased-finetuned-rte
25
null
transformers
7,650
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-cased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6895306859205776 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-rte This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0656 - Accuracy: 0.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7007 | 0.4874 | | No log | 2.0 | 312 | 0.6289 | 0.6751 | | No log | 3.0 | 468 | 0.7020 | 0.6606 | | 0.6146 | 4.0 | 624 | 1.0573 | 0.6570 | | 0.6146 | 5.0 | 780 | 1.0656 | 0.6895 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anton-l/sew-mid-100k-ft-common-language
f5d6e3838a21f0727728bbab8b8cdbc72b08d9f6
2021-10-28T10:52:41.000Z
[ "pytorch", "tensorboard", "sew", "audio-classification", "dataset:common_language", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/sew-mid-100k-ft-common-language
25
null
transformers
7,651
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: sew-mid-100k-ft-common-language results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-ft-common-language This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 2.1189 - Accuracy: 0.3842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.608 | 1.0 | 173 | 3.7266 | 0.0540 | | 3.1298 | 2.0 | 346 | 3.2180 | 0.1654 | | 2.8481 | 3.0 | 519 | 2.9270 | 0.2019 | | 2.648 | 4.0 | 692 | 2.6991 | 0.2619 | | 2.5 | 5.0 | 865 | 2.5236 | 0.3004 | | 2.2578 | 6.0 | 1038 | 2.4019 | 0.3212 | | 2.2782 | 7.0 | 1211 | 2.1698 | 0.3658 | | 2.1665 | 8.0 | 1384 | 2.1976 | 0.3631 | | 2.1626 | 9.0 | 1557 | 2.1473 | 0.3791 | | 2.1514 | 10.0 | 1730 | 2.1189 | 0.3842 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
tner/xlm-roberta-large-uncased-mit-movie-trivia
f76e75819f9aa762b8d99c4b1c90f48e19bf0fc4
2021-02-13T00:11:57.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-mit-movie-trivia
25
null
transformers
7,652
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-movie-trivia") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-movie-trivia") ```
astarostap/distilbert-cased-antisemitic-tweets
19a14e75df21357ef4393db5b91fe029006552e8
2021-02-08T15:03:10.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:mit" ]
text-classification
false
astarostap
null
astarostap/distilbert-cased-antisemitic-tweets
25
null
transformers
7,653
--- license: mit widget: - text: "Jews run the world." --- This model takes a tweet with the word "jew" in it, and determines if it's antisemitic. *Training data:* This model was trained on 4k tweets, where ~50% were labeled as antisemitic. I labeled them myself based on personal experience and knowledge about common antisemitic tropes. *Note:* The goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts. Please keep in mind that I'm not an expert on antisemitism or hatespeech. Whether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech. If you would like to collaborate on antisemitism detection, please feel free to contact me at [email protected] This model is not ready for production, it needs more evaluation and more training data.
bertin-project/bertin-base-random-exp-512seqlen
e37776eaf95c689c2741bd1eaf3d878177446c92
2021-09-23T13:41:57.000Z
[ "pytorch", "jax", "tensorboard", "joblib", "roberta", "fill-mask", "es", "transformers", "spanish", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
bertin-project
null
bertin-project/bertin-base-random-exp-512seqlen
25
null
transformers
7,654
--- language: es license: cc-by-4.0 tags: - spanish - roberta pipeline_tag: fill-mask widget: - text: Fui a la librería a comprar un <mask>. --- This is a **RoBERTa-base** model trained from scratch in Spanish. The training dataset is [mc4](https://huggingface.co/datasets/bertin-project/mc4-es-sampled ) subsampling documents to a total of about 50 million examples. Sampling is random. This model continued training from [sequence length 128](https://huggingface.co/bertin-project/bertin-base-random) using 20.000 steps for length 512. Please see our main [card](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) for more information. This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team members - Eduardo González ([edugp](https://huggingface.co/edugp)) - Javier de la Rosa ([versae](https://huggingface.co/versae)) - Manu Romero ([mrm8488](https://huggingface.co/)) - María Grandury ([mariagrandury](https://huggingface.co/)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Paulo Villegas ([paulo](https://huggingface.co/paulo))
boris/xlsr-en-punctuation
b84241b8a6b9369e23df651d7377bb9dc9aec475
2021-07-05T23:33:26.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "en", "dataset:common_voice", "transformers", "audio", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
boris
null
boris/xlsr-en-punctuation
25
2
transformers
7,655
--- language: en datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: English XLSR Wav2Vec2 Large 53 with punctuation results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 1.0 --- # Wav2Vec2-Large-XLSR-53-English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on {language} using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags. ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
bs-modeling-metadata/html-metadata-exp1-subexp3-1898197
a6ee6dea3fa030453b4dfe7a0e0c82d96cf99438
2021-11-13T09:28:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
bs-modeling-metadata
null
bs-modeling-metadata/html-metadata-exp1-subexp3-1898197
25
1
transformers
7,656
--- widget: - text: " htmlOn ||| <h1" --- # Work In Progress # How to use? To generate text with HTML, the sentence must start with ` htmlOn |||` (note the space at the beginning 😉). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 50% of the examples in the training data contained `h1`, `h2`, ..., `h6` and `p` HTML tags with only their `id` and `class` attributes. 50% of the examples were just plain text. Training example with metadata: ``` htmlOn ||| <h1 id:firstHeading class:firstHeading>Market power</h1> From Wikipedia, the free encyclopedia Jump to: navigation, search Competition law Basic concepts History of competition law Monopoly Coercive monopoly Natural monopoly Barriers to entry Herfindahl–Hirschman Index Market concentration Market power SSNIP test Relevant market Merger control Anti-competitive practices Monopolization Collusion Formation of cartels Price fixing Bid rigging Product bundling and tying Refusal to deal Group boycott Essential facilities Exclusive dealing Dividing territories Conscious parallelism Predatory pricing Misuse of patents and copyrights Enforcement authorities and organizations International Competition Network List of competition regulators v t e <p>In economics and particularly in industrial organization, market power is the ability of a firm to profitably raise the market price of a good or service over marginal cost. In perfectly competitive markets, market participants have no market power. A firm with total market power can raise prices without losing any customers to competitors. Market participants that have market power are therefore sometimes referred to as "price makers" or "price setters", while those without are sometimes called "price takers". Significant market power occurs when prices exceed marginal cost and long run average cost, so the firm makes profit.</p> <p>A firm with market power has the ability to individually affect either the total quantity or the prevailing price in the market. Price makers face a downward-sloping demand curve, such that price increases lead to a lower quantity demanded. The decrease in supply as a result of the exercise of market power creates an economic deadweight loss which is often viewed as socially undesirable. As a result, many countries have anti-trust or other legislation intended to limit the ability of firms to accrue market power. Such legislation often regulates mergers and sometimes introduces a judicial power to compel divestiture.</p> <p>A firm usually has market power by virtue of controlling a large portion of the market. In extreme cases—monopoly and monopsony—the firm controls the entire market. However, market size alone is not the only indicator of market power. Highly concentrated markets may be contestable if there are no barriers to entry or exit, limiting the incumbent firm's ability to raise its price above competitive levels.</p> <p>Market power gives firms the ability to engage in unilateral anti-competitive behavior.[1] Some of the behaviours that firms with market power are accused of engaging in include predatory pricing, product tying, and creation of overcapacity or other barriers to entry. If no individual participant in the market has significant market power, then anti-competitive behavior can take place only through collusion, or the exercise of a group of participants' collective market power.</p> <p>The Lerner index and Herfindahl index may be used to measure market power.</p> <p></p><h2>Contents</h2> [hide] 1 Oligopoly 2 Monopoly power 3 Source 4 Measurement 5 Elasticity of demand 6 Nobel Memorial Prize 7 See also 8 References 9 Further references <p></p><h2>Oligopoly[edit]</h2> <p>When several firms control a significant share of market sales, the resulting market structure is called an oligopoly or oligopsony. An oligopoly may engage in collusion, either tacit or overt, and thereby exercise market power. A group of firms that explicitly agree to affect market price or output is called a cartel.</p> <h2>Monopoly power[edit]</h2> <p>Monopoly power is an example of market failure which occurs when one or more of the participants has the ability to influence the price or other outcomes in some general or specialized market. The most commonly discussed form of market power is that of a monopoly, but other forms such as monopsony, and more moderate versions of these two extremes, exist.</p> <p>A well-known example of monopolistic market power is Microsoft's market share in PC operating systems. The United States v. Microsoft case dealt with an allegation that Microsoft illegally exercised its market power by bundling its web browser with its operating system. In this respect, the notion of dominance and dominant position in EU Antitrust Law is a strictly related aspect.[2]</p> <h2>Source[edit]</h2> <p>A monopoly can raise prices and retain customers because the monopoly has no competitors. If a customer has no other place to go to obtain the goods or services, they either pay the increased price or do without.[3] Thus the key to market power is to preclude competition through high barriers of entry. Barriers to entry that are significant sources ```
cahya/wav2vec2-base-turkish-artificial-cv
24eecc3f4587cc456728e2480cd7f469f16c2dda
2022-02-01T19:34:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-base-turkish-artificial-cv
25
2
transformers
7,657
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Base Turkish by Cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 13.70 --- # Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Base-Turkish-Artificial-CV, a fine-tuned [cahya/wav2vec2-base-turkish-artificial](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial) model on [Turkish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-base-turkish-artificial-cv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 13.70 % ## Training The Common Voice `train`, `validation`, other and invalidated The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
cardiffnlp/twitter-roberta-base-stance-hillary
62c5ae9d789d4de334e5b3f1b8b85d152dfaacde
2021-05-20T15:12:15.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/twitter-roberta-base-stance-hillary
25
null
transformers
7,658
csarron/ViLT-VQAv2
87370f049b2fcc42db1b6f93b560020dde1cb4f6
2021-12-16T20:00:34.000Z
[ "pytorch", "vilt", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
csarron
null
csarron/ViLT-VQAv2
25
null
transformers
7,659
Entry not found
digit82/dialog-sbert-base
cd2aff78addcb9283c865919ca82941769f35b46
2021-10-15T08:46:04.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
digit82
null
digit82/dialog-sbert-base
25
null
transformers
7,660
Entry not found
federicopascual/finetuning-sentiment-model-3000-samples-testcopy
fa24172eb4eed19b4732ed61e3ad6ca2952d85a9
2022-01-04T14:34:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
federicopascual
null
federicopascual/finetuning-sentiment-model-3000-samples-testcopy
25
1
transformers
7,661
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples-testcopy results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8761904761904761 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-testcopy This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3374 - Accuracy: 0.87 - F1: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ghadeermobasher/BC5CDR-Chemical-Disease-balancedBioM-ELECTRA-Base-Discriminator
eefc00c6370aa09e516e7f3144594e5d66c04483
2022-01-22T23:14:13.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-Disease-balancedBioM-ELECTRA-Base-Discriminator
25
null
transformers
7,662
Entry not found
groar/gpt-neo-1.3B-finetuned-escape2
1955cc861abf3eeef407905200da2db228110e38
2022-02-13T20:59:30.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
groar
null
groar/gpt-neo-1.3B-finetuned-escape2
25
null
transformers
7,663
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-1.3B-finetuned-escape2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape2 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/angularocean
52d038360c268fe51c60023263011ee756ac21f8
2021-05-21T19:01:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/angularocean
25
null
transformers
7,664
--- language: en thumbnail: https://www.huggingtweets.com/angularocean/1616713094074/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1220764691829608448/QWMxSgNV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Angle of Ocean 🤖 AI Bot </div> <div style="font-size: 15px">@angularocean bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@angularocean's tweets](https://twitter.com/angularocean). | Data | Quantity | | --- | --- | | Tweets downloaded | 2933 | | Retweets | 843 | | Short tweets | 430 | | Tweets kept | 1660 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1q9wm9nt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angularocean's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1fr77sf3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1fr77sf3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angularocean') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/degrassinocontx
f1f7b87d747fd7ecc66f4fd24c324e0c390fa060
2021-05-22T01:10:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/degrassinocontx
25
null
transformers
7,665
--- language: en thumbnail: https://www.huggingtweets.com/degrassinocontx/1614122429501/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361151177455468548/mGKDi3dV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Degrassi No Context 🤖 AI Bot </div> <div style="font-size: 15px">@degrassinocontx bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@degrassinocontx's tweets](https://twitter.com/degrassinocontx). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 54 | | Short tweets | 1504 | | Tweets kept | 1687 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mu201mzi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @degrassinocontx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wxznhll) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wxznhll/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/degrassinocontx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/downgrad3d
bcef1e3105d49f5bea9689944611e555d002d1d5
2021-05-22T02:08:56.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/downgrad3d
25
null
transformers
7,666
--- language: en thumbnail: https://www.huggingtweets.com/downgrad3d/1614303163871/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363217665586835460/RU5F44Dj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">daniel 🤖 AI Bot </div> <div style="font-size: 15px">@downgrad3d bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@downgrad3d's tweets](https://twitter.com/downgrad3d). | Data | Quantity | | --- | --- | | Tweets downloaded | 441 | | Retweets | 138 | | Short tweets | 82 | | Tweets kept | 221 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6eqzlox6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @downgrad3d's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1fsmvsit) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1fsmvsit/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/downgrad3d') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gwenvara_
8dda964ce1cfd74b1e023b3b0ae9c6c3b3dffd80
2021-05-22T06:23:47.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gwenvara_
25
null
transformers
7,667
--- language: en thumbnail: https://www.huggingtweets.com/gwenvara_/1616736053941/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364599664016691206/NVK2fuwS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anarcho-Gwendolism 🧬 🤖 AI Bot </div> <div style="font-size: 15px">@gwenvara_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gwenvara_'s tweets](https://twitter.com/gwenvara_). | Data | Quantity | | --- | --- | | Tweets downloaded | 3069 | | Retweets | 1831 | | Short tweets | 350 | | Tweets kept | 888 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p9ao8jnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gwenvara_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l9zed4di) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l9zed4di/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gwenvara_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mariobrothblog
4c8d81bbb5f035967ecedd306eb3eca89ad122de
2021-05-22T13:22:25.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mariobrothblog
25
null
transformers
7,668
--- language: en thumbnail: https://www.huggingtweets.com/mariobrothblog/1614433919886/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/882866421822361601/IDcw7Vqa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Supper Mario Broth 🤖 AI Bot </div> <div style="font-size: 15px">@mariobrothblog bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mariobrothblog's tweets](https://twitter.com/mariobrothblog). | Data | Quantity | | --- | --- | | Tweets downloaded | 2840 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 2840 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19c6osvl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mariobrothblog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/327sfx1g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/327sfx1g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mariobrothblog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/markiplier
b3154d1ba522b085d41b445973ac6a84c74f3f6d
2022-06-07T22:46:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/markiplier
25
null
transformers
7,669
--- language: en thumbnail: http://www.huggingtweets.com/markiplier/1654641978193/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511102924310544387/j6E29xq6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mark</div> <div style="text-align: center; font-size: 14px;">@markiplier</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mark. | Data | Mark | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 304 | | Short tweets | 388 | | Tweets kept | 2538 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k0vje7m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markiplier's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6mne3h2w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6mne3h2w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/markiplier') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonatasgrosman/wav2vec2-large-xlsr-53-finnish
004a7893e332cc1fa9aa66d2c089ce6b2fd73365
2022-07-27T23:35:08.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/wav2vec2-large-xlsr-53-finnish
25
1
transformers
7,670
--- language: fi datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 41.60 - name: Test CER type: cer value: 8.23 --- # Fine-tuned XLSR-53 large model for speech recognition in Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-finnish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | MYSTEERIMIES OLI OPPINUT MORAALINSA TARUISTA, ELOKUVISTA JA PELEISTÄ. | MYSTEERIMIES OLI OPPINUT MORALINSA TARUISTA ELOKUVISTA JA PELEISTÄ | | ÄÄNESTIN MIETINNÖN PUOLESTA! | ÄÄNESTIN MIETINNÖN PUOLESTA | | VAIN TUNTIA AIKAISEMMIN OLIMME MIEHENI KANSSA TUNTENEET SUURINTA ILOA. | PAIN TUNTIA AIKAISEMMIN OLIN MIEHENI KANSSA TUNTENEET SUURINTA ILAA | | ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA. | ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA | | ÄÄNESTIN MIETINNÖN PUOLESTA, SILLÄ POHJIMMILTAAN SIINÄ VASTUSTETAAN TÄTÄ SUUNTAUSTA. | ÄÄNESTIN MIETINNÖN PUOLESTA SILLÄ POHJIMMILTAAN SIINÄ VASTOTTETAAN TÄTÄ SUUNTAUSTA | | TÄHDENLENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT? | TÄHDEN LENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT | | SIITÄ SE TULEE. | SIITA SE TULEE | | NIIN, KUULUU KIROUS, JA KAUHEA KARJAISU. | NIIN KUULUU KIROUS JA KAUHEA KARJAISU | | ARKIT KUN OVAT NÄES ELEMENTTIRAKENTEISIA. | ARKIT KUN OVAT MÄISS' ELÄMÄTTEROKENTEISIÄ | | JÄIN ALUKSEN SISÄÄN, MUTTA KUULIN OVEN LÄPI, ETTÄ ULKOPUOLELLA ALKOI TAPAHTUA. | JAKALOKSEHÄN SISÄL MUTTA KUULIN OVENLAPI ETTÄ ULKA KUOLLALLA ALKOI TAPAHTUA | ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-21). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | aapot/wav2vec2-large-xlsr-53-finnish | **32.51%** | **5.34%** | | Tommi/wav2vec2-large-xlsr-53-finnish | 35.22% | 5.81% | | vasilis/wav2vec2-large-xlsr-53-finnish | 38.24% | 6.49% | | jonatasgrosman/wav2vec2-large-xlsr-53-finnish | 41.60% | 8.23% | | birgermoell/wav2vec2-large-xlsr-finnish | 53.51% | 9.18% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-finnish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}innish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-finnish}}, year={2021} } ```
l3cube-pune/marathi-roberta
2cf9635825613fcb8f9998d729be457c069a7a3d
2022-06-26T15:13:30.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "mr", "dataset:L3Cube-MahaCorpus", "arxiv:2202.01159", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
l3cube-pune
null
l3cube-pune/marathi-roberta
25
null
transformers
7,671
--- license: cc-by-4.0 language: mr datasets: - L3Cube-MahaCorpus --- ## MahaRoBERTa MahaRoBERTa is a Marathi RoBERTa model. It is a multilingual RoBERTa (xlm-roberta-base) model fine-tuned on L3Cube-MahaCorpus and other publicly available Marathi monolingual datasets. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2202.01159) ``` @InProceedings{joshi:2022:WILDRE6, author = {Joshi, Raviraj}, title = {L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {97--101} } ```
maelfabien/marcel_customer_service
0a565dec20552e2d362360977d62cc31f04fdcdc
2021-04-13T15:43:17.000Z
[ "pytorch", "camembert", "text-generation", "transformers" ]
text-generation
false
maelfabien
null
maelfabien/marcel_customer_service
25
null
transformers
7,672
Entry not found
manishiitg/longformer-recruit-qa-v2
500bf274767bed2914a3134f887283dc08c1caa9
2020-11-11T12:52:27.000Z
[ "pytorch", "longformer", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manishiitg
null
manishiitg/longformer-recruit-qa-v2
25
null
transformers
7,673
Entry not found
monsoon-nlp/sanaa-dialect
fb62a0548871ee77757970c04c3397b89eaa62d5
2021-05-23T10:06:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "ar", "transformers" ]
text-generation
false
monsoon-nlp
null
monsoon-nlp/sanaa-dialect
25
null
transformers
7,674
--- language: ar --- # Sanaa-Dialect ## Finetuned Arabic GPT-2 demo This is a small GPT-2 model, originally trained on Arabic Wikipedia circa September 2020 , finetuned on dialect datasets from Qatar University, University of British Columbia / NLP, and Johns Hopkins University / LREC - https://qspace.qu.edu.qa/handle/10576/15265 - https://github.com/UBC-NLP/aoc_id - https://github.com/ryancotterell/arabic_dialect_annotation You can use special tokens to prompt five dialects: `[EGYPTIAN]`, `[GULF]`, `[LEVANTINE]`, `[MAGHREBI]`, and `[MSA]` ``` from simpletransformers.language_generation import LanguageGenerationModel model = LanguageGenerationModel("gpt2", "monsoon-nlp/sanaa-dialect") model.generate('[GULF]' + "مدينتي هي", { 'max_length': 100 }) ``` There is NO content filtering in the current version; do not use for public-facing text generation! ## Training and Finetuning details Original model and training: https://huggingface.co/monsoon-nlp/sanaa I inserted new tokens into the tokenizer, finetuned the model on the dialect samples, and exported the new model. Notebook: https://colab.research.google.com/drive/1fXFH7g4nfbxBo42icI4ZMy-0TAGAxc2i شكرا لتجربة هذا! ارجو التواصل معي مع الاسئلة
mrm8488/t5-small-finetuned-imdb-sentiment
366602ca7b51fbd343f18fbd788ded1f1f910f8e
2021-06-23T13:08:40.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:imdb", "arxiv:1910.10683", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-imdb-sentiment
25
null
transformers
7,675
--- language: en datasets: - imdb --- # T5-small fine-tuned for Sentiment Anlalysis 🎞️👍👎 [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) [small](https://huggingface.co/t5-small) fine-tuned on [IMDB](https://huggingface.co/datasets/imdb) dataset for **Sentiment Analysis** downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) ## Details of the downstream task (Sentiment analysis) - Dataset 📚 [IMDB](https://huggingface.co/datasets/imdb) This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. It provides a set of **25,000** highly polar movie reviews for training, and **25,000** for testing. ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this Colab Notebook](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) created by [Suraj Patil](https://github.com/patil-suraj), so all credits to him! ## Test set metrics 🧾 | |precision | recall | f1-score |support| |----------|----------|---------|----------|-------| |negative | 0.92 | 0.93| 0.92| 12500| |positive | 0.93 | 0.92| 0.92| 12500| |----------|----------|---------|----------|-------| |accuracy| | | 0.92| 25000| |macro avg| 0.92| 0.92| 0.92| 25000| |weighted avg| 0.92| 0.92| 0.92| 25000| ## Model in Action 🚀 ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-small-finetuned-imdb-sentiment") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-small-finetuned-imdb-sentiment") def get_sentiment(text): input_ids = tokenizer.encode(text + '</s>', return_tensors='pt') output = model.generate(input_ids=input_ids, max_length=2) dec = [tokenizer.decode(ids) for ids in output] label = dec[0] return label get_sentiment("I dislike a lot that film") # Output: 'negative' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
napoler/bart-chinese-6-960-words-pkuseg
e306b3eff430af89ec1389496885ba27e7b78280
2021-10-25T15:05:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
napoler
null
napoler/bart-chinese-6-960-words-pkuseg
25
null
transformers
7,676
# 使用 这个模型是在uer/bart-chinese-6-960-cluecorpussmall基础上训练的,数据量不是很大,但是修改了默认分词。 使用pkuseg分词,禁用BertTokenizer的do_basic_tokenize分词,不禁用do_basic_tokenize的话会把正常词汇按照逐字分词,禁用后可以导入自己的分词方案。 pip install git+https://github.com/napoler/tkit-AutoTokenizerPosition ```python import pkuseg from tkitAutoTokenizerPosition.AutoPos import AutoPos seg = pkuseg.pkuseg(model_name='medicine') # 程序会自动下载所对应的细领域模型 tokenizer = BertTokenizer.from_pretrained("uer/chinese_roberta_L-2_H-128",do_basic_tokenize=False) ATP=AutoPos(seg,tokenizer) # 清理文本中的问题 ATP.getTokenize(text) ``` 分词结果如下 ``` ['他', '##们', '的', '伤', '##害', ',', '以', '##及', '陷', '##阱', '能', '##力', '的', '组', '##合', ',', '猎', '##人', '对', '##于', '任', '##何', '团', '##队', '都', '是', '最', '##好', '的', '拉', '##怪', '##者', '.'], 'cut': ['他们', '的', '伤害', ',', '以及', '陷阱', '能力', '的', '组合', ',', '猎人', '对于', '任何', '团队', '都', '是', '最好', '的', '拉怪者', '.'] ``` https://www.kaggle.com/terrychanorg/napolerbartchinese6960wordspkuseg https://www.kaggle.com/terrychanorg/buliddataforbert-7803feff2 https://www.kaggle.com/terrychanorg/bart-notebook8wewew6eeb0f8af https://www.kaggle.com/terrychanorg/fork-of-bart-notebook8wewew6eeb0f8af/data?scriptVersionId=77962540
ozcangundes/mt5-small-turkish-squad
b22d4c440211d4f17c3a6efe15d82689ce88fae9
2021-09-22T09:31:24.000Z
[ "pytorch", "jax", "mt5", "text2text-generation", "tr", "dataset:TQUAD", "transformers", "license:mit", "question-answering", "autotrain_compatible" ]
question-answering
false
ozcangundes
null
ozcangundes/mt5-small-turkish-squad
25
null
transformers
7,677
--- language: tr datasets: - TQUAD pipeline_tag: question-answering license: mit --- # mT5-small based Turkish Question Answering System [Google's Multilingual T5-small](https://github.com/google-research/multilingual-t5) is fine-tuned on [Turkish Question Answering dataset](https://github.com/TQuad/turkish-nlp-qa-dataset) for **Q&A** downstream task by using Pytorch Lightning.⚡ The notebook that includes all fine tuning process will be shared on my Github page later. mT5 small model has 300 million parameters and model size is about 1.2GB. Therefore, it takes significant amount of time to fine tune it. **Important Note**: mT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training. Therefore, the mT5 model has to be fine-tuned before it is useable on a downstream task. ## Usage 🚀 ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("ozcangundes/mt5-small-turkish-squad") model = AutoModelForSeq2SeqLM.from_pretrained("ozcangundes/mt5-small-turkish-squad") def get_answer(question,context): source_encoding=tokenizer( question, context, max_length=512, padding="max_length", truncation="only_second", return_attention_mask=True, add_special_tokens=True, return_tensors="pt") generated_ids=model.generate( input_ids=source_encoding["input_ids"], attention_mask=source_encoding["attention_mask"], max_length=120) preds=[tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True) for gen_id in generated_ids] return "".join(preds) ``` ### Example 1 ```python question={ "context":"Pardus, Google'ın öğrencilerle staj ve kendini geliştirme imkânı ile \ tasarılara geliştirici ve katkı sağlamayı amaçladığı açık kaynak tasarısı \ Google Summer of Code'a 2008 ve 2009 olmak üzere iki kere katılmıştır. Bu organizasyona \ ilk katılan Türk tasarısı Pardus olmuştur. Bazı dönemlerde Pardus hakkındaki gelişmeleri \ halka duyurmak ve tasarıya olan ilgiyi arttırmak amacıyla CeBIT Eurasia Bilişim Fuarı'na \ katılım sağlanmaktadır. 2006, 2008, 2009, 2010, 2011,2013 ve 2014 bu fuarlarda Pardus \ standı kurulmuştur.2014 yılında ICT SummitT Now Bilişim Zirvesi'nde yer alınmıştır. \ BİLİŞİM’2014 TBD 31. Ulusal Bilişim Kurultayı ve CITEX’2014 Ankara Bilişim Fuarı’na \ Gümüş sponsorluk ile katkıda bulunulmuş ve Pardus standı kurulmuştur.", "question":"Pardus’un Google Summer of Code'a katıldığı yıllar nelerdir?" } get_answer(question["question"],question["context"]) ``` > 2008 ve 2009 ### Example 2 ```python question2={ "context":"II. Bayezid ve I. Selim devrinde yaşadı ve iki defa hekimbaşılık yaptı. \ Böbrek ve idrar kesesindeki taş oluşumunun nedenlerini ve tedavisini incelediği \ eseriyle tanınır. Adı kaynaklarda Ahmed ve Mahmud olarak da geçer. Ahi Çelebi \ olarak ün yapmıştır. Babası Tabib Mevlana Kemal ile birlikte 1463’te İstanbul’a yerleşti. \ Mevlana Kemal, devrin ünlü hekimlerindendir. Tebriz ya da Şirvan asıllı olduğu çeşitli \ kaynaklarda belirtilir. Ahi Mehmet Çelebi, hekimliği daha çok babasından öğrendi. Onun \ ölümünden sonra devrin önemli hekimleri Kutbüddin ile Altunîzâde’den ders alıp kısa zamanda \ mesleğini ilerletti. Hekimlik becerisinin yanı sıra kuramsal bilgisiyle de kendisini \ kabul ettirerek önce Fâtih Darüşşifasına hekim, sonra da başhekim oldu. II. Bayezid’in \ güvenini kazanarak mutfak eminliğine, ardından da Hekimbaşılığa getirildi. Dört buçuk \ yıl bu görevde kalan Ahî Çelebi, II. Bayezid’in ölümü üzerine geleneğe uyularak azledildi. \ Bir müddet sonra Yavuz onu tekrar Hekimbaşılığa getirdi ve Mısır seferine beraberinde \ götürdü. I. Selim'in ölümünden sonra Hekimbaşılık tan tekrar azledildi. Kaynakların \ belirttiğine göre, yaşı doksanı geçmiş olduğu halde, hacdan dönerken Kahire’de \ ölmüş ve İmam Şafi'nin kabri civarına defnedilmiştir.", "question":"Ahi Mehmet Çelebi hangi eseri ile tanınır?" } get_answer(question2["question"],question2["context"]) ``` > Böbrek ve idrar kesesindeki taş oluşumunun nedenlerini ve tedavisini incelediği eseriyle Created by Özcan Gündeş ✌️ --- Twitter: <a href="https://twitter.com/ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/[email protected]/icons/twitter.svg" alt="ozcangundes" height="30" width="30" /></a> Linkedin: <a href="https://www.linkedin.com/in/%C3%B6zcan-g%C3%BCnde%C5%9F-7693055b/" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/[email protected]/icons/linkedin.svg" alt="13198517" height="30" width="30" /></a> Medium: <a href="https://medium.com/@ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/[email protected]/icons/medium.svg" alt="@ozcangundes" height="30" width="30" /></a> Github: <a href="https://github.com/ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/[email protected]/icons/github.svg" alt="@ozcangundes" height="30" width="30" /></a>
p208p2002/qmst-qgg
75231044843f44320bfec01ce383e0552f4a1642
2022-01-10T07:55:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
p208p2002
null
p208p2002/qmst-qgg
25
null
transformers
7,678
# EQGG: Educational Question Group Generation <span> <a target="_blank" href="https://github.com/p208p2002/Neural-Question-Group-Generation"> <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> </a> <a target="_blank" href="https://huggingface.co/p208p2002/qmst-qgg"> <img src="https://img.shields.io/badge/🤗 HF Model Hub-ffea00?style=for-the-badge&logoColor=white"> </a> <a target="_blank" href="https://qgg-demo.nlpnchu.org"> <img src="https://img.shields.io/badge/💻 Live Demo-78ab78?style=for-the-badge&logoColor=white"> </a> </span>
pere/DeUnCaser
29469c0d8a800c8c322d3c4a6f84a31fbe1347fb
2022-02-03T10:45:01.000Z
[ "pytorch", "t5", "text2text-generation", "no", "transformers", "translation", "license:cc-by-4.0", "autotrain_compatible" ]
translation
false
pere
null
pere/DeUnCaser
25
null
transformers
7,679
--- language: no tags: - translation widget: - text: "moscow says deployments in eastern europe increase tensions nato says russia has moved troops to belarus" - text: "dette er en liten test som er laget av per egil kummervold han er en forsker som tidligere jobbet ved nasjonalbiblioteket" - text: "tirsdag var travel for ukrainas president volodymyr zelenskyj på morgenen tok han imot polens statsminister mateusz morawiecki" license: cc-by-4.0 --- # DeUnCaser The output from Automated Speak Recognition software is usually uncased and without any punctation. This does not make a very readable text. The DeUnCaser is a sequence-to-sequence byT5 model that is reversing this process. It adds punctation, and capitalises the correct words. In some languages this means adding capital letters at start of sentences and on all proper nouns, in other languages, like German, it means capitalising the first letter of all nouns. It will also make attempts at adding hyphens and parentheses if this is making the meaning clearer. It is using based on the multi-lingual base model. However the current finetuning is only done on Norwegian. For other languages this will be mainly experimental. I will update it with support for other languages if there is any demand.
pszemraj/led-base-16384-finetuned-booksum
c8c7c9fe460614290baa65968d78c34b3a383d8d
2022-02-06T03:14:01.000Z
[ "pytorch", "led", "text2text-generation", "en", "dataset:kmfoda/booksum", "arxiv:2105.08209", "transformers", "summarization", "summary", "longformer", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
pszemraj
null
pszemraj/led-base-16384-finetuned-booksum
25
null
transformers
7,680
--- language: - en tags: - summarization - led - summary - longformer license: apache-2.0 datasets: - kmfoda/booksum metrics: - rouge widget: - text: "large earthquakes along a given fault segment do not occur at random intervals because it takes time to accumulate the strain energy for the rupture. The rates at which tectonic plates move and accumulate strain at their boundaries are approximately uniform. Therefore, in first approximation, one may expect that large ruptures of the same fault segment will occur at approximately constant time intervals. If subsequent main shocks have different amounts of slip across the fault, then the recurrence time may vary, and the basic idea of periodic mainshocks must be modified. For great plate boundary ruptures the length and slip often vary by a factor of 2. Along the southern segment of the San Andreas fault the recurrence interval is 145 years with variations of several decades. The smaller the standard deviation of the average recurrence interval, the more specific could be the long term prediction of a future mainshock." example_title: "earthquakes" - text: " A typical feed-forward neural field algorithm. Spatiotemporal coordinates are fed into a neural network that predicts values in the reconstructed domain. Then, this domain is mapped to the sensor domain where sensor measurements are available as supervision. Class and Section Problems Addressed Generalization (Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid Representations (Section 3) Computation & memory efficiency, representation capacity, editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section 5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section 6) Edit ability, constraints, regularization. Table 2: The five classes of techniques in the neural field toolbox each addresses problems that arise in learning, inference, and control. (Section 3). We can supervise reconstruction via differentiable forward maps that transform Or project our domain (e.g, 3D reconstruction via 2D images; Section 4) With appropriate network architecture choices, we can overcome neural network spectral biases (blurriness) and efficiently compute derivatives and integrals (Section 5). Finally, we can manipulate neural fields to add constraints and regularizations, and to achieve editable representations (Section 6). Collectively, these classes constitute a 'toolbox' of techniques to help solve problems with neural fields There are three components in a conditional neural field: (1) An encoder or inference function € that outputs the conditioning latent variable 2 given an observation 0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS a latent code Or feature code_ (2) A mapping function 4 between Z and neural field parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the most probable z given the observations O: argmaxz P(2/0). The decoder maximizes the inverse conditional probability to find the most probable 0 given Z: arg- max P(Olz). We discuss different encoding schemes with different optimality guarantees (Section 2.1.1), both global and local conditioning (Section 2.1.2), and different mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable prior over the sur- face in its reconstruction domain to generalize to the partial observations. A neural network expresses a prior via the function space of its architecture and parameters 0, and generalization is influenced by the inductive bias of this function space (Section 5)." example_title: "scientific paper" - text: " the big variety of data coming from diverse sources is one of the key properties of the big data phenomenon. It is, therefore, beneficial to understand how data is generated in various environments and scenarios, before looking at what should be done with this data and how to design the best possible architecture to accomplish this The evolution of IT architectures, described in Chapter 2, means that the data is no longer processed by a few big monolith systems, but rather by a group of services In parallel to the processing layer, the underlying data storage has also changed and became more distributed This, in turn, required a significant paradigm shift as the traditional approach to transactions (ACID) could no longer be supported. On top of this, cloud computing is becoming a major approach with the benefits of reducing costs and providing on-demand scalability but at the same time introducing concerns about privacy, data ownership, etc In the meantime the Internet continues its exponential growth: Every day both structured and unstructured data is published and available for processing: To achieve competitive advantage companies have to relate their corporate resources to external services, e.g. financial markets, weather forecasts, social media, etc While several of the sites provide some sort of API to access the data in a more orderly fashion; countless sources require advanced web mining and Natural Language Processing (NLP) processing techniques: Advances in science push researchers to construct new instruments for observing the universe O conducting experiments to understand even better the laws of physics and other domains. Every year humans have at their disposal new telescopes, space probes, particle accelerators, etc These instruments generate huge streams of data, which need to be stored and analyzed. The constant drive for efficiency in the industry motivates the introduction of new automation techniques and process optimization: This could not be done without analyzing the precise data that describe these processes. As more and more human tasks are automated, machines provide rich data sets, which can be analyzed in real-time to drive efficiency to new levels. Finally, it is now evident that the growth of the Internet of Things is becoming a major source of data. More and more of the devices are equipped with significant computational power and can generate a continuous data stream from their sensors. In the subsequent sections of this chapter, we will look at the domains described above to see what they generate in terms of data sets. We will compare the volumes but will also look at what is characteristic and important from their respective points of view. 3.1 The Internet is undoubtedly the largest database ever created by humans. While several well described; cleaned, and structured data sets have been made available through this medium, most of the resources are of an ambiguous, unstructured, incomplete or even erroneous nature. Still, several examples in the areas such as opinion mining, social media analysis, e-governance, etc, clearly show the potential lying in these resources. Those who can successfully mine and interpret the Internet data can gain unique insight and competitive advantage in their business An important area of data analytics on the edge of corporate IT and the Internet is Web Analytics." example_title: "data science textbook" - text: "Transformer-based models have shown to be very useful for many NLP tasks. However, a major limitation of transformers-based models is its O(n^2)O(n 2) time & memory complexity (where nn is sequence length). Hence, it's computationally very expensive to apply transformer-based models on long sequences n > 512n>512. Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention try to remedy this problem by approximating the full attention matrix. You can checkout 🤗's recent blog post in case you are unfamiliar with these models. BigBird (introduced in paper) is one of such recent models to address this issue. BigBird relies on block sparse attention instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower computational cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this post is to give the reader an in-depth understanding of big bird implementation & ease one's life in using BigBird with 🤗Transformers. But, before going into more depth, it is important to remember that the BigBird's attention is an approximation of BERT's full attention and therefore does not strive to be better than BERT's full attention, but rather to be more efficient. It simply allows to apply transformer-based models to much longer sequences since BERT's quadratic memory requirement quickly becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT's attention would be preferred over block sparse attention (which we are going to discuss in this post). If you wonder why we need more compute when working with longer sequences, this blog post is just right for you! Some of the main questions one might have when working with standard BERT-like attention include: Do all tokens really have to attend to all other tokens? Why not compute attention only over important tokens? How to decide what tokens are important? How to attend to just a few tokens in a very efficient way? In this blog post, we will try to answer those questions. What tokens should be attended to? We will give a practical example of how attention works by considering the sentence 'BigBird is now available in HuggingFace for extractive question answering'. In BERT-like attention, every word would simply attend to all other tokens. Let's think about a sensible choice of key tokens that a queried token actually only should attend to by writing some pseudo-code. Will will assume that the token available is queried and build a sensible list of key tokens to attend to. >>> # let's consider following sentence as an example >>> example = ['BigBird', 'is', 'now', 'available', 'in', 'HuggingFace', 'for', 'extractive', 'question', 'answering'] >>> # further let's assume, we're trying to understand the representation of 'available' i.e. >>> query_token = 'available' >>> # We will initialize an empty `set` and fill up the tokens of our interest as we proceed in this section. >>> key_tokens = [] # => currently 'available' token doesn't have anything to attend Nearby tokens should be important because, in a sentence (sequence of words), the current word is highly dependent on neighboring past & future tokens. This intuition is the idea behind the concept of sliding attention." example_title: "bigbird blog intro" inference: parameters: max_length: 64 min_length: 4 no_repeat_ngram_size: 2 early_stopping: True repetition_penalty: 2.4 length_penalty: 0.5 encoder_no_repeat_ngram_size : 3 num_beams : 4 --- # Longformer Encoder-Decoder (LED) fine-tuned on Booksum - `allenai/led-base-16384` checkpoint trained on the [booksum dataset](https://arxiv.org/abs/2105.08209) for 3 epochs. - handles summarization a-la "school notes" style well, but takes a while to run (even compared to larger models such as a [bigbird-pegasus](https://huggingface.co/pszemraj/bigbird-pegasus-large-booksum-40k-K) checkpoint on the same data. - upside: works well on lots of text, can hand 16384 tokens/batch. - an example usage notebook is [here](https://colab.research.google.com/gist/pszemraj/da8872e702ea9e3d74c39a236e89104b/led-base-booksum-example.ipynb) with details ## Other Checkpoints on Booksum - A one-epoch version of [LED-large is available here](https://huggingface.co/pszemraj/led-large-book-summary-1E) - a more polished version still WIP. --- # Usage - Basics - from testing, it is highly recommended to use the parameter `encoder_no_repeat_ngram_size=3` when calling the pipeline object. - this forces the model to use new vocabulary and create an abstractive summary, as at times it will compile the best _extractive_ summary from the input provided. - create the pipeline object: ``` from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline hf_name = 'pszemraj/led-base-16384-finetuned-booksum' _model = AutoModelForSeq2SeqLM.from_pretrained( hf_name, low_cpu_mem_usage=True, ) _tokenizer = AutoTokenizer.from_pretrained( hf_name ) summarizer = pipeline( "summarization", model=_model, tokenizer=_tokenizer ) ``` - put words into the pipeline object: ``` wall_of_text = "your words here" result = summarizer( wall_of_text, min_length=16, max_length=256, no_repeat_ngram_size=3, encoder_no_repeat_ngram_size =3, clean_up_tokenization_spaces=True, repetition_penalty=3.7, num_beams=4, early_stopping=True, ) ``` --- # Results - evaluation was completed with the following params and received the following score - params: ``` # set generate hyperparameters model.config.num_beams = 5 model.config.max_length = 512 model.config.min_length = 32 model.config.length_penalty = 3.5 model.config.early_stopping = True model.config.no_repeat_ngram_size = 3 trainer.evaluate(num_beams=5, max_length=128) ``` - scores (on 1/10 validation for RT reasons): ``` {'eval_loss': 2.899840831756592, 'eval_rouge1': 30.0761, 'eval_rouge2': 6.4964, 'eval_rougeL': 15.9819, 'eval_rougeLsum': 28.2764, 'eval_gen_len': 126.8514, 'eval_runtime': 1442.991, 'eval_samples_per_second': 0.103, 'eval_steps_per_second': 0.103 } ``` ---
saattrupdan/employment-contract-ner-da
6f29e2525cf4c3521fe0c727d5778f62e1ec48d7
2022-02-09T15:21:34.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "da", "transformers", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
saattrupdan
null
saattrupdan/employment-contract-ner-da
25
1
transformers
7,681
--- language: - da license: mit model-index: - name: contract-ner-model-da results: [] widget: - "Medarbejderen starter arbejdet den 1. januar 2020 og afslutter arbejdet den 21. januar 2020. Den ugentlige arbejdstid er 37 timer, og medarbejderen bliver aflønnet med 23.000,00 kr. om måneden. Arbejdsstedet er Supervej 21, 2000 Frederiksberg." inference: parameters: aggregation_strategy: "first" --- # contract-ner-model-da This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on a custom contracts dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Micro F1: 0.9297 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 919 - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8971 | 0.24 | 200 | 0.0205 | 0.0 | | 0.0173 | 0.48 | 400 | 0.0100 | 0.2921 | | 0.0092 | 0.73 | 600 | 0.0065 | 0.7147 | | 0.0063 | 0.97 | 800 | 0.0046 | 0.8332 | | 0.0047 | 1.21 | 1000 | 0.0047 | 0.8459 | | 0.0042 | 1.45 | 1200 | 0.0039 | 0.8694 | | 0.0037 | 1.69 | 1400 | 0.0035 | 0.8888 | | 0.0032 | 1.93 | 1600 | 0.0035 | 0.8840 | | 0.0025 | 2.18 | 1800 | 0.0029 | 0.8943 | | 0.0023 | 2.42 | 2000 | 0.0024 | 0.9104 | | 0.0023 | 2.66 | 2200 | 0.0032 | 0.8808 | | 0.0021 | 2.9 | 2400 | 0.0022 | 0.9338 | | 0.0018 | 3.14 | 2600 | 0.0020 | 0.9315 | | 0.0015 | 3.39 | 2800 | 0.0026 | 0.9297 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
soikit/chinese-bert-wwm-chinese_bert_wwm1
b84cc2694eb2f5de14eba2c59435736e59e77397
2021-10-20T12:51:19.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
soikit
null
soikit/chinese-bert-wwm-chinese_bert_wwm1
25
null
transformers
7,682
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: chinese-bert-wwm-chinese_bert_wwm1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-bert-wwm-chinese_bert_wwm1 This model is a fine-tuned version of [hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 71 | 0.5750 | | No log | 2.0 | 142 | 0.0617 | | No log | 3.0 | 213 | 0.0109 | | No log | 4.0 | 284 | 0.0042 | | No log | 5.0 | 355 | 0.0024 | | No log | 6.0 | 426 | 0.0017 | | No log | 7.0 | 497 | 0.0012 | | 0.5341 | 8.0 | 568 | 0.0009 | | 0.5341 | 9.0 | 639 | 0.0009 | | 0.5341 | 10.0 | 710 | 0.0011 | | 0.5341 | 11.0 | 781 | 0.0013 | | 0.5341 | 12.0 | 852 | 0.0012 | | 0.5341 | 13.0 | 923 | 0.0010 | | 0.5341 | 14.0 | 994 | 0.0010 | | 0.0041 | 15.0 | 1065 | 0.0011 | | 0.0041 | 16.0 | 1136 | 0.0009 | | 0.0041 | 17.0 | 1207 | 0.0008 | | 0.0041 | 18.0 | 1278 | 0.0009 | | 0.0041 | 19.0 | 1349 | 0.0008 | | 0.0041 | 20.0 | 1420 | 0.0008 | | 0.0041 | 21.0 | 1491 | 0.0009 | | 0.0019 | 22.0 | 1562 | 0.0009 | | 0.0019 | 23.0 | 1633 | 0.0010 | | 0.0019 | 24.0 | 1704 | 0.0009 | | 0.0019 | 25.0 | 1775 | 0.0009 | | 0.0019 | 26.0 | 1846 | 0.0008 | | 0.0019 | 27.0 | 1917 | 0.0009 | | 0.0019 | 28.0 | 1988 | 0.0009 | | 0.0013 | 29.0 | 2059 | 0.0009 | | 0.0013 | 30.0 | 2130 | 0.0009 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
sultan/BioM-ELECTRA-Base-SQuAD2
d94a78b570bf961f9500d7d8785689544fa6cfa7
2021-08-06T22:31:58.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sultan
null
sultan/BioM-ELECTRA-Base-SQuAD2
25
null
transformers
7,683
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description We fine-tuned BioM-ELECTRA-Base, which was pre-trained on PubMed Abstracts, on the SQuAD2.0 dataset. Fine-tuning the biomedical language model on the SQuAD dataset helps improve the score on the BioASQ challenge. If you plan to work with BioASQ or biomedical QA tasks, it's better to use this model over BioM-ELECTRA-Base. Huggingface library doesn't implement Layer-Wise decay feature, which affects the performance on SQuAD task. The reported result of BioM-ELECTRA-Base-SQuAD in our paper is 84.4 (F1) since we use ELECTRA open-source code with TF checkpoint, which uses Layer-Wise decay. You can downoad our TensorFlow checkpoint that was fine-tuned on SQuAD2.0 and achieved 84.4 F1 score from here https://github.com/salrowili/BioM-Transformers . Evaluation results on SQuAD2.0 Dev Dataset ``` eval_HasAns_exact = 79.2679 eval_HasAns_f1 = 86.5416 eval_HasAns_total = 5928 eval_NoAns_exact = 75.8789 eval_NoAns_f1 = 75.8789 eval_NoAns_total = 5945 eval_best_exact = 77.571 eval_best_exact_thresh = 0.0 eval_best_f1 = 81.2026 eval_best_f1_thresh = 0.0 eval_exact = 77.571 eval_f1 = 81.2026 eval_samples = 11979 eval_total = 11873 ``` - First make sure to install all libraries on Google Colab and make sure GPU is enabled ```python !git clone https://github.com/huggingface/transformers !pip3 install -e transformers !pip3 install sentencepiece !pip3 install -r /content/transformers/examples/pytorch/question-answering/requirements.txt ``` - Training script ```python python3 transformers/examples/pytorch/question-answering/run_qa.py --model_name_or_path sultan/BioM-ELECTRA-Base-Discriminator \ --dataset_name squad_v2 \ --do_train \ --do_eval \ --dataloader_num_workers 20 \ --preprocessing_num_workers 20 \ --version_2_with_negative \ --num_train_epochs 3 \ --learning_rate 4e-5 \ --max_seq_length 512 \ --doc_stride 128 \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 3 \ --per_device_eval_batch_size 128 \ --fp16 \ --fp16_opt_level O1 \ --logging_steps 50 \ --save_steps 5000 \ --overwrite_output_dir \ --output_dir out ``` - Reproduce results without training ( only eval): ```python python transformers/examples/pytorch/question-answering/run_qa.py --model_name_or_path sultan/BioM-ELECTRA-Base-SQuAD2 \ --do_eval \ --version_2_with_negative \ --per_device_eval_batch_size 8 \ --dataset_name squad_v2 \ --overwrite_output_dir \ --fp16 \ --output_dir out ``` - You don't need to download the SQuAD2 dataset. The code will download it from the HuggingFace datasets hub. - Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
textattack/bert-base-cased-STS-B
775657b25867bee0a475785f99005b71a2ad2246
2021-05-20T07:30:08.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/bert-base-cased-STS-B
25
null
transformers
7,684
## TextAttack Model Card This `bert-base-cased` model was fine-tuned for sequence classificationusing TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 128, a learning rate of 1e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.8244429996636282, as measured by the eval set pearson correlation, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
thefryingpan/gpt-neo-125M-splishy
046e30492a05679a149bfc796ead28c6eddc6cce
2021-12-15T03:39:26.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "conversational" ]
conversational
false
thefryingpan
null
thefryingpan/gpt-neo-125M-splishy
25
null
transformers
7,685
--- tags: - conversational --- # Chat Boi
tomascufaro/wav2vec2-large-xls-r-300m-spanish-small-v3
c079cae8ffa225f9c5ef1af17edba4324420c239
2022-02-03T15:57:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "es", "robust-speech-event", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
tomascufaro
null
tomascufaro/wav2vec2-large-xls-r-300m-spanish-small-v3
25
null
transformers
7,686
--- tags: - "es" - "robust-speech-event" - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-small-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-small-v3 This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3986 - Wer: 0.1980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2372 | 0.26 | 400 | 0.3011 | 0.2660 | | 0.3413 | 0.53 | 800 | 0.3559 | 0.3228 | | 0.3598 | 0.79 | 1200 | 0.3753 | 0.3400 | | 0.3529 | 1.05 | 1600 | 0.3385 | 0.2979 | | 0.3133 | 1.32 | 2000 | 0.3559 | 0.3056 | | 0.3158 | 1.58 | 2400 | 0.3364 | 0.2994 | | 0.3092 | 1.85 | 2800 | 0.3210 | 0.2876 | | 0.2919 | 2.11 | 3200 | 0.3460 | 0.3010 | | 0.2666 | 2.37 | 3600 | 0.3543 | 0.3036 | | 0.2819 | 2.64 | 4000 | 0.3477 | 0.2959 | | 0.283 | 2.9 | 4400 | 0.3492 | 0.2968 | | 0.2484 | 3.16 | 4800 | 0.3647 | 0.2993 | | 0.2371 | 3.43 | 5200 | 0.3601 | 0.2942 | | 0.2382 | 3.69 | 5600 | 0.3656 | 0.3019 | | 0.2425 | 3.96 | 6000 | 0.3379 | 0.2873 | | 0.2092 | 4.22 | 6400 | 0.3385 | 0.2736 | | 0.2171 | 4.48 | 6800 | 0.3503 | 0.2889 | | 0.2185 | 4.75 | 7200 | 0.3289 | 0.2727 | | 0.2236 | 5.01 | 7600 | 0.3447 | 0.2771 | | 0.1882 | 5.27 | 8000 | 0.3586 | 0.2860 | | 0.1986 | 5.54 | 8400 | 0.3404 | 0.2829 | | 0.2055 | 5.8 | 8800 | 0.3561 | 0.2869 | | 0.196 | 6.06 | 9200 | 0.3633 | 0.2811 | | 0.1748 | 6.33 | 9600 | 0.3703 | 0.2818 | | 0.1758 | 6.59 | 10000 | 0.3525 | 0.2816 | | 0.1819 | 6.86 | 10400 | 0.3581 | 0.2765 | | 0.1715 | 7.12 | 10800 | 0.3480 | 0.2628 | | 0.1606 | 7.38 | 11200 | 0.3490 | 0.2703 | | 0.1632 | 7.65 | 11600 | 0.3461 | 0.2706 | | 0.1638 | 7.91 | 12000 | 0.3458 | 0.2673 | | 0.1552 | 8.17 | 12400 | 0.3646 | 0.2732 | | 0.154 | 8.44 | 12800 | 0.3706 | 0.2726 | | 0.1512 | 8.7 | 13200 | 0.3609 | 0.2683 | | 0.149 | 8.97 | 13600 | 0.3610 | 0.2668 | | 0.1357 | 9.23 | 14000 | 0.3693 | 0.2740 | | 0.1375 | 9.49 | 14400 | 0.3677 | 0.2625 | | 0.1391 | 9.76 | 14800 | 0.3795 | 0.2762 | | 0.1378 | 10.02 | 15200 | 0.3541 | 0.2592 | | 0.1197 | 10.28 | 15600 | 0.3562 | 0.2507 | | 0.1259 | 10.55 | 16000 | 0.3612 | 0.2584 | | 0.1266 | 10.81 | 16400 | 0.3470 | 0.2527 | | 0.1199 | 11.07 | 16800 | 0.3721 | 0.2571 | | 0.1157 | 11.34 | 17200 | 0.3734 | 0.2571 | | 0.1107 | 11.6 | 17600 | 0.3730 | 0.2589 | | 0.1148 | 11.87 | 18000 | 0.3648 | 0.2536 | | 0.1095 | 12.13 | 18400 | 0.3746 | 0.2521 | | 0.1047 | 12.39 | 18800 | 0.3566 | 0.2530 | | 0.1043 | 12.66 | 19200 | 0.3794 | 0.2545 | | 0.1066 | 12.92 | 19600 | 0.3548 | 0.2439 | | 0.0974 | 13.18 | 20000 | 0.3702 | 0.2461 | | 0.0978 | 13.45 | 20400 | 0.3721 | 0.2492 | | 0.095 | 13.71 | 20800 | 0.3599 | 0.2467 | | 0.0963 | 13.97 | 21200 | 0.3650 | 0.2402 | | 0.0902 | 14.24 | 21600 | 0.3689 | 0.2459 | | 0.0898 | 14.5 | 22000 | 0.3832 | 0.2452 | | 0.0865 | 14.77 | 22400 | 0.3982 | 0.2436 | | 0.0911 | 15.03 | 22800 | 0.3785 | 0.2398 | | 0.0793 | 15.29 | 23200 | 0.3731 | 0.2396 | | 0.0806 | 15.56 | 23600 | 0.3626 | 0.2372 | | 0.0789 | 15.82 | 24000 | 0.3707 | 0.2356 | | 0.0779 | 16.08 | 24400 | 0.3850 | 0.2368 | | 0.078 | 16.35 | 24800 | 0.3831 | 0.2363 | | 0.0732 | 16.61 | 25200 | 0.3947 | 0.2287 | | 0.0733 | 16.88 | 25600 | 0.3928 | 0.2374 | | 0.0721 | 17.14 | 26000 | 0.3943 | 0.2324 | | 0.0676 | 17.4 | 26400 | 0.3793 | 0.2311 | | 0.0682 | 17.67 | 26800 | 0.3958 | 0.2257 | | 0.0714 | 17.93 | 27200 | 0.3890 | 0.2322 | | 0.0673 | 18.19 | 27600 | 0.3872 | 0.2229 | | 0.0613 | 18.46 | 28000 | 0.3828 | 0.2226 | | 0.0621 | 18.72 | 28400 | 0.3812 | 0.2214 | | 0.0622 | 18.98 | 28800 | 0.3919 | 0.2212 | | 0.0576 | 19.25 | 29200 | 0.4000 | 0.2205 | | 0.0581 | 19.51 | 29600 | 0.3953 | 0.2203 | | 0.0573 | 19.78 | 30000 | 0.3947 | 0.2190 | | 0.0576 | 20.04 | 30400 | 0.3909 | 0.2156 | | 0.0551 | 20.3 | 30800 | 0.4178 | 0.2153 | | 0.0525 | 20.57 | 31200 | 0.3935 | 0.2152 | | 0.0522 | 20.83 | 31600 | 0.4054 | 0.2151 | | 0.0519 | 21.09 | 32000 | 0.3877 | 0.2135 | | 0.0479 | 21.36 | 32400 | 0.4119 | 0.2107 | | 0.0472 | 21.62 | 32800 | 0.3967 | 0.2091 | | 0.048 | 21.89 | 33200 | 0.3812 | 0.2057 | | 0.0458 | 22.15 | 33600 | 0.3931 | 0.2043 | | 0.0459 | 22.41 | 34000 | 0.3937 | 0.2049 | | 0.0448 | 22.68 | 34400 | 0.3900 | 0.2056 | | 0.0432 | 22.94 | 34800 | 0.4050 | 0.2049 | | 0.0425 | 23.2 | 35200 | 0.3985 | 0.2014 | | 0.0415 | 23.47 | 35600 | 0.3976 | 0.2013 | | 0.0403 | 23.73 | 36000 | 0.4031 | 0.2018 | | 0.04 | 23.99 | 36400 | 0.3996 | 0.2000 | | 0.039 | 24.26 | 36800 | 0.3977 | 0.1993 | | 0.0406 | 24.52 | 37200 | 0.3967 | 0.2000 | | 0.0391 | 24.79 | 37600 | 0.3986 | 0.1980 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
uclanlp/plbart-single_task-en_python
cc76056cf7f412000e4d5470baea8540f3c9e60c
2022-03-02T07:07:37.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-en_python
25
null
transformers
7,687
Entry not found
ufal/byt5-small-multilexnorm2021-es
25efaf304522e126f10d521a13e333b78df063f1
2021-10-20T12:22:41.000Z
[ "pytorch", "t5", "text2text-generation", "es", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-es
25
1
transformers
7,688
--- language: es datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Spanish version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
Jorgeutd/bert-base-uncased-finetuned-surveyclassification
c00496861cfbbb36e2c418b395ad9de4ef8ac765
2022-02-24T16:34:18.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Jorgeutd
null
Jorgeutd/bert-base-uncased-finetuned-surveyclassification
25
null
transformers
7,689
--- license: apache-2.0 tags: - generated_from_trainer language: en widget: - text: "The agent on the phone was very helpful and nice to me." metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-surveyclassification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-surveyclassification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on a custom survey dataset. It achieves the following results on the evaluation set: - Loss: 0.2818 - Accuracy: 0.9097 - F1: 0.9097 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of survey results for a particular customer service domain. This may not generalize well for all use cases in different domains. #### How to use You can use this model with Transformers *pipeline* for Text Classification. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") model = AutoModelForSequenceClassification.from_pretrained("Jorgeutd/bert-base-uncased-finetuned-surveyclassification") text_classifier = pipeline("text-classification", model=model,tokenizer=tokenizer, device=0) example = "The agent on the phone was very helpful and nice to me." results = text_classifier(example) print(results) ``` ## Training and evaluation data Custom survey dataset. ## Training procedure SageMaker notebook instance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4136 | 1.0 | 902 | 0.2818 | 0.9097 | 0.9097 | | 0.2213 | 2.0 | 1804 | 0.2990 | 0.9077 | 0.9077 | | 0.1548 | 3.0 | 2706 | 0.3507 | 0.9026 | 0.9026 | | 0.1034 | 4.0 | 3608 | 0.4692 | 0.9011 | 0.9011 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
niksmer/PolicyBERTa-7d
68d7480405941217d63f6a4dce9b1ec4a3ca9889
2022-03-24T09:19:57.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers", "license:mit", "model-index" ]
text-classification
false
niksmer
null
niksmer/PolicyBERTa-7d
25
null
transformers
7,690
--- license: mit language: - en metrics: - accuracy - precision - recall model-index: - name: PolicyBERTa-7d results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # PolicyBERTa-7d This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). It was inspired by the model from [Laurer (2020)](https://huggingface.co/MoritzLaurer/policy-distilbert-7d). It achieves the following results on the evaluation set: - Loss: 0.8549 - Accuracy: 0.7059 - F1-micro: 0.7059 - F1-macro: 0.6683 - F1-weighted: 0.7033 - Precision: 0.7059 - Recall: 0.7059 ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of seven political categories: "external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society" and "social groups". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/PolicyBERTa-7d") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data PolicyBERTa-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each domain. ### Tain data Train data was higly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 7,640 | | 1 | freedom and democracy | 5,880 | | 2 | political system | 11,234 | | 3 | economy | 29,218 | | 4 | welfare and quality of life | 37,200 | | 5 | fabric of society | 13,594 | | 6 | social groups | 11,177 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 1,345 | | 1 | freedom and democracy | 1,043 | | 2 | political system | 2,038 | | 3 | economy | 5,140 | | 4 | welfare and quality of life | 6,554 | | 5 | fabric of society | 2,384 | | 6 | social groups | 1,957 | Overall count: 20,461 ## Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 824 | | 1 | freedom and democracy | 296 | | 2 | political system | 1,041 | | 3 | economy | 2,188 | | 4 | welfare and quality of life | 2,654 | | 5 | fabric of society | 940 | | 6 | social groups | 387 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_steps=0, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.9154 | 1.0 | 1812 | 0.8984 | 0.6785 | 0.6785 | 0.6383 | 0.6772 | 0.6785 | 0.6785 | | 0.8374 | 2.0 | 3624 | 0.8569 | 0.6957 | 0.6957 | 0.6529 | 0.6914 | 0.6957 | 0.6957 | | 0.7053 | 3.0 | 5436 | 0.8582 | 0.7019 | 0.7019 | 0.6594 | 0.6967 | 0.7019 | 0.7019 | | 0.7178 | 4.0 | 7248 | 0.8488 | 0.7030 | 0.7030 | 0.6662 | 0.7011 | 0.7030 | 0.7030 | | 0.6688 | 5.0 | 9060 | 0.8549 | 0.7059 | 0.7059 | 0.6683 | 0.7033 | 0.7059 | 0.7059 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.71 | 0.67 | 0.70 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.65 | 0.60 | 0.65 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | external relations | 0.76 | 0.70 | | freedom and democracy | 0.61 | 0.55 | | political system | 0.55 | 0.55 | | economy | 0.74 | 0.67 | | welfare and quality of life | 0.77 | 0.72 | | fabric of society | 0.67 | 0.60 | | social groups | 0.58 | 0.41 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). But PolicyBERTa isn't fine-tuned to predict the rile-index, if you're interested in that, check [ManiBERT](https://huggingface.co/niksmer/ManiBERT) or [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). In the following table, the predicted and original share of the individual policy domains are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original shares is 0.965. | Party-ID | Year | Type | Share external relations | Share freedom and democracy | Share political system | Share economy | Share welfare and quality of life | Share fabric of society | Share social groups | |--------------|-------------|---------------|--------------------------|-----------------------------|------------------------|----------------|-----------------------------------|-------------------------|---------------------| | 62320 | 2004 | Predicted | 7.1% | 4.8% | 13.2% | 20.3% | 35.2% | 9.6% | 9.8% | | | | Original | 10.2% | 2.5% | 13.7% | 23.8% | 31.7% | 11.6% | 6.4% | | 62320 | 2006 | Predicted | 2.9% | 4.7% | 16.4% | 18.9% | 38.3% | 11.9% | 6.9% | | | | Original | 5.6% | 5.0% | 15.8% | 20.7% | 38.7% | 9.3% | 4.9% | | 62320 | 2008 | Predicted | 6.8% | 4.7% | 6.2% | 24.7% | 38.3% | 10.3% | 9.0% | | | | Original | 5.6% | 3.7% | 8.2% | 33.1% | 29.5% | 11.7% | 4.3% | | 62420 | 2004 | Predicted | 9.7% | 3.5% | 14.5% | 24.7% | 34.8% | 8.5% | 4.3% | | | | Original | 12.6% | 1.3% | 18.8% | 23.0% | 33.2% | 9.0% | 2.0% | | 62420 | 2006 | Predicted | 9.5% | 2.2% | 7.9% | 27.8% | 34.8% | 9.2% | 8.7% | | | | Original | 10.6% | 2.5% | 9.6% | 29.7% | 33.1% | 8.3% | 6.2% | | 62420 | 2008 | Predicted | 0.7% | 0.5% | 3.5% | 41.7% | 46.4% | 3.7% | 3.5% | | | | Original | 2.0% | 0.2% | 4.4% | 33.3% | 45.9% | 7.7% | 6.4% | | 62623 | 2004 | Predicted | 7.1% | 11.4% | 24.5% | 17.6% | 21.5% | 13.6% | 4.3% | | | | Original | 8.4% | 6.7% | 28.8% | 17.4% | 18.7% | 15.5% | 4.5% | | 62623 | 2006 | Predicted | 5.6% | 8.5% | 23.6% | 15.6% | 14.8% | 24.3% | 7.6% | | | | Original | 5.0% | 8.9% | 22.2% | 17.4% | 17.2% | 25.7% | 3.6% | | 62623 | 2008 | Predicted | 5.0% | 4.4% | 12.2% | 33.1% | 21.9% | 17.5% | 5.9% | | | | Original | 5.6% | 2.2% | 11.6% | 37.8% | 17.8% | 20.9% | 4.1% | | 62110 | 2008 | Predicted | 10.0% | 3.1% | 6.8% | 22.7% | 41.3% | 10.1% | 6.0% | | | | Original | 13.4% | 3.3% | 7.7% | 26.9% | 35.6% | 8.9% | 4.3% | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
lgris/base_10k_8khz_pt
52b834283f4171b6f693ae0fd481b13298b883ce
2022-02-07T11:53:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/base_10k_8khz_pt
25
null
transformers
7,691
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # Wav2vec 2.0 for Portuguese in 8kHz This is a fine-tuned model from [facebook/wav2vec2-base-10k-voxpopuli](https://huggingface.co/facebook/wav2vec2-base-10k-voxpopuli) Datasets used to fine-tune the model: CETUC: contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the CETEN-Folha corpus. Common Voice 7.0: is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages. In this project, volunteers donate and validate speech using the oficial site. Lapsbm: "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control. Multilingual Librispeech (MLS): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like LibriVox. The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese used in this work (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers. Multilingual TEDx: a collection of audio recordings from TEDx talks in 8 source languages. The Portuguese set (mostly Brazilian Portuguese variant) contains 164 hours of transcribed speech. Sidney (SID): contains 5,777 utterances recorded by 72 speakers (20 women) from 17 to 59 years old with fields such as place of birth, age, gender, education, and occupation; VoxForge: is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz VoxPopuli
DMetaSoul/sbert-chinese-qmc-finance-v1
b1d140d61af1efc18f23fe4266b5bd74042a3df3
2022-04-04T07:21:28.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-qmc-finance-v1
25
null
sentence-transformers
7,692
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-qmc-finance-v1 此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在大规模银行问题匹配数据集([BQCorpus](http://icrc.hitsz.edu.cn/info/1037/1162.htm))上进行训练调优,适用于**金融领域的问题匹配**场景,比如: - 8千日利息400元? VS 10000元日利息多少钱 - 提前还款是按全额计息 VS 还款扣款不成功怎么还款? - 为什么我借钱交易失败 VS 刚申请的借款为什么会失败 注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-finance-v1-distill),也已经开源啦! # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | | -------------------------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | | **sbert-chinese-qmc-finance-v1** | 77.40% | 74.55% | 36.01% | 75.75% | 73.25% | 11.58% | 54.76% | ## Citing & Authors E-mail: [email protected]
everdoubling/byt5-Korean-base
f1038830499bfc8c87bb4da48e4f0c85f715b87c
2022-05-29T08:35:55.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:mc4", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
everdoubling
null
everdoubling/byt5-Korean-base
25
1
transformers
7,693
--- datasets: - mc4 license: apache-2.0 --- # ByT5-Korean - base ByT5-Korean is a Korean specific extension of Google's [ByT5](https://github.com/google-research/byt5). A Korean syllable has three components (called Jamo): a beginning consonant, a middle vowel, and an optional final consonant; they are like individual characters of alphabet. While the ByT5's utf-8 encoding allows generic encoding for multiple languages, it is unnatural for Korean because it splits the bits representation of each Jamo in the middle. ByT5-Korean extends ByT5's utf-8 encoding with special care for Korean syllables; each Jamo is represented with a extra token. ByT5-Korean was pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) with 70% Korean and 30% English. ## Encoding Scheme ```text id: token 0: <pad> 1: <eos> 2: <unk> 3~258: utf-8 encoding 259~277: beginning consonants(초성), 19개(ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ) 278~298: middle vowel(중성), 21개(ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ) 299~326: final consonant(종성), 무종성+27개(ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ) 327~384: from <extra_id_0> to <extra_id_57> ``` ## Example Inference ```python import torch from tokenizer import ByT5KoreanTokenizer # https://huggingface.co/everdoubling/byt5-Korean-base/blob/main/tokenizer.py from transformers import T5ForConditionalGeneration tokenizer_jamo = ByT5KoreanTokenizer() model = T5ForConditionalGeneration.from_pretrained('everdoubling/byt5-Korean-base') input_sentence = '한국어 위키백과(영어: Korean Wikipedia)는 한국어로 운영되는 위키백과의 다언어판 가운데 하나로서, 2002년 10월 11일에 <extra_id_0>. 또한 현재 한국어 위키백과에는 넘겨주기, 토론, 그림 등 페이지로 불리는 모든 문서를 포함하면 총 2,629,860개가 <extra_id_1>되어 있으며, 넘겨주기를 포함한 일반 문서 수는 1,278,560개,[1] 그중 넘겨주기, 막다른 문서를 제외한 일반 문서 수는 573,149개이다.' input_ids_jamo = tokenizer_jamo(input_sentence).input_ids outputs_jamo = model_jamo.generate(torch.tensor([input_ids_jamo])) print(tokenizer_jamo.decode(outputs_jamo[0])) # <pad><extra_id_0>설립되었다<extra_id_1>đě ``` Additional information coming soon...
Yoonseong/climatebert_trained
dc96ec8587338909ec23cd4db828b448f23220b6
2022-05-19T00:53:38.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
Yoonseong
null
Yoonseong/climatebert_trained
25
null
transformers
7,694
--- license: mit ---
hackathon-pln-es/t5-small-spanish-nahuatl
814181b8d71b304f7e64a2d5dce1fac5c663b94f
2022-07-28T03:09:47.000Z
[ "pytorch", "t5", "text2text-generation", "es", "nah", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
hackathon-pln-es
null
hackathon-pln-es/t5-small-spanish-nahuatl
25
7
transformers
7,695
--- license: apache-2.0 language: - es - nah tags: - translation widget: - text: "translate Spanish to Nahuatl: Mi hermano es un ajolote" --- # t5-small-spanish-nahuatl Nahuatl is the most widely spoken indigenous language in Mexico. However, training a neural network for the neural machine translation task is challenging due to the lack of structured data. The most popular datasets, such as the Axolot and bible-corpus, only consist of ~16,000 and ~7,000 samples, respectively. Moreover, there are multiple variants of Nahuatl, which makes this task even more difficult. For example, it is possible to find a single word from the Axolot dataset written in more than three different ways. Therefore, we leverage the T5 text-to-text prefix training strategy to compensate for the lack of data. We first train the multilingual model to learn Spanish and then adapt it to Nahuatl. The resulting T5 Transformer successfully translates short sentences. Finally, we report Chrf and BLEU results. ## Model description This model is a T5 Transformer ([t5-small](https://huggingface.co/t5-small)) fine-tuned on Spanish and Nahuatl sentences collected from the web. The dataset is normalized using 'sep' normalization from [py-elotl](https://github.com/ElotlMX/py-elotl). ## Usage ```python from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained('hackathon-pln-es/t5-small-spanish-nahuatl') tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/t5-small-spanish-nahuatl') model.eval() sentence = 'muchas flores son blancas' input_ids = tokenizer('translate Spanish to Nahuatl: ' + sentence, return_tensors='pt').input_ids outputs = model.generate(input_ids) # outputs = miak xochitl istak outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] ``` ## Approach ### Dataset Since the Axolotl corpus contains misalignments, we select the best samples (12,207). We also use the [bible-corpus](https://github.com/christos-c/bible-corpus) (7,821). | Axolotl best aligned books | |:-----------------------------------------------------:| | Anales de Tlatelolco | | Diario | | Documentos nauas de la Ciudad de México del siglo XVI | | Historia de México narrada en náhuatl y español | | La tinta negra y roja (antología de poesía náhuatl) | | Memorial Breve (Libro las ocho relaciones) | | Método auto-didáctico náhuatl-español | | Nican Mopohua | | Quinta Relación (Libro las ocho relaciones) | | Recetario Nahua de Milpa Alta D.F | | Testimonios de la antigua palabra | | Trece Poetas del Mundo Azteca | | Una tortillita nomás - Se taxkaltsin saj | | Vida económica de Tenochtitlan | Also, we collected 3,000 extra samples from the web to increase the data. ### Model and training We employ two training stages using a multilingual T5-small. The advantage of this model is that it can handle different vocabularies and prefixes. T5-small is pre-trained on different tasks and languages (French, Romanian, English, German). ### Training-stage 1 (learning Spanish) In training stage 1, we first introduce Spanish to the model. The goal is to learn a new language rich in data (Spanish) and not lose the previous knowledge. We use the English-Spanish [Anki](https://www.manythings.org/anki/) dataset, which consists of 118.964 text pairs. The model is trained till convergence, adding the prefix "Translate Spanish to English: " ### Training-stage 2 (learning Nahuatl) We use the pre-trained Spanish-English model to learn Spanish-Nahuatl. Since the amount of Nahuatl pairs is limited, we also add 20,000 samples from the English-Spanish Anki dataset. This two-task training avoids overfitting and makes the model more robust. ### Training setup We train the models on the same datasets for 660k steps using batch size = 16 and a learning rate of 2e-5. ## Evaluation results We evaluate the models on the same 505 validation Nahuatl sentences for a fair comparison. Finally, we report the results using chrf and sacrebleu hugging face metrics: | English-Spanish pretraining | Validation loss | BLEU | Chrf | |:----------------------------:|:---------------:|:-----|-------:| | False | 1.34 | 6.17 | 26.96 | | True | 1.31 | 6.18 | 28.21 | The English-Spanish pretraining improves BLEU and Chrf and leads to faster convergence. The evaluation is available on the [eval.ipynb](https://github.com/milmor/spanish-nahuatl-translation/blob/main/eval.ipynb) notebook. ## References - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified Text-to-Text transformer. - Ximena Gutierrez-Vasques, Gerardo Sierra, and Hernandez Isaac. 2016. Axolotl: a web accessible parallel corpus for Spanish-Nahuatl. In International Conference on Language Resources and Evaluation (LREC). - https://github.com/christos-c/bible-corpus - https://github.com/ElotlMX/py-elotl ## Team members - Emilio Alejandro Morales [(milmor)](https://huggingface.co/milmor) - Rodrigo Martínez Arzate [(rockdrigoma)](https://huggingface.co/rockdrigoma) - Luis Armando Mercado [(luisarmando)](https://huggingface.co/luisarmando) - Jacobo del Valle [(jjdv)](https://huggingface.co/jjdv)
xaqren/sentiment_analysis
b539ca0c9dd51e962fabde4f7c4093ff0f185466
2022-04-08T14:59:55.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:Confidential", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0" ]
text-classification
false
xaqren
null
xaqren/sentiment_analysis
25
1
transformers
7,696
--- language: en tags: - exbert license: apache-2.0 datasets: - Confidential --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model description [xaqren/sentiment_analysis] This is a fine-tuned downstream version of the bert-base-uncased model for sentiment analysis, this model is not intended for further downstream fine-tuning for any other tasks. This model is trained on a classified dataset for text-classification.
nielsr/sidewalk-semantic-demo
2ef7e0a35b87979f4e72ca1bf8e46f5410edbeb9
2022-04-06T15:53:42.000Z
[ "pytorch", "tensorboard", "segformer", "dataset:segments/sidewalk-semantic", "transformers", "vision", "generated_from_trainer", "image-segmentation", "license:apache-2.0", "model-index" ]
image-segmentation
false
nielsr
null
nielsr/sidewalk-semantic-demo
25
null
transformers
7,697
--- license: apache-2.0 tags: - vision - generated_from_trainer - image-segmentation datasets: - segments/sidewalk-semantic model-index: - name: sidewalk-semantic-demo results: [] widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sidewalk-semantic-demo This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7591 - Mean Iou: 0.1135 - Mean Accuracy: 0.1608 - Overall Accuracy: 0.6553 - Per Category Iou: [nan, 0.38512238586129177, 0.723869670479682, 3.007496184239216e-05, 0.04329871029371091, 0.0006725029325634934, nan, 0.0, 0.0, 0.0, 0.5420712902837528, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4939727049879936, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5630706428968278, 0.2911849732223226, 0.5899473333836793, 0.0, 0.0, 1.723395088323998e-05, 0.0] - Per Category Accuracy: [nan, 0.6995968221991989, 0.8870903675336742, 3.007496184239216e-05, 0.043772127605383085, 0.0006731284624713075, nan, 0.0, 0.0, 0.0, 0.8074880705716012, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8257698903048035, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9746918606102934, 0.3057553223999185, 0.6001142624744604, 0.0, 0.0, 1.7275073149137866e-05, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 2.3589 | 1.0 | 53 | 1.9020 | 0.1014 | 0.1491 | 0.6442 | [0.0, 0.3612513514640175, 0.6751826209974531, 0.0, 0.030376890155720412, 0.0008039971158010613, nan, 2.235273737210043e-05, 0.0, 0.0, 0.5369771616036864, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4924640887729494, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5705205266526164, 0.07944837262494953, 0.5986634961452602, 0.0, 0.0, 0.00011218284533795612, 0.0] | [nan, 0.523053840654786, 0.9469253318772407, 0.0, 0.030589314463641413, 0.0008054985216698098, nan, 2.2371239534454507e-05, 0.0, 0.0, 0.8528562962514211, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7547252442297603, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9698553453075568, 0.08054302832748386, 0.6107703679316233, 0.0, 0.0, 0.00011444735961303836, 0.0] | | 2.1214 | 2.0 | 106 | 1.7800 | 0.1158 | 0.1627 | 0.6622 | [nan, 0.3912271306195065, 0.7114203717790301, 0.0001503748092119608, 0.04491329385698775, 0.0008871978593462472, nan, 1.3975654410017748e-06, 0.0, 0.0, 0.5167420849064452, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.49676247687874375, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5965069148571663, 0.3115535309159788, 0.636016670211685, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6306423988442347, 0.9198450793635351, 0.0001503748092119608, 0.045391490029595895, 0.0008886008009872551, nan, 1.3982024709034067e-06, 0.0, 0.0, 0.8587918189550764, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8103648148965297, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9600035488335386, 0.3307256120335472, 0.6505175702762634, 0.0, 0.0, 0.0, 0.0] | | 1.9022 | 3.0 | 159 | 1.7591 | 0.1135 | 0.1608 | 0.6553 | [nan, 0.38512238586129177, 0.723869670479682, 3.007496184239216e-05, 0.04329871029371091, 0.0006725029325634934, nan, 0.0, 0.0, 0.0, 0.5420712902837528, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4939727049879936, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5630706428968278, 0.2911849732223226, 0.5899473333836793, 0.0, 0.0, 1.723395088323998e-05, 0.0] | [nan, 0.6995968221991989, 0.8870903675336742, 3.007496184239216e-05, 0.043772127605383085, 0.0006731284624713075, nan, 0.0, 0.0, 0.0, 0.8074880705716012, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8257698903048035, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9746918606102934, 0.3057553223999185, 0.6001142624744604, 0.0, 0.0, 1.7275073149137866e-05, 0.0] | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Helsinki-NLP/opus-mt-tc-big-et-en
294ac8515bf556def3b8ee4a0c5927bef475b726
2022-06-01T12:59:41.000Z
[ "pytorch", "marian", "text2text-generation", "en", "et", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-et-en
25
null
transformers
7,698
--- language: - en - et tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-et-en results: - task: name: Translation est-eng type: translation args: est-eng dataset: name: flores101-devtest type: flores_101 args: est eng devtest metrics: - name: BLEU type: bleu value: 38.6 - task: name: Translation est-eng type: translation args: est-eng dataset: name: newsdev2018 type: newsdev2018 args: est-eng metrics: - name: BLEU type: bleu value: 33.8 - task: name: Translation est-eng type: translation args: est-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: est-eng metrics: - name: BLEU type: bleu value: 59.7 - task: name: Translation est-eng type: translation args: est-eng dataset: name: newstest2018 type: wmt-2018-news args: est-eng metrics: - name: BLEU type: bleu value: 34.3 --- # opus-mt-tc-big-et-en Neural machine translation model for translating from Estonian (et) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-09 * source language(s): est * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/est-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip) * more information released models: [OPUS-MT est-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/est-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Takso ootab.", "Kon sa elät?" ] model_name = "pytorch-models/opus-mt-tc-big-et-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Taxi's waiting. # Kon you elät? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-et-en") print(pipe("Takso ootab.")) # expected output: Taxi's waiting. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/est-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/est-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | est-eng | tatoeba-test-v2021-08-07 | 0.73707 | 59.7 | 1359 | 8811 | | est-eng | flores101-devtest | 0.64463 | 38.6 | 1012 | 24721 | | est-eng | newsdev2018 | 0.59899 | 33.8 | 2000 | 43068 | | est-eng | newstest2018 | 0.60708 | 34.3 | 2000 | 45405 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 18:54:11 EEST 2022 * port machine: LM0-400-22516.local
Barkavi/totto-t5-base-bleu-121K
7b7c6dba3435dc61537b2bd1a422b65d4c517c1d
2022-04-30T14:50:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Barkavi
null
Barkavi/totto-t5-base-bleu-121K
25
null
transformers
7,699
Entry not found