modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
hsaglamlar/stress_twitter
6666c77ad4c4a707c9f1891ddd66b78dbd083464
2022-07-25T20:55:40.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:hsaglamlar/autotrain-data-stress_v2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
hsaglamlar
null
hsaglamlar/stress_twitter
29
null
transformers
7,300
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - hsaglamlar/autotrain-data-stress_v2 co2_eq_emissions: 2.7282806494855265 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1178743973 - CO2 Emissions (in grams): 2.7282806494855265 ## Validation Metrics - Loss: 0.431733638048172 - Accuracy: 0.7976190476190477 - Precision: 0.6918918918918919 - Recall: 0.8205128205128205 - AUC: 0.8952141608391608 - F1: 0.7507331378299119 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hsaglamlar/autotrain-stress_v2-1178743973 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BossLee/t5-gec
ee42828b55034da69a844b558cf4586249e9c0e2
2021-11-11T11:42:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BossLee
null
BossLee/t5-gec
28
null
transformers
7,301
Entry not found
BrianTin/MTBERT
cf1b9576c65e8625e10fe2901088f9ffc57645b8
2021-05-18T17:08:50.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
BrianTin
null
BrianTin/MTBERT
28
null
transformers
7,302
Entry not found
CoderEFE/DialoGPT-marxbot
4e12cbe19700342269fa60b995b72c6b0f88a7ab
2021-06-07T01:24:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
CoderEFE
null
CoderEFE/DialoGPT-marxbot
28
null
transformers
7,303
--- tags: - conversational --- Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-marxbot") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-marxbot") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("MarxBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
DTAI-KULeuven/robbertje-39-gb-non-shuffled
7111624edf031ee6da059ee1fbf9a7cb1ac04226
2021-08-13T10:51:47.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DTAI-KULeuven
null
DTAI-KULeuven/robbertje-39-gb-non-shuffled
28
null
transformers
7,304
Entry not found
EasthShin/BTS_Lyrics_GPT-Neo-base
592c6518ee954f13614c550629b4f41af38ca6dc
2021-08-09T05:52:07.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
EasthShin
null
EasthShin/BTS_Lyrics_GPT-Neo-base
28
null
transformers
7,305
Entry not found
Helsinki-NLP/opus-mt-bi-en
feb365f89ee1f47cad4f1581896b80ae88978983
2021-09-09T21:27:44.000Z
[ "pytorch", "marian", "text2text-generation", "bi", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bi-en
28
null
transformers
7,306
--- tags: - translation license: apache-2.0 --- ### opus-mt-bi-en * source languages: bi * target languages: en * OPUS readme: [bi-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bi.en | 30.3 | 0.458 |
Helsinki-NLP/opus-mt-ca-pt
272ac9087d98a17e9e9e0b6fe3628126e03e1099
2021-01-18T07:53:17.000Z
[ "pytorch", "marian", "text2text-generation", "ca", "pt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ca-pt
28
null
transformers
7,307
--- language: - ca - pt tags: - translation license: apache-2.0 --- ### cat-por * source group: Catalan * target group: Portuguese * OPUS readme: [cat-por](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-por/README.md) * model: transformer-align * source language(s): cat * target language(s): por * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.cat.por | 44.9 | 0.658 | ### System Info: - hf_name: cat-por - source_languages: cat - target_languages: por - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-por/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'pt'] - src_constituents: {'cat'} - tgt_constituents: {'por'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-por/opus-2020-06-17.test.txt - src_alpha3: cat - tgt_alpha3: por - short_pair: ca-pt - chrF2_score: 0.6579999999999999 - bleu: 44.9 - brevity_penalty: 0.953 - ref_len: 5847.0 - src_name: Catalan - tgt_name: Portuguese - train_date: 2020-06-17 - src_alpha2: ca - tgt_alpha2: pt - prefer_old: False - long_pair: cat-por - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-tn
39eecd8754063c0a82d0525386c3d8c6ed6df0db
2021-09-09T21:39:57.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tn
28
null
transformers
7,308
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-tn * source languages: en * target languages: tn * OPUS readme: [en-tn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-tn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-tn/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tn/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tn/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.tn | 45.5 | 0.636 |
Helsinki-NLP/opus-mt-eo-fr
3d9fb1c4184f318f966f65f1d6fbd9d3e7737d24
2021-09-09T21:41:01.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-fr
28
null
transformers
7,309
--- tags: - translation license: apache-2.0 --- ### opus-mt-eo-fr * source languages: eo * target languages: fr * OPUS readme: [eo-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/eo-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/eo-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/eo-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/eo-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.eo.fr | 50.9 | 0.675 |
Helsinki-NLP/opus-mt-ny-en
41bd8d14501ebfb32578c2daf169ed8f2f3ec5da
2021-09-10T13:59:51.000Z
[ "pytorch", "marian", "text2text-generation", "ny", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ny-en
28
null
transformers
7,310
--- tags: - translation license: apache-2.0 --- ### opus-mt-ny-en * source languages: ny * target languages: en * OPUS readme: [ny-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ny-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ny-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ny-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ny-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ny.en | 39.7 | 0.547 | | Tatoeba.ny.en | 44.2 | 0.562 |
Helsinki-NLP/opus-mt-sk-es
ce75e731abfa7c2d2991620c50c49cfbfb9c8ca2
2021-09-10T14:03:24.000Z
[ "pytorch", "marian", "text2text-generation", "sk", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sk-es
28
null
transformers
7,311
--- tags: - translation license: apache-2.0 --- ### opus-mt-sk-es * source languages: sk * target languages: es * OPUS readme: [sk-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sk-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/sk-es/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sk-es/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sk-es/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sk.es | 29.6 | 0.505 |
Helsinki-NLP/opus-mt-ss-en
f98578726f54ad3d353a6b3cdbcbd71192567471
2021-09-10T14:04:47.000Z
[ "pytorch", "marian", "text2text-generation", "ss", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ss-en
28
null
transformers
7,312
--- tags: - translation license: apache-2.0 --- ### opus-mt-ss-en * source languages: ss * target languages: en * OPUS readme: [ss-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ss-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ss-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ss-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ss-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ss.en | 30.9 | 0.478 |
Ifromspace/GRIEFSOFT
ed74ab191da8b9bee8fc154393311e8463068c6a
2022-01-15T13:06:43.000Z
[ "pytorch", "gpt2", "text-generation", "ru", "transformers", "PyTorch", "Transformers", "4ulan" ]
text-generation
false
Ifromspace
null
Ifromspace/GRIEFSOFT
28
1
transformers
7,313
--- language: - ru tags: - PyTorch - Transformers - 4ulan --- **Fork of https://huggingface.co/sberbank-ai/rugpt3large_based_on_gpt2** Забавное для дискордика))00)) ROADMAP: - Собираю датасетик из книжек про попаданцев. <------------------------- Сейчас тут. - Дообучаю. - Выбрасываю в дискордик. https://discord.gg/HpeadKH
KBLab/electra-base-swedish-cased-generator
9c12ede983d54e382381a3f1a471eab7fd2d244f
2021-01-20T13:17:06.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KBLab
null
KBLab/electra-base-swedish-cased-generator
28
null
transformers
7,314
Entry not found
Lysa/subheading_generator_en
d54538df619bda7cba66deeaa18ae0ae812ee359
2021-06-13T17:24:28.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lysa
null
Lysa/subheading_generator_en
28
null
transformers
7,315
Entry not found
PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_author_ishatespeach
c095fe8a019926dcd1387962b0056ba31a0c4959
2021-06-23T03:49:54.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PaulAdversarial
null
PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_author_ishatespeach
28
null
transformers
7,316
##A T5ForConditionalGeneration trained on 3 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (EN): * author attribution (train and test sets from the PAN task) * topic attribution - topics were assigned with BertTopic library using embeddings from `cardiffnlp/bertweet-base-hate` Roberta model (train and test sets from the PAN task) * hate speech identification (train set from the PAN task) in order to generate tone of comment use prefix **hater classification:**
SEBIS/code_trans_t5_large_code_documentation_generation_python_transfer_learning_finetune
60d59123213538e47a6b07b2f4696a774d7c293e
2021-06-23T07:46:32.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_python_transfer_learning_finetune
28
null
transformers
7,317
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/python/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
T-Systems-onsite/cross-de-fr-roberta-sentence-transformer
646c4dfed1135b713568267a0b9b3be14a3f8d1c
2022-06-28T19:56:37.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "fr", "de", "dataset:stsb_multi_mt", "transformers", "sentence_embedding", "search", "roberta", "xlm-r-distilroberta-base-paraphrase-v1", "license:mit" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-de-fr-roberta-sentence-transformer
28
null
transformers
7,318
--- language: - fr - de license: mit tags: - sentence_embedding - search - pytorch - xlm-roberta - roberta - xlm-r-distilroberta-base-paraphrase-v1 datasets: - stsb_multi_mt metrics: - Spearman’s rank correlation - cosine similarity --- # Cross German & French RoBERTa for Sentence Embeddings
akhooli/gpt2-ar-poetry
5da7539824e37c256bb30be15f8ec6eaf67c08d3
2021-05-21T12:34:58.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
akhooli
null
akhooli/gpt2-ar-poetry
28
null
transformers
7,319
Entry not found
albertbn/gpt2-medium-finetuned-ads-fp16-blocksz512
818ae136d436ccb298c1a8d22cb31a9485ba5cea
2021-05-21T12:44:25.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
albertbn
null
albertbn/gpt2-medium-finetuned-ads-fp16-blocksz512
28
null
transformers
7,320
Entry not found
anton-l/wav2vec2-large-xlsr-53-romanian
2f1e970a98e68daeea93ffa17da566a05b05803c
2021-07-05T20:20:21.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ro", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-romanian
28
null
transformers
7,321
--- language: ro datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Romanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ro type: common_voice args: ro metrics: - name: Test WER type: wer value: 24.84 --- # Wav2Vec2-Large-XLSR-53-Romanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ro", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romanian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ro.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ro/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/ro/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 24.84 % ## Training The Common Voice `train` and `validation` datasets were used for training.
bertin-project/bertin-base-random
754d33bc2bb3227fc4e61cf4151b4bfbbc30986f
2021-09-23T13:42:00.000Z
[ "pytorch", "jax", "tensorboard", "joblib", "roberta", "fill-mask", "es", "transformers", "spanish", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
bertin-project
null
bertin-project/bertin-base-random
28
null
transformers
7,322
--- language: es license: cc-by-4.0 tags: - spanish - roberta pipeline_tag: fill-mask widget: - text: Fui a la librería a comprar un <mask>. --- This is a **RoBERTa-base** model trained from scratch in Spanish. The training dataset is [mc4](https://huggingface.co/datasets/bertin-project/mc4-es-sampled ) subsampling documents to a total of about 50 million examples. Sampling is random. This model has been trained for 230.000 steps (early stopped before the 250k intended steps). Please see our main [card](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) for more information. This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team members - Eduardo González ([edugp](https://huggingface.co/edugp)) - Javier de la Rosa ([versae](https://huggingface.co/versae)) - Manu Romero ([mrm8488](https://huggingface.co/)) - María Grandury ([mariagrandury](https://huggingface.co/)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Paulo Villegas ([paulo](https://huggingface.co/paulo))
bertin-project/bertin-base-stepwise-exp-512seqlen
62feafbd538396054ae69497ac49f6a07a3f2e20
2021-09-23T13:42:03.000Z
[ "pytorch", "jax", "tensorboard", "joblib", "roberta", "fill-mask", "es", "transformers", "spanish", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
bertin-project
null
bertin-project/bertin-base-stepwise-exp-512seqlen
28
null
transformers
7,323
--- language: es license: cc-by-4.0 tags: - spanish - roberta pipeline_tag: fill-mask widget: - text: Fui a la librería a comprar un <mask>. --- This is a **RoBERTa-base** model trained from scratch in Spanish. The training dataset is [mc4](https://huggingface.co/datasets/bertin-project/mc4-es-sampled ) subsampling documents to a total of about 50 million examples. Sampling is biased towards average perplexity values (using a Gaussian function), discarding more often documents with very large values (poor quality) of very small values (short, repetitive texts). This model takes the one using [sequence length 128](https://huggingface.co/bertin-project/bertin-base-stepwise) and trains during 25.000 steps using sequence length 512. Please see our main [card](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) for more information. This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team members - Eduardo González ([edugp](https://huggingface.co/edugp)) - Javier de la Rosa ([versae](https://huggingface.co/versae)) - Manu Romero ([mrm8488](https://huggingface.co/)) - María Grandury ([mariagrandury](https://huggingface.co/)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Paulo Villegas ([paulo](https://huggingface.co/paulo))
bertin-project/bertin-base-stepwise
83a53bbd6807a25fc0dd8712e096b7501b2235bb
2021-09-23T13:42:06.000Z
[ "pytorch", "jax", "tensorboard", "joblib", "roberta", "fill-mask", "es", "transformers", "spanish", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
bertin-project
null
bertin-project/bertin-base-stepwise
28
null
transformers
7,324
--- language: es license: cc-by-4.0 tags: - spanish - roberta pipeline_tag: fill-mask widget: - text: Fui a la librería a comprar un <mask>. --- This is a **RoBERTa-base** model trained from scratch in Spanish. The training dataset is [mc4](https://huggingface.co/datasets/bertin-project/mc4-es-sampled ) subsampling documents to a total of about 50 million examples. Sampling is biased towards average perplexity values (defining perplexity boundaries based on quartiles), discarding more often documents with very large values (Q4, poor quality) of very small values (Q1, short, repetitive texts). This model has been trained for 180.000 steps (early stopped from 250k intended steps). Please see our main [card](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) for more information. This is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organised by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google. ## Team members - Eduardo González ([edugp](https://huggingface.co/edugp)) - Javier de la Rosa ([versae](https://huggingface.co/versae)) - Manu Romero ([mrm8488](https://huggingface.co/)) - María Grandury ([mariagrandury](https://huggingface.co/)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Paulo Villegas ([paulo](https://huggingface.co/paulo))
ccdv/lsg-pegasus-large-4096
9c4cb9f8f9ba229d5122302c010601a834553e22
2022-07-25T18:11:34.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "arxiv:1912.08777", "transformers", "summarization", "long context", "fill-mask", "autotrain_compatible" ]
fill-mask
false
ccdv
null
ccdv/lsg-pegasus-large-4096
28
null
transformers
7,325
--- tags: - summarization - pegasus - long context language: - en pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.18.0**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) This model is adapted from [Pegasus-large](https://huggingface.co/google/pegasus-large) for encoder-decoder tasks without additional pretraining. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer (LED) or BigBird (Pegasus) from the hub and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-pegasus-large-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-pegasus-large-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-pegasus-large-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 5 different sparse selection patterns. The best type is task dependent. \ Note that for sequences with length < 2*block_size, the type has no effect. * sparsity_type="norm", select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="pooling", use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * sparsity_type="stride", use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * sparsity_type="block_stride", use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Seq2Seq example for summarization: ```python: from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-pegasus-large-4096", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-pegasus-large-4096") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-pegasus-large-4096", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-pegasus-large-4096") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", padding="max_length", # Optional but recommended truncation=True # Optional but recommended ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` **Pegasus** ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
connorboyle/bert-ner-i2b2
9769589dd5855cf38172551d476dc4799de141f2
2021-12-01T00:13:39.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
connorboyle
null
connorboyle/bert-ner-i2b2
28
1
transformers
7,326
Named-entity recognition model trained on the I2B2 training data set for PHI.
cross-encoder/msmarco-MiniLM-L12-en-de-v1
5d615f8f86798d9fb89dfd6d3fba53817acd45cf
2021-08-05T08:40:18.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
cross-encoder
null
cross-encoder/msmarco-MiniLM-L12-en-de-v1
28
null
transformers
7,327
--- license: apache-2.0 --- # Cross-Encoder for MS MARCO - EN-DE This is a cross-lingual Cross-Encoder model for EN-DE that can be used for passage re-ranking. It was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html). The training code is available in this repository, see `train_script.py`. ## Usage with SentenceTransformers When you have [SentenceTransformers](https://www.sbert.net/) installed, you can use the model like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) query = 'How many people live in Berlin?' docs = ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'] pairs = [(query, doc) for doc in docs] scores = model.predict(pairs) ``` ## Usage with Transformers With the transformers library, you can use the model like this: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('model_name') tokenizer = AutoTokenizer.from_pretrained('model_name') features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits print(scores) ``` ## Performance The performance was evaluated on three datasets: - **TREC-DL19 EN-EN**: The original [TREC 2019 Deep Learning Track](https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html): Given an English query and 1000 documents (retrieved by BM25 lexical search), rank documents with according to their relevance. We compute NDCG@10. BM25 achieves a score of 45.46, a perfect re-ranker can achieve a score of 95.47. - **TREC-DL19 DE-EN**: The English queries of TREC-DL19 have been translated by a German native speaker to German. We rank the German queries versus the English passages from the original TREC-DL19 setup. We compute NDCG@10. - **GermanDPR DE-DE**: The [GermanDPR](https://www.deepset.ai/germanquad) dataset provides German queries and German passages from Wikipedia. We indexed the 2.8 Million paragraphs from German Wikipedia and retrieved for each query the top 100 most relevant passages using BM25 lexical search with Elasticsearch. We compute MRR@10. BM25 achieves a score of 35.85, a perfect re-ranker can achieve a score of 76.27. We also check the performance of bi-encoders using the same evaluation: The retrieved documents from BM25 lexical search are re-ranked using query & passage embeddings with cosine-similarity. Bi-Encoders can also be used for end-to-end semantic search. | Model-Name | TREC-DL19 EN-EN | TREC-DL19 DE-EN | GermanDPR DE-DE | Docs / Sec | | ------------- |:-------------:| :-----: | :---: | :----: | | BM25 | 45.46 | - | 35.85 | -| | **Cross-Encoder Re-Rankers** | | | | | [cross-encoder/msmarco-MiniLM-L6-en-de-v1](https://huggingface.co/cross-encoder/msmarco-MiniLM-L6-en-de-v1) | 72.43 | 65.53 | 46.77 | 1600 | | [cross-encoder/msmarco-MiniLM-L12-en-de-v1](https://huggingface.co/cross-encoder/msmarco-MiniLM-L12-en-de-v1) | 72.94 | 66.07 | 49.91 | 900 | | [svalabs/cross-electra-ms-marco-german-uncased](https://huggingface.co/svalabs/cross-electra-ms-marco-german-uncased) (DE only) | - | - | 53.67 | 260 | | [deepset/gbert-base-germandpr-reranking](https://huggingface.co/deepset/gbert-base-germandpr-reranking) (DE only) | - | - | 53.59 | 260 | | **Bi-Encoders (re-ranking)** | | | | | [sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned](https://huggingface.co/sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned) | 63.38 | 58.28 | 37.88 | 940 | | [sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch](https://huggingface.co/sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch) | 65.51 | 58.69 | 38.32 | 940 | | [svalabs/bi-electra-ms-marco-german-uncased](https://huggingface.co/svalabs/bi-electra-ms-marco-german-uncased) (DE only) | - | - | 34.31 | 450 | | [deepset/gbert-base-germandpr-question_encoder](https://huggingface.co/deepset/gbert-base-germandpr-question_encoder) (DE only) | - | - | 42.55 | 450 | Note: Docs / Sec gives the number of (query, document) pairs we can re-rank within a second on a V100 GPU.
cvcio/mediawatch-el-topics
2ca63fb4f74ab3c8f5c2058cabe20f1c39d6197e
2022-02-20T12:26:45.000Z
[ "pytorch", "roberta", "text-classification", "el", "transformers", "Greek", "news", "license:gpl-3.0", "model-index" ]
text-classification
false
cvcio
null
cvcio/mediawatch-el-topics
28
null
transformers
7,328
--- language: el license: gpl-3.0 tags: - roberta - Greek - news - transformers - text-classification pipeline_tag: text-classification model-index: - name: mediawatch-el-topics results: - task: type: text-classification name: Multi Label Text Classification metrics: - type: roc_auc value: 98.55 name: ROCAUC - type: eval_AFFAIRS value: 98.72 name: AFFAIRS - type: eval_AGRICULTURE value: 97.99 name: AGRICULTURE - type: eval_ARTS_AND_CULTURE value: 98.38 name: ARTS_AND_CULTURE - type: eval_BREAKING_NEWS value: 96.75 name: BREAKING_NEWS - type: eval_BUSINESS value: 98.11 name: BUSINESS - type: eval_COVID value: 96.2 name: COVID - type: eval_CRIME value: 98.85 name: CRIME - type: eval_ECONOMY value: 97.65 name: ECONOMY - type: eval_EDUCATION value: 98.65 name: EDUCATION - type: eval_ELECTIONS value: 99.4 name: ELECTIONS - type: eval_ENTERTAINMENT value: 99.25 name: ENTERTAINMENT - type: eval_ENVIRONMENT value: 98.47 name: ENVIRONMENT - type: eval_FOOD value: 99.34 name: FOOD - type: eval_HEALTH value: 97.23 name: HEALTH - type: eval_INTERNATIONAL value: 96.24 name: INTERNATIONAL - type: eval_JUSTICE value: 98.62 name: JUSTICE - type: eval_LAW_AND_ORDER value: 91.77 name: LAW_AND_ORDER - type: eval_MILITARY value: 98.38 name: MILITARY - type: eval_NON_PAPER value: 95.95 name: NON_PAPER - type: eval_OPINION value: 96.24 name: OPINION - type: eval_POLITICS value: 97.73 name: POLITICS - type: eval_REFUGEE value: 99.49 name: REFUGEE - type: eval_REGIONAL value: 95.2 name: REGIONAL - type: eval_RELIGION value: 99.22 name: RELIGION - type: eval_SCIENCE value: 98.37 name: SCIENCE - type: eval_SOCIAL_MEDIA value: 99.1 name: SOCIAL_MEDIA - type: eval_SOCIETY value: 94.39 name: SOCIETY - type: eval_SPORTS value: 99.39 name: SPORTS - type: eval_TECH value: 99.23 name: TECH - type: eval_TOURISM value: 99.0 name: TOURISM - type: eval_TRANSPORT value: 98.79 name: TRANSPORT - type: eval_TRAVEL value: 98.32 name: TRAVEL - type: eval_WEATHER value: 99.5 name: WEATHER widget: - text: "Παρ’ ολίγον «θερμό» επεισόδιο τουρκικού πολεμικού πλοίου με ελληνικό ωκεανογραφικό στην περιοχή μεταξύ Ρόδου και Καστελόριζου, στο διάστημα 20-23 Σεπτεμβρίου, αποκάλυψε το ΟΡΕΝ. Σύμφωνα με πληροφορίες που μετέδωσε το κεντρικό δελτίο ειδήσεων, όταν το ελληνικό ερευνητικό « ΑΙΓΑΙΟ » που ανήκει στο Ελληνικό Κέντρο Θαλασσίων Ερευνών βγήκε έξω από τα 6 ν.μ, σε διεθνή ύδατα, το προσέγγισε τουρκικό πολεμικό πλοίο, ο κυβερνήτης του οποίου ζήτησε δύο φορές μέσω ασυρμάτου να ενημερωθεί για τα στοιχεία του πλοίου, αλλά και για την αποστολή του. Ο πλοίαρχος του ελληνικού ερευνητικού δεν απάντησε και τελικά το τουρκικό πολεμικό απομακρύνθηκε." example_title: Topic AFFAIRS - text: "Η κυβερνητική ανικανότητα οδηγεί την χώρα στο χάος. Η κυβερνηση Μητσοτακη αδυνατεί να διαχειριστεί την πανδημία. Δεν μπορει ούτε να πείσει τον κόσμο να εμβολιαστεί, που ήταν το πιο απλο πράγμα. Σημερα λοιπόν φτάσαμε στο σημείο να μιλάμε για επαναφορά της χρήσης μάσκας σε εξωτερικούς χώρους ακόμη και όπου δεν υπάρχει συγχρωτισμός. Στις συζητήσεις των ειδικών θα βρεθεί επίσης το ενδεχόμενο για τοπικά lockdown σε περιοχές με βαρύ ιικό φορτίο για να μην ξεφύγει η κατάσταση, ενώ θα χρειάζεται κάποιος για τις μετακινήσεις του είτε πιστοποιητικό εμβολιασμού ή νόσησης και οι ανεμβολίαστοι rapid ή μοριακό τεστ." example_title: Topic COVID - text: "Η «ωραία Ελένη» επέστρεψε στην τηλεόραση, μέσα από τη συχνότητα του MEGA και άφησε τις καλύτερες εντυπώσεις. Το πλατό από το οποίο εμφανίζεται η Ελένη Μενεγάκη έχει φτιαχτεί από την αρχή για την εκπομπή της. Σήμερα, στο κλείσιμο της εκπομπής η Ελένη πέρασε ανάμεσα από τις κάμερες για να μπει στο καμαρίνι της «Μην τρομοκρατείστε, είμαι η Ελένη Μενεγάκη, τα κάνω αυτά. Με συγχωρείται, έχω ψυχολογικά αν δεν είμαι ελεύθερη» είπε αρχικά η παρουσιάστρια στους συνεργάτες της και πρόσθεσε στη συνέχεια: «Η Ελένη ολοκλήρωσε. Μπορείτε να συνεχίσετε με το υπόλοιπο πρόγραμμα του Mega. Εγώ ανοίγω το καμαρίνι, αν με αφήσουν. Μπαίνω καμαρίνι». Δείτε το απόσπασμα!" example_title: Topic ENTERTAINMENT - text: "Ένα εξαιρετικά ενδιαφέρον «κουτσομπολιό» εντόπισαν οι κεραίες της στήλης πέριξ του Μεγάρου Μαξίμου : το κατά πόσον, δηλαδή, ο «εξ απορρήτων» του Κυριάκου Μητσοτάκη , Γιώργος Γεραπετρίτης μετέχει στη διαχείριση της πανδημίας και στην διαδικασία λήψης αποφάσεων. Το εν λόγω «κουτσομπολιό» πυροδότησε το γεγονός ότι σε σαββατιάτικη εφημερίδα δημοσιεύθηκαν προχθές δηλώσεις του υπουργού Επικρατείας με τις οποίες απέκλειε κάθε σενάριο νέων οριζόντιων μέτρων και την ίδια ώρα, το Μαξίμου ανήγγελλε… καραντίνα στη Μύκονο. «Είναι αυτονόητο ότι η κοινωνία και η οικονομία δεν αντέχουν οριζόντιους περιορισμούς», έλεγε χαρακτηριστικά ο Γεραπετρίτης, την ώρα που η κυβέρνηση ανακοίνωνε… αυτούς τους οριζόντιους περιορισμούς. Ως εκ τούτων, δύο τινά μπορεί να συμβαίνουν: είτε ο υπουργός Επικρατείας δεν μετέχει πλέον στη λήψη των αποφάσεων, είτε η απόφαση για οριζόντια μέτρα ελήφθη υπό το κράτος πανικού το πρωί του Σαββάτου, όταν έφτασε στο Μαξίμου η τελευταία «φουρνιά» των επιδημιολογικών δεδομένων για το νησί των ανέμων…" example_title: Topic NON_PAPER - text: "Είναι ξεκάθαρο ότι μετά το πλήγμα που δέχθηκε η κυβέρνησή του από τις αδυναμίες στην αντιμετώπιση των καταστροφικών πυρκαγιών το μεγάλο στοίχημα για τον Κυριάκο Μητσοτάκη είναι να προχωρήσει συντεταγμένα και χωρίς παρατράγουδα ο σχεδιασμός για την αποκατάσταση των ζημιών. Ο Πρωθυπουργός έχει ήδη φτιάξει μια ομάδα κρούσης την οποία αποτελούν 9 υπουργοί. Τα μέλη που απαρτίζουν την ομάδα κρούσης και τα οποία βρίσκονται σε συνεχή, καθημερινή επαφή με τον Κυριάκο Μητσοτάκη είναι, όπως μας πληροφορεί η στήλη «Θεωρείο» της «Καθημερινής» είναι οι: Γ. Γεραπετρίτης, Α. Σκέρτσος, Χρ. Τριαντόπουλος, Κ. Καραμανλής, Κ. Σκρέκας, Στ. Πέτσας, Σπ. Λιβανός και φυσικά οι Χρ. Σταικούρας και Θ. Σκυλακάκης." example_title: Topic OPINION --- **Disclaimer**: *This model is still under testing and may change in the future, we will try to keep backwards compatibility. For any questions reach us at [email protected]* # MediaWatch News Topics (Greek) Fine-tuned model for multi-label text-classification (SequenceClassification), based on [roberta-el-news](https://huggingface.co/cvcio/roberta-el-news), using [Hugging Face's](https://huggingface.co/) [Transformers](https://github.com/huggingface/transformers) library. This model is to classify news in real-time on upto 33 topics including: *AFFAIRS*, *AGRICULTURE*, *ARTS_AND_CULTURE*, *BREAKING_NEWS*, *BUSINESS*, *COVID*, *ECONOMY*, *EDUCATION*, *ELECTIONS*, *ENTERTAINMENT*, *ENVIRONMENT*, *FOOD*, *HEALTH*, *INTERNATIONAL*, *LAW_AND_ORDER*, *MILITARY*, *NON_PAPER*, *OPINION*, *POLITICS*, *REFUGEE*, *REGIONAL*, *RELIGION*, *SCIENCE*, *SOCIAL_MEDIA*, *SOCIETY*, *SPORTS*, *TECH*, *TOURISM*, *TRANSPORT*, *TRAVEL*, *WEATHER*, *CRIME*, *JUSTICE*. ## How to use You can use this model directly with a pipeline for text-classification: ```python from transformers import pipeline pipe = pipeline( task="text-classification", model="cvcio/mediawatch-el-topics", tokenizer="cvcio/roberta-el-news" # or cvcio/mediawatch-el-topics ) topics = pipe( "Η βιασύνη αρκετών χωρών να άρουν τους περιορισμούς κατά του κορονοϊού, "+ "αν όχι να κηρύξουν το τέλος της πανδημίας, με το σκεπτικό ότι έφτασε "+ "πλέον η ώρα να συμβιώσουμε με την Covid-19, έχει κάνει μερικούς πιο "+ "επιφυλακτικούς επιστήμονες να προειδοποιούν ότι πρόκειται μάλλον "+ "για «ενδημική αυταπάτη» και ότι είναι πρόωρη τέτοια υπερβολική "+ "χαλάρωση. Καθώς τα κρούσματα της Covid-19, μετά το αιφνιδιαστικό "+ "μαζικό κύμα της παραλλαγής Όμικρον, εμφανίζουν τάση υποχώρησης σε "+ "Ευρώπη και Βόρεια Αμερική, όπου περισσεύει η κόπωση μεταξύ των "+ "πολιτών μετά από δύο χρόνια πανδημίας, ειδικοί και μη αδημονούν να "+ "«ξεμπερδέψουν» με τον κορονοϊό.", padding=True, truncation=True, max_length=512, return_all_scores=True ) print(topics) # outputs [ [ {'label': 'AFFAIRS', 'score': 0.0018806682201102376}, {'label': 'AGRICULTURE', 'score': 0.00014653144171461463}, {'label': 'ARTS_AND_CULTURE', 'score': 0.0012948638759553432}, {'label': 'BREAKING_NEWS', 'score': 0.0001729220530251041}, {'label': 'BUSINESS', 'score': 0.0028276608791202307}, {'label': 'COVID', 'score': 0.4407998025417328}, {'label': 'ECONOMY', 'score': 0.039826102554798126}, {'label': 'EDUCATION', 'score': 0.0019098613411188126}, {'label': 'ELECTIONS', 'score': 0.0003333651984576136}, {'label': 'ENTERTAINMENT', 'score': 0.004249618388712406}, {'label': 'ENVIRONMENT', 'score': 0.0015828514005988836}, {'label': 'FOOD', 'score': 0.0018390495097264647}, {'label': 'HEALTH', 'score': 0.1204477995634079}, {'label': 'INTERNATIONAL', 'score': 0.25892165303230286}, {'label': 'LAW_AND_ORDER', 'score': 0.07646272331476212}, {'label': 'MILITARY', 'score': 0.00033025629818439484}, {'label': 'NON_PAPER', 'score': 0.011991199105978012}, {'label': 'OPINION', 'score': 0.16166265308856964}, {'label': 'POLITICS', 'score': 0.0008890336030162871}, {'label': 'REFUGEE', 'score': 0.0011504743015393615}, {'label': 'REGIONAL', 'score': 0.0008734092116355896}, {'label': 'RELIGION', 'score': 0.0009001944563351572}, {'label': 'SCIENCE', 'score': 0.05075162276625633}, {'label': 'SOCIAL_MEDIA', 'score': 0.00039615994319319725}, {'label': 'SOCIETY', 'score': 0.0043518817983567715}, {'label': 'SPORTS', 'score': 0.002416545059531927}, {'label': 'TECH', 'score': 0.0007818648009561002}, {'label': 'TOURISM', 'score': 0.011870541609823704}, {'label': 'TRANSPORT', 'score': 0.0009422845905646682}, {'label': 'TRAVEL', 'score': 0.03004464879631996}, {'label': 'WEATHER', 'score': 0.00040286066359840333}, {'label': 'CRIME', 'score': 0.0005416403291746974}, {'label': 'JUSTICE', 'score': 0.000990519649349153} ] ] ``` ## Labels All labels, except *NON_PAPER*, retrieved by source articles during the data collection step, without any preprocessing, assuming that journalists and newsrooms assign correct tags to the articles. We disregarded all articles with more than 6 tags to reduce bias and tag manipulation. | label | roc_auc | samples | |-------:|--------:|--------:| | AFFAIRS | 0.9872 | 6,314 | | AGRICULTURE | 0.9799 | 1,254 | | ARTS_AND_CULTURE | 0.9838 | 15,968 | | BREAKING_NEWS | 0.9675 | 827 | | BUSINESS | 0.9811 | 6,507 | | COVID | 0.9620 | 50,000 | | CRIME | 0.9885 | 34,421 | | ECONOMY | 0.9765 | 45,474 | | EDUCATION | 0.9865 | 10,111 | | ELECTIONS | 0.9940 | 7,571 | | ENTERTAINMENT | 0.9925 | 23,323 | | ENVIRONMENT | 0.9847 | 23,060 | | FOOD | 0.9934 | 3,712 | | HEALTH | 0.9723 | 16,852 | | INTERNATIONAL | 0.9624 | 50,000 | | JUSTICE | 0.9862 | 4,860 | | LAW_AND_ORDER | 0.9177 | 50,000 | | MILITARY | 0.9838 | 6,536 | | NON_PAPER | 0.9595 | 4,589 | | OPINION | 0.9624 | 6,296 | | POLITICS | 0.9773 | 50,000 | | REFUGEE | 0.9949 | 4,536 | | REGIONAL | 0.9520 | 50,000 | | RELIGION | 0.9922 | 11,533 | | SCIENCE | 0.9837 | 1,998 | | SOCIAL_MEDIA | 0.991 | 6,212 | | SOCIETY | 0.9439 | 50,000 | | SPORTS | 0.9939 | 31,396 | | TECH | 0.9923 | 8,225 | | TOURISM | 0.9900 | 8,081 | | TRANSPORT | 0.9879 | 3,211 | | TRAVEL | 0.9832 | 4,638 | | WEATHER | 0.9950 | 19,931 | | loss | 0.0533 | - | | roc_auc | 0.9855 | - | ## Pretraining The model was pretrained using an NVIDIA A10 GPU for 15 epochs (~ approx 59K steps, 8 hours training) with a batch size of 128. The optimizer used is Adam with a learning rate of 1e-5, and weight decay 0.01. We used roc_auc_micro to evaluate the results. ### Framework versions - Transformers 4.13.0 - Pytorch 1.9.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3 ## Authors Dimitris Papaevagelou - [@andefined](https://github.com/andefined) ## About Us [Civic Information Office](https://cvcio.org/) is a Non Profit Organization based in Athens, Greece focusing on creating technology and research products for the public interest.
dbernsohn/roberta-javascript
bea9a1d2c8158136f315fb634c47bb34197db42e
2021-05-20T15:55:17.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "javascript", "dataset:code_search_net", "arxiv:1907.11692", "transformers", "autotrain_compatible" ]
fill-mask
false
dbernsohn
null
dbernsohn/roberta-javascript
28
null
transformers
7,329
# roberta-javascript --- language: javascript datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **javascript** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-javascript") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-javascript") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ var i; for (i = 0; i < cars.<mask>; i++) { text += cars[i] + "<br>"; } """.lstrip() pred = {x["token_str"].replace("Ġ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('length', 0.9959614872932434), # ('i', 0.00027875584783032537), # ('len', 0.0002283261710545048), # ('nodeType', 0.00013731322542298585), # ('index', 7.5289819505997e-05)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dingkun/retrievalv1
f7b16d1a858f41554769fbebfd7b2ce8d598f420
2022-06-20T03:00:26.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dingkun
null
dingkun/retrievalv1
28
null
transformers
7,330
Entry not found
emre/wav2vec-tr-lite-AG
7e8302e4b06020fabfaf5d6dbcb86e7cb108a757
2021-12-10T22:46:25.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec-tr-lite-AG
28
null
transformers
7,331
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Turkish by Davut Emre TASAR results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer --- # wav2vec-tr-lite-AG ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG") model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG") resampler = torchaudio.transforms.Resample(48_000, 16_000) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4388 | 3.7 | 400 | 1.366 | 0.9701 | | 0.3766 | 7.4 | 800 | 0.4914 | 0.5374 | | 0.2295 | 11.11 | 1200 | 0.3934 | 0.4125 | | 0.1121 | 14.81 | 1600 | 0.3264 | 0.2904 | | 0.1473 | 18.51 | 2000 | 0.3103 | 0.2671 | | 0.1013 | 22.22 | 2400 | 0.2589 | 0.2324 | | 0.0704 | 25.92 | 2800 | 0.2826 | 0.2339 | | 0.0537 | 29.63 | 3200 | 0.2704 | 0.2309 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
hgw3lss/gpt-j-6B-Buckland
b460b2de16f21348418ca454c48893b6ff93a73d
2022-02-12T15:31:01.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
hgw3lss
null
hgw3lss/gpt-j-6B-Buckland
28
null
transformers
7,332
Entry not found
huggingtweets/dril-fart-horse_ebooks
fb50047f0c95140282dd089e2ebe097ef4d83f8d
2021-12-23T01:55:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dril-fart-horse_ebooks
28
1
transformers
7,333
--- language: en thumbnail: http://www.huggingtweets.com/dril-fart-horse_ebooks/1640224513212/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1422460373152583683/d1k9xcgN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1096005346/1_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & jon (PERSECUTED) & Horse ebooks</div> <div style="text-align: center; font-size: 14px;">@dril-fart-horse_ebooks</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & jon (PERSECUTED) & Horse ebooks. | Data | wint | jon (PERSECUTED) | Horse ebooks | | --- | --- | --- | --- | | Tweets downloaded | 3226 | 3217 | 3200 | | Retweets | 477 | 571 | 0 | | Short tweets | 306 | 558 | 421 | | Tweets kept | 2443 | 2088 | 2779 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wf0ppmhi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-fart-horse_ebooks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/unmddioo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/unmddioo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-fart-horse_ebooks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/femoidfurry
b867b94353416af9144f5b7ff5d8a384e04dd769
2021-09-17T01:24:09.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/femoidfurry
28
null
transformers
7,334
--- language: en thumbnail: https://www.huggingtweets.com/femoidfurry/1631841845149/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1431013593366122500/8WydbuRe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">reinforced stan acc (gfm pinned)</div> <div style="text-align: center; font-size: 14px;">@femoidfurry</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from reinforced stan acc (gfm pinned). | Data | reinforced stan acc (gfm pinned) | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 1497 | | Short tweets | 193 | | Tweets kept | 1526 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vm7b6sqf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femoidfurry's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14h9aw0o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14h9aw0o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/femoidfurry') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/heatherchungus
3c868dc96e6177dd8dc597b57155aadd7a1f17c8
2021-05-22T06:44:28.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/heatherchungus
28
null
transformers
7,335
--- language: en thumbnail: https://www.huggingtweets.com/heatherchungus/1617912956937/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1376723854031212546/NlgDr-ha_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">heather (TRUE)² 🍁 ✝ ⚜ 🤖 AI Bot </div> <div style="font-size: 15px">@heatherchungus bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@heatherchungus's tweets](https://twitter.com/heatherchungus). | Data | Quantity | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 84 | | Short tweets | 1058 | | Tweets kept | 2090 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kha682j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heatherchungus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/duib9vv9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/duib9vv9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heatherchungus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/stockstotrade
e8bb1fe59d3d111de64994ff190b786983a7a740
2021-11-19T03:41:39.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/stockstotrade
28
null
transformers
7,336
--- language: en thumbnail: https://www.huggingtweets.com/stockstotrade/1637293295111/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/469936583416610816/EZt8Vl04_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">StocksToTrade</div> <div style="text-align: center; font-size: 14px;">@stockstotrade</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from StocksToTrade. | Data | StocksToTrade | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 663 | | Short tweets | 360 | | Tweets kept | 2215 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c33zwruj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stockstotrade's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1upgfq9z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1upgfq9z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stockstotrade') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
icelab/spaceroberta_CR
4b002f0f633b57e112e14633c169ab7441d428a5
2022-02-16T09:30:10.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
icelab
null
icelab/spaceroberta_CR
28
null
transformers
7,337
--- widget: - text: "The CubeSat RF design shall either have one RF inhibit and a RF power output no greater than 1.5W at the transmitter antenna's RF input OR the CubeSat shall have a minimum of two independent RF inhibits (CDS 3.3.9) (ISO 5.5.6)." --- --- # spaceroberta_CR ## Model desciption This is fine-tuned SpaceSciBERT model, for a Concept Recognition task, from the SpaceTransformers model family presented in SpaceTransformers: Language Modeling for Space Systems. The original Git repo is strath-ace/smart-nlp. The [fine-tuning](https://github.com/strath-ace/smart-nlp/blob/master/SpaceTransformers/CR/CR_ECSS_dataset.json) dataset is available for download and consists of 874 unique manually annotated ECSS requirements. The notebook for fine-tuning can be accessed in Google Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1EGh9bdxq6RqIzbvKuptAWvmIBG2EQJzJ?usp=sharing) ### BibTeX entry and citation info ``` @ARTICLE{ 9548078, author={Berquand, Audrey and Darm, Paul and Riccardi, Annalisa}, journal={IEEE Access}, title={SpaceTransformers: Language Modeling for Space Systems}, year={2021}, volume={9}, number={}, pages={133111-133122}, doi={10.1109/ACCESS.2021.3115659} } ```
kaesve/BERT_patent_reference_extraction
c9dcc71e951855ed35b5cd0f3def453794f540a4
2021-05-19T20:57:51.000Z
[ "pytorch", "jax", "bert", "fill-mask", "arxiv:2101.01039", "transformers", "autotrain_compatible" ]
fill-mask
false
kaesve
null
kaesve/BERT_patent_reference_extraction
28
null
transformers
7,338
# Reference extraction in patents This repository contains a finetuned BERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
malay-huggingface/albert-tiny-bahasa-cased
6d6150b8fabae7e55cffc7ace626111bb8a67f2e
2021-09-26T12:37:13.000Z
[ "pytorch", "albert", "fill-mask", "ms", "transformers", "autotrain_compatible" ]
fill-mask
false
malay-huggingface
null
malay-huggingface/albert-tiny-bahasa-cased
28
null
transformers
7,339
--- language: ms --- # albert-tiny-bahasa-cased Pretrained ALBERT tiny language model for Malay. ## Pretraining Corpus `albert-tiny-bahasa-cased` model was pretrained on ~1.4 Billion words. Below is list of data we trained on, 1. [cleaned local texts](https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean). 2. [translated The Pile](https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile). ## Pretraining details - All steps can reproduce from here, [Malaya/pretrained-model/albert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/albert). ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AlbertTokenizer, AlbertModel model = AlbertModel.from_pretrained('malay-huggingface/albert-tiny-bahasa-cased') tokenizer = AlbertTokenizer.from_pretrained( 'malay-huggingface/albert-tiny-bahasa-cased', do_lower_case = False, ) ``` ## Example using AutoModelWithLMHead ```python from transformers import AlbertTokenizer, AlbertForMaskedLM, pipeline model = AlbertForMaskedLM.from_pretrained('malay-huggingface/albert-tiny-bahasa-cased') tokenizer = AlbertTokenizer.from_pretrained( 'malay-huggingface/albert-tiny-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan [MASK] .') ``` Output is, ```text [{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.', 'score': 0.09178723394870758, 'token': 1957, 'token_str': 'M a l a y s i a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.', 'score': 0.053524162620306015, 'token': 2134, 'token_str': 'n e g a r a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan dikemukakan.', 'score': 0.031137527897953987, 'token': 9383, 'token_str': 'd i k e m u k a k a n'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan 1MDB.', 'score': 0.02826082520186901, 'token': 13838, 'token_str': '1 M D B'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ditolak.', 'score': 0.026568090543150902, 'token': 11465, 'token_str': 'd i t o l a k'}] ```
microsoft/unispeech-sat-base-100h-libri-ft
b294556d8d77cc539f9d08bef0ddbb0f60985328
2021-11-04T15:26:40.000Z
[ "pytorch", "unispeech-sat", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2110.05752", "transformers", "audio", "license:apache-2.0" ]
automatic-speech-recognition
false
microsoft
null
microsoft/unispeech-sat-base-100h-libri-ft
28
3
transformers
7,340
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac --- # UniSpeech-SAT-Base-Finetuned-100h-Libri [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) A [unispeech-sat-base model]( ) that was fine-tuned on 100h hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. The model was fine-tuned on: - 100 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) [Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu **Abstract** *Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, UniSpeechSatForCTC from datasets import load_dataset import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("microsoft/unispeech-sat-base-100h-libri-ft") model = UniSpeechSatForCTC.from_pretrained("microsoft/unispeech-sat-base-100h-libri-ft") # load dummy dataset ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png)
mlcorelib/deberta-base-uncased
190353c0376b3a54214228847caa4979f99ec99a
2021-05-01T12:33:45.000Z
[ "pytorch", "tf", "jax", "rust", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
mlcorelib
null
mlcorelib/deberta-base-uncased
28
null
transformers
7,341
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
mudes/en-base
1600298e0458d961c2c749da7a098f69b4be478a
2021-05-20T01:03:44.000Z
[ "pytorch", "jax", "bert", "token-classification", "en", "arxiv:2102.09665", "arxiv:2104.04630", "transformers", "mudes", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
mudes
null
mudes/en-base
28
1
transformers
7,342
--- language: en tags: - mudes license: apache-2.0 --- # MUDES - {Mu}ltilingual {De}tection of Offensive {S}pans We provide state-of-the-art models to detect toxic spans in social media texts. We introduce our framework in [this paper](https://arxiv.org/abs/2102.09665). We have evaluated our models on Toxic Spans task at SemEval 2021 (Task 5). Our participation in the task is detailed in [this paper](https://arxiv.org/abs/2104.04630). ## Usage You can use this model when you have [MUDES](https://github.com/TharinduDR/MUDES) installed: ```bash pip install mudes ``` Then you can use the model like this: ```python from mudes.app.mudes_app import MUDESApp app = MUDESApp("en-base", use_cuda=False) print(app.predict_toxic_spans("You motherfucking cunt", spans=True)) ``` ## System Demonstration An experimental demonstration interface called MUDES-UI has been released on [GitHub](https://github.com/TharinduDR/MUDES-UI) and can be checked out in [here](http://rgcl.wlv.ac.uk/mudes/). ## Citing & Authors If you find this model helpful, feel free to cite our publications ```bibtex @inproceedings{ranasinghemudes, title={{MUDES: Multilingual Detection of Offensive Spans}}, author={Tharindu Ranasinghe and Marcos Zampieri}, booktitle={Proceedings of NAACL}, year={2021} } ``` ```bibtex @inproceedings{ranasinghe2021semeval, title={{WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans}}, author = {Ranasinghe, Tharindu and Sarkar, Diptanu and Zampieri, Marcos and Ororbia, Alex}, booktitle={Proceedings of SemEval}, year={2021} } ```
ncoop57/multi-code-clippy
380fc6200e5aa4fbf17dc696d23f29cfdfea8d58
2022-03-03T12:44:46.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
ncoop57
null
ncoop57/multi-code-clippy
28
null
transformers
7,343
Entry not found
nepp1d0/ChemBERTa_drug_state_classification
080708b8d69082d295aa88ccbec56b33a4205501
2022-04-13T18:27:48.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
nepp1d0
null
nepp1d0/ChemBERTa_drug_state_classification
28
null
transformers
7,344
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: ChemBERTa_drug_state_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ChemBERTa_drug_state_classification This model is a fine-tuned version of [nepp1d0/ChemBERTa_drug_state_classification](https://huggingface.co/nepp1d0/ChemBERTa_drug_state_classification) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0463 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5063 | 1.0 | 240 | 0.3069 | 0.9160 | | 0.3683 | 2.0 | 480 | 0.2135 | 0.9431 | | 0.2633 | 3.0 | 720 | 0.1324 | 0.9577 | | 0.1692 | 4.0 | 960 | 0.0647 | 0.9802 | | 0.1109 | 5.0 | 1200 | 0.0463 | 0.9870 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
othrif/wav2vec2-large-xlsr-arabic
28096ade748ce453de4df34305836c6f2167178f
2021-03-29T18:43:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
othrif
null
othrif/wav2vec2-large-xlsr-arabic
28
null
transformers
7,345
--- language: ar datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Arabic by Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ar type: common_voice args: ar metrics: - name: Test WER type: wer value: 46.77 --- # Wav2Vec2-Large-XLSR-53-Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ar", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\؛\\\\\\\\\\\\\\\\—\\\\\\\\\\\\\\\\_get\\\\\\\\\\\\\\\\«\\\\\\\\\\\\\\\\»\\\\\\\\\\\\\\\\ـ\\\\\\\\\\\\\\\\ـ\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�\\\\\\\\\\\\\\\\#\\\\\\\\\\\\\\\\،\\\\\\\\\\\\\\\\☭,\\\\\\\\\\\\\\\\؟]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.77 ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://huggingface.co/othrif/wav2vec2-large-xlsr-arabic/tree/main)
pere/norwegian-gpt2
be4f5522d2d7f5274d4800eb0579dab3102b0a09
2021-09-23T16:19:24.000Z
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "no", "dataset:oscar", "transformers", "norwegian", "GPT2", "casual language modeling", "license:cc-by-4.0" ]
text-generation
false
pere
null
pere/norwegian-gpt2
28
null
transformers
7,346
--- language: no license: cc-by-4.0 tags: - norwegian - GPT2 - casual language modeling datasets: - oscar --- # Norwegian GPT-2 - Oscar ## Description This is a sample reference model trained only on the Oscar Corpus for a day on a TPU v3-8. Pretrained model on Norwegian language using a causal language modeling (CLM) objective.
phiyodr/bert-large-finetuned-squad2
5f4b89a4f92c4c975bb405548fc62869dc70f312
2021-05-20T02:36:12.000Z
[ "pytorch", "jax", "bert", "question-answering", "en", "dataset:squad2", "arxiv:1810.04805", "arxiv:1806.03822", "transformers", "autotrain_compatible" ]
question-answering
false
phiyodr
null
phiyodr/bert-large-finetuned-squad2
28
null
transformers
7,347
--- language: en tags: - pytorch - question-answering datasets: - squad2 metrics: - exact - f1 widget: - text: "What discipline did Winkelmann create?" context: "Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. The prophet and founding hero of modern archaeology, Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art." --- # bert-large-finetuned-squad2 ## Model description This model is based on **[bert-large-uncased](https://huggingface.co/bert-large-uncased)** and was finetuned on **[SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/)**. The corresponding papers you can found [here (model)](https://arxiv.org/abs/1810.04805) and [here (data)](https://arxiv.org/abs/1806.03822). ## How to use ```python from transformers.pipelines import pipeline model_name = "phiyodr/bert-large-finetuned-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'What discipline did Winkelmann create?', 'context': 'Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. "The prophet and founding hero of modern archaeology", Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art. ' } nlp(inputs) ``` ## Training procedure ``` { "base_model": "bert-large-uncased", "do_lower_case": True, "learning_rate": 3e-5, "num_train_epochs": 4, "max_seq_length": 384, "doc_stride": 128, "max_query_length": 64, "batch_size": 96 } ``` ## Eval results - Data: [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json) - Script: [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) (original script from [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/README.md)) ``` { "exact": 76.22336393497852, "f1": 79.72527570261339, "total": 11873, "HasAns_exact": 76.19770580296895, "HasAns_f1": 83.21157193271408, "HasAns_total": 5928, "NoAns_exact": 76.24894869638352, "NoAns_f1": 76.24894869638352, "NoAns_total": 5945 } ```
ponmari/QuestionAnsweingBert
f501022178b31ab2063d14f88af895c0d7c5a127
2021-05-20T02:51:30.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ponmari
null
ponmari/QuestionAnsweingBert
28
null
transformers
7,348
Entry not found
pradhyra/AWSBlogBert
4ab2eb2471755ab5a1cbbd5d2767ba3efbae3b3a
2021-05-20T19:30:09.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pradhyra
null
pradhyra/AWSBlogBert
28
null
transformers
7,349
This model is pre-trained on blog articles from AWS Blogs. ## Pre-training corpora The input text contains around 3000 blog articles on [AWS Blogs website](https://aws.amazon.com/blogs/) technical subject matter including AWS products, tools and tutorials. ## Pre-training details I picked a Roberta architecture for masked language modeling (6-layer, 768-hidden, 12-heads, 82M parameters) and its corresponding ByteLevelBPE tokenization strategy. I then followed HuggingFace's Transformers [blog post](https://huggingface.co/blog/how-to-train) to train the model. I chose to follow the following training set-up: 28k training steps with batches of 64 sequences of length 512 with an initial learning rate 5e-5. The model acheived a training loss of 3.6 on the MLM task over 10 epochs.
pstroe/roberta-base-latin-cased
cfcf8c2ac7b0cc5c627a1dafa23e0ba8fc2eed16
2021-12-06T09:10:49.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pstroe
null
pstroe/roberta-base-latin-cased
28
null
transformers
7,350
## RoBERTa Latin model This is a Latin RoBERTa-based LM model. The data it uses is the same as has been used to compute the text referenced HTR evaluation measures. The intention of the Transformer-based LM is twofold: on the one hand, it will be used for the evaluation of HTR results, on the other, it should be used as a decoder for the TrOCR architecture. The basis for the word unigram and character n-gram computations is the Latin part of the [cc100 corpus](http://data.statmt.org/cc-100/). The overall corpus contains 2.5G of text data. ### Preprocessing I undertook the following preprocessing steps: - Removal of all "pseudo-Latin" text ("Lorem ipsum ..."). - Use of [CLTK](http://www.cltk.org) for sentence splitting and normalisation. - Retaining only lines containing letters of the Latin alphabet, numerals, and certain punctuation (--> `grep -P '^[A-z0-9ÄÖÜäöüÆæŒœᵫĀāūōŌ.,;:?!\- Ęę]+$' la.nolorem.tok.txt` - deduplication of the corpus The result is a corpus of ~390 million tokens. The dataset used to train this model is available [HERE](https://huggingface.co/datasets/pstroe/cc100-latin). ### Contact For contact, reach out to Phillip Ströbel [via mail](mailto:[email protected]) or [via Twitter](https://twitter.com/CLingophil).
sismetanin/rubert_conversational-ru-sentiment-rureviews
6544d966bcbd5ab089438caf711e7394d8d1cdd2
2021-05-20T06:20:54.000Z
[ "pytorch", "jax", "bert", "text-classification", "ru", "transformers", "sentiment analysis", "Russian" ]
text-classification
false
sismetanin
null
sismetanin/rubert_conversational-ru-sentiment-rureviews
28
null
transformers
7,351
--- language: - ru tags: - sentiment analysis - Russian --- ## RuBERT-Conversational-ru-sentiment-RuReviews RuBERT-Conversational-ru-sentiment-RuReviews is a [RuBERT-Conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model fine-tuned on [RuReviews dataset](https://github.com/sismetanin/rureviews) of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @INPROCEEDINGS{Smetanin2019Sentiment, author={Sergey Smetanin and Michail Komarov}, booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)}, title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks}, year={2019}, volume={01}, pages={482-486}, doi={10.1109/CBI.2019.00062}, ISSN={2378-1963}, month={July} } ```
sshleifer/student_cnn_12_6
d266f51bbf3b5df7d91a640820a341770ae7ab45
2021-06-14T08:36:40.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_cnn_12_6
28
null
transformers
7,352
Entry not found
textattack/albert-base-v2-rotten-tomatoes
b19b7cd9422f089722c7b7417e6a13ef2c2ac963
2020-07-06T16:35:34.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/albert-base-v2-rotten-tomatoes
28
null
transformers
7,353
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8808630393996247, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/facebook-bart-large-QNLI
00434bfe2b7e6a3bfcf34024f642ef519f0a0fe1
2020-06-09T16:50:26.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/facebook-bart-large-QNLI
28
null
transformers
7,354
Entry not found
tog/fr-boris-8bit
15191226465af9f10024d696f93f5090376ead9d
2022-01-26T07:03:25.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
tog
null
tog/fr-boris-8bit
28
null
transformers
7,355
Entry not found
uer/chinese_roberta_L-10_H-768
6ab354686e240c51eb0c6203ec67fa1b7f0fc41a
2022-07-15T08:15:19.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-10_H-768
28
2
transformers
7,356
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
yhavinga/gpt-neo-125M-dutch
863872afb9d8299aeb1b45ab7ef2cf2b0b248624
2022-03-20T10:21:20.000Z
[ "pytorch", "jax", "tensorboard", "gpt_neo", "text-generation", "nl", "dataset:yhavinga/mc4_nl_cleaned", "transformers", "gpt2-medium", "gpt2" ]
text-generation
false
yhavinga
null
yhavinga/gpt-neo-125M-dutch
28
1
transformers
7,357
--- language: nl widget: - text: "In het jaar 2030 zullen we" - text: "Toen ik gisteren volledig in de ban was van" - text: "Studenten en leraren van de Bogazici Universiteit in de Turkse stad Istanbul" - text: "In Israël was een strenge lockdown" tags: - gpt2-medium - gpt2 pipeline_tag: text-generation datasets: - yhavinga/mc4_nl_cleaned --- # GPT-Neo 125M pre-trained on cleaned Dutch mC4 🇳🇱 A GPT-Neo small model (125M paramters) trained from scratch on Dutch, with perplexity 20.9 on cleaned Dutch mC4. ## How To Use You can use this GPT-Neo model directly with a pipeline for text generation. ```python MODEL_DIR='yhavinga/gpt-neo-125M-dutch' from transformers import pipeline, GPT2Tokenizer, GPTNeoForCausalLM tokenizer = GPT2Tokenizer.from_pretrained(MODEL_DIR) model = GPTNeoForCausalLM.from_pretrained(MODEL_DIR) generator = pipeline('text-generation', model, tokenizer=tokenizer) generated_text = generator('Wetenschappers verbonden aan de Katholieke Universiteit', max_length=256, do_sample=True, top_k=50, top_p=0.95, temperature=0.7, no_repeat_ngram_size=2)) ``` *"Wetenschappers verbonden aan de Katholieke Universiteit van Nijmegen" - "hebben ontdekt dat de genen die een mens heeft, een enorme invloed hebben op het DNA van zijn lichaam. Cellen kunnen zich beter binden aan het DNA dan andere soorten cellen. De genen die de cellen maken, zijn bepalend voor de groei van de cel. Het DNA van een mens is niet alleen informatiedrager, maar ook een bouwstof voor het DNA. Het wordt gevonden in de genen van een cel. Als er op een cel een cel"* ## Tokenizer * BPE tokenizer trained from scratch for Dutch on mC4 nl cleaned with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). ## Dataset This model was trained on of the `full` configuration (33B tokens) of [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. ## Models TL;DR: [yhavinga/gpt2-medium-dutch](https://huggingface.co/yhavinga/gpt2-medium-dutch) is the best model. * The models with `a`/`b` in the step-column have been trained to step `a` of a total of `b` steps. | | model | params | train seq len | ppl | loss | batch size | epochs | steps | optim | lr | duration | config | |-----------------------------------------------------------------------------------|---------|--------|---------------|------|------|------------|--------|-----------------|-----------|--------|----------|-----------| | [yhavinga/gpt-neo-125M-dutch](https://huggingface.co/yhavinga/gpt-neo-125M-dutch) | gpt neo | 125M | 512 | 20.9 | 3.04 | 128 | 1 | 190000/558608 | adam | 2.4e-3 | 1d 12h | full | | [yhavinga/gpt2-medium-dutch](https://huggingface.co/yhavinga/gpt2-medium-dutch) | gpt2 | 345M | 512 | 15.1 | 2.71 | 128 | 1 | 320000/520502 | adam | 8e-4 | 7d 2h | full | | [yhavinga/gpt2-large-dutch](https://huggingface.co/yhavinga/gpt2-large-dutch) | gpt2 | 762M | 512 | 15.1 | 2.72 | 32 | 1 | 1100000/2082009 | adafactor | 3.3e-5 | 8d 15h | large | | [yhavinga/gpt-neo-1.3B-dutch](https://huggingface.co/yhavinga/gpt-neo-1.3B-dutch) | gpt neo | 1.3B | 512 | 16.0 | 2.77 | 16 | 1 | 960000/3049896 | adafactor | 5e-4 | 7d 11h | full | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was also instrumental in most, if not all, parts of the training. The following repositories where helpful in setting up the TPU-VM, and training the models: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [HUggingFace Flax MLM examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling) * [gpt2-medium-persian](https://huggingface.co/flax-community/gpt2-medium-persian) * [gpt2-medium-indonesian](https://huggingface.co/flax-community/gpt2-medium-persian) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
8e5cdfd34a1bce3bfcbc6d2a4c4294ddb2e32c34
2022-02-25T12:44:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
vocab-transformers
null
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
28
null
transformers
7,358
#cross_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated This CrossEncoder was trained with MarginMSE loss from the [vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated](https://hf.co/vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated) checkpoint. **Word embedding matrix has been updated during training**. You can load the model with [sentence-transformers](https://sbert.net): ```python from sentence_transformers import CrossEncoder from torch import nn model = CrossEncoder(model_name, default_activation_function=nn.Identity()) ``` Performance on TREC Deep Learning (nDCG@10): - TREC-DL 19: 71.65 - TREC-DL 20: 73.6
jweb/japanese-soseki-gpt2-1b
de9952d7bd8ad68f4e37e84c919ffbf31f909bcc
2022-03-06T02:17:59.000Z
[ "pytorch", "rust", "gpt2", "text-generation", "ja", "dataset:cc100", "dataset:wikipedia", "dataset:AozoraBunko", "transformers", "japanese", "lm", "nlp", "rust-bert", "license:mit" ]
text-generation
false
jweb
null
jweb/japanese-soseki-gpt2-1b
28
2
transformers
7,359
--- language: ja thumbnail: https://github.com/ycat3/japanese-pretrained-models/blob/master/jweb.png tags: - ja - japanese - gpt2 - text-generation - lm - nlp - rust - rust-bert license: mit datasets: - cc100 - wikipedia - AozoraBunko widget: - text: "夏目漱石は、" --- # japanese-soseki-gpt2-1b ![jweb-icon](./jweb.png) This repository provides a 1.3B-parameter finetuned Japanese GPT2 model. The model was finetuned by [jweb](https://jweb.asia/) based on trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/) Both pytorch(pytorch_model.bin) and Rust(rust_model.ot) models are provided # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. python ~~~~ import torch from transformers import T5Tokenizer, AutoModelForCausalLM tokenizer = T5Tokenizer.from_pretrained("jweb/japanese-soseki-gpt2-1b") model = AutoModelForCausalLM.from_pretrained("jweb/japanese-soseki-gpt2-1b") if torch.cuda.is_available(): model = model.to("cuda") text = "夏目漱石は、" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_length=128, min_length=40, do_sample=True, repetition_penalty= 1.6, early_stopping= True, num_beams= 5, temperature= 1.0, top_k=500, top_p=0.95, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) # sample output: 夏目漱石は、明治時代を代表する文豪です。夏目漱石の代表作は「吾輩は猫である」や「坊っちゃん」、「草枕」「三四郎」、それに「虞美人草(ぐびじんそう)」などたくさんあります。 ~~~~ rust ~~~~ use rust_bert::gpt2::GPT2Generator; use rust_bert::pipelines::common::{ModelType, TokenizerOption}; use rust_bert::pipelines::generation_utils::{GenerateConfig, LanguageGenerator}; use rust_bert::resources::{ RemoteResource, ResourceProvider}; use tch::Device; fn main() -> anyhow::Result<()> { let model_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/rust_model.ot".into(), cache_subdir: "japanese-soseki-gpt2-1b/model".into(), }); let config_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/config.json".into(), cache_subdir: "japanese-soseki-gpt2-1b/config".into(), }); let vocab_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/spiece.model".into(), cache_subdir: "japanese-soseki-gpt2-1b/vocab".into(), }); let vocab_resource_token = vocab_resource.clone(); let merges_resource = vocab_resource.clone(); let generate_config = GenerateConfig { model_resource, config_resource, vocab_resource, merges_resource, // not used device: Device::Cpu, repetition_penalty: 1.6, min_length: 40, max_length: 128, do_sample: true, early_stopping: true, num_beams: 5, temperature: 1.0, top_k: 500, top_p: 0.95, ..Default::default() }; let tokenizer = TokenizerOption::from_file( ModelType::T5, vocab_resource_token.get_local_path().unwrap().to_str().unwrap(), None, true, None, None, )?; let mut gpt2_model = GPT2Generator::new_with_tokenizer(generate_config, tokenizer.into())?; gpt2_model.set_device(Device::cuda_if_available()); let input_text = "夏目漱石は、"; let t1 = std::time::Instant::now(); let output = gpt2_model.generate(Some(&[input_text]), None); println!("{}", output[0].text); println!("Elapsed Time(ms):{}",t1.elapsed().as_millis()); Ok(()) } // sample output: 夏目漱石は、明治から大正にかけて活躍した日本の小説家です。彼は「吾輩は猫である」や「坊っちゃん」、「草枕」「三四郎」、あるいは「虞美人草」などの小説で知られていますが、「明暗」のような小説も書いていました。 ~~~~ # Model architecture A 24-layer, 2048-hidden-size transformer-based language model. # Training The model was trained on [Japanese C4](https://huggingface.co/datasets/allenai/c4), [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective. It reaches around 14 perplexity on a chosen validation set from the same data. # Finetuning The model was finetuned on [Aozorabunko](https://github.com/aozorabunko/aozorabunko), especially Natume Soseki books. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script, and then augmented with emojis and symbols. # Licenese [The MIT license](https://opensource.org/licenses/MIT)
hackathon-pln-es/poem-gen-spanish-t5-small
7ef2e7df3e03360866d2e394dc3e5d36fb3e0e67
2022-04-03T03:30:07.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "es", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
hackathon-pln-es
null
hackathon-pln-es/poem-gen-spanish-t5-small
28
4
transformers
7,360
--- license: mit language: es tags: - generated_from_trainer model-index: - name: poem-gen-spanish-t5-small results: [] --- # poem-gen-spanish-t5-small This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the [Spanish Poetry Dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) dataset. The model was created during the [First Spanish Hackathon](https://somosnlp.org/hackathon) organized by [Somos NLP](https://somosnlp.org/). The team who participated was composed by: - 🇨🇺 [Alberto Carmona Barthelemy](https://huggingface.co/milyiyo) - 🇨🇴 [Jorge Henao](https://huggingface.co/jorge-henao) - 🇪🇸 [Andrea Morales Garzón](https://huggingface.co/andreamorgar) - 🇮🇳 [Drishti Sharma](https://huggingface.co/DrishtiSharma) It achieves the following results on the evaluation set: - Loss: 2.8707 - Perplexity: 17.65 ## Model description The model was trained to generate spanish poems attending to some parameters like style, sentiment, words to include and starting phrase. Example: ``` poema: estilo: Pablo Neruda && sentimiento: positivo && palabras: cielo, luna, mar && texto: Todos fueron a verle pasar ``` ### How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = 'hackathon-pln-es/poem-gen-spanish-t5-small' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) author, sentiment, word, start_text = 'Pablo Neruda', 'positivo', 'cielo', 'Todos fueron a la plaza' input_text = f"""poema: estilo: {author} && sentimiento: {sentiment} && palabras: {word} && texto: {start_text} """ inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(inputs["input_ids"], do_sample = True, max_length = 30, repetition_penalty = 20.0, top_k = 50, top_p = 0.92) detok_outputs = [tokenizer.decode(x, skip_special_tokens=True) for x in outputs] res = detok_outputs[0] ``` ## Training and evaluation data The original [dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) has the columns `author`, `content` and `title`. For each poem we generate new examples: - content: *line_i* , generated: *line_i+1* - content: *concatenate(line_i, line_i+1)* , generated: *line_i+2* - content: *concatenate(line_i, line_i+1, line_i+2)* , generated: *line_i+3* The resulting dataset has the columns `author`, `content`, `title` and `generated`. For each example we compute the sentiment of the generated column and the nouns. In the case of sentiment, we used the model `mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis` and for nouns extraction we used spaCy. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7082 | 0.73 | 30000 | 2.8878 | | 2.6251 | 1.46 | 60000 | 2.8940 | | 2.5796 | 2.19 | 90000 | 2.8853 | | 2.5556 | 2.93 | 120000 | 2.8749 | | 2.527 | 3.66 | 150000 | 2.8850 | | 2.5024 | 4.39 | 180000 | 2.8760 | | 2.4887 | 5.12 | 210000 | 2.8749 | | 2.4808 | 5.85 | 240000 | 2.8707 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo
abb1735fa8735c95c2241b7f074af79592181a42
2022-05-18T08:48:34.000Z
[ "pytorch", "roberta", "text-classification", "dataset:EXIST Dataset", "dataset:MeTwo Machismo and Sexism Twitter Identification dataset", "transformers", "license:apache-2.0", "model-index" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo
28
4
transformers
7,361
--- license: apache-2.0 tags: - datasets: - EXIST Dataset - MeTwo Machismo and Sexism Twitter Identification dataset widget: - text: "manejas muy bien para ser mujer" - text: "En temas políticos hombres y mujeres son iguales" - text: "Los ipad son unos equipos electrónicos" metrics: - accuracy model-index: - name: twitter_sexismo-finetuned-exist2021 results: - task: name: Text Classification type: text-classification dataset: name: EXIST Dataset type: EXIST Dataset args: es metrics: - name: Accuracy type: accuracy value: 0.83 --- # twitter_sexismo-finetuned-exist2021 This model is a fine-tuned version of [pysentimiento/robertuito-hate-speech](https://huggingface.co/pysentimiento/robertuito-hate-speech) on the EXIST dataset and MeTwo: Machismo and Sexism Twitter Identification dataset https://github.com/franciscorodriguez92/MeTwo. It achieves the following results on the evaluation set: - Loss: 0.54 - Accuracy: 0.83 ## Model description Model for the 'Somos NLP' Hackathon for detecting sexism in twitters in Spanish. Created by: - **medardodt** - **MariaIsabel** - **ManRo** - **lucel172** - **robertou2** ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - my_learning_rate = 5E-5 - my_adam_epsilon = 1E-8 - my_number_of_epochs = 8 - my_warmup = 3 - my_mini_batch_size = 32 - optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results |Epoch|Training Loss|Validation Loss|Accuracy|F1|Precision|| |----|-------|-------|-------|-------|-------|-------| |1|0.389900 |0.397857 |0.827133 |0.699620 |0.786325 | |2|0.064400 |0.544625 |0.831510 |0.707224 |0.794872 | |3|0.004800 |0.837723 |0.818381 |0.704626 |0.733333 | |4|0.000500 |1.045066 |0.820569 | 0.702899 |0.746154 | |5|0.000200 |1.172727 |0.805252 |0.669145 |0.731707 | |6|0.000200 |1.202422 |0.827133 |0.720848 |0.744526 | |7|0.000000 |1.195012 |0.827133 |0.718861 |0.748148 | |8|0.000100 |1.215515 |0.824945 |0.705882 |0.761905 | |9|0.000100|1.233099 |0.827133 |0.710623 |0.763780 | |10|0.000100|1.237268 |0.829322 |0.713235 |0.769841 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6 ## Model in Action Fast usage with pipelines: ``` python ###libraries required !pip install transformers from transformers import pipeline ### usage pipelines model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo" pipeline_nlp = pipeline("text-classification", model=model_checkpoint) pipeline_nlp("mujer al volante peligro!") #pipeline_nlp("¡me encanta el ipad!") #pipeline_nlp (["mujer al volante peligro!", "Los hombre tienen más manias que las mujeres", "me encanta el ipad!"] ) # OUTPUT MODEL # # LABEL_0: "NON SEXISM"or LABEL_1: "SEXISM" and score: probability of accuracy per model. # [{'label': 'LABEL_1', 'score': 0.9967633485794067}] # [{'label': 'LABEL_0', 'score': 0.9934417009353638}] #[{‘label': 'LABEL_1', 'score': 0.9967633485794067}, # {'label': 'LABEL_1', 'score': 0.9755664467811584}, # {'label': 'LABEL_0', 'score': 0.9955045580863953}] ``` ## More Information Process ### Retos Uno de los principales retos que se encontró en este proceso ha sido disponer de un dataset en español. Se ha logrado conseguir (previa solicitud) el dataset utilizado en [EXIST:sEXism Identification in Social neTworks](http://nlp.uned.es/exist2021/), el cual fue un gran punto de partida para comenzar con el modelo. Lamentablemente este un dataset presenta limitaciones debido a licencias y políticas para ser compartido libremente. Este dataset incorpora cualquier tipo de expresión sexista o fenómenos relacionados, incluidas las afirmaciones descriptivas o informadas donde el mensaje sexista es un informe o una descripción de un comportamiento sexista. se han utilizado los 3,541 tweets etiquetados en español. Luego se logró disponer de otro dataset en español [MeTwo: Machismo and Sexism Twitter Identification dataset](https://github.com/franciscorodriguez92/MeTwo). Este dataset contiene los id de cada tweet con su etiqueta respectiva, lo que nos permitió obtener el texto del tweet e incrementar el dataset original. Un desafío ha sido iniciar los procesos de finetuned en las prueba, esto pues se dispone de diversas variables para validar y testear (desde modelos como: BETO o Roberta, hasta hiperparámetros: como learning rate), y solo se disponede un plazo acotado de dos semanas, además de la curva de aprendizaje. Para este desafío, se han basado las primeras pruebas en los parámetros presentados por de Paula et al. (2021), lo cual brindó un punto de partida y un reto a vencer, el **_0.790 de accuracy_** obtenidos por el trabajo previo en la identificación de tweets sexistas en español. En este ámbito se realizaron diversas pruebas en paralelo para encontrar el mejor modelo. Luego de un proceso colaborativo de finetuned se ha logrado obtener un **83% de accuracy**. ### Trabajos Futuros Se propone incrementar el dataset desarrollado. Para esto es posible descargar cantidades superiores de tweets en español y aplicar técnicas de active learning para obtener un grupo reducido de tweets a etiquetar vía crowdsourcing, y en donde estos datos etiquetados puedan servir para etiquetar el resto. También se pueden utilizar técnicas de Data Augmentation, para duplicar y extender el dataset. Realizar más pruebas con otros modelos y mejorar el modelo es otro reto que se propone como trabajos futuros. ### Posibles Aplicaciones Primero es sumamente importante dar mayor visibilidad al problema de _sexismo en redes sociales_, principalmente en español. El proceso de Transfer Learning logra reutilizar y aprovechar modelos previamente entrenados, y lo que se desea es que nuevos grupos de investigación, estudiantes, etc. utilicen la base del actual modelo para desarrollar los propios y crear un mejor modelo. De esta manera, se podría construir una herramienta que pueda identificar en tiempo real los tweets sexistas y eliminarlos antes de su propagación. ### Referencias 1 de Paula, A. F. M., da Silva, R. F., & Schlicht, I. B. (2021). Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models. arXiv preprint arXiv:2111.04551. Rodríguez-Sánchez, F., Carrillo-de-Albornoz, J., Plaza, L., Gonzalo, J., Rosso, P., Comet, M., & Donoso, T. (2021). Overview of exist 2021: sexism identification in social networks. Procesamiento del Lenguaje Natural, 67, 195-207.
huggingtweets/twitter
5926a658115bb8084687850aaa93f7948b80d104
2022-03-21T13:19:21.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/twitter
28
1
transformers
7,362
--- language: en thumbnail: http://www.huggingtweets.com/twitter/1647868756403/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488548719062654976/u6qfBBkF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Twitter</div> <div style="text-align: center; font-size: 14px;">@twitter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Twitter. | Data | Twitter | | --- | --- | | Tweets downloaded | 3194 | | Retweets | 45 | | Short tweets | 625 | | Tweets kept | 2524 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jvba1eq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @twitter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mzlt8tly) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mzlt8tly/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/twitter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Graphcore/gpt2-medium-wikitext-103
31d8e00b7ba45dd878a827682915499075720c88
2022-05-25T18:14:00.000Z
[ "pytorch", "gpt2", "text-generation", "dataset:wikitext", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Graphcore
null
Graphcore/gpt2-medium-wikitext-103
28
null
transformers
7,363
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikitext model-index: - name: clm_output_medium results: [] --- # Graphcore/gpt2-medium-wikitext-103 Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description GPT2 is a large transformer-based language model. It is built using transformer decoder blocks. BERT, on the other hand, uses transformer encoder blocks. It adds Layer normalisation to the input of each sub-block, similar to a pre-activation residual networks and an additional layer normalisation. Paper link : [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) ## Intended uses & limitations This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the [wikitext-103-raw-v1](https://huggingface.co/datasets/wikitext) dataset. It achieves the following results on the evaluation set: - Loss: 2.6973 ## Training and evaluation data Trained on wikipedia dataset: - [HuggingFace/wikitext-103-raw-v1](https://huggingface.co/datasets/wikitext) dataset ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/language-modeling/run_clm.py \ --model_name_or_path gpt2-medium \ --ipu_config_name Graphcore/gpt2-medium-ipu \ --dataset_name wikitext \ --dataset_config_name wikitext-103-raw-v1 \ --do_train \ --do_eval \ --num_train_epochs 10 \ --dataloader_num_workers 64 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 256 \ --output_dir /tmp/clm_output_medium \ --logging_steps 5 \ --learning_rate 1e-5 \ --lr_scheduler_type linear \ --loss_scaling 16384 \ --weight_decay 0.01 \ --warmup_ratio 0.1 \ --ipu_config_overrides="embedding_serialization_factor=5,inference_device_iterations=9,replication_factor=2,inference_replication_factor=2,ipus_per_replica=8,layers_per_ipu=[0 3 3 3 3 4 4 4],matmul_proportion=0.25" \ --dataloader_drop_last \ --pod_type pod16 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - total_eval_batch_size: 18 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** "epoch": 10.0, "train_loss": 2.8070910754504506, "train_runtime": 11217.8167, "train_samples": 114248, "train_samples_per_second": 101.845, "train_steps_per_second": 0.099 ***** eval metrics ***** "eval_loss": 2.697265625, "eval_samples": 240, "perplexity": 14.83910053420958 ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
Hieu/nft_label
608833128e19b254f93934cd7583c25486051b83
2022-04-03T07:54:51.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Hieu
null
Hieu/nft_label
28
null
transformers
7,364
Entry not found
enimai/OPUS-mt-en-fr-finetuned-MUST-C
8f20e7c89a406842044245e660e0aaaea812e491
2022-04-04T11:49:17.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/OPUS-mt-en-fr-finetuned-MUST-C
28
null
transformers
7,365
--- license: apache-2.0 ---
Raychanan/Longformer_Conflict
0f40ee73ab18680bc5d63ce24f7aa74f1cbcb93b
2022-04-16T15:30:07.000Z
[ "pytorch", "tensorboard", "longformer", "text-classification", "transformers" ]
text-classification
false
Raychanan
null
Raychanan/Longformer_Conflict
28
null
transformers
7,366
training_args = TrainingArguments( output_dir="./results", learning_rate=5e-5, per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=5, weight_decay=0.01, evaluation_strategy="epoch", push_to_hub=True )
engmatic-earth/mt5-zh-ja-en-trimmed-fine-tuned-v1
084211407f80d39ccc9e8c75817a8b77f1bbccae
2022-04-17T11:00:50.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
translation
false
engmatic-earth
null
engmatic-earth/mt5-zh-ja-en-trimmed-fine-tuned-v1
28
null
transformers
7,367
--- license: cc-by-nc-sa-4.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mt5-zh-ja-en-trimmed-fine-tuned-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-zh-ja-en-trimmed-fine-tuned-v1 This model is a fine-tuned version of [K024/mt5-zh-ja-en-trimmed](https://huggingface.co/K024/mt5-zh-ja-en-trimmed) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0225 - Bleu: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
athairus/m2m100_418M_finetuned_litk_es_en
224f5caa9f9d7dc207dc96f636b595b26bdb49f6
2022-04-17T19:30:02.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
athairus
null
athairus/m2m100_418M_finetuned_litk_es_en
28
null
transformers
7,368
Entry not found
xfbai/AMRBART-large-finetuned-AMR2.0-AMRParsing
2d1fc8be6bfb98266e944718a0ad61743707aaef
2022-04-26T05:51:03.000Z
[ "pytorch", "bart", "text2text-generation", "en", "arxiv:2203.07836", "transformers", "AMRBART", "license:mit", "autotrain_compatible" ]
text2text-generation
false
xfbai
null
xfbai/AMRBART-large-finetuned-AMR2.0-AMRParsing
28
1
transformers
7,369
--- language: en tags: - AMRBART license: mit --- ## AMRBART-large-finetuned-AMR2.0-AMRParsing This model is a fine-tuned version of [AMRBART-large](https://huggingface.co/xfbai/AMRBART-large) on an AMR2.0 dataset. It achieves a Smatch of 85.4 on the evaluation set: More details are introduced in the paper: [Graph Pre-training for AMR Parsing and Generation](https://arxiv.org/pdf/2203.07836.pdf) by bai et al. in ACL 2022. ## Model description Same with AMRBART. ## Training data The model is finetuned on [AMR2.0](https://catalog.ldc.upenn.edu/LDC2020T02), a dataset consisting of 36,521 training instances, 1,368 validation instances, and 1,371 test instances. ## Intended uses & limitations You can use the model for AMR parsing, but it's mostly intended to be used in the domain of News. ## How to use Here is how to initialize this model in PyTorch: ```python from transformers import BartForConditionalGeneration model = BartForConditionalGeneration.from_pretrained("xfbai/AMRBART-large-finetuned-AMR2.0-AMRParsing") ``` Please refer to [this repository](https://github.com/muyeby/AMRBART) for tokenizer initialization and data preprocessing. ## BibTeX entry and citation info Please cite this paper if you find this model helpful ```bibtex @inproceedings{bai-etal-2022-graph, title = "Graph Pre-training for {AMR} Parsing and Generation", author = "Bai, Xuefeng and Chen, Yulong and Zhang, Yue", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", url = "todo", doi = "todo", pages = "todo" } ```
CEBaB/bert-base-uncased.CEBaB.sa.5-class.exclusive.seed_77
ca8a529c4808f6f60d9b6c451fb43bb157cc305e
2022-05-11T01:40:16.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.5-class.exclusive.seed_77
28
null
transformers
7,370
Entry not found
CEBaB/bert-base-uncased.CEBaB.sa.5-class.exclusive.seed_88
4bf0792fca5708c74d1f6557a4ea8d4d88837ad7
2022-05-11T02:32:22.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.5-class.exclusive.seed_88
28
null
transformers
7,371
Entry not found
dragonSwing/vibert-capu
5859a7baaa9ed2d6f7923e54f570b0ff94b566c5
2022-05-17T15:02:30.000Z
[ "pytorch", "bert", "vi", "dataset:oscar-corpus/OSCAR-2109", "transformers", "capitalization", "punctuation", "token-classification", "license:cc-by-sa-4.0" ]
token-classification
false
dragonSwing
null
dragonSwing/vibert-capu
28
null
transformers
7,372
--- language: - vi tags: - capitalization - punctuation - token-classification license: cc-by-sa-4.0 datasets: - oscar-corpus/OSCAR-2109 metrics: - accuracy - precision - recall - f1 --- # ✨ vibert-capitalization-punctuation This a [viBERT](https://huggingface.co/FPTAI/vibert-base-cased) model finetuned for punctuation restoration on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset. The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general Vietnamese language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[. , : ? ]** The model also restores the complex upper-casing of words like *YouTube*, *MobiFone*. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. Download files from hub ```python import os import shutil import sys from huggingface_hub import snapshot_download cache_dir = "./capu" def download_files(repo_id, cache_dir=None, ignore_regex=None): download_dir = snapshot_download(repo_id=repo_id, cache_dir=cache_dir, ignore_regex=ignore_regex) if cache_dir is None or download_dir == cache_dir: return download_dir file_names = os.listdir(download_dir) for file_name in file_names: shutil.move(os.path.join(download_dir, file_name), cache_dir) os.rmdir(download_dir) return cache_dir cache_dir = download_files(repo_id="dragonSwing/vibert-capu", cache_dir=cache_dir, ignore_regex=["*.json", "*.bin"]) sys.path.append(cache_dir) ``` 2. Sample python code ```python import os from gec_model import GecBERTModel model = GecBERTModel( vocab_path=os.path.join(cache_dir, "vocabulary"), model_paths="dragonSwing/vibert-capu", split_chunk=True ) model("theo đó thủ tướng dự kiến tiếp bộ trưởng nông nghiệp mỹ tom wilsack bộ trưởng thương mại mỹ gina raimondo bộ trưởng tài chính janet yellen gặp gỡ thượng nghị sĩ patrick leahy và một số nghị sĩ mỹ khác") # Always return list of outputs. # ['Theo đó, Thủ tướng dự kiến tiếp Bộ trưởng Nông nghiệp Mỹ Tom Wilsack, Bộ trưởng Thương mại Mỹ Gina Raimondo, Bộ trưởng Tài chính Janet Yellen, gặp gỡ Thượng nghị sĩ Patrick Leahy và một số nghị sĩ Mỹ khác.'] model("những gói cước năm g mobifone sẽ mang đến cho bạn những trải nghiệm mới lạ trên cả tuyệt vời so với mạng bốn g thì tốc độ truy cập mạng 5 g mobifone được nhận định là siêu đỉnh với mức truy cập nhanh gấp 10 lần") # ['Những gói cước 5G MobiFone sẽ mang đến cho bạn những trải nghiệm mới lạ trên cả tuyệt vời. So với mạng 4G thì tốc độ truy cập mạng 5G MobiFone được nhận định là siêu đỉnh với mức truy cập nhanh gấp 10 lần.'] ``` **This model can work on arbitrarily large text in Vietnamese language.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for fine-tuning the model: | Language | Number of text samples | | --- | --- | | Vietnamese | 5,600,000 | ----------------------------------------------- ## 🎯 Accuracy Below is a breakdown of the performance of the model by each label on 10,000 held-out text samples: | label | precision | recall | f1-score | support | | --- | --- | --- | --- | --- | | **Upper** | 0.88 | 0.89 | 0.89 | 56497 | | **Complex-Upper** | 0.92 | 0.83 | 0.88 | 480 | | **.** | 0.81 | 0.82 | 0.82 | 18139 | | **,** | 0.73 | 0.70 | 0.71 | 22961 | | **:** | 0.74 | 0.56 | 0.64 | 1432 | | **?** | 0.80 | 0.76 | 0.78 | 1730 | | **none** | 0.99 | 0.99 | 0.99 |475611 | -----------------------------------------------
ncfrey/ChemGPT-1.2B
0164ca1f1754cd36b43c34b185373ee3672e7d65
2022-06-15T15:44:24.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "chemistry" ]
text-generation
false
ncfrey
null
ncfrey/ChemGPT-1.2B
28
1
transformers
7,373
--- tags: - chemistry --- # ChemGPT 1.2B ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
VMware/vbert-2021-base
dcdbfcad3a2d87d1083659cab9ff44abc2cb1661
2022-06-16T22:27:04.000Z
[ "pytorch", "tf", "bert", "fill-mask", "eng", "transformers", "tensorflow", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
VMware
null
VMware/vbert-2021-base
28
2
transformers
7,374
--- language: - "eng" thumbnail: "url to a thumbnail used in social sharing" tags: - "pytorch" - "tensorflow" license: "apache-2.0" --- # vBERT-2021-BASE ### Model Info: <ul> <li> Authors: R&D AI Lab, VMware Inc. <li> Model date: April, 2022 <li> Model version: 2021-base <li> Model type: Pretrained language model <li> License: Apache 2.0 </ul> #### Motivation Traditional BERT models struggle with VMware-specific words (Tanzu, vSphere, etc.), technical terms, and compound words. (<a href =https://medium.com/@rickbattle/weaknesses-of-wordpiece-tokenization-eb20e37fec99>Weaknesses of WordPiece Tokenization</a>) We have created our vBERT model to address the aforementioned issues. We have replaced the first 1k unused tokens of BERT's vocabulary with VMware-specific terms to create a modified vocabulary. We then pretrained the 'bert-base-uncased' model for additional 78K steps (71k With MSL_128 and 7k with MSL_512) (approximately 5 epochs) on VMware domain data. #### Intended Use The model functions as a VMware-specific Language Model. #### How to Use Here is how to use this model to get the features of a given text in PyTorch: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('VMware/vbert-2021-base') model = BertModel.from_pretrained("VMware/vbert-2021-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('VMware/vbert-2021-base') model = TFBertModel.from_pretrained('VMware/vbert-2021-base') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Training #### - Datasets Publically available VMware text data such as VMware Docs, Blogs etc. were used for creating the pretraining corpus. Sourced in May, 2021. (~320,000 Documents) #### - Preprocessing <ul> <li>Decoding HTML <li>Decoding Unicode <li>Stripping repeated characters <li>Splitting compound word <li>Spelling correction </ul> #### - Model performance measures We benchmarked vBERT on various VMware-specific NLP downstream tasks (IR, classification, etc). The model scored higher than the 'bert-base-uncased' model on all benchmarks. ### Limitations and bias Since the model is further pretrained on the BERT model, it may have the same biases embedded within the original BERT model. The data needs to be preprocessed using our internal vNLP Preprocessor (not available to the public) to maximize its performance.
anuj55/paraphrase-mpnet-base-v2-finetuned-polifact
b7669ce7827236d430928c4bc1d0ca7a11eeb70a
2022-05-16T20:56:23.000Z
[ "pytorch", "tensorboard", "mpnet", "text-classification", "transformers" ]
text-classification
false
anuj55
null
anuj55/paraphrase-mpnet-base-v2-finetuned-polifact
28
null
transformers
7,375
Entry not found
sabersol/bert-base-uncased-emotion
f80494fad3c80a265ce6fde5816f2c4549067e2d
2022-05-27T03:25:49.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:cc-by-nc-sa-4.0" ]
text-classification
false
sabersol
null
sabersol/bert-base-uncased-emotion
28
null
transformers
7,376
--- license: cc-by-nc-sa-4.0 --- # CITDA: Fine-tuned `bert-base-uncased` on the `emotions` dataset Demo Notebook: https://colab.research.google.com/drive/10ZCFvlf2UV3FjU4ymf4OoipQvqHbIItG?usp=sharing ## Packages - Install `torch` - Also, `pip install transformers datasets scikit-learn wandb seaborn python-dotenv` ## Train 1. Rename `.env.example` to `.env` and set an API key from [wandb](https://wandb.ai/authorize) 2. You can adjust model parameters in the `explainableai.py` file. 2. The model (`pytorch_model.bin`) is a based on the `bert-base-uncased` and already trained on the `emotions` dataset. To re-produce the training run `finetune-emotions.py`. You can change the base model, or the dataset by changing that file's code. ## Example Run `example.py` ## Train The model is already trained on `bert-base-uncased` with the [emotions dataset](https://huggingface.co/datasets/emotion). However, you can change parameters and re-fine-tune the model by running `finetune-emotions.py`.
north/t5_xxl_NCC_lm
eb2f5bf7a7b0f25372eb9ab0f1968d34240589b8
2022-06-01T19:42:09.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
north
null
north/t5_xxl_NCC_lm
28
null
transformers
7,377
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- -T5 The North-T5-models are a set of Norwegian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|✔|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/xxl/norwegian_NCC_plus_English_pluss100k_lm_t5x_xxl/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
tursunali/bpt2
9ca6484cc1837f3c3ec5fec57dcb4b9ddf37e246
2022-05-24T04:12:13.000Z
[ "pytorch", "gpt2", "text-generation", "de", "transformers" ]
text-generation
false
tursunali
null
tursunali/bpt2
28
null
transformers
7,378
--- language: de widget: - text: "In einer schockierenden Entdeckung fanden Wissenschaftler eine Herde Einhörner, die in einem abgelegenen, zuvor unerforschten Tal in den Anden lebten." --- # BPT2 See the [GPT2 model card](https://huggingface.co/gpt2) for considerations on limitations and bias. See the [GPT2 documentation](https://huggingface.co/transformers/model_doc/gpt2.html) for details on GPT2. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("tursunali/bpt2") model = AutoModelForCausalLM.from_pretrained("tursunali/bpt2") prompt = "<your prompt>" pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) print(pipe(prompt)[0]["generated_text"]) ``` Also, two tricks might improve the generated text: ```python output = model.generate( # during training an EOS token was used to mark the beginning of each text # so it can help to insert it at the start torch.tensor( [tokenizer.eos_token_id] + tokenizer.encode(prompt) ).unsqueeze(0), do_sample=True, # try setting bad_words_ids=[[0]] to disallow generating an EOS token, without this the model is # prone to ending generation early because a significant number of texts from the training corpus # is quite short bad_words_ids=[[0]], max_length=max_length, )[0] print(tokenizer.decode(output)) ``` ## Citing Please cite BPT2 as follows: ``` @misc{Backpacker_Trail_German_large_2022, author = {BackpackerTrail, Tursunali Kholdorov}, title = {{BPT2: Backpacker Trail German versions of BPT2}}, url = {https://github.com/Tursunali-Kholdorov/bptTrainer}, year = {2022} } ```
sharif-dal/dal-bert
ff8842a0a2f50f5c07343d37acf02dd29ccef19b
2022-07-02T10:18:35.000Z
[ "pytorch", "bert", "fill-mask", "fa", "arxiv:1810.04805", "transformers", "bert-fa", "bert-persian", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
sharif-dal
null
sharif-dal/dal-bert
28
2
transformers
7,379
--- license: apache-2.0 language: fa widget: - text: "از هر دستی بگیری از همون [MASK] میدی" - text: "این آخرین باره بهت [MASK] میگم" - text: 'چرا آن جوان بیچاره را به سخره [MASK]' - text: 'آخه محسن [MASK] هم شد خواننده؟' - text: 'پسر عجب [MASK] زد' tags: - bert-fa - bert-persian model-index: - name: dal-bert results: [] --- DAL-BERT: Another pre-trained language model for Persian --- DAL-BERT is a transformer-based model trained on more than 80 gigabytes of Persian text including both formal and informal (conversational) contexts. The architecture of this model follows the original BERT [[Devlin et al.](https://arxiv.org/abs/1810.04805)]. How to use the Model --- ```python from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained('sharif-dal/dal-bert') tokenizer = BertTokenizer.from_pretrained('sharif-dal/dal-bert') fill_sentence = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_sentence('اینجا جمله مورد نظر خود را بنویسید و کلمه موردنظر را [MASK] کنید') ``` The Training Data --- The abovementioned model was trained on a bunch of newspapers, news agencies' websites, technology-related sources, people's comments, magazines, literary criticism, and some blogs. Evaluation --- | Training Loss | Epoch | Step | |:-------------:|:-----:|:-----:| | 2.1855 | 13 | 7649486 | Contributors --- - [Arman Malekzadeh](http://ce.sharif.edu/~malekzaadeh/), PhD Student in AI @ Sharif University of Technology [[Linkedin](https://www.linkedin.com/in/arman-malekzadeh/)] [[Github](https://github.com/arm-on)] - Amirhossein Ramazani, Master's Student in AI @ Sharif University of Technology [[Linkedin](https://www.linkedin.com/in/amirhossein-ramazani/)] [[Github](https://github.com/amirhossein1376)]
finiteautomata/ner-leg
d857431dae1ae112d4dcdb6533c55f6e256d8eec
2022-06-22T13:45:53.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
finiteautomata
null
finiteautomata/ner-leg
28
null
transformers
7,380
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: ner-leg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-leg This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0656 - Precision: 0.8873 - Recall: 0.8565 - Macro F1: 0.8716 - Micro F1: 0.8716 - Accuracy: 0.9786 - Marker F1: 0.8993 - Marker Precision: 0.8701 - Marker Recall: 0.9306 - Reference F1: 0.9558 - Reference Precision: 0.9474 - Reference Recall: 0.9643 - Term F1: 0.8621 - Term Precision: 0.8843 - Term Recall: 0.8410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Macro F1 | Micro F1 | Accuracy | Marker F1 | Marker Precision | Marker Recall | Reference F1 | Reference Precision | Reference Recall | Term F1 | Term Precision | Term Recall | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:|:--------:|:---------:|:----------------:|:-------------:|:------------:|:-------------------:|:----------------:|:-------:|:--------------:|:-----------:| | No log | 1.0 | 100 | 0.1980 | 0.5457 | 0.7472 | 0.6307 | 0.6307 | 0.9212 | 0.8557 | 0.7748 | 0.9556 | 0.8249 | 0.7228 | 0.9605 | 0.5782 | 0.4966 | 0.6919 | | No log | 2.0 | 200 | 0.1972 | 0.5982 | 0.8348 | 0.6970 | 0.6970 | 0.9253 | 0.8683 | 0.7739 | 0.9889 | 0.8503 | 0.7802 | 0.9342 | 0.6576 | 0.5578 | 0.8009 | | No log | 3.0 | 300 | 0.2805 | 0.6085 | 0.8248 | 0.7003 | 0.7003 | 0.9244 | 0.8279 | 0.712 | 0.9889 | 0.8118 | 0.7340 | 0.9079 | 0.6693 | 0.5799 | 0.7915 | | No log | 4.0 | 400 | 0.2992 | 0.5858 | 0.8461 | 0.6923 | 0.6923 | 0.9234 | 0.8381 | 0.7333 | 0.9778 | 0.8488 | 0.7604 | 0.9605 | 0.6556 | 0.5490 | 0.8136 | | 0.1651 | 5.0 | 500 | 0.3312 | 0.5965 | 0.8048 | 0.6851 | 0.6851 | 0.9246 | 0.8476 | 0.7417 | 0.9889 | 0.8521 | 0.7742 | 0.9474 | 0.6435 | 0.5572 | 0.7615 | | 0.1651 | 6.0 | 600 | 0.3450 | 0.6161 | 0.8335 | 0.7085 | 0.7085 | 0.9281 | 0.8911 | 0.8036 | 1.0 | 0.8757 | 0.7957 | 0.9737 | 0.6653 | 0.5731 | 0.7930 | | 0.1651 | 7.0 | 700 | 0.3504 | 0.6263 | 0.8223 | 0.7110 | 0.7110 | 0.9284 | 0.8955 | 0.8108 | 1.0 | 0.8824 | 0.7979 | 0.9868 | 0.6662 | 0.5829 | 0.7773 | | 0.1651 | 8.0 | 800 | 0.3739 | 0.6190 | 0.8173 | 0.7044 | 0.7044 | 0.9280 | 0.8955 | 0.8108 | 1.0 | 0.8876 | 0.8065 | 0.9868 | 0.6577 | 0.5734 | 0.7709 | | 0.1651 | 9.0 | 900 | 0.4025 | 0.6164 | 0.8185 | 0.7032 | 0.7032 | 0.9284 | 0.89 | 0.8091 | 0.9889 | 0.8876 | 0.8065 | 0.9868 | 0.6573 | 0.5711 | 0.7741 | | 0.0104 | 10.0 | 1000 | 0.3988 | 0.6240 | 0.8185 | 0.7082 | 0.7082 | 0.9285 | 0.8955 | 0.8108 | 1.0 | 0.8876 | 0.8065 | 0.9868 | 0.6622 | 0.5794 | 0.7725 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RUCAIBox/mvp-multi-task
2462b3c380379dbdc99dfb058f51e35f084b29e1
2022-06-27T02:27:55.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "summarization", "conversational", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mvp-multi-task
28
null
transformers
7,381
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization - conversational pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Summarization" - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Dialog" - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Data-to-text" - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Story Generation" - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Question Answering" - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Question Generaion" --- # MVP-multi-task The MVP-multi-task model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-multi-task is a prompt-based model that MVP is further equipped with prompts pre-trained using a mixture of labeled datasets. It is a variant (MVP+M) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP is specially designed for natural language generation and can be adapted to a wide range of generation tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story generation, question answering, question generation, task-oriented dialogue system, commonsense generation, paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural language understanding tasks such as sequence classification and (extractive) question answering. ## Example For summarization: ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-multi-task") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Why You Shouldn't Quit Your Job"] ``` For data-to-text generation: ```python >>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration >>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-multi-task") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
vaibhavagg303/T5-test
edbff64988ee98cf29620c17a7b09eb60f808b81
2022-06-08T04:48:32.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vaibhavagg303
null
vaibhavagg303/T5-test
28
null
transformers
7,382
Entry not found
edmundhui/mental_health_trainer
0ea11c1763041dbbb02eff39e023a4b0b58e5ceb
2022-06-21T20:41:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
edmundhui
null
edmundhui/mental_health_trainer
28
null
transformers
7,383
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mental_health_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mental_health_trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [reddit_mental_health_posts](https://huggingface.co/datasets/solomonk/reddit_mental_health_posts) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
santiviquez/ssr-base-finetuned-samsum-en
61500501e1d281dbbdb20fb598a19dc4fd94fb36
2022-06-27T20:54:46.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:samsum", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
santiviquez
null
santiviquez/ssr-base-finetuned-samsum-en
28
null
transformers
7,384
--- tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: ssr-base-finetuned-samsum-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 46.7505 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 46.2529 verified: true - name: ROUGE-2 type: rouge value: 21.3374 verified: true - name: ROUGE-L type: rouge value: 36.1939 verified: true - name: ROUGE-LSUM type: rouge value: 42.2937 verified: true - name: loss type: loss value: 2.0463898181915283 verified: true - name: gen_len type: gen_len value: 31.3724 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ssr-base-finetuned-samsum-en This model is a fine-tuned version of [microsoft/ssr-base](https://huggingface.co/microsoft/ssr-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6231 - Rouge1: 46.7505 - Rouge2: 22.3968 - Rougel: 37.1784 - Rougelsum: 42.891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.9682 | 1.0 | 300 | 1.6432 | 44.2182 | 20.8486 | 35.0914 | 40.9852 | | 1.6475 | 2.0 | 600 | 1.5946 | 45.3919 | 21.6955 | 36.2411 | 41.8532 | | 1.5121 | 3.0 | 900 | 1.5737 | 46.1769 | 22.4178 | 36.9762 | 42.6614 | | 1.4112 | 4.0 | 1200 | 1.5774 | 46.6047 | 22.8227 | 37.2457 | 43.1935 | | 1.323 | 5.0 | 1500 | 1.5825 | 46.6162 | 22.485 | 37.2846 | 42.9834 | | 1.2613 | 6.0 | 1800 | 1.5883 | 46.4253 | 22.1199 | 37.0491 | 42.5189 | | 1.2077 | 7.0 | 2100 | 1.5965 | 46.485 | 22.3636 | 37.2677 | 42.7499 | | 1.1697 | 8.0 | 2400 | 1.6174 | 46.8654 | 22.6291 | 37.4201 | 43.0875 | | 1.1367 | 9.0 | 2700 | 1.6188 | 46.707 | 22.305 | 37.156 | 42.9087 | | 1.118 | 10.0 | 3000 | 1.6231 | 46.7505 | 22.3968 | 37.1784 | 42.891 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
lakshaywadhwa1993/ner_marathi_bert
060094605f07021b0c3b465affc54b6bc5179adc
2022-06-09T22:01:58.000Z
[ "pytorch", "bert", "token-classification", "mr", "dataset:wikiann", "transformers", "autotrain_compatible" ]
token-classification
false
lakshaywadhwa1993
null
lakshaywadhwa1993/ner_marathi_bert
28
null
transformers
7,385
--- language: mr datasets: - wikiann examples: widget: - text: "राज्यसभा निवडणुकांसाठी उद्या मुंबईत मतदान होणार आहे." example_title: "Sentence_1" - text: "विराट कोहली भारताकडून खेळतो." example_title: "Sentence_2" - text: "नवी दिल्ली ही भारताची राजधानी आहे" example_title: "Sentence_3" --- <h1>Marathi Named Entity Recognition Model trained using transfer learning</h1> Fine-tuning bert-base-multilingual-cased on Wikiann dataset for performing NER on Marathi language. ## Label ID and its corresponding label name Label list: (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4), B-LOC (5), I-LOC (6) Example ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("lakshaywadhwa1993/ner_marathi_bert") model = AutoModelForTokenClassification.from_pretrained("lakshaywadhwa1993/ner_marathi_bert") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = ["राज्यसभा","निवडणुकांसाठी","मुंबईत","भाजपचे" ,"चिंचवडचे", "आमदार", "लक्ष्मण", "जगताप"] results = nlp(example) results ```
nikitakotsehub/AirlineDistilBERT
2a72ac93509aac84926c484b40f4001bdad75f43
2022-06-13T22:14:42.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
nikitakotsehub
null
nikitakotsehub/AirlineDistilBERT
28
null
transformers
7,386
Entry not found
waboucay/camembert-large-finetuned-repnum_wl-rua_wl
e0b3eb6d8ddaf13f50d9359a010f98176c7e96a7
2022-06-16T07:36:43.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-large-finetuned-repnum_wl-rua_wl
28
null
transformers
7,387
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 84.5 | 84.3 | | test | 85.2 | 85.1 |
AlekseyKorshuk/results-gpt-j-base-erotic
7f4cefe2dea30658129b8ad67288809c0e1bdbab
2022-06-18T13:21:51.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/results-gpt-j-base-erotic
28
null
transformers
7,388
Entry not found
nilaB97/bertweet-refugee
bf8eee7bcf3f8763b976e169113ad080fd953847
2022-07-01T15:02:51.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nilaB97
null
nilaB97/bertweet-refugee
28
null
transformers
7,389
Entry not found
sumitrsch/muril_large_multiconer22_hi
ef3ad6981100da40dc26be41faed2ff8ad42e277
2022-07-02T17:46:01.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
sumitrsch
null
sumitrsch/muril_large_multiconer22_hi
28
3
transformers
7,390
--- license: afl-3.0 --- This model is fine-tuned for Multiconer22 task on Hindi dataset. hi_test.csv is preprocessed Hindi test dataset, which conll format is provided by Multiconer22 task. This model can predict NER tag for Hindi sentnces using colab notebook https://colab.research.google.com/drive/17WyqwdoRNnzImeik6wTRE5uuj9QQnkXA#scrollTo=jQIadl5OOX1N
sanjay-m1/grammar-corrector-v2
caddb28d7ad2ef60025b1fc783e876dd22a51413
2022-06-26T19:10:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sanjay-m1
null
sanjay-m1/grammar-corrector-v2
28
null
transformers
7,391
**This model is part of the Gramformer library** please refer to https://github.com/PrithivirajDamodaran/Gramformer/
nvidia/stt_fr_conformer_transducer_large
65327ea5af70df919fa11ca4a8436c54ae67bd28
2022-06-30T19:59:08.000Z
[ "nemo", "fr", "dataset:multilingual_librispeech", "dataset:mozilla-foundation/common_voice_7_0", "dataset:VoxPopuli", "arxiv:2005.08100", "automatic-speech-recognition", "speech", "audio", "Transducer", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
nvidia
null
nvidia/stt_fr_conformer_transducer_large
28
3
nemo
7,392
--- language: - fr library_name: nemo datasets: - multilingual_librispeech - mozilla-foundation/common_voice_7_0 - VoxPopuli thumbnail: null tags: - automatic-speech-recognition - speech - audio - Transducer - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 model-index: - name: stt_fr_conformer_transducer_large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MCV 7.0 type: mozilla-foundation/common_voice_7_0 config: fr split: dev args: language: fr metrics: - name: Dev WER type: wer value: 6.85 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MCV 7.0 type: mozilla-foundation/common_voice_7_0 config: fr split: test args: language: fr metrics: - name: Test WER type: wer value: 7.95 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual Librispeech type: multilingual_librispeech config: fr split: dev args: language: fr metrics: - name: Dev WER type: wer value: 5.05 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual Librispeech type: multilingual_librispeech config: fr split: test args: language: fr metrics: - name: Test WER type: wer value: 4.10 --- # NVIDIA Conformer-Transducer Large (fr) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-fr-lightgrey#model-badge)](#datasets) This model was trained on a composite dataset comprising of over 1500 hours of French speech. It is a large size version of Conformer-Transducer (around 120M parameters). See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_fr_conformer_transducer_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_fr_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 kHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml). The sentence-piece tokenizers [2] for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ## Datasets All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of over a thousand hours of French speech: - MozillaCommonVoice 7.0 - 356 hours - Multilingual LibriSpeech - 1036 hours - VoxPopuli - 182 hours Both models use same dataset, excluding a preprocessing step to strip hyphen from data for secondary model's training. ## Performance The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general. The latest model obtains the following greedy scores on the following evaluation datasets - 6.85 % on MCV7.0 dev - 7.95 % on MCV7.0 test - 5.05 % on MLS dev - 4.10 % on MLS test Note that these evaluation datasets have been filtered and preprocessed to only contain French alphabet characters and are removed of punctuation outside of hyphenation and apostrophe. ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. Further, since portions of the training set contain text from both pre- and post- 1990 orthographic reform, regularity of punctuation may vary between the two styles. For downstream tasks requiring more consistency, finetuning or downstream processing may be required. If exact orthography is not necessary, then using secondary model is advised. ## References - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
KhawajaAbaid/distilbert-base-uncased-finetuned-emotion
8088786fb2543691734f75c98ef39c4411f64acc
2022-06-30T08:50:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
KhawajaAbaid
null
KhawajaAbaid/distilbert-base-uncased-finetuned-emotion
28
null
transformers
7,393
Entry not found
Abdelmageed95/opt-125m-economy-data
4ba66696a31d3f981882b9f737bb9367571bfdd2
2022-07-01T16:11:10.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-generation
false
Abdelmageed95
null
Abdelmageed95/opt-125m-economy-data
28
null
transformers
7,394
--- license: other tags: - generated_from_trainer model-index: - name: opt-125m-economy-data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-economy-data This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
emilys/twitter-roberta-base-dec2021-CoNLL
490838dbd0cd6511ccbf9039aaa7d79c69e5e88a
2022-07-05T20:09:58.000Z
[ "pytorch", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
emilys
null
emilys/twitter-roberta-base-dec2021-CoNLL
28
null
transformers
7,395
--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: twitter-roberta-base-dec2021-CoNLL results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9552512940390716 - name: Recall type: recall value: 0.9628071356445641 - name: F1 type: f1 value: 0.9590143324113654 - name: Accuracy type: accuracy value: 0.9926599431486313 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-dec2021-CoNLL This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0412 - Precision: 0.9553 - Recall: 0.9628 - F1: 0.9590 - Accuracy: 0.9927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 1024 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.11 | 25 | 0.2126 | 0.5639 | 0.6067 | 0.5845 | 0.9349 | | No log | 0.23 | 50 | 0.0849 | 0.8259 | 0.8612 | 0.8431 | 0.9765 | | No log | 0.34 | 75 | 0.0640 | 0.8752 | 0.8957 | 0.8853 | 0.9820 | | No log | 0.45 | 100 | 0.0572 | 0.8848 | 0.9034 | 0.8940 | 0.9832 | | No log | 0.57 | 125 | 0.0469 | 0.9071 | 0.9239 | 0.9155 | 0.9866 | | No log | 0.68 | 150 | 0.0442 | 0.9198 | 0.9278 | 0.9238 | 0.9877 | | No log | 0.8 | 175 | 0.0424 | 0.9192 | 0.9322 | 0.9256 | 0.9881 | | No log | 0.91 | 200 | 0.0407 | 0.9170 | 0.9414 | 0.9291 | 0.9891 | | No log | 1.02 | 225 | 0.0402 | 0.9264 | 0.9403 | 0.9333 | 0.9894 | | No log | 1.14 | 250 | 0.0399 | 0.9329 | 0.9446 | 0.9387 | 0.9897 | | No log | 1.25 | 275 | 0.0384 | 0.9278 | 0.9413 | 0.9345 | 0.9897 | | No log | 1.36 | 300 | 0.0363 | 0.9379 | 0.9477 | 0.9427 | 0.9906 | | No log | 1.48 | 325 | 0.0362 | 0.9380 | 0.9493 | 0.9436 | 0.9905 | | No log | 1.59 | 350 | 0.0364 | 0.9397 | 0.9497 | 0.9447 | 0.9905 | | No log | 1.7 | 375 | 0.0367 | 0.9324 | 0.9475 | 0.9399 | 0.9899 | | No log | 1.82 | 400 | 0.0372 | 0.9350 | 0.9460 | 0.9404 | 0.9899 | | No log | 1.93 | 425 | 0.0339 | 0.9411 | 0.9514 | 0.9462 | 0.9909 | | No log | 2.05 | 450 | 0.0336 | 0.9419 | 0.9529 | 0.9474 | 0.9911 | | No log | 2.16 | 475 | 0.0336 | 0.9447 | 0.9537 | 0.9492 | 0.9914 | | 0.079 | 2.27 | 500 | 0.0345 | 0.9420 | 0.9566 | 0.9492 | 0.9914 | | 0.079 | 2.39 | 525 | 0.0364 | 0.9436 | 0.9522 | 0.9479 | 0.9913 | | 0.079 | 2.5 | 550 | 0.0340 | 0.9479 | 0.9514 | 0.9496 | 0.9916 | | 0.079 | 2.61 | 575 | 0.0339 | 0.9481 | 0.9559 | 0.9520 | 0.9917 | | 0.079 | 2.73 | 600 | 0.0396 | 0.9326 | 0.9504 | 0.9414 | 0.9902 | | 0.079 | 2.84 | 625 | 0.0348 | 0.9461 | 0.9544 | 0.9502 | 0.9915 | | 0.079 | 2.95 | 650 | 0.0359 | 0.9419 | 0.9527 | 0.9473 | 0.9908 | | 0.079 | 3.07 | 675 | 0.0347 | 0.9434 | 0.9573 | 0.9503 | 0.9916 | | 0.079 | 3.18 | 700 | 0.0351 | 0.9464 | 0.9566 | 0.9515 | 0.9918 | | 0.079 | 3.3 | 725 | 0.0370 | 0.9446 | 0.9536 | 0.9491 | 0.9911 | | 0.079 | 3.41 | 750 | 0.0358 | 0.9462 | 0.9583 | 0.9522 | 0.9917 | | 0.079 | 3.52 | 775 | 0.0353 | 0.9483 | 0.9564 | 0.9523 | 0.9920 | | 0.079 | 3.64 | 800 | 0.0351 | 0.9469 | 0.9564 | 0.9516 | 0.9916 | | 0.079 | 3.75 | 825 | 0.0361 | 0.9479 | 0.9579 | 0.9529 | 0.9919 | | 0.079 | 3.86 | 850 | 0.0370 | 0.9498 | 0.9581 | 0.9539 | 0.9918 | | 0.079 | 3.98 | 875 | 0.0374 | 0.9460 | 0.9574 | 0.9517 | 0.9915 | | 0.079 | 4.09 | 900 | 0.0381 | 0.9506 | 0.9594 | 0.9550 | 0.9922 | | 0.079 | 4.2 | 925 | 0.0415 | 0.9460 | 0.9557 | 0.9509 | 0.9912 | | 0.079 | 4.32 | 950 | 0.0390 | 0.9493 | 0.9556 | 0.9524 | 0.9917 | | 0.079 | 4.43 | 975 | 0.0389 | 0.9483 | 0.9591 | 0.9536 | 0.9919 | | 0.0123 | 4.55 | 1000 | 0.0379 | 0.9464 | 0.9569 | 0.9516 | 0.9918 | | 0.0123 | 4.66 | 1025 | 0.0376 | 0.9463 | 0.9579 | 0.9521 | 0.9920 | | 0.0123 | 4.77 | 1050 | 0.0373 | 0.9499 | 0.9571 | 0.9535 | 0.9917 | | 0.0123 | 4.89 | 1075 | 0.0366 | 0.9520 | 0.9584 | 0.9552 | 0.9923 | | 0.0123 | 5.0 | 1100 | 0.0374 | 0.9488 | 0.9606 | 0.9547 | 0.9923 | | 0.0123 | 5.11 | 1125 | 0.0393 | 0.9516 | 0.9589 | 0.9552 | 0.9920 | | 0.0123 | 5.23 | 1150 | 0.0389 | 0.9539 | 0.9603 | 0.9571 | 0.9925 | | 0.0123 | 5.34 | 1175 | 0.0397 | 0.9486 | 0.9576 | 0.9531 | 0.9917 | | 0.0123 | 5.45 | 1200 | 0.0397 | 0.9478 | 0.9569 | 0.9523 | 0.9919 | | 0.0123 | 5.57 | 1225 | 0.0388 | 0.9483 | 0.9593 | 0.9537 | 0.9920 | | 0.0123 | 5.68 | 1250 | 0.0389 | 0.9502 | 0.9606 | 0.9554 | 0.9923 | | 0.0123 | 5.8 | 1275 | 0.0380 | 0.9547 | 0.9616 | 0.9582 | 0.9925 | | 0.0123 | 5.91 | 1300 | 0.0391 | 0.9496 | 0.9603 | 0.9549 | 0.9924 | | 0.0123 | 6.02 | 1325 | 0.0381 | 0.9548 | 0.9603 | 0.9575 | 0.9924 | | 0.0123 | 6.14 | 1350 | 0.0400 | 0.9529 | 0.9596 | 0.9562 | 0.9922 | | 0.0123 | 6.25 | 1375 | 0.0393 | 0.9544 | 0.9616 | 0.9580 | 0.9927 | | 0.0123 | 6.36 | 1400 | 0.0419 | 0.9514 | 0.9621 | 0.9567 | 0.9924 | | 0.0123 | 6.48 | 1425 | 0.0415 | 0.9532 | 0.9626 | 0.9579 | 0.9925 | | 0.0123 | 6.59 | 1450 | 0.0415 | 0.952 | 0.9613 | 0.9566 | 0.9923 | | 0.0123 | 6.7 | 1475 | 0.0399 | 0.9542 | 0.9611 | 0.9577 | 0.9925 | | 0.0052 | 6.82 | 1500 | 0.0416 | 0.9522 | 0.9591 | 0.9556 | 0.9921 | | 0.0052 | 6.93 | 1525 | 0.0410 | 0.9502 | 0.9599 | 0.9550 | 0.9919 | | 0.0052 | 7.05 | 1550 | 0.0406 | 0.9507 | 0.9613 | 0.9560 | 0.9921 | | 0.0052 | 7.16 | 1575 | 0.0400 | 0.9508 | 0.9603 | 0.9555 | 0.9923 | | 0.0052 | 7.27 | 1600 | 0.0402 | 0.9525 | 0.9618 | 0.9571 | 0.9924 | | 0.0052 | 7.39 | 1625 | 0.0401 | 0.9550 | 0.9633 | 0.9591 | 0.9925 | | 0.0052 | 7.5 | 1650 | 0.0397 | 0.9555 | 0.9647 | 0.9601 | 0.9927 | | 0.0052 | 7.61 | 1675 | 0.0412 | 0.9526 | 0.9610 | 0.9568 | 0.9922 | | 0.0052 | 7.73 | 1700 | 0.0419 | 0.9531 | 0.9616 | 0.9574 | 0.9923 | | 0.0052 | 7.84 | 1725 | 0.0407 | 0.9555 | 0.9621 | 0.9588 | 0.9927 | | 0.0052 | 7.95 | 1750 | 0.0409 | 0.9551 | 0.9628 | 0.9589 | 0.9927 | | 0.0052 | 8.07 | 1775 | 0.0413 | 0.9520 | 0.9616 | 0.9568 | 0.9924 | | 0.0052 | 8.18 | 1800 | 0.0414 | 0.9505 | 0.9605 | 0.9555 | 0.9923 | | 0.0052 | 8.3 | 1825 | 0.0410 | 0.9542 | 0.9605 | 0.9573 | 0.9924 | | 0.0052 | 8.41 | 1850 | 0.0417 | 0.9553 | 0.9599 | 0.9576 | 0.9924 | | 0.0052 | 8.52 | 1875 | 0.0418 | 0.9545 | 0.9606 | 0.9576 | 0.9923 | | 0.0052 | 8.64 | 1900 | 0.0414 | 0.9544 | 0.9616 | 0.9580 | 0.9924 | | 0.0052 | 8.75 | 1925 | 0.0419 | 0.9555 | 0.9620 | 0.9587 | 0.9925 | | 0.0052 | 8.86 | 1950 | 0.0415 | 0.9544 | 0.9611 | 0.9577 | 0.9926 | | 0.0052 | 8.98 | 1975 | 0.0413 | 0.9542 | 0.9611 | 0.9577 | 0.9926 | | 0.0027 | 9.09 | 2000 | 0.0412 | 0.9553 | 0.9628 | 0.9590 | 0.9927 | | 0.0027 | 9.2 | 2025 | 0.0408 | 0.9554 | 0.9630 | 0.9592 | 0.9927 | | 0.0027 | 9.32 | 2050 | 0.0404 | 0.9545 | 0.9613 | 0.9579 | 0.9926 | | 0.0027 | 9.43 | 2075 | 0.0407 | 0.9557 | 0.9618 | 0.9587 | 0.9926 | | 0.0027 | 9.55 | 2100 | 0.0410 | 0.9552 | 0.9618 | 0.9585 | 0.9926 | | 0.0027 | 9.66 | 2125 | 0.0412 | 0.9552 | 0.9620 | 0.9586 | 0.9925 | | 0.0027 | 9.77 | 2150 | 0.0413 | 0.9557 | 0.9621 | 0.9589 | 0.9925 | | 0.0027 | 9.89 | 2175 | 0.0413 | 0.9557 | 0.9621 | 0.9589 | 0.9925 | | 0.0027 | 10.0 | 2200 | 0.0413 | 0.9557 | 0.9621 | 0.9589 | 0.9925 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
luztraplet/roberta-large-finetuned-boolq
7518bfb59bf6a5c0e40fee46314f7a99e95951c0
2022-07-06T15:49:23.000Z
[ "pytorch", "roberta", "text-classification", "dataset:boolq", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
luztraplet
null
luztraplet/roberta-large-finetuned-boolq
28
null
transformers
7,396
--- license: mit tags: - generated_from_trainer datasets: - boolq model-index: - name: roberta-large-finetuned-boolq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-boolq This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the boolq dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3791 - eval_accuracy: 0.8459 - eval_runtime: 95.3733 - eval_samples_per_second: 34.286 - eval_steps_per_second: 4.288 - epoch: 2.0 - step: 588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nielsr/videomae-base-short
086f2e2091dba2e533fc324bddb3ef3a2d1c7692
2022-07-08T15:21:42.000Z
[ "pytorch", "videomae", "transformers" ]
null
false
nielsr
null
nielsr/videomae-base-short
28
null
transformers
7,397
Entry not found
pyronear/mobilenet_v3_small
a6a0b39ca1f5b0a247eb0a2e83f06cd95fc03674
2022-07-17T23:48:39.000Z
[ "pytorch", "onnx", "dataset:pyronear/openfire", "arxiv:1905.02244", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
pyronear
null
pyronear/mobilenet_v3_small
28
null
transformers
7,398
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # MobileNet V3 - Small model Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf). ## Model description The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/mobilenet_v3_small").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, eprinttype = {arXiv}, eprint = {1905.02244}, timestamp = {Thu, 27 May 2021 16:20:51 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
mhdr78/finetuned_parsinlu_en_fa
7973562fac07b2b0f3370fc23ee842978af773a3
2022-07-15T05:16:22.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mhdr78
null
mhdr78/finetuned_parsinlu_en_fa
28
1
transformers
7,399
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: finetuned_parsinlu_en_fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_parsinlu_en_fa This model is a fine-tuned version of [persiannlp/mt5-small-parsinlu-translation_en_fa](https://huggingface.co/persiannlp/mt5-small-parsinlu-translation_en_fa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5214 - Bleu: 13.5318 - Gen Len: 12.1251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.7125 | 1.0 | 30987 | 1.5265 | 13.4269 | 12.127 | | 1.6943 | 2.0 | 61974 | 1.5214 | 13.5318 | 12.1251 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1