modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Zaib/Vulnerability-detection
429d6167e1c00b8490310d27352aac652daba00e
2022-07-16T11:03:58.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Zaib
null
Zaib/Vulnerability-detection
28
null
transformers
7,400
--- tags: - generated_from_trainer model-index: - name: Vulnerability-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vulnerability-detection This model is a fine-tuned version of [mrm8488/codebert-base-finetuned-detect-insecure-code](https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tokeron/alephbert-finetuned-metaphor-detection
9aeee9b43ff977a9d131d2609bbda881205cab0a
2022-07-20T09:21:13.000Z
[ "pytorch", "bert", "token-classification", "he", "dataset:Piyutim", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
tokeron
null
tokeron/alephbert-finetuned-metaphor-detection
28
null
transformers
7,401
--- license: afl-3.0 language: - he tags: - token-classification datasets: - Piyutim model: - onlplab/alephbert-base metrics: - f1 widget: - text: "נשבר לי הגב" example_title: "Broken back" - text: "ש לו לב זהב" example_title: "Golden heart" --- This is a token-classification model. This model is AlephBert fine-tuned on detecting metaphors from Hebrew Piyutim model-index: - name: tokeron/alephbert-finetuned-metaphor-detection results: [] # model This model fine-tunes onlplab/alephbert-base model on Piyutim dataset. ### About Us Created by Michael Toker in collaboration with Yonatan Belinkov, Benny Kornfeld, Oren Mishali, and Ophir Münz-Manor. For more cooperation, please contact email: [email protected]
Be-Lo/xtremedistil-l6-h256-uncased-natural-questions-short
89eaf5c1247e3b1d007ab9053175f795ab468bcf
2022-07-22T17:23:04.000Z
[ "pytorch", "bert", "question-answering", "en", "transformers", "natural-questions-short", "license:mit", "autotrain_compatible" ]
question-answering
false
Be-Lo
null
Be-Lo/xtremedistil-l6-h256-uncased-natural-questions-short
28
null
transformers
7,402
--- language: en tags: - natural-questions-short - question-answering license: mit --- # xtremedistil-l6-h256-uncased for QA This is a [xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) model, fine-tuned using the [NaturalQuestionsShort](https://research.google/pubs/pub47761/) dataset from the [MRQA Shared Task 2019](https://github.com/mrqa/MRQA-Shared-Task-2019) repository. ## Overview **Language model:** xtremedistil-l6-h256-uncased **Language:** English **Downstream-task:** Extractive QA **Training data:** NaturalQuestionsShort **Eval data:** NaturalQuestionsShort **Infrastructure**: Google Colaboratory GPU ## Hyperparameters ``` batch_size = 16 n_epochs = 2 base_LM_model = "xtremedistil-l6-h256-uncased" max_seq_len = 512 learning_rate = 3e-5 optimizer = AdamW weight_decay = 0.01 lr_schedule = Linear warmup_steps = 0 ``` ## Performance The model was evaluated on the on the [NaturalQuestionsShort](https://research.google/pubs/pub47761/) dev set from the [MRQA Shared Task 2019](https://github.com/mrqa/MRQA-Shared-Task-2019) repository. ``` "exact_match": 46.914926768463694, "f1": 63.863619507647456, ``` ## UKP Square This model can also be found on [UKP Square](https://square.ukp-lab.de/qa). This website from the [UKP lab at the TU Darmstadt](https://www.informatik.tu-darmstadt.de/ukp/ukp_home/index.en.jsp) is a platform to compare and evaluate cloud-hosted QA models via explainability techniques and behavioral tests. ## Author & Background This model was created by Janik and Ben during the [DL4NLP course](https://github.com/dl4nlp-tuda/deep-learning-for-nlp-lectures) by [Ivan Habernal](https://www.trusthlt.org/)
anonchickenlegs/sartoshi-bot
19b5727d5b7f4399fe4997a9797c3b7125504350
2022-07-23T02:20:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
anonchickenlegs
null
anonchickenlegs/sartoshi-bot
28
null
transformers
7,403
--- tags: - conversational ---
sudo-s/modeversion2_m7_e8
ef4c745f10e424c2ad13ce3280cc0d1d2cac0469
2022-07-24T19:34:08.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/modeversion2_m7_e8
28
null
transformers
7,404
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: modeversion2_m7_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modeversion2_m7_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem7 dataset. It achieves the following results on the evaluation set: - Loss: 0.1060 - Accuracy: 0.9761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0231 | 0.06 | 100 | 3.8568 | 0.1883 | | 3.3863 | 0.12 | 200 | 3.2510 | 0.2596 | | 2.6187 | 0.18 | 300 | 2.6243 | 0.3882 | | 2.3097 | 0.23 | 400 | 2.2189 | 0.4527 | | 1.9016 | 0.29 | 500 | 1.9495 | 0.5244 | | 1.7478 | 0.35 | 600 | 1.6609 | 0.6091 | | 1.2345 | 0.41 | 700 | 1.4335 | 0.6426 | | 1.4129 | 0.47 | 800 | 1.3001 | 0.6752 | | 1.1722 | 0.53 | 900 | 1.2030 | 0.6785 | | 1.0808 | 0.59 | 1000 | 1.0051 | 0.7273 | | 0.8814 | 0.64 | 1100 | 1.0715 | 0.7063 | | 0.9831 | 0.7 | 1200 | 0.9283 | 0.7334 | | 0.8118 | 0.76 | 1300 | 0.8525 | 0.7631 | | 0.7203 | 0.82 | 1400 | 0.7849 | 0.7756 | | 0.8881 | 0.88 | 1500 | 0.8786 | 0.7487 | | 0.6407 | 0.94 | 1600 | 0.6896 | 0.8000 | | 0.7574 | 1.0 | 1700 | 0.7314 | 0.7754 | | 0.6063 | 1.06 | 1800 | 0.6312 | 0.8068 | | 0.4797 | 1.11 | 1900 | 0.5792 | 0.8296 | | 0.4973 | 1.17 | 2000 | 0.5846 | 0.8221 | | 0.4432 | 1.23 | 2100 | 0.7057 | 0.7905 | | 0.5518 | 1.29 | 2200 | 0.5621 | 0.8304 | | 0.3256 | 1.35 | 2300 | 0.5890 | 0.8143 | | 0.4284 | 1.41 | 2400 | 0.5204 | 0.8485 | | 0.3702 | 1.47 | 2500 | 0.5699 | 0.8256 | | 0.2858 | 1.52 | 2600 | 0.5815 | 0.8287 | | 0.3706 | 1.58 | 2700 | 0.4615 | 0.8571 | | 0.3484 | 1.64 | 2800 | 0.4812 | 0.8518 | | 0.2865 | 1.7 | 2900 | 0.4285 | 0.8638 | | 0.4474 | 1.76 | 3000 | 0.5217 | 0.8377 | | 0.2101 | 1.82 | 3100 | 0.4478 | 0.8589 | | 0.3545 | 1.88 | 3200 | 0.4444 | 0.8612 | | 0.2728 | 1.93 | 3300 | 0.4213 | 0.8645 | | 0.3525 | 1.99 | 3400 | 0.3551 | 0.8848 | | 0.0936 | 2.05 | 3500 | 0.4074 | 0.8748 | | 0.2118 | 2.11 | 3600 | 0.4089 | 0.8812 | | 0.2744 | 2.17 | 3700 | 0.3534 | 0.8894 | | 0.211 | 2.23 | 3800 | 0.4422 | 0.8599 | | 0.1684 | 2.29 | 3900 | 0.3705 | 0.8858 | | 0.1885 | 2.34 | 4000 | 0.3651 | 0.8862 | | 0.249 | 2.4 | 4100 | 0.4234 | 0.8687 | | 0.1485 | 2.46 | 4200 | 0.3784 | 0.8798 | | 0.1188 | 2.52 | 4300 | 0.3589 | 0.8873 | | 0.1274 | 2.58 | 4400 | 0.3570 | 0.8917 | | 0.2206 | 2.64 | 4500 | 0.3377 | 0.8920 | | 0.1287 | 2.7 | 4600 | 0.3170 | 0.9023 | | 0.1805 | 2.75 | 4700 | 0.3469 | 0.8934 | | 0.1505 | 2.81 | 4800 | 0.4258 | 0.8757 | | 0.1592 | 2.87 | 4900 | 0.3415 | 0.8948 | | 0.1297 | 2.93 | 5000 | 0.3168 | 0.9028 | | 0.1284 | 2.99 | 5100 | 0.3060 | 0.9089 | | 0.0833 | 3.05 | 5200 | 0.2610 | 0.9207 | | 0.0334 | 3.11 | 5300 | 0.2766 | 0.9197 | | 0.0847 | 3.17 | 5400 | 0.3366 | 0.9016 | | 0.1112 | 3.22 | 5500 | 0.3098 | 0.9079 | | 0.0477 | 3.28 | 5600 | 0.3385 | 0.9041 | | 0.0419 | 3.34 | 5700 | 0.2944 | 0.9139 | | 0.0827 | 3.4 | 5800 | 0.2715 | 0.9239 | | 0.0659 | 3.46 | 5900 | 0.2695 | 0.9230 | | 0.0244 | 3.52 | 6000 | 0.3050 | 0.9147 | | 0.0883 | 3.58 | 6100 | 0.2862 | 0.9203 | | 0.0527 | 3.63 | 6200 | 0.2383 | 0.9319 | | 0.0828 | 3.69 | 6300 | 0.2984 | 0.9182 | | 0.0678 | 3.75 | 6400 | 0.2135 | 0.9436 | | 0.0492 | 3.81 | 6500 | 0.2605 | 0.9296 | | 0.0374 | 3.87 | 6600 | 0.2192 | 0.9380 | | 0.1846 | 3.93 | 6700 | 0.2804 | 0.9187 | | 0.0557 | 3.99 | 6800 | 0.2599 | 0.9253 | | 0.0127 | 4.04 | 6900 | 0.2412 | 0.9336 | | 0.0203 | 4.1 | 7000 | 0.2214 | 0.9415 | | 0.0272 | 4.16 | 7100 | 0.2322 | 0.9356 | | 0.066 | 4.22 | 7200 | 0.2643 | 0.9325 | | 0.0628 | 4.28 | 7300 | 0.2170 | 0.9406 | | 0.0108 | 4.34 | 7400 | 0.2388 | 0.9405 | | 0.026 | 4.4 | 7500 | 0.2533 | 0.9372 | | 0.0401 | 4.45 | 7600 | 0.2407 | 0.9358 | | 0.0493 | 4.51 | 7700 | 0.2213 | 0.9415 | | 0.0951 | 4.57 | 7800 | 0.3016 | 0.9237 | | 0.0017 | 4.63 | 7900 | 0.2183 | 0.9448 | | 0.0561 | 4.69 | 8000 | 0.1962 | 0.9492 | | 0.0063 | 4.75 | 8100 | 0.1868 | 0.9522 | | 0.0054 | 4.81 | 8200 | 0.2068 | 0.9459 | | 0.0519 | 4.87 | 8300 | 0.2141 | 0.9429 | | 0.027 | 4.92 | 8400 | 0.2138 | 0.9438 | | 0.0034 | 4.98 | 8500 | 0.1774 | 0.9529 | | 0.0096 | 5.04 | 8600 | 0.1778 | 0.9512 | | 0.0011 | 5.1 | 8700 | 0.1854 | 0.9512 | | 0.0195 | 5.16 | 8800 | 0.1914 | 0.9483 | | 0.0245 | 5.22 | 8900 | 0.2156 | 0.9471 | | 0.0055 | 5.28 | 9000 | 0.1640 | 0.9574 | | 0.0166 | 5.33 | 9100 | 0.1770 | 0.9568 | | 0.0217 | 5.39 | 9200 | 0.2011 | 0.9479 | | 0.0017 | 5.45 | 9300 | 0.2210 | 0.9462 | | 0.0161 | 5.51 | 9400 | 0.1510 | 0.9621 | | 0.0193 | 5.57 | 9500 | 0.1643 | 0.9586 | | 0.0121 | 5.63 | 9600 | 0.1716 | 0.9535 | | 0.0146 | 5.69 | 9700 | 0.1720 | 0.9554 | | 0.0071 | 5.74 | 9800 | 0.1831 | 0.9541 | | 0.0018 | 5.8 | 9900 | 0.2076 | 0.9485 | | 0.0007 | 5.86 | 10000 | 0.1636 | 0.9599 | | 0.0005 | 5.92 | 10100 | 0.1625 | 0.9602 | | 0.0277 | 5.98 | 10200 | 0.1874 | 0.9546 | | 0.0005 | 6.04 | 10300 | 0.1790 | 0.9579 | | 0.0012 | 6.1 | 10400 | 0.1840 | 0.9544 | | 0.0431 | 6.15 | 10500 | 0.1571 | 0.9628 | | 0.0332 | 6.21 | 10600 | 0.1599 | 0.9591 | | 0.0014 | 6.27 | 10700 | 0.1493 | 0.9632 | | 0.0014 | 6.33 | 10800 | 0.1366 | 0.9661 | | 0.0006 | 6.39 | 10900 | 0.1582 | 0.9609 | | 0.0005 | 6.45 | 11000 | 0.1704 | 0.9589 | | 0.0004 | 6.51 | 11100 | 0.1376 | 0.9671 | | 0.0755 | 6.57 | 11200 | 0.1375 | 0.9654 | | 0.0002 | 6.62 | 11300 | 0.1361 | 0.9661 | | 0.0006 | 6.68 | 11400 | 0.1323 | 0.9675 | | 0.0009 | 6.74 | 11500 | 0.1239 | 0.9692 | | 0.0004 | 6.8 | 11600 | 0.1514 | 0.9631 | | 0.0002 | 6.86 | 11700 | 0.1386 | 0.9664 | | 0.0004 | 6.92 | 11800 | 0.1368 | 0.9659 | | 0.0004 | 6.98 | 11900 | 0.1276 | 0.9684 | | 0.0002 | 7.03 | 12000 | 0.1171 | 0.9712 | | 0.0002 | 7.09 | 12100 | 0.1142 | 0.9711 | | 0.0001 | 7.15 | 12200 | 0.1183 | 0.9727 | | 0.0002 | 7.21 | 12300 | 0.1167 | 0.9732 | | 0.0002 | 7.27 | 12400 | 0.1143 | 0.9737 | | 0.0001 | 7.33 | 12500 | 0.1129 | 0.9737 | | 0.0002 | 7.39 | 12600 | 0.1116 | 0.9742 | | 0.0002 | 7.44 | 12700 | 0.1126 | 0.9745 | | 0.0002 | 7.5 | 12800 | 0.1111 | 0.9748 | | 0.0002 | 7.56 | 12900 | 0.1102 | 0.9747 | | 0.0001 | 7.62 | 13000 | 0.1094 | 0.9747 | | 0.0001 | 7.68 | 13100 | 0.1086 | 0.9742 | | 0.0001 | 7.74 | 13200 | 0.1079 | 0.9748 | | 0.0002 | 7.8 | 13300 | 0.1062 | 0.9754 | | 0.0002 | 7.85 | 13400 | 0.1068 | 0.9757 | | 0.0001 | 7.91 | 13500 | 0.1061 | 0.9762 | | 0.0001 | 7.97 | 13600 | 0.1060 | 0.9761 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
thu-coai/EVA2.0-base
5e560e37d230fee015571a8cbacc0bdbf70463e5
2022-07-25T03:50:58.000Z
[ "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "transformers", "license:mit" ]
null
false
thu-coai
null
thu-coai/EVA2.0-base
28
null
transformers
7,405
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
Yuetian/T5-finetuned-storyCommonsense
bb62c9d47bdd2d8feaf6370fa5f2c9d18bea5bc9
2022-07-28T02:17:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Yuetian
null
Yuetian/T5-finetuned-storyCommonsense
28
null
transformers
7,406
--- license: mit ---
wiselinjayajos/t5-end2end-questions-generation-cvqualtrics-squad-V1
e58afb83431cbea25eeb092b011a040ef7fd6ced
2022-07-28T06:56:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
wiselinjayajos
null
wiselinjayajos/t5-end2end-questions-generation-cvqualtrics-squad-V1
28
null
transformers
7,407
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-end2end-questions-generation-cvqualtrics-squad-V1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation-cvqualtrics-squad-V1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6162 | 0.34 | 100 | 1.8890 | | 1.9995 | 0.67 | 200 | 1.6871 | | 1.8697 | 1.01 | 300 | 1.6146 | | 1.7682 | 1.34 | 400 | 1.5530 | | 1.7323 | 1.68 | 500 | 1.5232 | | 1.7256 | 2.01 | 600 | 1.4921 | | 1.6506 | 2.35 | 700 | 1.4640 | | 1.6438 | 2.68 | 800 | 1.4406 | | 1.6399 | 3.02 | 900 | 1.4137 | | 1.5786 | 3.36 | 1000 | 1.3924 | | 1.5805 | 3.69 | 1100 | 1.3788 | | 1.5824 | 4.03 | 1200 | 1.3626 | | 1.5295 | 4.36 | 1300 | 1.3454 | | 1.5333 | 4.7 | 1400 | 1.3356 | | 1.537 | 5.03 | 1500 | 1.3230 | | 1.5002 | 5.37 | 1600 | 1.3157 | | 1.4936 | 5.7 | 1700 | 1.3046 | | 1.4937 | 6.04 | 1800 | 1.2958 | | 1.4649 | 6.38 | 1900 | 1.2826 | | 1.4742 | 6.71 | 2000 | 1.2744 | | 1.4641 | 7.05 | 2100 | 1.2603 | | 1.4472 | 7.38 | 2200 | 1.2595 | | 1.4403 | 7.72 | 2300 | 1.2526 | | 1.4508 | 8.05 | 2400 | 1.2475 | | 1.4191 | 8.39 | 2500 | 1.2412 | | 1.4367 | 8.72 | 2600 | 1.2354 | | 1.4272 | 9.06 | 2700 | 1.2386 | | 1.4104 | 9.4 | 2800 | 1.2323 | | 1.4179 | 9.73 | 2900 | 1.2337 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SharpAI/mal_tls-bert-base-w8a8
89dc967a2e47be6711447d0682c3e530174ac3d8
2022-07-28T06:40:11.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers", "generated_from_keras_callback", "model-index" ]
text-classification
false
SharpAI
null
SharpAI/mal_tls-bert-base-w8a8
28
null
transformers
7,408
--- tags: - generated_from_keras_callback model-index: - name: mal_tls-bert-base-w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal_tls-bert-base-w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
BigSalmon/MrLincoln3
c5ab836cbfdb585fef096e44eb7250e7f6364435
2021-11-18T23:30:03.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/MrLincoln3
27
null
transformers
7,409
Entry not found
Elron/bleurt-large-128
17bb269ba6cede0f50f3831f444fdb7222147ceb
2021-10-04T13:21:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Elron
null
Elron/bleurt-large-128
27
1
transformers
7,410
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-large-128") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-large-128") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([ 0.0020, -0.6647]) ```
GKLMIP/bert-khmer-small-uncased
fe6017da32090699c8c115f17f4258ca6d5e495b
2021-07-31T04:46:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-khmer-small-uncased
27
null
transformers
7,411
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GroNLP/gpt2-small-dutch-embeddings
845a4c7cdae998c888f6ed5932a0a2a1732d0104
2021-05-21T09:54:45.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "nl", "arxiv:2012.05628", "transformers", "adaption", "recycled", "gpt2-small" ]
text-generation
false
GroNLP
null
GroNLP/gpt2-small-dutch-embeddings
27
null
transformers
7,412
--- language: nl tags: - adaption - recycled - gpt2-small pipeline_tag: text-generation --- # GPT-2 recycled for Dutch (small, adapted lexical embeddings) [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) • [Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) ## Model description This model is based on the small OpenAI GPT-2 ([`gpt2`](https://huggingface.co/gpt2)) model. The Transformer layer weights in this model are identical to the original English, model but the lexical layer has been retrained for a Dutch vocabulary. For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle). ## Related models ### Dutch - [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings. ### Italian - [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings. ## How to use ```python from transformers import pipeline pipe = pipeline("text-generation", model="GroNLP/gpt2-small-dutch-embeddings") ``` ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-small-dutch-embeddings") model = AutoModel.from_pretrained("GroNLP/gpt2-small-dutch-embeddings") # PyTorch model = TFAutoModel.from_pretrained("GroNLP/gpt2-small-dutch-embeddings") # Tensorflow ``` ## BibTeX entry ```bibtex @misc{devries2020good, title={As good as new. How to successfully recycle English GPT-2 to make models for other languages}, author={Wietse de Vries and Malvina Nissim}, year={2020}, eprint={2012.05628}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Helsinki-NLP/opus-mt-en-ht
d90d52dc58d651b41475d5837f670b411150be90
2021-09-09T21:36:01.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ht", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ht
27
null
transformers
7,413
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ht * source languages: en * target languages: ht * OPUS readme: [en-ht](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ht/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ht/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ht/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ht/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ht | 38.3 | 0.545 | | Tatoeba.en.ht | 45.2 | 0.592 |
Helsinki-NLP/opus-mt-et-fr
7bc1a38b3451bb731b5f4e0b3a2a04df5aca9618
2021-09-09T21:46:12.000Z
[ "pytorch", "marian", "text2text-generation", "et", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-et-fr
27
null
transformers
7,414
--- tags: - translation license: apache-2.0 --- ### opus-mt-et-fr * source languages: et * target languages: fr * OPUS readme: [et-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/et-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/et-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.et.fr | 26.2 | 0.484 |
KoichiYasuoka/roberta-base-thai-spm-upos
c7d621d5ca774b438a464aaef15fba17f1a91a02
2022-04-12T10:29:52.000Z
[ "pytorch", "roberta", "token-classification", "th", "dataset:universal_dependencies", "transformers", "thai", "pos", "wikipedia", "dependency-parsing", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-thai-spm-upos
27
null
transformers
7,415
--- language: - "th" tags: - "thai" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "หลายหัวดีกว่าหัวเดียว" --- # roberta-base-thai-spm-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-spm](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-spm-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
Maha/hi-const21-hibert_final
0d143967c20d19c5a57787ebe898ed100ed55b9c
2022-02-23T10:31:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Maha
null
Maha/hi-const21-hibert_final
27
null
transformers
7,416
Entry not found
Nhut/wav2vec2-large-xlsr-vietnamese
e58b08cf2c973426134a0ccf0c626aa5d8bf4018
2021-07-05T16:30:29.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "vi", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Nhut
null
Nhut/wav2vec2-large-xlsr-vietnamese
27
null
transformers
7,417
--- language: vi datasets: - common_voice - FOSD: https://data.mendeley.com/datasets/k9sxg2twv4/4 - VIVOS: https://ailab.hcmus.edu.vn/vivos metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Vietnamese by Nhut results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 49.59 --- # Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4) and [VIVOS](https://ailab.hcmus.edu.vn/vivos). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor ENCODER = { "ia ": "iê ", "ìa ": "iề ", "ía ": "iế ", "ỉa ": "iể ", "ĩa ": "iễ ", "ịa ": "iệ ", "ya ": "yê ", "ỳa ": "yề ", "ýa ": "yế ", "ỷa ": "yể ", "ỹa ": "yễ ", "ỵa ": "yệ ", "ua ": "uô ", "ùa ": "uồ ", "úa ": "uố ", "ủa ": "uổ ", "ũa ": "uỗ ", "ụa ": "uộ ", "ưa ": "ươ ", "ừa ": "ườ ", "ứa ": "ướ ", "ửa ": "ưở ", "ữa ": "ưỡ ", "ựa ": "ượ ", "ke": "ce", "kè": "cè", "ké": "cé", "kẻ": "cẻ", "kẽ": "cẽ", "kẹ": "cẹ", "kê": "cê", "kề": "cề", "kế": "cế", "kể": "cể", "kễ": "cễ", "kệ": "cệ", "ki": "ci", "kì": "cì", "kí": "cí", "kỉ": "cỉ", "kĩ": "cĩ", "kị": "cị", "ky": "cy", "kỳ": "cỳ", "ký": "cý", "kỷ": "cỷ", "kỹ": "cỹ", "kỵ": "cỵ", "ghe": "ge", "ghè": "gè", "ghé": "gé", "ghẻ": "gẻ", "ghẽ": "gẽ", "ghẹ": "gẹ", "ghê": "gê", "ghề": "gề", "ghế": "gế", "ghể": "gể", "ghễ": "gễ", "ghệ": "gệ", "ngh": "\x80", "uyê": "\x96", "uyề": "\x97", "uyế": "\x98", "uyể": "\x99", "uyễ": "\x9a", "uyệ": "\x9b", "ng": "\x81", "ch": "\x82", "gh": "\x83", "nh": "\x84", "gi": "\x85", "ph": "\x86", "kh": "\x87", "th": "\x88", "tr": "\x89", "uy": "\x8a", "uỳ": "\x8b", "uý": "\x8c", "uỷ": "\x8d", "uỹ": "\x8e", "uỵ": "\x8f", "iê": "\x90", "iề": "\x91", "iế": "\x92", "iể": "\x93", "iễ": "\x94", "iệ": "\x95", "uô": "\x9c", "uồ": "\x9d", "uố": "\x9e", "uổ": "\x9f", "uỗ": "\xa0", "uộ": "\xa1", "ươ": "\xa2", "ườ": "\xa3", "ướ": "\xa4", "ưở": "\xa5", "ưỡ": "\xa6", "ượ": "\xa7", } def decode_string(x): for k, v in list(reversed(list(ENCODER.items()))): x = x.replace(v, k) return x test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)]) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re ENCODER = { "ia ": "iê ", "ìa ": "iề ", "ía ": "iế ", "ỉa ": "iể ", "ĩa ": "iễ ", "ịa ": "iệ ", "ya ": "yê ", "ỳa ": "yề ", "ýa ": "yế ", "ỷa ": "yể ", "ỹa ": "yễ ", "ỵa ": "yệ ", "ua ": "uô ", "ùa ": "uồ ", "úa ": "uố ", "ủa ": "uổ ", "ũa ": "uỗ ", "ụa ": "uộ ", "ưa ": "ươ ", "ừa ": "ườ ", "ứa ": "ướ ", "ửa ": "ưở ", "ữa ": "ưỡ ", "ựa ": "ượ ", "ke": "ce", "kè": "cè", "ké": "cé", "kẻ": "cẻ", "kẽ": "cẽ", "kẹ": "cẹ", "kê": "cê", "kề": "cề", "kế": "cế", "kể": "cể", "kễ": "cễ", "kệ": "cệ", "ki": "ci", "kì": "cì", "kí": "cí", "kỉ": "cỉ", "kĩ": "cĩ", "kị": "cị", "ky": "cy", "kỳ": "cỳ", "ký": "cý", "kỷ": "cỷ", "kỹ": "cỹ", "kỵ": "cỵ", "ghe": "ge", "ghè": "gè", "ghé": "gé", "ghẻ": "gẻ", "ghẽ": "gẽ", "ghẹ": "gẹ", "ghê": "gê", "ghề": "gề", "ghế": "gế", "ghể": "gể", "ghễ": "gễ", "ghệ": "gệ", "ngh": "\x80", "uyê": "\x96", "uyề": "\x97", "uyế": "\x98", "uyể": "\x99", "uyễ": "\x9a", "uyệ": "\x9b", "ng": "\x81", "ch": "\x82", "gh": "\x83", "nh": "\x84", "gi": "\x85", "ph": "\x86", "kh": "\x87", "th": "\x88", "tr": "\x89", "uy": "\x8a", "uỳ": "\x8b", "uý": "\x8c", "uỷ": "\x8d", "uỹ": "\x8e", "uỵ": "\x8f", "iê": "\x90", "iề": "\x91", "iế": "\x92", "iể": "\x93", "iễ": "\x94", "iệ": "\x95", "uô": "\x9c", "uồ": "\x9d", "uố": "\x9e", "uổ": "\x9f", "uỗ": "\xa0", "uộ": "\xa1", "ươ": "\xa2", "ườ": "\xa3", "ướ": "\xa4", "ưở": "\xa5", "ưỡ": "\xa6", "ượ": "\xa7", } def decode_string(x): for k, v in list(reversed(list(ENCODER.items()))): x = x.replace(v, k) return x test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) # decode_string: We replace the encoded letter with the initial letters batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]] return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 49.59 % ## Training The Common Voice `train`, `validation` and FOSD datasets and VIVOS datasets were used for training as well. The script used for training can be found [here](https://colab.research.google.com/drive/11pP4uVJj4SYZTzGjlCUtOHywlhYqs0cPx)
SEBIS/code_trans_t5_base_source_code_summarization_python_transfer_learning_finetune
79c990003500c7e804b84ab057fed663b4f57711
2021-06-23T05:25:27.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_python_transfer_learning_finetune
27
null
transformers
7,418
--- tags: - summarization widget: - text: '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' --- # CodeTrans model for source code summarization python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the python code snippets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 1000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
Sakonii/distilbert-base-nepali
723fe4e63deb67d14412ee69ba0f9daddd8c752a
2022-03-11T12:47:18.000Z
[ "pytorch", "distilbert", "fill-mask", "arxiv:1911.02116", "arxiv:1910.01108", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Sakonii
null
Sakonii/distilbert-base-nepali
27
null
transformers
7,419
--- license: apache-2.0 mask_token: "<mask>" tags: - generated_from_trainer model-index: - name: distilbert-base-nepali results: [] widget: - text: "मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।" example_title: "Example 1" - text: "अचेल विद्यालय र कलेजहरूले स्मारिका कत्तिको प्रकाशन गर्छन्, यकिन छैन । केही वर्षपहिलेसम्म गाउँसहरका सानाठूला <mask> संस्थाहरूमा पुग्दा शिक्षक वा कर्मचारीले संस्थाबाट प्रकाशित पत्रिका, स्मारिका र पुस्तक कोसेलीका रूपमा थमाउँथे ।" example_title: "Example 2" - text: "जलविद्युत् विकासको ११० वर्षको इतिहास बनाएको नेपालमा हाल सरकारी र निजी क्षेत्रबाट गरी करिब २ हजार मेगावाट <mask> उत्पादन भइरहेको छ ।" example_title: "Example 3" --- # distilbert-base-nepali This model is pre-trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset consisting of over 13 million Nepali text sequences using a masked language modeling (MLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to [XLM-ROBERTa](https://arxiv.org/abs/1911.02116) and trains [distilbert model](https://arxiv.org/abs/1910.01108) for language modeling. It achieves the following results on the evaluation set: mlm probability|evaluation loss|evaluation perplexity --:|----:|-----:| 15%|2.349|10.479| 20%|2.605|13.351| ## Model description Refer to original [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) ## Intended uses & limitations This backbone model intends to be fine-tuned on Nepali language focused downstream task such as sequence classification, token classification or question answering. The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences. ## Usage This model can be used directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Sakonii/distilbert-base-nepali') >>> unmasker("मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।") [{'score': 0.04128897562623024, 'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, मौसम, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', 'token': 2605, 'token_str': 'मौसम'}, {'score': 0.04100276157259941, 'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, प्रकृति, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', 'token': 2792, 'token_str': 'प्रकृति'}, {'score': 0.026525357738137245, 'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, पानी, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', 'token': 387, 'token_str': 'पानी'}, {'score': 0.02340106852352619, 'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, जल, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', 'token': 1313, 'token_str': 'जल'}, {'score': 0.02055591531097889, 'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, वातावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।', 'token': 790, 'token_str': 'वातावरण'}] ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('Sakonii/distilbert-base-nepali') model = AutoModelForMaskedLM.from_pretrained('Sakonii/distilbert-base-nepali') # prepare input text = "चाहिएको text यता राख्नु होला।" encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ## Training data This model is trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) language modeling dataset which combines the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia. As for training the language model, the texts in the training set are grouped to a block of 512 tokens. ## Tokenization A Sentence Piece Model (SPM) is trained on a subset of [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset for text tokenization. The tokenizer trained with vocab-size=24576, min-frequency=4, limit-alphabet=1000 and model-max-length=512. ## Training procedure The model is trained with the same configuration as the original [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased); 512 tokens per instance, 28 instances per batch, and around 35.7K training steps. ### Training hyperparameters The following hyperparameters were used for training of the final epoch: [ Refer to the *Training results* table below for varying hyperparameters every epoch ] - learning_rate: 5e-05 - train_batch_size: 28 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results The model is trained for 4 epochs with varying hyperparameters: | Training Loss | Epoch | MLM Probability | Train Batch Size | Step | Validation Loss | Perplexity | |:-------------:|:-----:|:---------------:|:----------------:|:-----:|:---------------:|:----------:| | 3.4477 | 1.0 | 15 | 26 | 38864 | 3.3067 | 27.2949 | | 2.9451 | 2.0 | 15 | 28 | 35715 | 2.8238 | 16.8407 | | 2.866 | 3.0 | 20 | 28 | 35715 | 2.7431 | 15.5351 | | 2.7287 | 4.0 | 20 | 28 | 35715 | 2.6053 | 13.5353 | | 2.6412 | 5.0 | 20 | 28 | 35715 | 2.5161 | 12.3802 | Final model evaluated with MLM Probability of 15%: | Training Loss | Epoch | MLM Probability | Train Batch Size | Step | Validation Loss | Perplexity | |:-------------:|:-----:|:---------------:|:----------------:|:-----:|:---------------:|:----------:| | - | - | 15 | - | - | 2.3494 | 10.4791 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
Salesforce/qaconv-unifiedqa-t5-large
cfd08ce057a509a850fe14089ea828bc5e19c1d9
2021-06-23T10:18:29.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Salesforce
null
Salesforce/qaconv-unifiedqa-t5-large
27
null
transformers
7,420
Entry not found
Tsubasaz/clinical-bert-base-128
10c960ca02dfaf6a4193506555adbe79f3ea7150
2022-02-21T11:31:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Tsubasaz
null
Tsubasaz/clinical-bert-base-128
27
null
transformers
7,421
Entry not found
antoiloui/netbert
61624e3baf1b266be5b09c29948386f5c907cb6e
2021-05-18T23:44:04.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
antoiloui
null
antoiloui/netbert
27
null
transformers
7,422
--- language: - en license: - mit widget: - text: "The nodes of a computer network may include [MASK]." --- # NetBERT 📶 **A BERT-base model pre-trained on a huge corpus of computer networking text (~23Gb)**. ## Usage You can use NetBERT with [🤗 transformers](https://github.com/huggingface/transformers): ```python import torch from transformers import BertTokenizer, BertForMaskedLM # Load pretrained model and tokenizer model = BertForMaskedLM.from_pretrained("antoiloui/netbert") tokenizer = BertTokenizer.from_pretrained("antoiloui/netbert") ``` ## Documentation Detailed documentation on the pre-trained model, its implementation, and the data can be found [here](https://github.com/antoiloui/netbert/blob/master/docs/index.md). ## Citation For attribution in academic contexts, please cite this work as: ``` @mastersthesis{louis2020netbert, title={NetBERT: A Pre-trained Language Representation Model for Computer Networking}, author={Louis, Antoine}, year={2020}, school={University of Liege} } ```
boychaboy/SNLI_roberta-base
7c713cc2acbb5c9650fe40582b16a2b100f54ab6
2021-05-20T14:36:00.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/SNLI_roberta-base
27
null
transformers
7,423
Entry not found
cahya/bert-base-indonesian-tydiqa
6f300216201f1b4942633329b0ba5e7511dfe61e
2021-05-19T13:41:43.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
cahya
null
cahya/bert-base-indonesian-tydiqa
27
null
transformers
7,424
Entry not found
cointegrated/rubert-base-lesha17-punctuation
eb42c9c9b3d20885594e19b11171af21aa54ec9d
2021-11-15T07:36:53.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cointegrated
null
cointegrated/rubert-base-lesha17-punctuation
27
1
transformers
7,425
The model for https://github.com/Lesha17/Punctuation; all credits go to the owner of this repository.
facebook/convnext-large-224-22k-1k
3f11dd4165e438cea1d06e923416fc7c29917d05
2022-02-26T12:21:11.000Z
[ "pytorch", "tf", "convnext", "image-classification", "dataset:imagenet-21k", "arxiv:2201.03545", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/convnext-large-224-22k-1k
27
null
transformers
7,426
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (large-sized model) ConvNeXT model pre-trained on ImageNet-22k and fine-tuned on ImageNet-1k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-large-224-22k-1k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-large-224-22k-1k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1k ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
facebook/wav2vec2-base-fr-voxpopuli
93a9c011832d9559627bd4402fd7740ca966626d
2021-07-06T01:54:24.000Z
[ "pytorch", "wav2vec2", "pretraining", "fr", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-fr-voxpopuli
27
null
transformers
7,427
--- language: fr tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the fr unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
flax-community/roberta-base-mr
64d2c745f264f09c3d5b678a718746b2613887db
2021-07-17T15:30:40.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "arxiv:1907.11692", "transformers", "autotrain_compatible" ]
fill-mask
false
flax-community
null
flax-community/roberta-base-mr
27
1
transformers
7,428
--- widget: - text: "अध्यक्ष <mask> पवार आणि उपमुख्यमंत्री अजित पवार यांची भेट घेतली." - text: "मोठी बातमी! उद्या दुपारी <mask> वाजता जाहीर होणार दहावीचा निकाल" --- # RoBERTa base model for Marathi language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa was introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). We trained RoBERTa model for Marathi Language during community week hosted by Huggingface 🤗 using JAX/Flax for NLP & CV jax. <img src="https://user-images.githubusercontent.com/15062408/126040902-ea8808db-ec30-4a3f-bf95-5d3b10d674e9.png" alt="huggingface-marathi-roberta" width="350" height="350" style="text-align: center"> ## Model description Marathi RoBERTa is a transformers model pretrained on a large corpus of Marathi data in a self-supervised fashion. ## Intended uses & limitations❗️ You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. We used this model to fine tune on text classification task for iNLTK and indicNLP news text classification problem statement. Since marathi mc4 dataset is made by scraping marathi newspapers text, it will involve some biases which will also affect all fine-tuned versions of this model. ### How to use❓ You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='flax-community/roberta-base-mr') >>> unmasker("मोठी बातमी! उद्या दुपारी <mask> वाजता जाहीर होणार दहावीचा निकाल") [{'score': 0.057209037244319916,'sequence': 'मोठी बातमी! उद्या दुपारी आठ वाजता जाहीर होणार दहावीचा निकाल', 'token': 2226, 'token_str': 'आठ'}, {'score': 0.02796074189245701, 'sequence': 'मोठी बातमी! उद्या दुपारी २० वाजता जाहीर होणार दहावीचा निकाल', 'token': 987, 'token_str': '२०'}, {'score': 0.017235398292541504, 'sequence': 'मोठी बातमी! उद्या दुपारी नऊ वाजता जाहीर होणार दहावीचा निकाल', 'token': 4080, 'token_str': 'नऊ'}, {'score': 0.01691395975649357, 'sequence': 'मोठी बातमी! उद्या दुपारी २१ वाजता जाहीर होणार दहावीचा निकाल', 'token': 1944, 'token_str': '२१'}, {'score': 0.016252165660262108, 'sequence': 'मोठी बातमी! उद्या दुपारी ३ वाजता जाहीर होणार दहावीचा निकाल', 'token': 549, 'token_str': ' ३'}] ``` ## Training data 🏋🏻‍♂️ The RoBERTa Marathi model was pretrained on `mr` dataset of C4 multilingual dataset: <br> <br> [C4 (Colossal Clean Crawled Corpus)](https://yknzhu.wixsite.com/mbweb), Introduced by Raffel et al. in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning). The dataset can be downloaded in a pre-processed form from [allennlp](https://github.com/allenai/allennlp/discussions/5056) or huggingface's datsets - [mc4 dataset](https://huggingface.co/datasets/mc4). Marathi (`mr`) dataset consists of 14 billion tokens, 7.8 million docs and with weight ~70 GB of text. ## Data Cleaning 🧹 Though initial `mc4` marathi corpus size ~70 GB, Through data exploration, it was observed it contains docs from different languages especially thai, chinese etc. So we had to clean the dataset before traning tokenizer and model. Surprisingly, results after cleaning Marathi mc4 corpus data: #### **Train set:** Clean docs count 1581396 out of 7774331. <br> **~20.34%** of whole marathi train split is actually Marathi. #### **Validation set** Clean docs count 1700 out of 7928. <br> **~19.90%** of whole marathi validation split is actually Marathi. ## Training procedure 👨🏻‍💻 ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on Google Cloud Engine TPUv3-8 machine (with 335 GB of RAM, 1000 GB of hard drive, 96 CPU cores) **8 v3 TPU cores** for 42K steps with a batch size of 128 and a sequence length of 128. The optimizer used is Adam with a learning rate of 3e-4, β1 = 0.9, β2 = 0.98 and ε = 1e-8, a weight decay of 0.01, learning rate warmup for 1,000 steps and linear decay of the learning rate after. We tracked experiments and hyperparameter tunning on weights and biases platform. Here is link to main dashboard: <br> [Link to Weights and Biases Dashboard for Marathi RoBERTa model](https://wandb.ai/nipunsadvilkar/roberta-base-mr/runs/19qtskbg?workspace=user-nipunsadvilkar) #### **Pretraining Results 📊** RoBERTa Model reached **eval accuracy of 85.28%** around ~35K step **with train loss at 0.6507 and eval loss at 0.6219**. ## Fine Tuning on downstream tasks We performed fine-tuning on downstream tasks. We used following datasets for classification: 1. [IndicNLP Marathi news classification](https://github.com/ai4bharat-indicnlp/indicnlp_corpus#publicly-available-classification-datasets) 2. [iNLTK Marathi news headline classification](https://www.kaggle.com/disisbig/marathi-news-dataset) ### **Fine tuning on downstream task results (Segregated)** #### 1. [IndicNLP Marathi news classification](https://github.com/ai4bharat-indicnlp/indicnlp_corpus#publicly-available-classification-datasets) IndicNLP Marathi news dataset consists 3 classes - `['lifestyle', 'entertainment', 'sports']` - with following docs distribution as per classes: | train | eval | test | -- | -- | -- | 9672 | 477 | 478 💯 Our Marathi RoBERTa **`roberta-base-mr` model outperformed both classifier ** mentioned in [Arora, G. (2020). iNLTK](https://www.semanticscholar.org/paper/iNLTK%3A-Natural-Language-Toolkit-for-Indic-Languages-Arora/5039ed9e100d3a1cbbc25a02c82f6ee181609e83/figure/3) and [Kunchukuttan, Anoop et al. AI4Bharat-IndicNLP.](https://www.semanticscholar.org/paper/AI4Bharat-IndicNLP-Corpus%3A-Monolingual-Corpora-and-Kunchukuttan-Kakwani/7997d432925aff0ba05497d2893c09918298ca55/figure/4) Dataset | FT-W | FT-WC | INLP | iNLTK | **roberta-base-mr 🏆** -- | -- | -- | -- | -- | -- iNLTK Headlines | 83.06 | 81.65 | 89.92 | 92.4 | **97.48** **🤗 Huggingface Model hub repo:**<br> `roberta-base-mr` fine tuned on iNLTK Headlines classification dataset model: [**`flax-community/mr-indicnlp-classifier`**](https://huggingface.co/flax-community/mr-indicnlp-classifier) 🧪 Fine tuning experiment's weight and biases dashboard [link](https://wandb.ai/nipunsadvilkar/huggingface/runs/1242bike?workspace=user-nipunsadvilkar ) #### 2. [iNLTK Marathi news headline classification](https://www.kaggle.com/disisbig/marathi-news-dataset) This dataset consists 3 classes - `['state', 'entertainment', 'sports']` - with following docs distribution as per classes: | train | eval | test | -- | -- | -- | 9658 | 1210 | 1210 💯 Here as well **`roberta-base-mr` outperformed `iNLTK` marathi news text classifier**. Dataset | iNLTK ULMFiT | **roberta-base-mr 🏆** -- | -- | -- iNLTK news dataset (kaggle) | 92.4 | **94.21** **🤗 Huggingface Model hub repo:**<br> `roberta-base-mr` fine tuned on iNLTK news classification dataset model: [**`flax-community/mr-inltk-classifier`**](https://huggingface.co/flax-community/mr-inltk-classifier) Fine tuning experiment's weight and biases dashboard [link](https://wandb.ai/nipunsadvilkar/huggingface/runs/2u5l9hon?workspace=user-nipunsadvilkar ) ## **Want to check how above models generalise on real world Marathi data?** Head to 🤗 Huggingface's spaces 🪐 to play with all three models: 1. Mask Language Modelling with Pretrained Marathi RoBERTa model: <br> [**`flax-community/roberta-base-mr`**](https://huggingface.co/flax-community/roberta-base-mr) 2. Marathi Headline classifier: <br> [**`flax-community/mr-indicnlp-classifier`**](https://huggingface.co/flax-community/mr-indicnlp-classifier) 3. Marathi news classifier: <br> [**`flax-community/mr-inltk-classifier`**](https://huggingface.co/flax-community/mr-inltk-classifier) ![alt text](https://huggingface.co/docs/assets/hub/icon-space.svg) [Streamlit app of Pretrained Roberta Marathi model on Huggingface Spaces](https://huggingface.co/spaces/flax-community/roberta-base-mr) ![image](https://user-images.githubusercontent.com/15062408/126040832-f5723875-b70f-4e2e-93ad-213ddbe6180d.png) ## Team Members - Nipun Sadvilkar [@nipunsadvilkar](https://github.com/nipunsadvilkar) - Haswanth Aekula [@hassiahk](https://github.com/hassiahk) ## Credits Huge thanks to Huggingface 🤗 & Google Jax/Flax team for such a wonderful community week. Especially for providing such massive computing resource. Big thanks to [@patil-suraj](https://github.com/patil-suraj) & [@patrickvonplaten](https://github.com/patrickvonplaten) for mentoring during whole week. <img src=https://pbs.twimg.com/media/E443fPjX0AY1BsR.jpg:large>
genggui001/chinese_roberta_wwm_large_ext_fix_mlm
9fbeb205b3d1a5c522b6d9e2243f7eb485689dee
2021-11-05T08:28:59.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
genggui001
null
genggui001/chinese_roberta_wwm_large_ext_fix_mlm
27
1
transformers
7,429
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese BERT with Whole Word Masking Fix MLM Parameters Init parameters by https://huggingface.co/hfl/chinese-roberta-wwm-ext-large miss mlm parameters issue https://github.com/ymcui/Chinese-BERT-wwm/issues/98 Only train MLM parameters and freeze other parameters More info in github https://github.com/genggui001/chinese_roberta_wwm_large_ext_fix_mlm
gurkan08/turkish-product-comment-sentiment-classification
5ad35337c1346b6389f59084a615c04333ac2bff
2021-05-19T17:53:17.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
gurkan08
null
gurkan08/turkish-product-comment-sentiment-classification
27
null
transformers
7,430
Entry not found
howey/electra-large-sst2
1503cf43cc086149796684ba6e266b0c4e4907d2
2021-06-04T06:39:18.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-sst2
27
null
transformers
7,431
Entry not found
howey/roberta-large-cola
6ab505e7ac0d09b6034435a0147ab5a6c0d4a7e4
2021-06-03T11:38:38.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/roberta-large-cola
27
null
transformers
7,432
Entry not found
huggingtweets/footy_headlines
eb647fbe208daba06c955aacff45932a5a42fb3b
2021-05-22T04:25:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/footy_headlines
27
null
transformers
7,433
--- language: en thumbnail: https://www.huggingtweets.com/footy_headlines/1606774412916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/913057066243231744/3pa5pBzl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Footy Headlines 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@footy_headlines bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@footy_headlines's tweets](https://twitter.com/footy_headlines). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3215</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>20</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>505</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2690</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35awxvyw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @footy_headlines's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tc1ld77) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tc1ld77/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/footy_headlines'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/visualizevalue
94506966acee36155d2386888bfd4ba3e47625f2
2021-05-23T04:00:21.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/visualizevalue
27
null
transformers
7,434
--- language: en thumbnail: https://www.huggingtweets.com/visualizevalue/1601837796274/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287562748562309122/4RLk5A_U_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Visualize Value 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@visualizevalue bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@visualizevalue's tweets](https://twitter.com/visualizevalue). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1000</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>132</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>331</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>537</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/f2olvyds/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @visualizevalue's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1rm01ie6) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1rm01ie6/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/visualizevalue'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
ivanlau/wav2vec2-large-xls-r-300m-cantonese
7410716ea687c66aeb39b9329f475c90686495ed
2022-03-23T18:26:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "zh-HK", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ivanlau
null
ivanlau/wav2vec2-large-xls-r-300m-cantonese
27
1
transformers
7,435
--- language: - zh-HK license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - zh-HK datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Chinese_HongKong (Cantonese) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test WER type: wer value: 0.8111349803079126 - name: Test CER type: cer value: 0.21962250882996914 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 0.6160564326503191 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test WER with LM type: wer value: 0.8055853920515574 - name: Test CER with LM type: cer value: 0.21578686612008757 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test WER with LM type: wer value: 1.0012453300124533 - name: Test CER with LM type: cer value: 0.6153006382264025 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 61.55 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ZH-HK dataset. It achieves the following results on the evaluation set: - Loss: 1.4848 - Wer: 0.8004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.0 | 183 | 47.8442 | 1.0 | | No log | 2.0 | 366 | 6.3109 | 1.0 | | 41.8902 | 3.0 | 549 | 6.2392 | 1.0 | | 41.8902 | 4.0 | 732 | 5.9739 | 1.1123 | | 41.8902 | 5.0 | 915 | 4.9014 | 1.9474 | | 5.5817 | 6.0 | 1098 | 3.9892 | 1.0188 | | 5.5817 | 7.0 | 1281 | 3.5080 | 1.0104 | | 5.5817 | 8.0 | 1464 | 3.0797 | 0.9905 | | 3.5579 | 9.0 | 1647 | 2.8111 | 0.9836 | | 3.5579 | 10.0 | 1830 | 2.6726 | 0.9815 | | 2.7771 | 11.0 | 2013 | 2.7177 | 0.9809 | | 2.7771 | 12.0 | 2196 | 2.3582 | 0.9692 | | 2.7771 | 13.0 | 2379 | 2.1708 | 0.9757 | | 2.3488 | 14.0 | 2562 | 2.0491 | 0.9526 | | 2.3488 | 15.0 | 2745 | 1.8518 | 0.9378 | | 2.3488 | 16.0 | 2928 | 1.6845 | 0.9286 | | 1.7859 | 17.0 | 3111 | 1.6412 | 0.9280 | | 1.7859 | 18.0 | 3294 | 1.5488 | 0.9035 | | 1.7859 | 19.0 | 3477 | 1.4546 | 0.9010 | | 1.3898 | 20.0 | 3660 | 1.5147 | 0.9201 | | 1.3898 | 21.0 | 3843 | 1.4467 | 0.8959 | | 1.1291 | 22.0 | 4026 | 1.4743 | 0.9035 | | 1.1291 | 23.0 | 4209 | 1.3827 | 0.8762 | | 1.1291 | 24.0 | 4392 | 1.3437 | 0.8792 | | 0.8993 | 25.0 | 4575 | 1.2895 | 0.8577 | | 0.8993 | 26.0 | 4758 | 1.2928 | 0.8558 | | 0.8993 | 27.0 | 4941 | 1.2947 | 0.9163 | | 0.6298 | 28.0 | 5124 | 1.3151 | 0.8738 | | 0.6298 | 29.0 | 5307 | 1.2972 | 0.8514 | | 0.6298 | 30.0 | 5490 | 1.3030 | 0.8432 | | 0.4757 | 31.0 | 5673 | 1.3264 | 0.8364 | | 0.4757 | 32.0 | 5856 | 1.3131 | 0.8421 | | 0.3735 | 33.0 | 6039 | 1.3457 | 0.8588 | | 0.3735 | 34.0 | 6222 | 1.3450 | 0.8473 | | 0.3735 | 35.0 | 6405 | 1.3452 | 0.9218 | | 0.3253 | 36.0 | 6588 | 1.3754 | 0.8397 | | 0.3253 | 37.0 | 6771 | 1.3554 | 0.8353 | | 0.3253 | 38.0 | 6954 | 1.3532 | 0.8312 | | 0.2816 | 39.0 | 7137 | 1.3694 | 0.8345 | | 0.2816 | 40.0 | 7320 | 1.3953 | 0.8296 | | 0.2397 | 41.0 | 7503 | 1.3858 | 0.8293 | | 0.2397 | 42.0 | 7686 | 1.3959 | 0.8402 | | 0.2397 | 43.0 | 7869 | 1.4350 | 0.9318 | | 0.2084 | 44.0 | 8052 | 1.4004 | 0.8806 | | 0.2084 | 45.0 | 8235 | 1.3871 | 0.8255 | | 0.2084 | 46.0 | 8418 | 1.4060 | 0.8252 | | 0.1853 | 47.0 | 8601 | 1.3992 | 0.8501 | | 0.1853 | 48.0 | 8784 | 1.4186 | 0.8252 | | 0.1853 | 49.0 | 8967 | 1.4120 | 0.8165 | | 0.1671 | 50.0 | 9150 | 1.4166 | 0.8214 | | 0.1671 | 51.0 | 9333 | 1.4411 | 0.8501 | | 0.1513 | 52.0 | 9516 | 1.4692 | 0.8394 | | 0.1513 | 53.0 | 9699 | 1.4640 | 0.8391 | | 0.1513 | 54.0 | 9882 | 1.4501 | 0.8419 | | 0.133 | 55.0 | 10065 | 1.4134 | 0.8351 | | 0.133 | 56.0 | 10248 | 1.4593 | 0.8405 | | 0.133 | 57.0 | 10431 | 1.4560 | 0.8389 | | 0.1198 | 58.0 | 10614 | 1.4734 | 0.8334 | | 0.1198 | 59.0 | 10797 | 1.4649 | 0.8318 | | 0.1198 | 60.0 | 10980 | 1.4659 | 0.8100 | | 0.1109 | 61.0 | 11163 | 1.4784 | 0.8119 | | 0.1109 | 62.0 | 11346 | 1.4938 | 0.8149 | | 0.1063 | 63.0 | 11529 | 1.5050 | 0.8152 | | 0.1063 | 64.0 | 11712 | 1.4773 | 0.8176 | | 0.1063 | 65.0 | 11895 | 1.4836 | 0.8261 | | 0.0966 | 66.0 | 12078 | 1.4979 | 0.8157 | | 0.0966 | 67.0 | 12261 | 1.4603 | 0.8048 | | 0.0966 | 68.0 | 12444 | 1.4803 | 0.8127 | | 0.0867 | 69.0 | 12627 | 1.4974 | 0.8130 | | 0.0867 | 70.0 | 12810 | 1.4721 | 0.8078 | | 0.0867 | 71.0 | 12993 | 1.4644 | 0.8192 | | 0.0827 | 72.0 | 13176 | 1.4835 | 0.8138 | | 0.0827 | 73.0 | 13359 | 1.4934 | 0.8122 | | 0.0734 | 74.0 | 13542 | 1.4951 | 0.8062 | | 0.0734 | 75.0 | 13725 | 1.4908 | 0.8070 | | 0.0734 | 76.0 | 13908 | 1.4876 | 0.8124 | | 0.0664 | 77.0 | 14091 | 1.4934 | 0.8053 | | 0.0664 | 78.0 | 14274 | 1.4603 | 0.8048 | | 0.0664 | 79.0 | 14457 | 1.4732 | 0.8073 | | 0.0602 | 80.0 | 14640 | 1.4925 | 0.8078 | | 0.0602 | 81.0 | 14823 | 1.4812 | 0.8064 | | 0.057 | 82.0 | 15006 | 1.4950 | 0.8013 | | 0.057 | 83.0 | 15189 | 1.4785 | 0.8056 | | 0.057 | 84.0 | 15372 | 1.4856 | 0.7993 | | 0.0517 | 85.0 | 15555 | 1.4755 | 0.8034 | | 0.0517 | 86.0 | 15738 | 1.4813 | 0.8034 | | 0.0517 | 87.0 | 15921 | 1.4966 | 0.8048 | | 0.0468 | 88.0 | 16104 | 1.4883 | 0.8002 | | 0.0468 | 89.0 | 16287 | 1.4746 | 0.8023 | | 0.0468 | 90.0 | 16470 | 1.4697 | 0.7974 | | 0.0426 | 91.0 | 16653 | 1.4775 | 0.8004 | | 0.0426 | 92.0 | 16836 | 1.4852 | 0.8023 | | 0.0387 | 93.0 | 17019 | 1.4868 | 0.8004 | | 0.0387 | 94.0 | 17202 | 1.4785 | 0.8021 | | 0.0387 | 95.0 | 17385 | 1.4892 | 0.8015 | | 0.0359 | 96.0 | 17568 | 1.4862 | 0.8018 | | 0.0359 | 97.0 | 17751 | 1.4851 | 0.8007 | | 0.0359 | 98.0 | 17934 | 1.4846 | 0.7999 | | 0.0347 | 99.0 | 18117 | 1.4852 | 0.7993 | | 0.0347 | 100.0 | 18300 | 1.4848 | 0.8004 | #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id ivanlau/wav2vec2-large-xls-r-300m-cantonese --dataset mozilla-foundation/common_voice_8_0 --config zh-HK --split test --log_outputs ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id ivanlau/wav2vec2-large-xls-r-300m-cantonese --dataset speech-recognition-community-v2/dev_data --config zh-HK --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
kuppuluri/telugu_bertu_pos
6013732101026333f2622a09fc9cf50d9ff86669
2021-12-02T18:15:36.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kuppuluri
null
kuppuluri/telugu_bertu_pos
27
null
transformers
7,436
# Part of Speech tagging Model for Telugu #### How to use Use the below script from your python terminal as the web interface for inference has few encoding issues for Telugu PS: If you find my model useful, I would appreciate a note from you as it would encourage me to continue improving it and also add new models. ```python from simpletransformers.ner import NERModel model = NERModel('bert', 'kuppuluri/telugu_bertu_pos', args={"use_multiprocessing": False}, labels=[ 'QC', 'JJ', 'NN', 'QF', 'RDP', 'O', 'NNO', 'PRP', 'RP', 'VM', 'WQ', 'PSP', 'UT', 'CC', 'INTF', 'SYMP', 'NNP', 'INJ', 'SYM', 'CL', 'QO', 'DEM', 'RB', 'NST', ], use_cuda=False) text = "విరాట్ కోహ్లీ కూడా అదే నిర్లక్ష్యాన్ని ప్రదర్శించి కేవలం ఒక పరుగుకే రనౌటై పెవిలియన్ చేరాడు ." results = model.predict([text]) ``` ## Training data Training data is from https://github.com/anikethjr/NER_Telugu ## Eval results On the test set my results were eval_loss = 0.0036797842364565416 f1_score = 0.9983795127912227 precision = 0.9984325602401637 recall = 0.9983264709788816
liam168/chat-DialoGPT-small-en
6bbc984a0d393397284e0fa9981fbfe8ff5f32e9
2021-08-03T10:25:14.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "license:apache-2.0" ]
text-generation
false
liam168
null
liam168/chat-DialoGPT-small-en
27
null
transformers
7,437
--- language: en widget: - text: "I got a surprise for you, Morty." license: apache-2.0 --- # liam168/chat-DialoGPT-small-en ## Model description 用英文聊天数据训练的模型; ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch mode_name = 'liam168/chat-DialoGPT-small-en' tokenizer = AutoTokenizer.from_pretrained(mode_name) model = AutoModelForCausalLM.from_pretrained(mode_name) # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("Answer: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
ml6team/gpt2-small-dutch-finetune-oscar
5fc680102b653316458392529a84c38f547a2840
2021-05-23T09:47:18.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "nl", "transformers", "adaption", "recycled", "gpt2-small" ]
text-generation
false
ml6team
null
ml6team/gpt2-small-dutch-finetune-oscar
27
6
transformers
7,438
--- language: nl widget: - text: "De regering heeft beslist dat" tags: - adaption - recycled - gpt2-small pipeline_tag: text-generation --- # Dutch finetuned GPT2
mmcquade11/reviews-sentiment-analysis-two
da35de328541eb143c83f51edb901609d84f6d61
2021-12-02T17:31:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
mmcquade11
null
mmcquade11/reviews-sentiment-analysis-two
27
null
transformers
7,439
Entry not found
mmm-da/anekdot_funny1_rugpt3Small
3ea216a3b11bdedf33dac080a455de7190766e66
2021-05-23T09:49:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mmm-da
null
mmm-da/anekdot_funny1_rugpt3Small
27
null
transformers
7,440
Entry not found
murathankurfali/bert-large-uncased-pdtb2-explicit-four-way
789a54af5f0f25c086b5cdc311de6ec57c7ce902
2021-07-01T19:47:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
murathankurfali
null
murathankurfali/bert-large-uncased-pdtb2-explicit-four-way
27
null
transformers
7,441
Entry not found
nateraw/timm-resnet50-beans
5fab928ecf08198e592f4b893465eae8dcbe0230
2021-09-07T17:21:50.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/timm-resnet50-beans
27
1
timm
7,442
--- tags: - image-classification - timm library_tag: timm --- # Model card for `timm-resnet50-beans` **TODO** **For now, try dragging and dropping this image into the inference widget. It should classify as angular_leaf_spot.** ![leaf_example](angular_leaf_spot_train.304.jpg)
navteca/quora-roberta-large
6c13fabe049c2f14a94e56a588523036e4680a14
2021-03-10T14:57:04.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "dataset:quora", "transformers", "license:mit" ]
text-classification
false
navteca
null
navteca/quora-roberta-large
27
null
transformers
7,443
--- datasets: - quora language: en license: mit pipeline_tag: text-classification tags: - roberta - text-classification --- # Cross-Encoder for Quora Duplicate Questions Detection This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model uses [roberta-large](https://huggingface.co/roberta-large). ## Training Data This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1: How likely the two given questions are duplicates. Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions "How to learn Java" and "How to learn Python" will result in a rahter low score, as these are not duplicates. ## Usage and Performance The trained model can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name') scores = model.predict([('Question 1', 'Question 2'), ('Question 3', 'Question 4')]) print(scores) ```
peril10/Pypinion
060f2f2ed8cd5b9c8850079d5a9bfba7cbc52267
2021-05-20T19:26:01.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
peril10
null
peril10/Pypinion
27
null
transformers
7,444
Entry not found
persiannlp/mt5-large-parsinlu-squad-reading-comprehension
4563f098fcd8bd51bc25bf6b6a6a8bf77b62be62
2021-09-23T16:20:26.000Z
[ "pytorch", "mt5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "dataset:squad", "transformers", "reading-comprehension", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-large-parsinlu-squad-reading-comprehension
27
null
transformers
7,445
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - reading-comprehension - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - squad metrics: - f1 --- # Reading Comprehension (مدل برای پاسخ به درک مطلب) This is a mT5-based model for reading comprehension. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-squad-reading-comprehension" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(paragraph, question, **generator_args): input_ids = tokenizer.encode(question + "\n" + paragraph, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک شی را دارای تقارن می‌نامیم زمانی که ان شی را بتوان به دو یا چند قسمت تقسیم کرد که آن‌ها قسمتی از یک طرح سازمان یافته باشند یعنی بر روی شکل تنها جابجایی و چرخش و بازتاب و تجانس انجام شود و در اصل شکل تغییری به وجود نیایید آنگاه ان را تقارن می‌نامیم مرکز تقارن:اگر در یک شکل نقطه‌ای مانندA وجود داشته باشد که هر نقطهٔ روی شکل (محیط) نسبت به نقطه یAمتقارن یک نقطهٔ دیگر شکل (محیط) باشد، نقطهٔ Aمرکز تقارن است. یعنی هر نقطه روی شکل باید متقارنی داشته باشد شکل‌های که منتظم هستند و زوج ضلع دارند دارای مرکز تقارند ولی شکل‌های فرد ضلعی منتظم مرکز تقارن ندارند. متوازی‌الأضلاع و دایره یک مرکز تقارن دارند ممکن است یک شکل خط تقارن نداشته باشد ولی مرکز تقارن داشته باشد. (منبع:س. گ)", "اشکالی که یک مرکز تقارن دارند" ) run_model( "شُتُر یا اُشتر را که در زبان پهلوی (ushtar)[نیازمند منبع] می‌گفتند حیوانی است نیرومند و تنومند با توش و توان بالا از خانواده شتران؛ شبه نشخوارکننده و با دست و گردنی دراز. بر پشت خود یک یا دو کوهان دارد که ساختارش از پیه و چربی است. در دین اسلام گوشت او حلال است. اما ذبح آن با دیگر جانوران حلال گوشت متفاوت است و آن را نحر (بریدن گلو) می‌کنند و اگر سر آن را مانند گوسفند پیش از نحر ببرند گوشت آن حلال نیست. شیرش نیز نوشیده می‌شود ولی بیشتر کاربرد بارکشی دارد. پشم و پوستش نیز برای ریسندگی و پارچه‌بافی و کفش‌دوزی کاربرد دارد. گونه‌های دیگری از شتران نیز در آمریکای جنوبی زندگی می‌کنند، به نام‌های لاما، آلپاکا، گواناکو که دارای کوهان نیستند. شتر ویژگی‌های خاصّی دارد که مهم‌ترین آن‌ها تحمّل شرایط سخت صحرا و دماهای گوناگون و به‌ویژه گرمای شدید تابستان و کمبود آب و علوفه است. ترکیب جسمانی شتر با دیگر جانوران اختلاف زیادی دارد، و این اختلاف انگیزه شده که شتر در درازا روزهای سال در بیابان زندگی کند و از بوته‌ها و درختچه‌های گوناگون صحرایی و کویری و حتی از بوته‌های شور و خاردار تغذیه کند. عرب‌ها از زمان‌های بسیار دور از شتر استفاده کرده و می‌کنند. آن‌ها به این حیوان اهلی لقب کشتی صحرا (به عربی: سفینةالصحراء) داده‌اند.", "غذای شترچیست؟" ) run_model( """حسین میرزایی می‌گوید مرحله اول پرداخت وام حمایتی کرونا به همگی خانوارهای یارانه‌بگیر متقاضی تکمیل شده است و حال چهار میلیون خانوار که به عنوان "اقشار خاص" و "آسیب‌پذیر" شناسایی شدند، می‌توانند برای یک میلیون تومان وام دیگر درخواست بدهند. آقای میرزایی گفته خانوارهای "آسیب‌پذیر" که شرایط گرفتن وام یک میلیونی اضافی را دارند با پیامک از این امکان مطلع شده‌اند. بنا به گزارش‌های رسمی با شیوع کرونا در ایران یک میلیون نفر بیکار شده‌اند و درآمد کارکنان مشاغل غیررسمی نیز ضربه قابل توجهی خورده است. ارزش ریال هم در هفته‌های اخیر در برابر ارزهای خارجی سقوط کرده است. اقتصاد ایران پیش از شیوع کرونا نیز با مشکلات مزمن رکود، تورم، تحریم و فساد روبرو بود.""", "وام یارانه به چه کسانی میدهند؟" ) run_model( "در ۲۲ ژوئن ۱۹۴۱ نیروهای محور در عملیات بارباروسا حمله سنگینی به اتحاد شوروی کرده و یکی از بزرگترین نبردهای زمینی تاریخ بشر را رقم زدند. همچنین جبهه شرقی باعث به دام افتادن نیروهای محور شد و بیش از همه ارتش آلمان نازی را درگیر جنگ فرسایشی کرد. در دسامبر ۱۹۴۱ ژاپن یک در عملیاتی ناگهانی با نام نبرد پرل هاربر به پایگاه دریایی ایالات متحده آمریکا حمله کرد. به دنبال این اتفاق آمریکا نیز بلافاصله علیه ژاپن اعلان جنگ کرد که با حمایت بریتانیا همراه شد. پس از آن متحدین (نیروهای محور در اروپا) نیز با اتحاد ژاپن علیه آمریکا اعلام جنگ کردند. دست‌آوردهای ژاپن در یورش به آمریکا باعث ایجاد این احساس در آسیا شد که آسیا از تسلط غرب خارج شده‌است از این رو بسیاری از ارتش‌های شکست خورده با آنها همراهی کردند.", "چرا امریکا وارد جنگ جهانی دوم شد؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
rsedlr/RickBot
c7fad89f497874b323bd18131aa8f864574a3874
2021-08-12T08:26:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
rsedlr
null
rsedlr/RickBot
27
2
transformers
7,446
--- tags: - conversational --- # DialoGPT-small model trained on dialogue from Rick and Morty ### [Chat to me on Chai!](https://chai.ml/chat/share/_bot_de374c84-9598-4848-996b-736d0cc02f6b) Make your own Rick bot [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
s3h/gec-token-classification-arabert-v2
0fa4a65524bb1a23ba8463fd73a492c90789d090
2022-01-05T20:12:34.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
s3h
null
s3h/gec-token-classification-arabert-v2
27
null
transformers
7,447
Entry not found
sammy786/wav2vec2-xlsr-dhivehi
14770c37461b4ffdba3e95b2f2f83d67d414e3af
2022-03-24T11:58:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-dhivehi
27
null
transformers
7,448
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - dv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 26.91 - name: Test CER type: cer value: 4.02 --- # sammy786/wav2vec2-xlsr-dhivehi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - dv dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 14.86 - Wer: 29.32 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |-------|---------------|-----------------|----------| | 200 | 4.883800 | 3.190218 | 1.000000 | | 400 | 1.600100 | 0.497887 | 0.726159 | | 600 | 0.928500 | 0.358781 | 0.603892 | | 800 | 0.867900 | 0.309132 | 0.570786 | | 1000 | 0.743100 | 0.309116 | 0.552954 | | 1200 | 0.725100 | 0.266839 | 0.538378 | | 1400 | 0.786200 | 0.259797 | 0.535897 | | 1600 | 0.655700 | 0.245691 | 0.517290 | | 1800 | 0.650500 | 0.246957 | 0.516204 | | 2000 | 0.685500 | 0.234808 | 0.516204 | | 2200 | 0.487100 | 0.228409 | 0.507753 | | 2400 | 0.401300 | 0.221087 | 0.495968 | | 2600 | 0.359300 | 0.212476 | 0.489301 | | 2800 | 0.347300 | 0.204848 | 0.487750 | | 3000 | 0.327000 | 0.203163 | 0.478756 | | 3200 | 0.337100 | 0.210235 | 0.487595 | | 3400 | 0.308900 | 0.201471 | 0.491316 | | 3600 | 0.292600 | 0.192437 | 0.476120 | | 3800 | 0.289600 | 0.198398 | 0.468445 | | 4000 | 0.290200 | 0.193484 | 0.467204 | | 4200 | 0.272600 | 0.193999 | 0.470150 | | 4400 | 0.266700 | 0.187384 | 0.460769 | | 4600 | 0.253800 | 0.187279 | 0.476663 | | 4800 | 0.266400 | 0.197395 | 0.466817 | | 5000 | 0.258000 | 0.188920 | 0.456660 | | 5200 | 0.237200 | 0.180770 | 0.457358 | | 5400 | 0.237900 | 0.178149 | 0.448287 | | 5600 | 0.232600 | 0.179827 | 0.461002 | | 5800 | 0.228500 | 0.182142 | 0.445185 | | 6000 | 0.221000 | 0.173619 | 0.440688 | | 6200 | 0.219500 | 0.172291 | 0.442859 | | 6400 | 0.219400 | 0.173339 | 0.430609 | | 6600 | 0.201900 | 0.177552 | 0.426423 | | 6800 | 0.199000 | 0.173157 | 0.429834 | | 7000 | 0.200000 | 0.166503 | 0.423709 | | 7200 | 0.194600 | 0.171812 | 0.429834 | | 7400 | 0.192100 | 0.164989 | 0.420530 | | 7600 | 0.185000 | 0.168355 | 0.418825 | | 7800 | 0.175100 | 0.168128 | 0.419290 | | 8000 | 0.173500 | 0.167959 | 0.424950 | | 8200 | 0.172200 | 0.173643 | 0.414793 | | 8400 | 0.164200 | 0.167020 | 0.406342 | | 8600 | 0.170800 | 0.168050 | 0.405334 | | 8800 | 0.157900 | 0.164290 | 0.396573 | | 9000 | 0.159900 | 0.163188 | 0.397426 | | 9200 | 0.151700 | 0.164370 | 0.390991 | | 9400 | 0.146600 | 0.165053 | 0.392852 | | 9600 | 0.142200 | 0.164939 | 0.391844 | | 9800 | 0.148300 | 0.164422 | 0.385719 | | 10000 | 0.136200 | 0.166569 | 0.385951 | | 10200 | 0.140700 | 0.161377 | 0.379594 | | 10400 | 0.133300 | 0.165194 | 0.378276 | | 10600 | 0.131300 | 0.164328 | 0.369205 | | 10800 | 0.135500 | 0.160254 | 0.373236 | | 11000 | 0.121100 | 0.163522 | 0.372693 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-dhivehi --dataset mozilla-foundation/common_voice_8_0 --config dv --split test ```
speechbrain/REAL-M-sisnr-estimator
7308f2f4d0390ee68a31be850d685a323e891b01
2021-11-03T21:32:48.000Z
[ "en", "dataset:REAL-M", "dataset:WHAMR!", "arxiv:2110.10812", "arxiv:2106.04624", "speechbrain", "audio-source-separation", "Source Separation", "Speech Separation", "WHAM!", "REAL-M", "SepFormer", "Transformer", "pytorch", "license:apache-2.0" ]
null
false
speechbrain
null
speechbrain/REAL-M-sisnr-estimator
27
1
speechbrain
7,449
--- language: "en" thumbnail: tags: - audio-source-separation - Source Separation - Speech Separation - WHAM! - REAL-M - SepFormer - Transformer - pytorch - speechbrain license: "apache-2.0" datasets: - REAL-M - WHAMR! metrics: - SI-SNRi --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Neural SI-SNR Estimator The Neural SI-SNR Estimator predicts the scale-invariant signal-to-noise ratio (SI-SNR) from the separated signals and the original mixture. The performance estimation is blind (i.e., no targets signals are needed). This model allows a performance estimation on real mixtures, where the targets are not available. This repository provides the SI-SNR estimator model introduced for the REAL-M dataset. The REAL-M dataset can downloaded from [this link](https://sourceseparationresearch.com/static/REAL-M-v0.1.0.tar.gz). The paper for the REAL-M dataset can be found on [this arxiv link](https://arxiv.org/pdf/2110.10812.pdf). | Release | Test-Set (WHAMR!) average l1 error | |:---:|:---:| | 18-10-21 | 1.7 dB | ## Install SpeechBrain First of all, currently you need to install SpeechBrain from the source: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Minimal example for SI-SNR estimation ```python from speechbrain.pretrained import SepformerSeparation as separator from speechbrain.pretrained.interfaces import fetch from speechbrain.pretrained.interfaces import SNREstimator as snrest import torchaudio # 1- Download a test mixture fetch("test_mixture.wav", source="speechbrain/sepformer-wsj02mix", savedir=".", save_filename="test_mixture.wav") # 2- Separate the mixture with a pretrained model (sepformer-whamr in this case) model = separator.from_hparams(source="speechbrain/sepformer-whamr", savedir='pretrained_models/sepformer-whamr') est_sources = model.separate_file(path='test_mixture.wav') # 3- Estimate the performance snr_est_model = snrest.from_hparams(source="speechbrain/REAL-M-sisnr-estimator",savedir='pretrained_models/REAL-M-sisnr-estimator') mix, fs = torchaudio.load('test_mixture.wav') snrhat = snr_est_model.estimate_batch(mix, est_sources) print(snrhat) # Estimates are in dB / 10 (in the range 0-1, e.g., 0 --> 0dB, 1 --> 10dB) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (fc2eabb7). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/REAL-M/sisnr-estimation python train.py hparams/pool_sisnrestimator.yaml --data_folder /yourLibri2Mixpath --base_folder_dm /yourLibriSpeechpath --rir_path /yourpathforwhamrRIRs --dynamic_mixing True --use_whamr_train True --whamr_data_folder /yourpath/whamr --base_folder_dm_whamr /yourpath/wsj0-processed/si_tr_s ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1NGncbjvLeGfbUqmVi6ej-NH9YQn5vBmI). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` #### Referencing REAL-M ```bibtex @misc{subakan2021realm, title={REAL-M: Towards Speech Separation on Real Mixtures}, author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and François Grondin}, year={2021}, eprint={2110.10812}, archivePrefix={arXiv}, primaryClass={eess.AS} } ``` ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
sultan/BioM-ALBERT-xxlarge-SQuAD2
71d586c571c68eaad6e1c994b557a2b1643f7e1d
2021-08-10T21:59:59.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sultan
null
sultan/BioM-ALBERT-xxlarge-SQuAD2
27
null
transformers
7,450
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description This model is fine-tuned on the SQuAD2.0 dataset. Fine-tuning the biomedical language model on the SQuAD dataset helps improve the score on the BioASQ challenge. If you plan to work with BioASQ or biomedical QA tasks, it's better to use this model over BioM-ALBERT-xxlarge. This model (TensorFlow version ) took the lead in the BioASQ9b-Factoid challenge under the name of (UDEL-LAB1). If you want to try our Tensor Flow example and how to fine-tune ALBERT on SQuAD and BioASQ follow this link : https://github.com/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ALBERT_xxlarge_on_TPU.ipynb To see the full details of BioASQ9B results, please check this link http://participants-area.bioasq.org/results/9b/phaseB/ ( you need to register). Huggingface library doesn't implement the Layer-Wise decay feature, which affects the performance on the SQuAD task. The reported result of BioM-ALBERT-xxlarge-SQuAD in our paper is 87.00 (F1) since we use ALBERT open-source code with TF checkpoint, which uses Layer-Wise decay. Result with PyTorch and V100 GPU ``` ***** eval metrics ***** HasAns_exact = 77.6484 HasAns_f1 = 85.0136 HasAns_total = 5928 NoAns_exact = 86.577 NoAns_f1 = 86.577 NoAns_total = 5945 best_exact = 82.1191 best_exact_thresh = 0.0 best_f1 = 85.7964 best_f1_thresh = 0.0 eval_samples = 12551 exact = 82.1191 f1 = 85.7964 total = 11873 ``` To reproduce results in Google Colab: - Make sure you have GPU enabled. - Clone and install required libraries through this code !git clone https://github.com/huggingface/transformers !pip3 install -e transformers !pip3 install sentencepiece !pip3 install -r /content/transformers/examples/pytorch/question-answering/requirements.txt - Run this python code: ```python python /content/transformers/examples/pytorch/question-answering/run_qa.py --model_name_or_path BioM-ALBERT-xxlarge-SQuAD2 \ --do_eval \ --version_2_with_negative \ --per_device_eval_batch_size 8 \ --dataset_name squad_v2 \ --overwrite_output_dir \ --fp16 \ --output_dir out ``` You don't need to download the SQuAD2 dataset. The code will download it from the HuggingFace datasets hub. Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
sunhao666/chi-sum2
64c440c9492feeab310f49034427c35da46c209a
2021-05-20T04:01:09.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
sunhao666
null
sunhao666/chi-sum2
27
null
transformers
7,451
Entry not found
testing/autonlp-ingredient_sentiment_analysis-19126711
0e0b457a8d5a22c1801d966612513a68de076390
2021-11-04T15:54:28.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:testing/autonlp-data-ingredient_sentiment_analysis", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
testing
null
testing/autonlp-ingredient_sentiment_analysis-19126711
27
null
transformers
7,452
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - testing/autonlp-data-ingredient_sentiment_analysis co2_eq_emissions: 1.8458289701133035 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 19126711 - CO2 Emissions (in grams): 1.8458289701133035 ## Validation Metrics - Loss: 0.054593171924352646 - Accuracy: 0.9790668170284748 - Precision: 0.8029411764705883 - Recall: 0.6026490066225165 - F1: 0.6885245901639344 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/testing/autonlp-ingredient_sentiment_analysis-19126711 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("testing/autonlp-ingredient_sentiment_analysis-19126711", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("testing/autonlp-ingredient_sentiment_analysis-19126711", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
textattack/roberta-base-rotten_tomatoes
6cc7e32fb4fd5113a9b164cf045bda1fbb5c847f
2021-05-20T22:18:23.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
textattack
null
textattack/roberta-base-rotten_tomatoes
27
null
transformers
7,453
## roberta-base fine-tuned with TextAttack on the rotten_tomatoes dataset This `roberta-base` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 128, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9033771106941839, as measured by the eval set accuracy, found after 9 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-WNLI
7ae8ccdb868bfe9abbf9a558ab6f583145f4afd6
2020-07-06T16:34:15.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
textattack
null
textattack/xlnet-base-cased-WNLI
27
null
transformers
7,454
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 3e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5774647887323944, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
mitiku/AmharicWICPostag
8af009903b374642b1816ba76922ada07fa760d2
2022-03-20T10:10:58.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
mitiku
null
mitiku/AmharicWICPostag
27
null
transformers
7,455
--- tags: - generated_from_trainer model-index: - name: AmharicWICPostag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicWICPostag This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
abidlabs/speech-text
7f0faf15157695f3878372ae93381ae9c24ab662
2022-03-23T18:33:30.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "en", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "transformers", "audio", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
abidlabs
null
abidlabs/speech-text
27
null
transformers
7,456
--- language: en datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - en - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 English by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 19.06 - name: Test CER type: cer value: 7.69 - name: Test WER (+LM) type: wer value: 14.81 - name: Test CER (+LM) type: cer value: 6.84 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Dev WER type: wer value: 27.72 - name: Dev CER type: cer value: 11.65 - name: Dev WER (+LM) type: wer value: 20.85 - name: Dev CER (+LM) type: cer value: 11.01 --- # Wav2Vec2-Large-XLSR-53-English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL | | DO YOU MEAN IT? | DO YOU MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-xlsr-53-english, title={XLSR Wav2Vec2 English by Jonatas Grosman}, author={Grosman, Jonatas}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}}, year={2021} } ```
Ensheng/graphcodebert-v1
99020eb25b0e7c08f757fc3747b6e013ebdd82fe
2022-03-10T08:32:36.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ensheng
null
Ensheng/graphcodebert-v1
27
null
transformers
7,457
Entry not found
ai4bharat/MultiIndicQuestionGenerationSS
508601d8c29ba2b6165df2aca994863f0851320b
2022-05-23T17:19:03.000Z
[ "pytorch", "mbart", "text2text-generation", "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicQuestionGeneration", "dataset:squad", "arxiv:2203.05437", "transformers", "question-generation", "multilingual", "nlp", "indicnlp", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/MultiIndicQuestionGenerationSS
27
1
transformers
7,458
--- tags: - question-generation - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicQuestionGeneration - squad language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te licenses: - cc-by-nc-4.0 --- # MultiIndicQuestionGenerationSS MultiIndicQuestionGenerationSS is a multilingual, sequence-to-sequence pre-trained model, a [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details, see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationSS to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationSS are: <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li> <li> Fine-tuned on large Indic language corpora (770 K examples). </li> <li> Unlike ai4bharat/MultiIndicQuestionGenerationUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li> </ul> You can read more about MultiIndicQuestionGenerationSS in this <a href="https://arxiv.org/abs/2203.05437">paper</a>. ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # कब होगा पहला एएफएल गेम? ``` ## Benchmarks Scores on the `IndicQuestionGeneration` test sets are as follows: Language | RougeL ---------|---------------------------- as | 20.73 bn | 30.38 gu | 28.13 hi | 34.42 kn | 23.77 ml | 22.24 mr | 23.62 or | 27.53 pa | 32.53 ta | 23.49 te | 25.81 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ``` # License The model is available under the MIT License.
krinal214/xlm-all
700921a0c6c3609e8cfbc94ace7728a4f4415bdb
2022-03-16T13:01:05.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/xlm-all
27
null
transformers
7,459
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: xlm-all-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-all-final This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 0.6038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4483 | 1.0 | 3381 | 0.6038 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
Visual-Attention-Network/van-tiny
dda753ad7f885157a796d5347318a2244c33e4f3
2022-03-31T12:45:47.000Z
[ "pytorch", "van", "image-classification", "dataset:imagenet-1k", "arxiv:2202.09741", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
Visual-Attention-Network
null
Visual-Attention-Network/van-tiny
27
null
transformers
7,460
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
joangog/pwmfd-yolov5
2261475efc2ab2bd5193fc77a8b7f1e911e9d5de
2022-07-10T12:16:29.000Z
[ "pytorch", "tensorboard", "en", "dataset:pwmfd", "transformers", "yolov5" ]
null
false
joangog
null
joangog/pwmfd-yolov5
27
0
transformers
7,461
--- language: - en tags: - pytorch - yolov5 datasets: - pwmfd metrics: - coco --- Optimized YOLOv5 model trained on the PWMFD medical masks dataset using transfer learning from COCO with frozen backbone, data augmentations such as mosaic, and an input image size of 320 x 320. **Architecture:** [here](https://huggingface.co/joangog/pwmfd-yolov5/tensorboard?scroll=1#graphs&run=.) **AP:** - Evaluation from pycocotools: **67%** - Evaluation from yolov5 val.py script: **71%** **fps**: - Nvidia Geforce GTX960, 4 GB: **69 fps**
pere/multi-sentencefix-mt5-large
150fbd580463db2664022f879ef6cf3ade1acb3e
2022-06-08T17:06:33.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "no", "transformers", "translation", "license:cc-by-4.0", "autotrain_compatible" ]
translation
false
pere
null
pere/multi-sentencefix-mt5-large
27
2
transformers
7,462
--- language: no tags: - translation widget: - text: "moscow says deployments in eastern europe increase tensions at the same time nato says russia has moved troops to belarus" - text: "dette er en liten test som er laget av per egil kummervold han er en forsker som tidligere jobbet ved nasjonalbiblioteket" - text: "tirsdag var travel for ukrainas president volodymyr zelenskyj på morgenen tok han imot polens statsminister mateusz morawiecki" - text: "el presidente de estados unidos aprovecha su visita al país fronterizo con ucrania para reunirse con los ministros de defensa y exteriores en un encuentro con refugiados el mandatario calificó al líder ruso como carnicero " license: cc-by-4.0 --- # DeUnCaser The output from Automated Speak Recognition software is usually uncased and without any punctation. This does not make a very readable text. The DeUnCaser is a sequence-to-sequence model that is reversing this process. It adds punctation, and capitalises the correct words. In some languages this means adding capital letters at start of sentences and on all proper nouns, in other languages, like German, it means capitalising the first letter of all nouns. It will also make attempts at adding hyphens and parentheses if this is making the meaning clearer. It is using based on the multi-lingual T5 model. It is finetuned for 130,000 steps on a TPU v4-16 using T5X starting from the mT5.1.1 pretrained model. The finetuning scripts is based on up to 1,000,000 training examples (or as many as exists in OSCAR) from each of the 42 languages with Latin alphabet that is both part of OSCAR and the mT5 training set: Afrikaans, Albanian, Basque, Catalan, Cebuano, Czech, Danish, Dutch, English, Esperanto, Estonian, Finnish, French, Galician, German, Hungarian, Icelandic, Indonesian, Irish, Italian, Kurdish, Latin, Latvian, Lithuanian, Luxembourgish, Malagasy, Malay, Maltese, Norwegian Bokmål, Norwegian Nynorsk, Polish, Portuguese, Romanian, Slovak, Spanish, Swahili, Swedish, Turkish, Uzbek, Vietnamese, Welsh, West Frisian. A Notebook for creating the training corpus is available [here](https://colab.research.google.com/drive/1bkH94z-0wIQP8Pz0qXFndhoQsokU-78x?usp=sharing).
bipin/image-caption-generator
fb824de608c028d19bb71c4c43b335cab0f20219
2022-03-31T10:39:40.000Z
[ "pytorch", "vision-encoder-decoder", "transformers", "image-captioning", "image-to-text", "model-index" ]
image-to-text
false
bipin
null
bipin/image-caption-generator
27
2
transformers
7,463
--- tags: - image-captioning - image-to-text model-index: - name: image-caption-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-caption-generator This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2536 - eval_runtime: 25.369 - eval_samples_per_second: 63.818 - eval_steps_per_second: 8.002 - epoch: 4.0 - step: 3236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
hackathon-pln-es/Detect-Acoso-Twitter-Es
7a78841b3867be174e23a2bcac9e4cc3c393883c
2022-03-30T23:56:25.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "es", "dataset:hackathon-pln-es/Dataset-Acoso-Twitter-Es", "transformers", "generated_from_trainer", "acoso", "twitter", "cyberbullying", "license:apache-2.0", "model-index" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/Detect-Acoso-Twitter-Es
27
4
transformers
7,464
--- license: apache-2.0 language: "es" tags: - generated_from_trainer - es - text-classification - acoso - twitter - cyberbullying datasets: - hackathon-pln-es/Dataset-Acoso-Twitter-Es widget: - text: "Que horrible como la farándula chilena siempre se encargaba de dejar mal a las mujeres. Un asco" - text: "Hay que ser bien menestra para amenazar a una mujer con una llave de ruedas. Viendo como se viste no me queda ninguna duda" - text: "más centrados en tener una sociedad reprimida y sumisa que en estudiar y elaborar políticas de protección hacia las personas de mayor riesgo ante el virus." metrics: - accuracy model-index: - name: Detección de acoso en Twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Detección de acoso en Twitter Español This model is a fine-tuned version of [mrm8488/distilroberta-finetuned-tweets-hate-speech](https://huggingface.co/mrm8488/distilroberta-finetuned-tweets-hate-speech) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1628 - Accuracy: 0.9167 # UNL: Universidad Nacional de Loja ## Miembros del equipo: - Anderson Quizhpe <br> - Luis Negrón <br> - David Pacheco <br> - Bryan Requenes <br> - Paul Pasaca ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6732 | 1.0 | 27 | 0.3797 | 0.875 | | 0.5537 | 2.0 | 54 | 0.3242 | 0.9167 | | 0.5218 | 3.0 | 81 | 0.2879 | 0.9167 | | 0.509 | 4.0 | 108 | 0.2606 | 0.9167 | | 0.4196 | 5.0 | 135 | 0.1628 | 0.9167 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
McGill-NLP/bart-qg-mlquestions-backtraining
84305dbb0141149fba691d6804e682c8be1d68ef
2022-04-08T17:02:56.000Z
[ "pytorch", "bart", "text2text-generation", "arxiv:1910.13461", "arxiv:2104.08801", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
McGill-NLP
null
McGill-NLP/bart-qg-mlquestions-backtraining
27
null
transformers
7,465
--- license: cc-by-4.0 --- # BART-base fine-tuned on NaturalQuestions for **Question Generation** [BART Model](https://arxiv.org/pdf/1910.13461.pdf) trained for Question Generation in an unsupervised manner using [Back-Training](https://arxiv.org/pdf/2104.08801.pdf) algorithm (Kulshreshtha et al, EMNLP 2021). The dataset used are unaligned questions and passages from [MLQuestions dataset](https://github.com/McGill-NLP/MLQuestions/tree/main/data). ## Details of Back-Training The Back-Training algorithm was presented in [Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval](https://arxiv.org/pdf/2104.08801.pdf) by *Devang Kulshreshtha, Robert Belfer, Iulian Vlad Serban, Siva Reddy* in Here the abstract: In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA) from source to target domain. While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between the target domain and synthetic data distribution, and reduces model overfitting to the source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU4 points on generation, and 17.6% top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation datasetMLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs. ## Model training 🏋️‍ The training script can be found [here](https://github.com/McGill-NLP/MLQuestions/blob/main/UDA-BackTraining.sh) ## Model in Action 🚀 ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM #Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("geekydevu/bart-qg-mlquestions-backtraining") #Load the model model = AutoModelForSeq2SeqLM.from_pretrained("geekydevu/bart-qg-mlquestions-backtraining") ``` ## Citation If you want to cite this model you can use this: ```bibtex @inproceedings{kulshreshtha-etal-2021-back, title = "Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval", author = "Kulshreshtha, Devang and Belfer, Robert and Serban, Iulian Vlad and Reddy, Siva", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.566", pages = "7064--7078", abstract = "In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA). While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between target domain and synthetic data distribution, and reduces model overfitting to source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU-4 points on generation, and 17.6{\%} top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation dataset - MLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs.", } ``` > Created by [Devang Kulshreshtha](https://geekydevu.netlify.app/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
BFMeriem/chatbot-model
85172e7e3adef5a2d85cfa2ec90c0a8e575c3f24
2022-04-18T05:16:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BFMeriem
null
BFMeriem/chatbot-model
27
1
transformers
7,466
--- tags: - conversational --- #Michael Scott Character Chatbot
smeoni/nbme-deberta-V3-large
0887786226e8e2afb85b4b220e906583040344e1
2022-04-19T14:22:48.000Z
[ "pytorch", "deberta-v2", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/nbme-deberta-V3-large
27
null
transformers
7,467
Entry not found
ELiRF/mt5-base-dacsa-ca
378699aaf978689d242ba0140b16c953beda61ee
2022-07-11T17:33:29.000Z
[ "pytorch", "mt5", "text2text-generation", "ca", "arxiv:2010.11934", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
ELiRF
null
ELiRF/mt5-base-dacsa-ca
27
null
transformers
7,468
--- language: ca tags: - summarization widget: - text: "La Universitat Politècnica de València (UPV), a través del projecte Atenea “plataforma de dones, art i tecnologia” i en col·laboració amb les companyies tecnològiques Metric Salad i Zetalab, ha digitalitzat i modelat en 3D per a la 35a edició del Festival Dansa València, que se celebra del 2 al 10 d'abril, la primera peça de dansa en un metaverso específic. La peça No és amor, dirigida per Lara Misó, forma part de la programació d'aquesta edició del Festival Dansa València i explora la figura geomètrica del cercle des de totes les seues perspectives: espacial, corporal i compositiva. No és amor està inspirada en el treball de l'artista japonesa Yayoi Kusama i mira de prop les diferents facetes d'una obsessió. Així dona cabuda a la insistència, la repetició, el trastorn, la hipnosi i l'alliberament. El procés de digitalització, materialitzat per Metric Salad i ZetaLab, ha sigut complex respecte a uns altres ja realitzats a causa de l'enorme desafiament que comporta el modelatge en 3D de cossos en moviment al ritme de la composició de l'obra. L'objectiu era generar una experiència el més realista possible i fidedigna de l'original perquè el resultat final fora un procés absolutament immersiu.Així, el metaverso està compost per figures modelades en 3D al costat de quatre projeccions digitalitzades en pantalles flotants amb les quals l'usuari podrà interactuar segons es vaja acostant, bé mitjançant els comandaments de l'ordinador, bé a través d'ulleres de realitat virtual. L'objectiu és que quan l'usuari s'acoste a cadascuna de les projeccions tinga la sensació d'una immersió quasi completa en fondre's amb el contingut audiovisual que li genere una experiència intimista i molt real." --- # mT5 (base model), fine-tuned on the *Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA)* dataset for Catalan The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. The base version of the mT5 model is pre-trained in 101 languages, including English, Spanish, Italian, Catalan and other ones. # Model description The mT5-base model has been fine-tuned for abstractive text summarization for Catalan. # Training data The mT5-base model has been fine-tuned on *the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA)* dataset, specifically with the Catalan articles. The Catalan subset contains 636.596 document-summary pairs of Catalan news articles. The DACSA dataset can be requested at the following address: https://xarrador.dsic.upv.es/resources/dacsa # Intended uses & limitations The model can be used for text summarization, especially in news articles. # How to use You can use the summarization model with the [pipeline API](https://huggingface.co/transformers/main_classes/pipelines.html): ```python from transformers import pipeline summarizer = pipeline("summarization", model="ELiRF/mt5-base-dacsa-ca") ARTICLE = """La Universitat Politècnica de València (UPV), a través del projecte Atenea “plataforma de dones, art i tecnologia” i en col·laboració amb les companyies tecnològiques Metric Salad i Zetalab, ha digitalitzat i modelat en 3D per a la 35a edició del Festival Dansa València, que se celebra del 2 al 10 d'abril, la primera peça de dansa en un metaverso específic. La peça No és amor, dirigida per Lara Misó, forma part de la programació d'aquesta edició del Festival Dansa València i explora la figura geomètrica del cercle des de totes les seues perspectives: espacial, corporal i compositiva. No és amor està inspirada en el treball de l'artista japonesa Yayoi Kusama i mira de prop les diferents facetes d'una obsessió. Així dona cabuda a la insistència, la repetició, el trastorn, la hipnosi i l'alliberament. El procés de digitalització, materialitzat per Metric Salad i ZetaLab, ha sigut complex respecte a uns altres ja realitzats a causa de l'enorme desafiament que comporta el modelatge en 3D de cossos en moviment al ritme de la composició de l'obra. L'objectiu era generar una experiència el més realista possible i fidedigna de l'original perquè el resultat final fora un procés absolutament immersiu.Així, el metaverso està compost per figures modelades en 3D al costat de quatre projeccions digitalitzades en pantalles flotants amb les quals l'usuari podrà interactuar segons es vaja acostant, bé mitjançant els comandaments de l'ordinador, bé a través d'ulleres de realitat virtual. L'objectiu és que quan l'usuari s'acoste a cadascuna de les projeccions tinga la sensació d'una immersió quasi completa en fondre's amb el contingut audiovisual que li genere una experiència intimista i molt real. """ print(summarizer(ARTICLE, truncation=True)) >>>[{'summary_text': "La Universitat Politècnica de València ha digitalitzat i modelat en 3D la primera peça de dansa en un metaverso específic."}] ``` ### BibTeX entry ```bibtex @inproceedings{segarra-soriano-etal-2022-dacsa, title = "{DACSA}: A large-scale Dataset for Automatic summarization of {C}atalan and {S}panish newspaper Articles", author = "Segarra Soriano, Encarnaci{\'o}n and Ahuir, Vicent and Hurtado, Llu{\'\i}s-F. and Gonz{\'a}lez, Jos{\'e}", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.434", pages = "5931--5943", abstract = "The application of supervised methods to automatic summarization requires the availability of adequate corpora consisting of a set of document-summary pairs. As in most Natural Language Processing tasks, the great majority of available datasets for summarization are in English, making it difficult to develop automatic summarization models for other languages. Although Spanish is gradually forming part of some recent summarization corpora, it is not the same for minority languages such as Catalan.In this work, we describe the construction of a corpus of Catalan and Spanish newspapers, the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA) corpus. It is a high-quality large-scale corpus that can be used to train summarization models for Catalan and Spanish.We have carried out an analysis of the corpus, both in terms of the style of the summaries and the difficulty of the summarization task. In particular, we have used a set of well-known metrics in the summarization field in order to characterize the corpus. Additionally, for benchmarking purposes, we have evaluated the performances of some extractive and abstractive summarization systems on the DACSA corpus.", } ```
Hate-speech-CNERG/bengali-abusive-MuRIL
afb4d3694dbaed80156e4e947cef6572d3759e4d
2022-05-03T08:50:49.000Z
[ "pytorch", "bert", "text-classification", "bn", "arxiv:2204.12543", "transformers", "license:afl-3.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/bengali-abusive-MuRIL
27
null
transformers
7,469
--- language: [bn] license: afl-3.0 --- This model is used detecting **abusive speech** in **Bengali**. It is finetuned on MuRIL model using bengali abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
lilitket/aspram
b1646875d257de1e8325e01dbd0a5e5cff11c4fb
2022-05-03T17:41:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/aspram
27
null
transformers
7,470
Entry not found
allenai/mtk-instruct-3b-def-pos
a61092a4518022ceebc66aba0d86a68622764035
2022-05-27T06:29:55.000Z
[ "pytorch", "mt5", "text2text-generation", "multilingual", "dataset:natural instructions v2.0", "arxiv:1910.10683", "arxiv:2204.07705", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/mtk-instruct-3b-def-pos
27
null
transformers
7,471
--- language: multilingual license: apache-2.0 datasets: - natural instructions v2.0 --- # Model description Tk-Instruct is a series of encoder-decoder Transformer models that are trained to solve various NLP tasks by following in-context instructions (plain language task definitions, k-shot examples, explanations, etc). Built upon the pre-trained [T5 models](https://arxiv.org/abs/1910.10683), they are fine-tuned on a large number of tasks & instructions that are collected in the [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. This enables the model to not only process the training tasks, but also generalize to many unseen tasks without further parameter update. More resources for using the model: - **Paper**: [link](https://arxiv.org/abs/2204.07705) - **Code repository**: [Tk-Instruct](https://github.com/yizhongw/Tk-Instruct) - **Official Website**: [Natural Instructions](https://instructions.apps.allenai.org/) - **All released models**: [allenai/tk-instruct](https://huggingface.co/models?search=allenai/tk-instruct) ## Intended uses & limitations Tk-Instruct can be used to do many NLP tasks by following instructions. ### How to use When instructing the model, task definition or demonstration examples or explanations should be prepended to the original input and fed into the model. You can easily try Tk-Instruct models as follows: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("allenai/tk-instruct-3b-def") >>> model = AutoModelForSeq2SeqLM.from_pretrained("allenai/tk-instruct-3b-def") >>> input_ids = tokenizer.encode( "Definition: return the currency of the given country. Now complete the following example - Input: India. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'Indian Rupee' >>> input_ids = tokenizer.encode( "Definition: negate the following sentence. Input: John went to school. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'John did not go to shool.' ``` ### Limitations We are still working on understanding the behaviors of these models, but here are several issues we have found: - Models are generally sensitive to the instruction. Sometimes rewording the instruction can lead to very different output. - Models are not always compliant to the instruction. Sometimes the model don't follow your instruction (e.g., when you ask the model to generate one sentence, it might still generate one word or a long story). - Models might totally fail on some tasks. If you find serious issues or any interesting result, you are welcome to share with us! ## Training data Tk-Instruct is trained using the tasks & instructions in [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. We follow the official train/test split. Tk-Instruct model series were trained using 757 tasks, and mTk-Instruct series were trained using 1271 tasks (including some non-English tasks). The training tasks are in 64 broad categories, such as text categorization / question answering / sentiment analysis / summarization / grammar error detection / dialogue generation / etc. The other 12 categories are selected for evaluation. ## Training procedure All our models are initialized from either T5 models or mT5 models. Because generating the output can be regarded as a form of language modeling, we used their [LM adapted version](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k). All data is converted into a text-to-text format, and models are fine-tuned to maximize the likelihood of the output sequence. Our [released models](https://huggingface.co/models?search=allenai/tk-instruct) are in different sizes, and each of them was trained with a specific type of instruction encoding. For instance, `tk-instruct-3b-def-pos` was initialized from [t5-xl-lm-adapt](https://huggingface.co/google/t5-xl-lm-adapt), and it saw task definition & 2 positive examples as the instruction during training time. Although they are trained with only one type of instruction encodings, we found they can usually work with other type of encodings at test time (see more in our paper). ### BibTeX entry and citation info ```bibtex @article{wang2022benchmarking, title={Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and A. Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and M. Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddharth Deepak Mishra and Sujan C. Reddy and Sumanta Patro and Tanay Dixit and Xu-dong Shen and Chitta Baral and Yejin Choi and Hannaneh Hajishirzi and Noah A. Smith and Daniel Khashabi}, year={2022}, archivePrefix={arXiv}, eprint={2204.07705}, primaryClass={cs.CL}, } ```
aiola/roberta-base-corener
a59295582117c3706c06aa707799dcd26fbab4ab
2022-07-03T14:15:40.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:Ontonotes", "dataset:CoNLL04", "transformers", "NER", "named entity recognition", "RE", "relation extraction", "entity mention detection", "EMD", "coreference resolution", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
aiola
null
aiola/roberta-base-corener
27
null
transformers
7,472
--- language: - en tags: - NER - named entity recognition - RE - relation extraction - entity mention detection - EMD - coreference resolution license: apache-2.0 datasets: - Ontonotes - CoNLL04 --- # CoReNer ## Demo We released an online demo so you can easily play with the model. Check it out: [http://corener-demo.aiola-lab.com](http://corener-demo.aiola-lab.com). The demo uses the [aiola/roberta-base-corener](https://huggingface.co/aiola/roberta-base-corener) model. ## Model description A multi-task model for named-entity recognition, relation extraction, entity mention detection, and coreference resolution. We model NER as a span classification task and relation extraction as a multi-label classification of (NER) span tuples. Similarly, model EMD as a span classification task and CR as a binary classification of (EMD) span tuples. To construct the CR clusters, we keep the top antecedent of each mention, then compute the connected components of the mentions' undirected graph. The model was trained to recognize: - Entity types: GPE, ORG, PERSON, DATE, NORP, CARDINAL, MONEY, PERCENT, WORK_OF_ART, ORDINAL, EVENT, LOC, TIME, FAC, QUANTITY, LAW, PRODUCT, LANGUAGE. - Relation types: Kill, Live_In, Located_In, OrgBased_In, Work_For. ## Usage example See additional details and usage examples at: https://github.com/aiola-lab/corener. ```python import json from transformers import AutoTokenizer from corener.models import Corener, ModelOutput from corener.data import MTLDataset from corener.utils.prediction import convert_model_output tokenizer = AutoTokenizer.from_pretrained("aiola/roberta-base-corener") model = Corener.from_pretrained("aiola/roberta-base-corener") model.eval() examples = [ "Apple Park is the corporate headquarters of Apple Inc., located in Cupertino, California, United States. It was opened to employees in April 2017, while construction was still underway, and superseded the original headquarters at 1 Infinite Loop, which opened in 1993." ] dataset = MTLDataset( types=model.config.types, tokenizer=tokenizer, train_mode=False, ) dataset.read_dataset(examples) example = dataset.get_example(0) # get first example output: ModelOutput = model( input_ids=example.encodings, context_masks=example.context_masks, entity_masks=example.entity_masks, entity_sizes=example.entity_sizes, entity_spans=example.entity_spans, entity_sample_masks=example.entity_sample_masks, inference=True, ) print(json.dumps(convert_model_output(output=output, batch=example, dataset=dataset), indent=2)) ```
charsiu/g2p_multilingual_mT5_small
9aa1a3006e408f2420cb6a0b8ceac7768095ead9
2022-05-19T05:01:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
charsiu
null
charsiu/g2p_multilingual_mT5_small
27
null
transformers
7,473
Entry not found
Matthijs/deeplabv3-mobilevit-small
3489480174ccb992f903e63e380037c61d9da27e
2022-05-24T11:35:51.000Z
[ "pytorch", "coreml", "mobilevit", "dataset:pascal-voc", "arxiv:2110.02178", "arxiv:1706.05587", "transformers", "vision", "image-segmentation", "license:other" ]
image-segmentation
false
Matthijs
null
Matthijs/deeplabv3-mobilevit-small
27
1
transformers
7,474
--- license: other tags: - vision - image-segmentation datasets: - pascal-voc widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger --- # MobileViT + DeepLabV3 (small-sized model) MobileViT model pre-trained on PASCAL VOC at resolution 512x512. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE). Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, however, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings. The model in this repo adds a [DeepLabV3](https://arxiv.org/abs/1706.05587) head to the MobileViT backbone for semantic segmentation. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileViTFeatureExtractor.from_pretrained('Matthijs/deeplabv3-mobilevit-small') model = MobileViTForSemanticSegmentation.from_pretrained('Matthijs/deeplabv3-mobilevit-small') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_mask = logits.argmax(1).squeeze(0) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The MobileViT + DeepLabV3 model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes, and then fine-tuned on the [PASCAL VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/) dataset. ## Training procedure ### Preprocessing At inference time, images are center-cropped at 512x512. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB. ### Pretraining The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling. To obtain the DeepLabV3 model, MobileViT was fine-tuned on the PASCAL VOC dataset using 4 NVIDIA A100 GPUs. ## Evaluation results | Model | PASCAL VOC mIOU | # params | URL | |------------------|-----------------|-----------|--------------------------------------------------------------| | MobileViT-XXS | 73.6 | 1.9 M | https://huggingface.co/Matthijs/deeplabv3-mobilevit-xx-small | | MobileViT-XS | 77.1 | 2.9 M | https://huggingface.co/Matthijs/deeplabv3-mobilevit-x-small | | **MobileViT-S** | **79.1** | **6.4 M** | https://huggingface.co/Matthijs/deeplabv3-mobilevit-small | ### BibTeX entry and citation info ```bibtex @inproceedings{vision-transformer, title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author = {Sachin Mehta and Mohammad Rastegari}, year = {2022}, URL = {https://arxiv.org/abs/2110.02178} } ```
JeffreyLau/SikuGPT2
4220814c81e49ef1123795b8855a39c613579380
2022-07-10T01:30:07.000Z
[ "pytorch", "gpt2", "text-generation", "zh", "transformers" ]
text-generation
false
JeffreyLau
null
JeffreyLau/SikuGPT2
27
1
transformers
7,475
--- language: zh widget: - text: "當 是 時 " - text: "子 曰 " --- # SikuGPT2 Model ## Model description The model is used to generate Chinese ancient article. You can download the model via HuggingFace from the link [SikuGPT2](https://huggingface.co/JeffreyLau/SikuGPT2). Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, the output results of Hosted inference API (right) may not be properly displayed. ## How to use You can use the model directly with a pipeline for text generation: When the parameter skip_special_tokens is True: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("JeffreyLau/SikuGPT2") >>> model = GPT2LMHeadModel.from_pretrained("JeffreyLau/SikuGPT2") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("當 是 時 ", max_length=100, do_sample=True) [{'generated_text': '當 是 時 王 世 充 已 在 西 夏 恐 兵 出 相 擊 則 遣 信 報 之 且 曰 必 以 五 百 騎 徑 渡 江 由 是 中 國 稍 安 今 賊 既 渡 江 必 無 東 救 上 曰 信 可 謂 不 亡 矣 世 充 將 何 從 與 之 書 使 者 來 上 既 見 信 書 即 遣 二 將 邀 之 使 者 皆 已 去 上 問 之 信 曰 汝 之 去 將 何 以 為 效 對 曰 吾 聞 上 使 者 至 即 令 其 人 還 信 答 書 曰 臣 受 漢 恩 厚 無 以 報 塞 然 所 以 不 從 者 誠 以 天 地 之 德 尚 寛 不 殺 之 恩 豈 待 吾 命 而 自 殺 耶 昔 劉 累 為 漢 將 不 受 命 乃 自 為 主 爾 今 既 為 漢 將 不 受 命 乃 自 殺 以 自 安 耳 上 曰 善 而 以 問 張 子 房 趙 李 牧 張 子 房 皆 言 可 與 為 盟 主 也 其 後 漢 亡 張 魯 反 於 西 河 王 霸 為 漢 公 主 求 和 乃 上 書 求 和 於 上 曰 臣 聞 古 之 受 命 者 惟 太 公 得 之 故 曰 上 天 降 威 以 作 民 主 夫 豈 能 以 一 人 之 身 而 制 天 下 之 大 敵 哉 太 公 得 之 故 曰 大 公 者 何 也 曰 夫 受 命 者 必 有 天 下 為 天 下 所 尊 服 不 必 皆 得 其 人 也 古 者 天 子 之 命 臣 為 天 子 者 皆 為 君 之 子 今 天 下 皆 為 臣 之 子 茍 不 得 其 道 則 一 人 之 身 百 姓 何 所 賴 之 可 得 然 則 命 之 不 可 謂 之 命 矣 上 曰 古 之 受 命 者 奈 何 對 曰 上 古 之 帝 也 命 已 絶 而 天 下 不 復 定 天 必 祚 之 故 命 之 不 可 謂 之 有 天 下 也 天 下 各 保 其 社 稷 其 餘 衆 官 無 有 分'}] ``` When the parameter skip_special_tokens is False: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("JeffreyLau/SikuGPT2") >>> model = GPT2LMHeadModel.from_pretrained("JeffreyLau/SikuGPT2") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("當 是 時 ", max_length=100, do_sample=True) [{'generated_text': '當 是 時 王 世 充 已 在 西 夏 恐 兵 出 相 擊 則 遣 信 報 之 且 曰 必 以 五 百 騎 徑 渡 江 由 是 中 國 稍 安 今 賊 既 渡 江 必 無 東 救 上 曰 信 可 謂 不 亡 矣 世 充 將 何 從 與 之 書 使 者 來 上 既 見 信 書 即 遣 二 將 邀 之 使 者 皆 已 去 上 問 之 信 曰 汝 之 去 將 何 以 為 效 對 曰 吾 聞 上 使 者 至 即 令 其 人 還 信 答 書 曰 臣 受 漢 恩 厚 無 以 報 塞 然 所 以 不 從 者 誠 以 天 地 之 德 尚 寛 不 殺 之 恩 豈 待 吾 命 而 自 殺 耶 昔 劉 累 為 漢 將 不 受 命 乃 自 為 主 爾 今 既 為 漢 將 不 受 命 乃 自 殺 以 自 安 耳 上 曰 善 而 以 問 張 子 房 趙 李 牧 張 子 房 皆 言 可 與 為 盟 主 也 其 後 漢 亡 張 魯 反 於 西 河 王 霸 為 漢 公 主 求 和 乃 上 書 求 和 於 上 曰 臣 聞 古 之 受 命 者 惟 太 公 得 之 故 曰 上 天 降 威 以 作 民 主 夫 豈 能 以 一 人 之 身 而 制 天 下 之 大 敵 哉 太 公 得 之 故 曰 大 公 者 何 也 曰 夫 受 命 者 必 有 天 下 為 天 下 所 尊 服 不 必 皆 得 其 人 也 古 者 天 子 之 命 臣 為 天 子 者 皆 為 君 之 子 今 天 下 皆 為 臣 之 子 茍 不 得 其 道 則 一 人 之 身 百 姓 何 所 賴 之 可 得 然 則 命 之 不 可 謂 之 命 矣 上 曰 古 之 受 命 者 奈 何 對 曰 上 古 之 帝 也 命 已 絶 而 天 下 不 復 定 天 必 祚 之 故 命 之 不 可 謂 之 有 天 下 也 天 下 各 保 其 社 稷 其 餘 衆 官 無 有 分'}] ``` ## Training data “Siku Quanshu” full-text corpus was used as Training Data which is same as the project of [SikuBERT](https://huggingface.co/SIKU-BERT/sikubert) to train SikuGPT2. ## Training procedure The model is Pre-trained by [run_clm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py). We pre-train the model with a sequence length of 512. We use extended vocabulary to handle out-of-vocabulary words. ## Citation The paper has not been published. You can just cite this url instead.
KamilAin/bart-base-booksum
789ae1ed3e7e8da4ae759a7ab062f9afe907f04d
2022-05-24T08:19:25.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:kmfoda/booksum", "transformers", "booksum", "summary", "summarization", "book", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
KamilAin
null
KamilAin/bart-base-booksum
27
null
transformers
7,476
--- language: en license: apache-2.0 tags: - booksum - summary - summarization - book metrics: - rouge widget: - text: "In the dead night, Frodo lay in a dream without light. Then he saw the young moon rising; under its thin light there loomed before him a black wall of rock, pierced by a dark arch like a great gate. It seemed to Frodo that he was lifted up, and passing over he saw that the rock-wall was a circle of hills, and that within it was a plain, and in the midst of the plain stood a pinnacle of stone, like a vast tower but not made by hands. On its top stood the figure of a man. The moon as it rose seemed to hang for a moment above his head and glistened in his white hair as the wind stirred it. Up from the dark plain below came the crying of fell voices, and the howling of many wolves. Suddenly a shadow, like the shape of great wings, passed across the moon. The figure lifted his arms and a light flashed from the staff that he wielded. A mighty eagle swept down and bore him away. The voices wailed and the wolves yammered. There was a noise like a strong wind blowing, and on it was borne the sound of hoofs, galloping, galloping, galloping from the East. ‘Black Riders!’ thought Frodo as he wakened, with the sound of the hoofs still echoing in his mind. He wondered if he would ever again have the courage to leave the safety of these stone walls. He lay motionless, still listening; but all was now silent, and at last he turned and fell asleep again or wandered into some other unremembered dream." example_title: "book example" datasets: - kmfoda/booksum --- # BART-base-Booksum This is a BART-base model fine-tuned on a BookSum dataset - **Use cases:** book summarization, general text summarization. - This is a fine-tuned [`https://huggingface.co/facebook/bart-base`](https://huggingface.co/facebook/bart-base), it has been fine-tuned for five epochs # Results No results yet for that model
M47Labs/spanish_news_classification_headlines_untrained
1105ed2f79d7bead889b8812dd0e9fd991c4fb38
2022-05-30T10:44:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
M47Labs
null
M47Labs/spanish_news_classification_headlines_untrained
27
null
transformers
7,477
--- widget: - text: "El dólar se dispara tras la reunión de la Fed" --- # Spanish News Classification Headlines SNCH: this model was developed by [M47Labs](https://www.m47labs.com/es/) the goal is text classification, the base model use was [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased), however this model has not been fine-tuned on any dataset. The objective is to show the performance of this model when is used with the objective of inference without training at all. ## Dataset validation Sample Dataset size : 1000 Columns: idTask,task content 1,idTag,tag. |task content|tag| |------|------| |Alcalá de Guadaíra celebra la IV Semana de la Diversidad Sexual con acciones de sensibilización|sociedad| |El Archipiélago Chinijo Graciplus se impone en el Trofeo Centro Comercial Rubicón|deportes| |Un total de 39 personas padecen ELA actualmente en la provincia|sociedad| |Eurocopa 2021 : Italia vence a Gales y pasa a octavos con su candidatura reforzada|deportes| |Resolución de 10 de junio de 2021, del Ayuntamiento de Tarazona de La Mancha (Albacete), referente a la convocatoria para proveer una plaza.|sociedad| |El primer ministro sueco pierde una moción de censura|politica| |El dólar se dispara tras la reunión de la Fed|economia| ## Labels: * ciencia_tecnologia * clickbait * cultura * deportes * economia * educacion * medio_ambiente * opinion * politica * sociedad ## Example of Use ### Pipeline ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline review_text = 'los vehiculos que esten esperando pasajaeros deberan estar apagados para reducir emisiones' path = "M47Labs/spanish_news_classification_headlines_untrained" tokenizer = AutoTokenizer.from_pretrained(path) model = BertForSequenceClassification.from_pretrained(path) nlp = TextClassificationPipeline(task = "text-classification", model = model, tokenizer = tokenizer) print(nlp(review_text)) ``` ```[{'label': 'medio_ambiente', 'score': 0.2834321384291023}]``` ### Pytorch ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline from numpy import np model_name = 'M47Labs/spanish_news_classification_headlines_untrained' MAX_LEN = 32 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) texto = "las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno" encoded_review = tokenizer.encode_plus( texto, max_length=MAX_LEN, add_special_tokens=True, #return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoded_review['input_ids'] attention_mask = encoded_review['attention_mask'] output = model(input_ids, attention_mask) _, prediction = torch.max(output['logits'], dim=1) print(f'Review text: {texto}') print(f'Sentiment : {model.config.id2label[prediction.detach().cpu().numpy()[0]]}') ``` ```Review text: las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno``` ```Sentiment : opinion``` A more in depth example on how to use the model can be found in this colab notebook: https://colab.research.google.com/drive/1XsKea6oMyEckye2FePW_XN7Rf8v41Cw_?usp=sharing ## Validation Results |Full Dataset|| |------|------| |Accuracy Score|0.362| |Precision (Macro)|0.21| |Recall (Macro)|0.22| ![alt text](https://media-exp1.licdn.com/dms/image/C4D0BAQHpfgjEyhtE1g/company-logo_200_200/0/1625210573748?e=1638403200&v=beta&t=toQNpiOlyim5Ja4f7Ejv8yKoCWifMsLWjkC7XnyXICI "Logo M47")
projecte-aina/roberta-base-ca-v2
97e9d0f724fa61644f7f6972e4c19345c0dc4bb2
2022-07-25T06:55:23.000Z
[ "pytorch", "roberta", "fill-mask", "ca", "transformers", "catalan", "masked-lm", "RoBERTa-base-ca-v2", "CaText", "Catalan Textual Corpus", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
projecte-aina
null
projecte-aina/roberta-base-ca-v2
27
null
transformers
7,478
--- language: - ca license: apache-2.0 tags: - "catalan" - "masked-lm" - "RoBERTa-base-ca-v2" - "CaText" - "Catalan Textual Corpus" widget: - text: "El Català és una llengua molt <mask>." - text: "Salvador Dalí va viure a <mask>." - text: "La Costa Brava té les millors <mask> d'Espanya." - text: "El cacaolat és un batut de <mask>." - text: "<mask> és la capital de la Garrotxa." - text: "Vaig al <mask> a buscar bolets." - text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat." - text: "Catalunya és una referència en <mask> a nivell europeu." --- # Catalan BERTa-v2 (roberta-base-ca-v2) base model ## Table of Contents <details> <summary>Click to expand</summary> - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-uses-and-limitations) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation](#evaluation) - [CLUB Benchmark](#club-benchmark) - [Evaluation Results](#evaluation-results) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Funding](#funding) - [Contributions](#contributions) </details> ## Model description The **roberta-base-ca-v2** is a transformer-based masked language model for the Catalan language. It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model and has been trained on a medium-size corpus collected from publicly available corpora and crawlers. ## Intended Uses and Limitations **roberta-base-ca-v2** model is ready-to-use only for masked language modeling to perform the Fill Mask task (try the inference API or read the next section). However, it is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification, or Named Entity Recognition. ## How to Use Here is how to use this model: ```python from transformers import AutoModelForMaskedLM from transformers import AutoTokenizer, FillMaskPipeline from pprint import pprint tokenizer_hf = AutoTokenizer.from_pretrained('projecte-aina/roberta-base-ca-v2') model = AutoModelForMaskedLM.from_pretrained('projecte-aina/roberta-base-ca-v2') model.eval() pipeline = FillMaskPipeline(model, tokenizer_hf) text = f"Em dic <mask>." res_hf = pipeline(text) pprint([r['token_str'] for r in res_hf]) ``` ## Training ### Training data The training corpus consists of several corpora gathered from web crawling and public corpora. | Corpus | Size in GB | |-------------------------|------------| | Catalan Crawling | 13.00 | | Wikipedia | 1.10 | | DOGC | 0.78 | | Catalan Open Subtitles | 0.02 | | Catalan Oscar | 4.00 | | CaWaC | 3.60 | | Cat. General Crawling | 2.50 | | Cat. Goverment Crawling | 0.24 | | ACN | 0.42 | | Padicat | 0.63 | | RacoCatalá | 8.10 | | Nació Digital | 0.42 | | Vilaweb | 0.06 | | Tweets | 0.02 | ### Training Procedure The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The RoBERTa-ca-v2 pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 96 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM. ## Evaluation ### CLUB Benchmark The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB), that has been created along with the model. It contains the following tasks and their related datasets: 1. Named Entity Recognition (NER) **[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version, filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format 2. Part-of-Speech Tagging (POS) Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus. 3. Text Classification (TC) **[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels. 4. Textual Entailment (TE) **[TECa](https://huggingface.co/datasets/projecte-aina/teca)**: consisting of 21,163 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction, or neutral), extracted from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus). 5. Semantic Textual Similarity (STS) **[Catalan semantic textual similarity](https://huggingface.co/datasets/projecte-aina/sts-ca)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, scraped from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus). 6. Question Answering (QA): **[VilaQuAD](https://huggingface.co/datasets/projecte-aina/vilaquad)**: contains 6,282 pairs of questions and answers, outsourced from 2095 Catalan language articles from VilaWeb newswire text. **[ViquiQuAD](https://huggingface.co/datasets/projecte-aina/viquiquad)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan. **[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa)**: an aggregation of 2 previous datasets (VilaQuAD and ViquiQuAD), 21,427 pairs of Q/A balanced by type of question, containing one question and one answer per context, although the contexts can repeat multiple times. **[XQuAD](https://huggingface.co/datasets/projecte-aina/xquad-ca)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_. Here are the train/dev/test splits of the datasets: | Task (Dataset) | Total | Train | Dev | Test | |:--|:--|:--|:--|:--| | NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 | | POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 | | STS | 3,073 | 2,073 | 500 | 500 | | TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786| | TE (TECa) | 21,163 | 16,930 | 2,116 | 2,117 | QA (VilaQuAD) | 6,282 | 3,882 | 1,200 | 1,200 | | QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 | | QA (CatalanQA) | 21,427 | 17,135 | 2,157 | 2,135 | ### Evaluation Results | Task | NER (F1) | POS (F1) | STS (Comb) | TC (Acc.) | TE (Acc.) | QA (VilaQuAD) (F1/EM)| QA (ViquiQuAD) (F1/EM) | QA (CatalanQA) (F1/EM) | QA (XQuAD-Ca)<sup>1</sup> (F1/EM) | | ------------|:-------------:| -----:|:------|:------|:-------|:------|:----|:----|:----| | RoBERTa-base-ca-v2 | **89.45** | 99.09 | 79.07 | **74.26** | **83.14** | **87.74/72.58** | **88.72/75.91** | **89.50**/76.63 | **73.64/55.42** | | BERTa | 88.94 | **99.10** | **80.19** | 73.65 | 79.26 | 85.93/70.58 | 87.12/73.11 | 89.17/**77.14** | 69.20/51.47 | | mBERT | 87.36 | 98.98 | 74.26 | 69.90 | 74.63 | 82.78/67.33 | 86.89/73.53 | 86.90/74.19 | 68.79/50.80 | | XLM-RoBERTa | 88.07 | 99.03 | 61.61 | 70.14 | 33.30 | 86.29/71.83 | 86.88/73.11 | 88.17/75.93 | 72.55/54.16 | <sup>1</sup> : Trained on CatalanQA, tested on XQuAD-Ca. ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Contributions [N/A]
titi7242229/roberta-base-bne-finetuned_personality_multi_2
68789c67db2f1d79227c752c3ec00ee570675d7d
2022-06-11T06:21:27.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
titi7242229
null
titi7242229/roberta-base-bne-finetuned_personality_multi_2
27
null
transformers
7,479
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_2 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2983 - Accuracy: 0.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3256 | 1.0 | 125 | 2.2642 | 0.2161 | | 1.815 | 2.0 | 250 | 1.9569 | 0.3919 | | 1.614 | 3.0 | 375 | 1.7264 | 0.5014 | | 1.1718 | 4.0 | 500 | 1.6387 | 0.5239 | | 1.135 | 5.0 | 625 | 1.6259 | 0.5245 | | 0.5637 | 6.0 | 750 | 1.6443 | 0.5372 | | 0.3672 | 7.0 | 875 | 1.7146 | 0.5326 | | 0.3249 | 8.0 | 1000 | 1.8099 | 0.5297 | | 0.1791 | 9.0 | 1125 | 1.8888 | 0.5285 | | 0.2175 | 10.0 | 1250 | 1.9228 | 0.5326 | | 0.0465 | 11.0 | 1375 | 1.9753 | 0.5435 | | 0.1154 | 12.0 | 1500 | 2.1102 | 0.5256 | | 0.0745 | 13.0 | 1625 | 2.1319 | 0.5429 | | 0.0281 | 14.0 | 1750 | 2.1743 | 0.5360 | | 0.0173 | 15.0 | 1875 | 2.2087 | 0.5441 | | 0.0269 | 16.0 | 2000 | 2.2456 | 0.5424 | | 0.0107 | 17.0 | 2125 | 2.2685 | 0.5458 | | 0.0268 | 18.0 | 2250 | 2.2893 | 0.5383 | | 0.0245 | 19.0 | 2375 | 2.2943 | 0.5418 | | 0.0156 | 20.0 | 2500 | 2.2983 | 0.5429 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ahmeddbahaa/mT5_multilingual_XLSum-finetune-ar-xlsum
69531cb8276ee80c3d24f3d2a3025241d9ecb83f
2022-06-13T19:20:20.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/mT5_multilingual_XLSum-finetune-ar-xlsum
27
null
transformers
7,480
--- tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: mT5_multilingual_XLSum-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetune-ar-xlsum This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2497 - Rouge-1: 32.52 - Rouge-2: 14.71 - Rouge-l: 27.88 - Gen Len: 41.45 - Bertscore: 74.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 3.5465 | 1.0 | 585 | 3.3215 | 30.09 | 13.23 | 26.07 | 36.31 | 73.97 | | 3.3564 | 2.0 | 1170 | 3.2547 | 31.29 | 13.93 | 26.75 | 41.68 | 74.22 | | 3.2185 | 3.0 | 1755 | 3.2421 | 31.78 | 14.1 | 27.07 | 41.64 | 74.4 | | 3.1145 | 4.0 | 2340 | 3.2241 | 31.98 | 14.38 | 27.51 | 40.29 | 74.46 | | 3.031 | 5.0 | 2925 | 3.2313 | 32.3 | 14.67 | 27.83 | 39.81 | 74.61 | | 2.9627 | 6.0 | 3510 | 3.2348 | 32.39 | 14.65 | 27.76 | 40.02 | 74.6 | | 2.9088 | 7.0 | 4095 | 3.2439 | 32.5 | 14.66 | 27.81 | 41.2 | 74.65 | | 2.8649 | 8.0 | 4680 | 3.2497 | 32.52 | 14.71 | 27.88 | 41.45 | 74.65 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Mathking/pubmedbert-abs_pri-sec_out
c50df4d0e54b03886f15f1b4c76a80cd901bfb06
2022-07-19T09:44:30.000Z
[ "pytorch", "bert", "token-classification", "en", "transformers", "medical-domain", "fine-tuned", "license:mit", "autotrain_compatible" ]
token-classification
false
Mathking
null
Mathking/pubmedbert-abs_pri-sec_out
27
null
transformers
7,481
--- language: en tags: - medical-domain - fine-tuned license: "mit" metrics: - f1 --- # PubMedBERT Abstract Primary and secondary outcomes ## Model description PubMedBERT Model fine tuned for Primary and Secondary Outcomes Entity Extraction in Clinical Trials Articles ## Intended uses & limitations ### How to use ### Limitations and bias ## Training data Dataset from Anna Koroleva (https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Primary_Secondary_Outcomes) ## Evaluation results ### BibTeX entry and citation info @inproceedings{koroleva-etal-2020-despin, title = "{D}e{S}pin: a prototype system for detecting spin in biomedical publications", author = "Koroleva, Anna and Kamath, Sanjay and Bossuyt, Patrick and Paroubek, Patrick", booktitle = "Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.bionlp-1.5", doi = "10.18653/v1/2020.bionlp-1.5", pages = "49--59", abstract = "Improving the quality of medical research reporting is crucial to reduce avoidable waste in research and to improve the quality of health care. Despite various initiatives aiming at improving research reporting {--} guidelines, checklists, authoring aids, peer review procedures, etc. {--} overinterpretation of research results, also known as spin, is still a serious issue in research reporting. In this paper, we propose a Natural Language Processing (NLP) system for detecting several types of spin in biomedical articles reporting randomized controlled trials (RCTs). We use a combination of rule-based and machine learning approaches to extract important information on trial design and to detect potential spin. The proposed spin detection system includes algorithms for text structure analysis, sentence classification, entity and relation extraction, semantic similarity assessment. Our algorithms achieved operational performance for the these tasks, F-measure ranging from 79,42 to 97.86{\%} for different tasks. The most difficult task is extracting reported outcomes. Our tool is intended to be used as a semi-automated aid tool for assisting both authors and peer reviewers to detect potential spin. The tool incorporates a simple interface that allows to run the algorithms and visualize their output. It can also be used for manual annotation and correction of the errors in the outputs. The proposed tool is the first tool for spin detection. The tool and the annotated dataset are freely available.", }
anablasi/lm_financial_v2
7289bcbd1edc01b7b116583a8e7659aabd6fd983
2022-07-03T15:53:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
anablasi
null
anablasi/lm_financial_v2
27
null
transformers
7,482
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: modelo_lm_financial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelo_lm_financial This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-large-japanese-unidic-ud-head
b94208e97f76bbe927722393d57ac3bac265b85d
2022-07-20T03:52:09.000Z
[ "pytorch", "deberta-v2", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-unidic-ud-head
27
null
transformers
7,483
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # deberta-large-japanese-unidic-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head") question="国語" context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている" inputs=tokenizer(question,context,return_tensors="pt") outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0,start:end+1])) ``` or ```py from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) class TaggerPipeline(TokenClassificationPipeline): def __call__(self,text): d=super().__call__(text) if len(d)>0 and ("start" not in d[0] or d[0]["start"]==None): import tokenizations v=[x["word"].replace(" ","") for x in d] a2b,b2a=tokenizations.get_alignments(v,text) for i,t in enumerate(a2b): s,e=(0,0) if t==[] else (t[0],t[-1]+1) if v[i].startswith(self.tokenizer.unk_token): s=([[-1]]+[x for x in a2b[0:i] if x>[]])[-1][-1]+1 if v[i].endswith(self.tokenizer.unk_token): e=([x for x in a2b[i+1:] if x>[]]+[[len(text)]])[0][0] d[i]["start"],d[i]["end"]=s,e return d class TransformersSlowUD(object): def __init__(self,bert): import os self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TaggerPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TaggerPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersSlowUD("KoichiYasuoka/deberta-large-japanese-unidic-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` [fugashi](https://pypi.org/project/fugashi) [unidic-lite](https://pypi.org/project/unidic-lite) [pytokenizations](https://pypi.org/project/pytokenizations) and [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) required.
sherover125/newsclassifier
b92ff2bf008f2eea5e6511a8d72af6fb321c50d5
2022-07-20T09:24:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sherover125
null
sherover125/newsclassifier
27
null
transformers
7,484
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: newsclassifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # newsclassifier This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - Matthews Correlation: 0.9731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2207 | 1.0 | 2397 | 0.1706 | 0.9595 | | 0.0817 | 2.0 | 4794 | 0.1505 | 0.9663 | | 0.0235 | 3.0 | 7191 | 0.1405 | 0.9731 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
alistairmcleay/user-simulator-gpt2
2d0fdf00aec555a7a610a6f33142cb4a7e53235b
2022-06-26T15:14:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:wtfpl" ]
text-generation
false
alistairmcleay
null
alistairmcleay/user-simulator-gpt2
27
null
transformers
7,485
--- license: wtfpl ---
fujiki/gpt-neo-en2ja-125M
9e24f4b3d85bdb18e6b3bb6b9b5591f3d2111694
2022-06-27T17:06:53.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
fujiki
null
fujiki/gpt-neo-en2ja-125M
27
null
transformers
7,486
Entry not found
BigSalmon/InformalToFormalLincoln53
8bbd1a36731987e5ff47b1b9b34176a7827aac28
2022-07-01T00:59:52.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln53
27
null
transformers
7,487
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln53") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln53") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ```
Vkt/model-dataaugmentationpipe
e05e78d9000e7d7ed5ebbf2d1d66d76a0bf5a70c
2022-07-05T17:48:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Vkt
null
Vkt/model-dataaugmentationpipe
27
null
transformers
7,488
Entry not found
tau/spider-nq-ctx-encoder
60a588a491c5470d2a0fe4229a4eb1691b58aa9a
2022-07-04T08:32:49.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
tau
null
tau/spider-nq-ctx-encoder
27
null
transformers
7,489
Entry not found
ShihTing/PanJuOffset_TwoClass
f0529cee629895a25672ca87c3ac41b93c095b93
2022-07-05T06:49:03.000Z
[ "pytorch", "vit", "image-classification", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
ShihTing
null
ShihTing/PanJuOffset_TwoClass
27
null
transformers
7,490
--- license: apache-2.0 tags: - vision - image-classification widget: - src: https://datasets-server.huggingface.co/assets/ShihTing/IsCausewayOffset/--/ShihTing--IsCausewayOffset/validation/0/image/image.jpg example_title: Ex1 --- # PanJu offset detect by image Use fintune from google/vit-base-patch16-224(https://huggingface.co/google/vit-base-patch16-224) ## Dataset ```python DatasetDict({ train: Dataset({ features: ['image', 'label'], num_rows: 329 }) validation: Dataset({ features: ['image', 'label'], num_rows: 56 }) }) ``` 36 Break and 293 Normal in train 5 Break and 51 Normal in validation ## Intended uses ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python # Load image import torch from transformers import ViTFeatureExtractor, ViTForImageClassification,AutoModel from PIL import Image import requests url='https://datasets-server.huggingface.co/assets/ShihTing/IsCausewayOffset/--/ShihTing--IsCausewayOffset/validation/0/image/image.jpg' image = Image.open(requests.get(url, stream=True).raw) # Load model from transformers import AutoFeatureExtractor, AutoModelForImageClassification device = torch.device('cpu') extractor = AutoFeatureExtractor.from_pretrained('ShihTing/PanJuOffset_TwoClass') model = AutoModelForImageClassification.from_pretrained('ShihTing/PanJuOffset_TwoClass') # Predict inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits Prob = outputs.logits.softmax(dim=-1).tolist() print(Prob) # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
ryo0634/bert-base-zip-dependency-flat-0
7262b7a6754346a6684f1440bd518a6f76774982
2022-07-08T04:47:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/bert-base-zip-dependency-flat-0
27
null
transformers
7,491
Entry not found
Mimita6654/AI4Code-01
37e2fd8a4cc5bde6a65d1339cf444e5619621957
2022-07-09T15:06:12.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Mimita6654
null
Mimita6654/AI4Code-01
27
null
transformers
7,492
--- license: mit tags: - generated_from_trainer model-index: - name: AI4Code-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AI4Code-01 This model is a fine-tuned version of [prajjwal1/bert-medium](https://huggingface.co/prajjwal1/bert-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Tokenizers 0.12.1
semy/hf-model-0
408de75147f5c2d7575a2a0ef7714e6382ddebeb
2022-07-27T08:21:42.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
semy
null
semy/hf-model-0
27
null
transformers
7,493
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: hf-model-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf-model-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7158 - Accuracy: 0.45 - F1: 0.45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:| | 0.6107 | 1.0 | 12 | 0.7134 | 0.45 | 0.45 | | 0.5364 | 2.0 | 24 | 0.7158 | 0.45 | 0.45 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
LDY/Question-Answering-Ican
f08b4e66020bee259736b1fcfe8703243a4a9073
2022-07-21T13:18:53.000Z
[ "pytorch", "bert", "question-answering", "transformers", "license:afl-3.0", "autotrain_compatible" ]
question-answering
false
LDY
null
LDY/Question-Answering-Ican
27
null
transformers
7,494
--- license: afl-3.0 --- ### Time: 2020/07/10 ### ICAN-AI
Siyong/MC_RN
86baeae8dd61c7b55548dcf380a77130a01f4642
2022-07-23T16:22:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/MC_RN
27
null
transformers
7,495
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Millad_Customer_RN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Millad_Customer_RN This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5635 - Wer: 0.8113 - Cer: 0.4817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 1.9257 | 13.33 | 2000 | 2.0606 | 0.9767 | 0.5500 | | 1.4828 | 26.67 | 4000 | 2.1161 | 0.9019 | 0.4932 | | 1.2582 | 40.0 | 6000 | 2.0589 | 0.8504 | 0.4942 | | 0.9804 | 53.33 | 8000 | 2.4633 | 0.8745 | 0.4763 | | 0.7862 | 66.67 | 10000 | 2.4794 | 0.8861 | 0.4944 | | 0.6492 | 80.0 | 12000 | 2.8693 | 0.8554 | 0.4928 | | 0.5375 | 93.33 | 14000 | 2.6125 | 0.8296 | 0.4802 | | 0.4462 | 106.67 | 16000 | 2.7591 | 0.8770 | 0.4974 | | 0.3873 | 120.0 | 18000 | 3.0325 | 0.8379 | 0.4800 | | 0.3445 | 133.33 | 20000 | 2.9965 | 0.8761 | 0.4986 | | 0.3087 | 146.67 | 22000 | 3.3437 | 0.8221 | 0.4923 | | 0.2755 | 160.0 | 24000 | 3.3022 | 0.8803 | 0.5211 | | 0.2467 | 173.33 | 26000 | 3.2348 | 0.8479 | 0.4933 | | 0.2281 | 186.67 | 28000 | 3.8010 | 0.8695 | 0.5081 | | 0.2119 | 200.0 | 30000 | 3.0446 | 0.8545 | 0.4902 | | 0.194 | 213.33 | 32000 | 3.0873 | 0.8454 | 0.4840 | | 0.1677 | 226.67 | 34000 | 3.6184 | 0.8645 | 0.5019 | | 0.1642 | 240.0 | 36000 | 3.2480 | 0.8412 | 0.4903 | | 0.1656 | 253.33 | 38000 | 3.4379 | 0.8362 | 0.4816 | | 0.1371 | 266.67 | 40000 | 3.5117 | 0.8479 | 0.5040 | | 0.1301 | 280.0 | 42000 | 3.4360 | 0.8404 | 0.4870 | | 0.128 | 293.33 | 44000 | 3.6589 | 0.8537 | 0.4977 | | 0.1152 | 306.67 | 46000 | 4.2359 | 0.8545 | 0.5051 | | 0.1119 | 320.0 | 48000 | 3.5818 | 0.7980 | 0.4882 | | 0.1026 | 333.33 | 50000 | 3.7618 | 0.8013 | 0.4865 | | 0.0945 | 346.67 | 52000 | 4.2197 | 0.8404 | 0.5028 | | 0.0962 | 360.0 | 54000 | 3.9231 | 0.8653 | 0.5030 | | 0.088 | 373.33 | 56000 | 3.8400 | 0.8354 | 0.4914 | | 0.0743 | 386.67 | 58000 | 3.4924 | 0.8088 | 0.4824 | | 0.0811 | 400.0 | 60000 | 3.8370 | 0.8396 | 0.4861 | | 0.0696 | 413.33 | 62000 | 4.2808 | 0.8412 | 0.5065 | | 0.0692 | 426.67 | 64000 | 4.0161 | 0.8088 | 0.4744 | | 0.0622 | 440.0 | 66000 | 3.9080 | 0.8163 | 0.4910 | | 0.0591 | 453.33 | 68000 | 3.9838 | 0.8113 | 0.4823 | | 0.0527 | 466.67 | 70000 | 3.8067 | 0.8329 | 0.4914 | | 0.056 | 480.0 | 72000 | 4.1415 | 0.8096 | 0.4782 | | 0.0535 | 493.33 | 74000 | 4.3350 | 0.8229 | 0.4828 | | 0.0531 | 506.67 | 76000 | 3.9808 | 0.8071 | 0.4807 | | 0.0451 | 520.0 | 78000 | 4.0301 | 0.7988 | 0.4816 | | 0.044 | 533.33 | 80000 | 4.4680 | 0.8371 | 0.4921 | | 0.0389 | 546.67 | 82000 | 4.1380 | 0.8121 | 0.4819 | | 0.0392 | 560.0 | 84000 | 4.3910 | 0.7930 | 0.4763 | | 0.0389 | 573.33 | 86000 | 4.5086 | 0.8055 | 0.4802 | | 0.0355 | 586.67 | 88000 | 4.6259 | 0.8113 | 0.4821 | | 0.0307 | 600.0 | 90000 | 4.5635 | 0.8113 | 0.4817 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ivan-savchuk/msmarco-distilbert-dot-v5-tuned-full-v1
9277397c230dd0b31584f0a7a45a374a333d8bfa
2022-07-28T12:14:51.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ivan-savchuk
null
ivan-savchuk/msmarco-distilbert-dot-v5-tuned-full-v1
27
null
sentence-transformers
7,496
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 3165 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 316, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt
7ec9fc83d13cf29fa7706ebd157f2e1c62affe4f
2022-05-30T15:40:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AigizK
null
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt
26
null
transformers
7,497
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-bashkir-cv7_opt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ba metrics: - name: Test WER type: wer value: 0.04440795062008041 - name: "Test CER" type: "cer" value: 0.010491234992390509 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bashkir-cv7_opt This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset. It achieves the following results on the evaluation set: - Training Loss: 0.268400 - Validation Loss: 0.088252 - WER without LM: 0.085588 - WER with LM: 0.04440795062008041 - CER with LM: 0.010491234992390509 ## Model description Trained with this [jupiter notebook](https://drive.google.com/file/d/1KohDXZtKBWXVPZYlsLtqfxJGBzKmTtSh/view?usp=sharing) ## Intended uses & limitations In order to reduce the number of characters, the following letters have been replaced or removed: - 'я' -> 'йа' - 'ю' -> 'йу' - 'ё' -> 'йо' - 'е' -> 'йэ' for first letter - 'е' -> 'э' for other cases - 'ъ' -> deleted - 'ь' -> deleted Therefore, in order to get the correct text, you need to do the reverse transformation and use the language model. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu113 - Datasets 1.18.2 - Tokenizers 0.10.3
AlexMaclean/sentence-compression
d0bd05865437a846e4d309e470489c31d04b461a
2021-12-04T08:10:24.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
AlexMaclean
null
AlexMaclean/sentence-compression
26
1
transformers
7,498
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentence-compression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-compression This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2973 - Accuracy: 0.8912 - F1: 0.8367 - Precision: 0.8495 - Recall: 0.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2686 | 1.0 | 10000 | 0.2667 | 0.8894 | 0.8283 | 0.8725 | 0.7884 | | 0.2205 | 2.0 | 20000 | 0.2704 | 0.8925 | 0.8372 | 0.8579 | 0.8175 | | 0.1476 | 3.0 | 30000 | 0.2973 | 0.8912 | 0.8367 | 0.8495 | 0.8243 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ArBert/bert-base-uncased-finetuned-ner-kmeans
9c9906c07c06febf1f7e77ac72fa340dfe2785e7
2022-02-11T16:45:09.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/bert-base-uncased-finetuned-ner-kmeans
26
null
transformers
7,499
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner-kmeans results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner-kmeans This model is a fine-tuned version of [ArBert/bert-base-uncased-finetuned-ner](https://huggingface.co/ArBert/bert-base-uncased-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1169 - Precision: 0.9084 - Recall: 0.9245 - F1: 0.9164 - Accuracy: 0.9792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.036 | 1.0 | 1123 | 0.1010 | 0.9086 | 0.9117 | 0.9101 | 0.9779 | | 0.0214 | 2.0 | 2246 | 0.1094 | 0.9033 | 0.9199 | 0.9115 | 0.9784 | | 0.014 | 3.0 | 3369 | 0.1169 | 0.9084 | 0.9245 | 0.9164 | 0.9792 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0