modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
nateraw/hot-dog
dc768435246614205e59fcd0412937c6bb116083
2021-07-01T05:31:18.000Z
[ "pytorch", "detr", "object-detection", "transformers" ]
object-detection
false
nateraw
null
nateraw/hot-dog
18
null
transformers
8,800
--- tags: - object-detection - pytorch --- # hot-dog Ignore me...I'm broken.
neuropark/sahajBERT-NER
126f3f6642ea9056fbc3901e6720827ff03a51e1
2021-06-15T08:12:18.000Z
[ "pytorch", "albert", "token-classification", "bn", "dataset:xtreme", "transformers", "collaborative", "bengali", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
neuropark
null
neuropark/sahajBERT-NER
18
2
transformers
8,801
--- language: bn tags: - collaborative - bengali - NER license: apache-2.0 datasets: xtreme metrics: - Loss - Accuracy - Precision - Recall --- # sahajBERT Named Entity Recognition ## Model description [sahajBERT](https://huggingface.co/neuropark/sahajBERT-NER) fine-tuned for NER using the bengali split of [WikiANN ](https://huggingface.co/datasets/wikiann). Named Entities predicted by the model: | Label id | Label | |:--------:|:----:| |0 |O| |1 |B-PER| |2 |I-PER| |3 |B-ORG| |4 |I-ORG| |5 |B-LOC| |6 |I-LOC| ## Intended uses & limitations #### How to use You can use this model directly with a pipeline for token classification: ```python from transformers import AlbertForTokenClassification, TokenClassificationPipeline, PreTrainedTokenizerFast # Initialize tokenizer tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NER") # Initialize model model = AlbertForTokenClassification.from_pretrained("neuropark/sahajBERT-NER") # Initialize pipeline pipeline = TokenClassificationPipeline(tokenizer=tokenizer, model=model) raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me output = pipeline(raw_text) ``` #### Limitations and bias <!-- Provide examples of latent issues and potential remediations. --> WIP ## Training data The model was initialized with pre-trained weights of [sahajBERT](https://huggingface.co/neuropark/sahajBERT-NER) at step 19519 and trained on the bengali split of [WikiANN ](https://huggingface.co/datasets/wikiann) ## Training procedure Coming soon! <!-- ```bibtex @inproceedings{..., year={2020} } ``` --> ## Eval results loss: 0.11714419722557068 accuracy: 0.9772286821705426 precision: 0.9585365853658536 recall: 0.9651277013752456 f1 : 0.9618208516886931 ### BibTeX entry and citation info Coming soon! <!-- ```bibtex @inproceedings{..., year={2020} } ``` -->
nielsr/convnext-xlarge-224-22k-1k
98e544a4f7a730d24dd472bd9ecf87f0694ca72e
2022-02-22T12:35:38.000Z
[ "pytorch", "convnext", "image-classification", "transformers" ]
image-classification
false
nielsr
null
nielsr/convnext-xlarge-224-22k-1k
18
null
transformers
8,802
Entry not found
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast
516f02edce4a408d4b46fe90b9c9e226cba842a0
2022-01-20T18:06:05.000Z
[ "pytorch", "tensorboard", "xlnet", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
nntadotzip
null
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast
18
null
transformers
8,803
--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-IUChatbot-ontologyDts-BertPretrainedTokenizerFast This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 382 | 0.4695 | | 0.5633 | 2.0 | 764 | 0.3361 | | 0.3533 | 3.0 | 1146 | 0.3489 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nyu-mll/roberta-med-small-1M-2
d57b4ce9b7d78f0980fcb2d43b2a272677871318
2021-05-20T19:07:56.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nyu-mll
null
nyu-mll/roberta-med-small-1M-2
18
null
transformers
8,804
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
patrickvonplaten/reformer-tiny-random
b28e78c699eb382c5c533475a87f64f26394513b
2021-05-20T02:18:13.000Z
[ "pytorch", "bert", "text-generation", "transformers" ]
text-generation
false
patrickvonplaten
null
patrickvonplaten/reformer-tiny-random
18
null
transformers
8,805
Entry not found
pere/norwegian-gpt2-vgd
a4e18964aa637471296c11a09b6491c5ebe009d2
2021-11-02T21:15:41.000Z
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "no", "transformers", "norwegian", "GPT2", "casual language modeling", "license:cc-by-4.0" ]
text-generation
false
pere
null
pere/norwegian-gpt2-vgd
18
null
transformers
8,806
--- language: no license: cc-by-4.0 tags: - norwegian - GPT2 - casual language modeling --- # Norwegian GPT-2 - Social ## Description Private test of gpt fine-tuning based on vgd. The following sub-corpora are used for the base model: ```bash wikipedia_download_nb.jsonl wikipedia_download_nn.jsonl newspapers_online_nb.jsonl newspapers_online_nn.jsonl twitter_2016_2018_no.jsonl twitter_news_2016_2018_no.jsonl open_subtitles_no.jsonl facebook_no.jsonl reddit_no.jsonl vgdebatt_no.jsonl ``` Finetuned on the private dataset located at NbAiLab/vgd.
pertschuk/albert-base-quora-classifier
052bb0476fc6840b5e8ac59461e2709644597b61
2020-04-24T16:04:59.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
pertschuk
null
pertschuk/albert-base-quora-classifier
18
null
transformers
8,807
Entry not found
philippelaban/summary_loop10
651e90be5498581fc2532b1a4cab085525e374aa
2022-02-09T22:02:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:cnn_dailymail", "transformers", "summarization", "license:apache-2.0" ]
summarization
false
philippelaban
null
philippelaban/summary_loop10
18
2
transformers
8,808
--- language: - en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail --- # Try out in the Hosted inference API In the right panel, you can try to the model (although it only handles a short sequence length). Enter the document you want to summarize in the panel on the right. # Model Loading The model (based on a GPT2 base architecture) can be loaded in the following way: ``` from transformers import GPT2LMHeadModel, GPT2TokenizerFast model = GPT2LMHeadModel.from_pretrained("philippelaban/summary_loop10") tokenizer = GPT2TokenizerFast.from_pretrained("philippelaban/summary_loop10") ``` # Example Use ``` document = "Bouncing Boulders Point to Quakes on Mars. A preponderance of boulder tracks on the red planet may be evidence of recent seismic activity. If a rock falls on Mars, and no one is there to see it, does it leave a trace? Yes, and it's a beautiful herringbone-like pattern, new research reveals. Scientists have now spotted thousands of tracks on the red planet created by tumbling boulders. Delicate chevron-shaped piles of Martian dust and sand frame the tracks, the team showed, and most fade over the course of a few years. Rockfalls have been spotted elsewhere in the solar system, including on the moon and even a comet. But a big open question is the timing of these processes on other worlds — are they ongoing or did they predominantly occur in the past?" tokenized_document = tokenizer([document], max_length=300, truncation=True, return_tensors="pt")["input_ids"].cuda() input_shape = tokenized_document.shape outputs = model.generate(tokenized_document, do_sample=False, max_length=500, num_beams=4, num_return_sequences=4, no_repeat_ngram_size=6, return_dict_in_generate=True, output_scores=True) candidate_sequences = outputs.sequences[:, input_shape[1]:] # Remove the encoded text, keep only the summary candidate_scores = outputs.sequences_scores.tolist() for candidate_tokens, score in zip(candidate_sequences, candidate_scores): summary = tokenizer.decode(candidate_tokens) print("[Score: %.3f] %s" % (score, summary[:summary.index("END")])) ``` # Example output ``` [Score: -0.084] Here's what you need to know about rockfalls [Score: -0.087] Here's what you need to know about these tracks [Score: -0.091] Here's what we know so far about these tracks [Score: -0.101] Here's what you need to know about rockfall ``` # Github repo You can access more information, access to the scoring function, the training script, or an example training log on the Github repo: https://github.com/CannyLab/summary_loop
philschmid/mt5-small-prompted-germanquad-1
7e4252389899b17fb8d4659d9784c6c8ab506297
2021-12-24T11:10:03.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:philschmid/prompted-germanquad", "transformers", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
philschmid
null
philschmid/mt5-small-prompted-germanquad-1
18
null
transformers
8,809
--- license: apache-2.0 tags: - summarization datasets: - philschmid/prompted-germanquad widget: - text: | Philipp ist 26 Jahre alt und lebt in Nürnberg, Deutschland. Derzeit arbeitet er als Machine Learning Engineer und Tech Lead bei Hugging Face, um künstliche Intelligenz durch Open Source und Open Science zu demokratisieren. Welches Ziel hat Hugging Face? metrics: - rouge model-index: - name: mt5-small-prompted-germanquad-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-prompted-germanquad-1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an [philschmid/prompted-germanquad](https://huggingface.co/datasets/philschmid/prompted-germanquad) dataset. A prompt datasets using the [BigScience PromptSource library](https://github.com/bigscience-workshop/promptsource). The dataset is a copy of [germanquad](https://huggingface.co/datasets/deepset/germanquad) with applying the `squad` template and translated it to german. [TEMPLATE](https://github.com/philschmid/promptsource/blob/main/promptsource/templates/germanquad/templates.yaml). This is a first test if it is possible to fine-tune `mt5` models to solve similar tasks than `T0` of big science but for the German language. It achieves the following results on the evaluation set: - Loss: 1.6835 - Rouge1: 27.7309 - Rouge2: 18.7311 - Rougel: 27.4704 - Rougelsum: 27.4818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3795 | 1.0 | 17496 | 2.0693 | 15.8652 | 9.2569 | 15.6237 | 15.6142 | | 2.3582 | 2.0 | 34992 | 1.9057 | 21.9348 | 14.0057 | 21.6769 | 21.6825 | | 2.1809 | 3.0 | 52488 | 1.8143 | 24.3401 | 16.0354 | 24.0862 | 24.0914 | | 2.0721 | 4.0 | 69984 | 1.7563 | 25.8672 | 17.2442 | 25.5854 | 25.6051 | | 2.0004 | 5.0 | 87480 | 1.7152 | 27.0275 | 18.0548 | 26.7561 | 26.7685 | | 1.9531 | 6.0 | 104976 | 1.6939 | 27.4702 | 18.5156 | 27.2027 | 27.2107 | | 1.9218 | 7.0 | 122472 | 1.6835 | 27.7309 | 18.7311 | 27.4704 | 27.4818 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
pinecone/mpnet-retriever-squad2
cac1e06fed72fb1f81c9828d4eeb8a16621d7ebf
2022-01-03T02:42:15.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
pinecone
null
pinecone/mpnet-retriever-squad2
18
2
sentence-transformers
8,810
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 5429 with parameters: ``` {'batch_size': 24} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 542, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
prajwalcr/poetry-surprise_gpt2
944d9ca68c75383097a8535fbe77519a6dcbe9b7
2021-08-03T10:04:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prajwalcr
null
prajwalcr/poetry-surprise_gpt2
18
null
transformers
8,811
Entry not found
pucpr/biobertpt-bio
f02ec2f9c1687aa236c0e23fb00d452d0aacda76
2021-10-13T09:27:44.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "pt", "dataset:biomedical literature from Scielo and Pubmed", "transformers", "autotrain_compatible" ]
fill-mask
false
pucpr
null
pucpr/biobertpt-bio
18
4
transformers
8,812
--- language: "pt" widget: - text: "O principal [MASK] da COVID-19 é tosse seca." - text: "O vírus da gripe apresenta um [MASK] constituído por segmentos de ácido ribonucleico." datasets: - biomedical literature from Scielo and Pubmed thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" --- <img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt"> # BioBERTpt - Portuguese Clinical and Biomedical BERT The [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) paper contains clinical and biomedical BERT-based models for Portuguese Language, initialized with BERT-Multilingual-Cased & trained on clinical notes and biomedical literature. This model card describes the BioBERTpt(bio) model, a biomedical version of BioBERTpt, trained on Portuguese biomedical literature from scientific papers from Pubmed and Scielo. ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("pucpr/biobertpt-bio") model = AutoModel.from_pretrained("pucpr/biobertpt-bio") ``` ## More Information Refer to the original paper, [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) for additional details and performance on Portuguese NER tasks. ## Acknowledgements This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. ## Citation ``` @inproceedings{schneider-etal-2020-biobertpt, title = "{B}io{BERT}pt - A {P}ortuguese Neural Language Model for Clinical Named Entity Recognition", author = "Schneider, Elisa Terumi Rubel and de Souza, Jo{\~a}o Vitor Andrioli and Knafou, Julien and Oliveira, Lucas Emanuel Silva e and Copara, Jenny and Gumiel, Yohan Bonescki and Oliveira, Lucas Ferro Antunes de and Paraiso, Emerson Cabrera and Teodoro, Douglas and Barra, Cl{\'a}udia Maria Cabral Moro", booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.7", pages = "65--72", abstract = "With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72{\%}, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.", } ``` ## Questions? Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
raynardj/roberta-pubmed
58d63994a9357d5d2651fec4cab6804dbe9580be
2021-10-08T02:58:27.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:pubmed", "transformers", "pubmed", "cancer", "gene", "clinical trial", "bioinformatic", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
raynardj
null
raynardj/roberta-pubmed
18
1
transformers
8,813
--- language: - en tags: - pubmed - cancer - gene - clinical trial - bioinformatic license: apache-2.0 datasets: - pubmed widget: - text: "The <mask> effects of hyperatomarin" --- # Roberta-Base fine-tuned on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) Abstract > We limit the training textual data to the following [MeSH](https://www.ncbi.nlm.nih.gov/mesh/) * All the child MeSH of ```Biomarkers, Tumor(D014408)```, including things like ```Carcinoembryonic Antigen(D002272)``` * All the child MeSH of ```Carcinoma(D002277)```, including things like all kinds of carcinoma: like ```Carcinoma, Lewis Lung(D018827)``` etc. around 80 kinds of carcinoma * All the child MeSH of ```Clinical Trial(D016439)``` * The training text file amounts to 531Mb ## Training * Trained on language modeling task, with ```mlm_probability=0.15```, on 2 Tesla V100 32G ```python training_args = TrainingArguments( output_dir=config.save, #select model path for checkpoint overwrite_output_dir=True, num_train_epochs=3, per_device_train_batch_size=30, per_device_eval_batch_size=60, evaluation_strategy= 'steps', save_total_limit=2, eval_steps=250, metric_for_best_model='eval_loss', greater_is_better=False, load_best_model_at_end =True, prediction_loss_only=True, report_to = "none") ```
salesken/content_generation_from_phrases
cc3700cab3cf3a99076f95b606574f96e59e2722
2021-05-23T12:23:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers", "salesken", "license:apache-2.0" ]
text-generation
false
salesken
null
salesken/content_generation_from_phrases
18
null
transformers
8,814
--- tags: salesken license: apache-2.0 inference: false --- We attempted an entailment-encouraging text generation model to generate content , given a short phrase . Some the generated sentences like below, for the phrase "data science beginner", really got us excited about the potential applications: <b> ['Where can I find a list of questions, tutorials, and resources for getting a data scientist job? 'Do you know of any research articles about how to improve your skills as a Data Science/Data Management Programmer? ', 'What are the pros and cons to having a Data Science/Data Mining Masters? '] .</b> Utility of the model ? Automate your conversational AI training data creation process by feeding some meaningful phrases to the model , to generate entailment-encouraging sentences; select the most diverse sentences and generate semantic variations for these, using our paraphrase generation model (https://huggingface.co/salesken/paraphrase_generation), and rank the generated sentence encouraging diversity by using our NLG ranker model (https://huggingface.co/salesken/paraphrase_diversity_ranker) ```python from transformers import AutoTokenizer, AutoModelWithLMHead import pprint import torch if torch.cuda.is_available(): device = torch.device("cuda") else: device = "cpu" tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases") model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device) input_query=["data science beginner"] query = "<|startoftext|> " + input_query[0] + " ~~" input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) sample_outputs = model.generate(input_ids, do_sample=True, num_beams=1, max_length=256, temperature=0.9, top_k = 30, num_return_sequences=100) content = [] for i in range(len(sample_outputs)): r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0] r = r.split(' ~~ ')[1] if r not in content: content.append(r) pprint.pprint(content) ``` You may use our ranker model to rank the generated content to encourage diversity. https://huggingface.co/salesken/paraphrase_diversity_ranker ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import pandas as pd import numpy as np rank_tokenizer = AutoTokenizer.from_pretrained("salesken/paraphrase_diversity_ranker") rank_model = AutoModelForSequenceClassification.from_pretrained("salesken/paraphrase_diversity_ranker") content_pairs=list(pd.MultiIndex.from_product([input_query, content])) features = rank_tokenizer(content_pairs, padding=True, truncation=True, return_tensors="pt") rank_model.eval() with torch.no_grad(): scores = rank_model(**features).logits label_mapping = ['surface_level_variation', 'semantic_variation'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] generated_content= np.array(content)[scores[:,1].sort(descending=True).indices].tolist() ```
textattack/roberta-base-WNLI
fcf1b6036509b5b0b43116873e3ba4b1da56a74e
2021-05-20T22:13:50.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/roberta-base-WNLI
18
null
transformers
8,815
## TextAttack Model Card This `roberta-base` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5633802816901409, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-large-cased-CoLA
4fb7b9627f837f36170be6fa8f37b5f95dcac9b0
2020-06-09T16:57:33.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/xlnet-large-cased-CoLA
18
null
transformers
8,816
Entry not found
textattack/xlnet-large-cased-STS-B
6d0282faa6cc66440a1dabc1111526d242a1c4c0
2020-06-09T16:59:30.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/xlnet-large-cased-STS-B
18
null
transformers
8,817
Entry not found
tiennvcs/layoutlmv2-large-uncased-finetuned-infovqa
c2c1495c9e4e4963eaa8e95c303a9770ed6f6687
2021-11-09T13:42:04.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/layoutlmv2-large-uncased-finetuned-infovqa
18
1
transformers
8,818
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-large-uncased-finetuned-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-large-uncased-finetuned-infovqa This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1829 | 0.08 | 500 | 3.6339 | | 3.5002 | 0.16 | 1000 | 3.0721 | | 2.9556 | 0.24 | 1500 | 2.8731 | | 2.8939 | 0.33 | 2000 | 3.1566 | | 2.6986 | 0.41 | 2500 | 3.1023 | | 2.7569 | 0.49 | 3000 | 2.7743 | | 2.6391 | 0.57 | 3500 | 2.5023 | | 2.4277 | 0.65 | 4000 | 2.5465 | | 2.4242 | 0.73 | 4500 | 2.4709 | | 2.3978 | 0.82 | 5000 | 2.4019 | | 2.2653 | 0.9 | 5500 | 2.3383 | | 2.3916 | 0.98 | 6000 | 2.4765 | | 1.9423 | 1.06 | 6500 | 2.3798 | | 1.8538 | 1.14 | 7000 | 2.3628 | | 1.8136 | 1.22 | 7500 | 2.3671 | | 1.7808 | 1.31 | 8000 | 2.5585 | | 1.7772 | 1.39 | 8500 | 2.5862 | | 1.755 | 1.47 | 9000 | 2.3105 | | 1.6529 | 1.55 | 9500 | 2.2417 | | 1.6956 | 1.63 | 10000 | 2.1755 | | 1.5713 | 1.71 | 10500 | 2.2917 | | 1.565 | 1.79 | 11000 | 2.0838 | | 1.615 | 1.88 | 11500 | 2.2111 | | 1.5249 | 1.96 | 12000 | 2.2207 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.0+cu101 - Datasets 1.15.1 - Tokenizers 0.10.3
tli8hf/unqover-bert-base-uncased-newsqa
c479a1b05c710946148a24e0373d7602a9cff824
2021-05-20T07:53:24.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-bert-base-uncased-newsqa
18
null
transformers
8,819
Entry not found
trig/multiverse
b555c783b0abddfe3c2df713022a2c4348a006bf
2021-08-29T18:05:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trig
null
trig/multiverse
18
null
transformers
8,820
--- tags: - conversational --- # chatbot using multiple shows
tyqiangz/indobert-lite-large-p2-smsa
e1ca516d9e58ba32ebbf6164f928abca78e4974b
2021-10-06T17:12:46.000Z
[ "pytorch", "albert", "text-classification", "id", "dataset:Indo4B", "arxiv:2009.05387", "transformers", "indobert", "indobenchmark", "indonlu", "license:mit" ]
text-classification
false
tyqiangz
null
tyqiangz/indobert-lite-large-p2-smsa
18
1
transformers
8,821
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: true datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase2 - uncased) Finetuned on IndoNLU SmSA dataset Finetuned the IndoBERT-Lite Large Model (phase2 - uncased) model on the IndoNLU SmSA dataset following the procedues stated in the paper [IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding](https://arxiv.org/pdf/2009.05387.pdf). ## How to use ```python from transformers import pipeline classifier = pipeline("text-classification", model='tyqiangz/indobert-lite-large-p2-smsa', return_all_scores=True) text = "Penyakit koronavirus 2019" prediction = classifier(text) prediction """ Output: [[{'label': 'positive', 'score': 0.0006000096909701824}, {'label': 'neutral', 'score': 0.01223431620746851}, {'label': 'negative', 'score': 0.987165629863739}]] """ ``` **Finetuning hyperparameters:** - learning rate: 2e-5 - batch size: 16 - no. of epochs: 5 - max sequence length: 512 - random seed: 42 **Classes:** - 0: positive - 1: neutral - 2: negative **Performance metrics on SmSA validation dataset** - Validation accuracy: 0.94 - Validation F1: 0.91 - Validation Recall: 0.91 - Validation Precision: 0.93
uclanlp/plbart-multi_task-strong
b958e874bf2ab98f2f62ce449e3a13013605580c
2022-03-02T07:42:23.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-strong
18
null
transformers
8,822
Entry not found
vasudevgupta/mbart-summarizer-interiit
8e2bfd5ac2e731bd0d1274735c9bfbaa62c0a86a
2021-03-28T17:49:15.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vasudevgupta
null
vasudevgupta/mbart-summarizer-interiit
18
null
transformers
8,823
This model is trained as a part of **InterIIT'21 competition**, on the dataset provided by Bridgei2i. It is able to do multilingual (Hindi, English, Hinglish) summarization (many -> one) & is capable of generating summaries in English regardless of the input language. | Rouge-L | Sacrebleu | Headline Similarity (using sentence-transformers) | |-----------------------|-----------|---------------------------------------------------| | p=0.46 r=0.49 f1=0.52 | 23.46 | 0.75 | mBART is initialized from **facebook/mbart-large-cc25** and is trained as per strategy mentioned in our [GitHub](https://github.com/vasudevgupta7/Bridgei2i-Winning-Solutions).
vishnun/bert-base-cased-tamil-mix-sentiment
940036b33e6732512ee1474a3a5eb5c1aca02aee
2021-08-14T09:51:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vishnun
null
vishnun/bert-base-cased-tamil-mix-sentiment
18
null
transformers
8,824
# Tamil Mix Sentiment analysis Model is trained on tamil-mix-sentiment dataset and finetuned with backend as bert-base-cased model ## Inference usage On the hosted Inference type in the text for which you want to classify. Eg: Super a iruku bro intha work, vera level mass
vwoloszyn/gtp2-email
7218e48862ce6fed78e94f41195a32ea494fe12c
2022-02-08T00:24:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
vwoloszyn
null
vwoloszyn/gtp2-email
18
null
transformers
8,825
Entry not found
w11wo/indo-roberta-small
9cb35a1ae4b311b4fc09348c2f84ceda5fe47605
2021-05-20T23:08:29.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "id", "dataset:wikipedia", "arxiv:1907.11692", "transformers", "indo-roberta-small", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/indo-roberta-small
18
null
transformers
8,826
--- language: id tags: - indo-roberta-small license: mit datasets: - wikipedia widget: - text: "Karena pandemi ini, kita harus <mask> di rumah saja." --- ## Indo RoBERTa Small Indo RoBERTa Small is a masked language model based on the [RoBERTa model](https://arxiv.org/abs/1907.11692). It was trained on the latest (late December 2020) Indonesian Wikipedia articles. The model was trained from scratch and achieved a perplexity of 48.27 on the validation dataset (20% of the articles). Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), where Sylvain Gugger fine-tuned a [DistilGPT-2](https://huggingface.co/distilgpt2) on [Wikitext2](https://render.githubusercontent.com/view/ipynb?color_mode=dark&commit=43d63e390e8a82f7ae49aa1a877419343a213cb4&enc_url=68747470733a2f2f7261772e67697468756275736572636f6e74656e742e636f6d2f68756767696e67666163652f6e6f7465626f6f6b732f343364363365333930653861383266376165343961613161383737343139333433613231336362342f6578616d706c65732f6c616e67756167655f6d6f64656c696e672e6970796e62&nwo=huggingface%2Fnotebooks&path=examples%2Flanguage_modeling.ipynb&repository_id=272452525&repository_type=Repository). Hugging Face's [Transformers]((https://huggingface.co/transformers)) library was used to train the model -- utilizing the base RoBERTa model and their `Trainer` class. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |----------------------|---------|----------|---------------------------------------| | `indo-roberta-small` | 84M | RoBERTa | Indonesian Wikipedia (3.1 GB of text) | ## Evaluation Results The model was trained for 3 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|------------| | 4.071 | 3.876 | 48.27 | 3:40:55 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/indo-roberta-small" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Budi sedang <mask> di sekolah.") ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "w11wo/indo-roberta-small" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "Budi sedang berada di sekolah." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do remember that although the dataset originated from Wikipedia, the model may not always generate factual texts. Additionally, the biases which came from the Wikipedia articles may be carried over into the results of this model. ## Author Indo RoBERTa Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
wietsedv/bert-base-dutch-cased-finetuned-conll2002-ner
c49a532d3ae3a22509e769e5f3fd045a577856fc
2021-05-20T09:07:16.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/bert-base-dutch-cased-finetuned-conll2002-ner
18
null
transformers
8,827
Entry not found
yhavinga/t5-v1.1-large-dutch-cnn-test
537a589a88f69a43f55ba0bf43ae09ea4cc6a559
2022-01-16T13:26:39.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "nl", "dataset:yhavinga/mc4_nl_cleaned", "dataset:ml6team/cnn_dailymail_nl", "transformers", "seq2seq", "lm-head", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
yhavinga
null
yhavinga/t5-v1.1-large-dutch-cnn-test
18
null
transformers
8,828
--- language: - nl datasets: - yhavinga/mc4_nl_cleaned - ml6team/cnn_dailymail_nl tags: - seq2seq - lm-head license: apache-2.0 inference: false --- # T5 v1.1 Large finetuned for CNN news summarization in Dutch 🇳🇱 This model is [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) finetuned on [CNN Dailymail NL](https://huggingface.co/datasets/ml6team/cnn_dailymail_nl) For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)** example application! Rouge scores for this model are listed below. ## Tokenizer * SentencePiece tokenizer trained from scratch for Dutch on mC4 nl cleaned with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). ## Dataset All models listed below are trained on of the `full` configuration (39B tokens) of [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. ## Models TL;DR: [yhavinga/t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) is the best model. * `yhavinga/t5-base-dutch` is a re-training of the Dutch T5 base v1.0 model trained during the summer 2021 Flax/Jax community week. Accuracy was improved from 0.64 to 0.70. * The two T5 v1.1 base models are an uncased and cased version of `t5-v1.1-base`, again pre-trained from scratch on Dutch, with a tokenizer also trained from scratch. The t5 v1.1 models are slightly different from the t5 models, and the base models are trained with a dropout of 0.0. For fine-tuning it is intended to set this back to 0.1. * The large cased model is a pre-trained Dutch version of `t5-v1.1-large`. Training of t5-v1.1-large proved difficult. Without dropout regularization, the training would diverge at a certain point. With dropout training went better, be it much slower than training the t5-model. At some point convergance was too slow to warrant further training. The latest checkpoint, training scripts and metrics are available for reference. For actual fine-tuning the cased base model is probably the better choice. | | model | train seq len | acc | loss | batch size | epochs | steps | dropout | optim | lr | duration | |---------------------------------------------------------------------------------------------------|---------|---------------|----------|----------|------------|--------|---------|---------|-----------|------|----------| | [yhavinga/t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | T5 | 512 | 0,70 | 1,38 | 128 | 1 | 528481 | 0.1 | adafactor | 5e-3 | 2d 9h | | [yhavinga/t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | t5-v1.1 | 1024 | 0,73 | 1,20 | 64 | 2 | 1014525 | 0.0 | adafactor | 5e-3 | 5d 5h | | [yhavinga/t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | t5-v1.1 | 1024 | **0,78** | **0,96** | 64 | 2 | 1210000 | 0.0 | adafactor | 5e-3 | 6d 6h | | [yhavinga/t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | t5-v1.1 | 512 | 0,76 | 1,07 | 64 | 1 | 1120000 | 0.1 | adafactor | 5e-3 | 86 13h | The cased t5-v1.1 Dutch models were fine-tuned on summarizing the CNN Daily Mail dataset. | | model | input len | target len | Rouge1 | Rouge2 | RougeL | RougeLsum | Test Gen Len | epochs | batch size | steps | duration | |-------------------------------------------------------------------------------------------------------|---------|-----------|------------|--------|--------|--------|-----------|--------------|--------|------------|-------|----------| | [yhavinga/t5-v1.1-base-dutch-cnn-test](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cnn-test) | t5-v1.1 | 1024 | 96 | 34,8 | 13,6 | 25,2 | 32,1 | 79 | 6 | 64 | 26916 | 2h 40m | | [yhavinga/t5-v1.1-large-dutch-cnn-test](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cnn-test) | t5-v1.1 | 1024 | 96 | 34,4 | 13,6 | 25,3 | 31,7 | 81 | 5 | 16 | 89720 | 11h | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was also instrumental in many, if not all parts of the training. The following repositories where helpful in setting up the TPU-VM, and training the models: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [HUggingFace Flax MLM examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
youzanai/bert-shipping-address-chinese
d6c470ee787ed9cb95f20c535e214d4977a30b12
2022-03-21T02:43:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
youzanai
null
youzanai/bert-shipping-address-chinese
18
null
transformers
8,829
--- license: apache-2.0 --- 基于有赞客户收货地址语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
Davlan/xlm-roberta-base-finetuned-zulu
d6750eceb456ed59716e82cb9f988cd22b1d62a8
2022-02-25T14:50:25.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-zulu
18
null
transformers
8,830
Entry not found
cnicu/pegasus-large-booksum
f3238accc4b91cd60ba7595c1757fc82707de2ff
2022-02-28T12:12:37.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:kmfoda/booksum", "transformers", "summarization", "license:mit", "autotrain_compatible" ]
summarization
false
cnicu
null
cnicu/pegasus-large-booksum
18
null
transformers
8,831
--- license: mit tags: - summarization datasets: - kmfoda/booksum ---
ghadeermobasher/Model_org_2
871cf28d066b36524a0eec5828939633409974af
2022-03-02T10:06:47.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Model_org_2
18
null
transformers
8,832
Entry not found
davanstrien/flyswot_test
adcf0d50a8b79ab90ca5ac72f80b11e133c19bb1
2022-03-01T18:06:33.000Z
[ "pytorch", "convnext", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
davanstrien
null
davanstrien/flyswot_test
18
null
transformers
8,833
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder model-index: - name: flyswot_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flyswot_test This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1518 - eval_f1: 0.9595 - eval_runtime: 5.9337 - eval_samples_per_second: 69.603 - eval_steps_per_second: 2.191 - epoch: 7.0 - step: 364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
abdelhalim/Shower_Sound_Recognition
9da22aa51599aad82ff6082fb1f84d230e38a029
2022-03-03T22:09:48.000Z
[ "pytorch", "wav2vec2", "audio-classification", "dataset:SHD-2", "transformers", "audio", "audio-classificaiton", "shower detection" ]
audio-classification
false
abdelhalim
null
abdelhalim/Shower_Sound_Recognition
18
null
transformers
8,834
--- datasets: - SHD-2 tags: - audio - audio-classificaiton - shower detection metrics: - Accuracy --- **Context** Most of our great brilliant ideas happen in periods of relaxation, like taking a shower, however, once we leave the shower, we forget the brilliant idea. What if we do not forget, and collect your ideas in the shower? **What is the Shower Ideas concept?** This is an app that detects when someone is taking a shower (douche) and asks “do you have any idea?”, and the person will speak while taking the shower telling the idea. And also will ask questions after taking a shower. **Abstract about the model** This model was trained based on *facebook/wav2vec2-base-960h* (which is a pretrained model on 960 hours of Librispeech on 16kHz sampled speech audio.) in order to classify the audio input into shower or no_shower. **Dataset** The SHD-2 dataset is a labeled collection of 2260 audio recordings of shower and no shower sounds. The dataset consists of 6-second-long recordings organized into 2 classes (with 1130 examples per class). # Usage In order to use the model in your Python script just copy the following code: ```python from transformers import pipeline audio_input = 'example.wav' classifier = pipeline("audio-classification", model="abdelhalim/Shower_Sound_Recognition") labels = classifier(audio_input) labels ```
drAbreu/bioBERT-NER-BC2GM_corpus
99d3d7708b2b57d733a31fcb4347abc237c06a18
2022-03-15T14:44:33.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:bc2gm_corpus", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
drAbreu
null
drAbreu/bioBERT-NER-BC2GM_corpus
18
null
transformers
8,835
--- tags: - generated_from_trainer datasets: - bc2gm_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: bioBERT-finrtuned-ner results: - task: name: Token Classification type: token-classification dataset: name: bc2gm_corpus type: bc2gm_corpus args: bc2gm_corpus metrics: - name: Precision type: precision value: 0.7932528628907459 - name: Recall type: recall value: 0.8373080692584123 - name: F1 type: f1 value: 0.8146853146853147 - name: Accuracy type: accuracy value: 0.9750375532003672 widget: - text: "JUP, AKT1, and AURKC are examples of genes" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bioBERT-finrtuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the bc2gm_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.0887 - Precision: 0.7933 - Recall: 0.8373 - F1: 0.8147 - Accuracy: 0.9750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0893 | 1.0 | 1563 | 0.0748 | 0.7447 | 0.8063 | 0.7743 | 0.9722 | | 0.0507 | 2.0 | 3126 | 0.0773 | 0.7928 | 0.8275 | 0.8098 | 0.9739 | | 0.0286 | 3.0 | 4689 | 0.0887 | 0.7933 | 0.8373 | 0.8147 | 0.9750 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
ndubuisi/pfam_init
6fb5ba8b9a5291a8f4af05b050146671d2c31cc2
2022-03-09T06:20:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ndubuisi
null
ndubuisi/pfam_init
18
null
transformers
8,836
Entry not found
ctu-aic/xlm-roberta-large-xnli-csfever
9221e9e7a6a57f5e3d8fe20d1bcf4fa304f2c113
2022-03-11T12:30:17.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "license:cc-by-sa-3.0" ]
text-classification
false
ctu-aic
null
ctu-aic/xlm-roberta-large-xnli-csfever
18
1
transformers
8,837
--- license: cc-by-sa-3.0 ---
simonschoe/TransformationTransformer
9acedf888cc699f04a35f1772cefb5facae3185d
2022-07-28T15:04:47.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers" ]
text-classification
false
simonschoe
null
simonschoe/TransformationTransformer
18
null
transformers
8,838
--- language: - en pipeline_tag: text-classification tags: widget: - text: "And it was great to see how our Chinese team very much aware of that and of shifting all the resourcing to really tap into these opportunities." example_title: "Examplary Transformation Sentence" - text: "But we will continue to recruit even after that because we expect that the volumes are going to continue to grow." example_title: "Examplary Non-Transformation Sentence" - text: "So and again, we'll be disclosing the current taxes that are there in Guyana, along with that revenue adjustment." example_title: "Examplary Non-Transformation Sentence" --- # TransformationTransformer **TransformationTransformer** is a fine-tuned [distilroberta](https://huggingface.co/distilroberta-base) model. It is trained and evaluated on 10,000 manually annotated sentences gleaned from the Q&A-section of quarterly earnings conference calls. In particular, it was trained on sentences issued by firm executives to discriminate between setnences that allude to **business transformation** vis-à-vis those that discuss topics other than business transformations. More details about the training procedure can be found [below](#model-training). ## Background Context on the project. ## Usage The model is intented to be used for sentence classification: It creates a contextual text representation from the input sentence and outputs a probability value. `LABEL_1` refers to a sentence that is predicted to contains transformation-related content (vice versa for `LABEL_0`). The query should consist of a single sentence. ## Usage (API) ```python import json import requests API_TOKEN = <TOKEN> headers = {"Authorization": f"Bearer {API_TOKEN}"} API_URL = "https://api-inference.huggingface.co/models/simonschoe/call2vec" def query(payload): data = json.dumps(payload) response = requests.request("POST", API_URL, headers=headers, data=data) return json.loads(response.content.decode("utf-8")) query({"inputs": "<insert-sentence-here>"}) ``` ## Usage (transformers) ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("simonschoe/TransformationTransformer") model = AutoModelForSequenceClassification.from_pretrained("simonschoe/TransformationTransformer") classifier = pipeline('text-classification', model=model, tokenizer=tokenizer) classifier('<insert-sentence-here>') ``` ## Model Training The model has been trained on text data stemming from earnings call transcripts. The data is restricted to a call's question-and-answer (Q&A) section and the remarks by firm executives. The data has been segmented into individual sentences using [`spacy`](https://spacy.io/). **Statistics of Training Data:** - Labeled sentences: 10,000 - Data distribution: xxx - Inter-coder agreement: xxx The following code snippets presents the training pipeline: <link to script>
wanyu/IteraTeR-PEGASUS-Revision-Generator
3e88c310f0f5d702bd1ba50e89eb07055d76f293
2022-04-04T20:08:12.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:IteraTeR_full_sent", "arxiv:2203.03802", "transformers", "autotrain_compatible" ]
text2text-generation
false
wanyu
null
wanyu/IteraTeR-PEGASUS-Revision-Generator
18
null
transformers
8,839
--- datasets: - IteraTeR_full_sent --- # IteraTeR PEGASUS model This model was obtained by fine-tuning [google/pegasus-large](https://huggingface.co/google/pegasus-large) on [IteraTeR-full-sent](https://huggingface.co/datasets/wanyu/IteraTeR_full_sent) dataset. Paper: [Understanding Iterative Revision from Human-Written Text](https://arxiv.org/abs/2203.03802) <br> Authors: Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung Kim, Melissa Lopez, Dongyeop Kang ## Text Revision Task Given an edit intention and an original sentence, our model can generate a revised sentence.<br> The edit intentions are provided by [IteraTeR-full-sent](https://huggingface.co/datasets/wanyu/IteraTeR_full_sent) dataset, which are categorized as follows: <table> <tr> <th>Edit Intention</th> <th>Definition</th> <th>Example</th> </tr> <tr> <td>clarity</td> <td>Make the text more formal, concise, readable and understandable.</td> <td> Original: It's like a house which anyone can enter in it. <br> Revised: It's like a house which anyone can enter. </td> </tr> <tr> <td>fluency</td> <td>Fix grammatical errors in the text.</td> <td> Original: In the same year he became the Fellow of the Royal Society. <br> Revised: In the same year, he became the Fellow of the Royal Society. </td> </tr> <tr> <td>coherence</td> <td>Make the text more cohesive, logically linked and consistent as a whole.</td> <td> Original: Achievements and awards Among his other activities, he founded the Karachi Film Guild and Pakistan Film and TV Academy. <br> Revised: Among his other activities, he founded the Karachi Film Guild and Pakistan Film and TV Academy. </td> </tr> <tr> <td>style</td> <td>Convey the writer’s writing preferences, including emotions, tone, voice, etc..</td> <td> Original: She was last seen on 2005-10-22. <br> Revised: She was last seen on October 22, 2005. </td> </tr> </table> ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("wanyu/IteraTeR-PEGASUS-Revision-Generator") model = AutoModelForSeq2SeqLM.from_pretrained("wanyu/IteraTeR-PEGASUS-Revision-Generator") before_input = '<fluency> I likes coffee.' model_input = tokenizer(before_input, return_tensors='pt') model_outputs = model.generate(**model_input, num_beams=8, max_length=1024) after_text = tokenizer.batch_decode(model_outputs, skip_special_tokens=True)[0] ```
Helsinki-NLP/opus-mt-tc-big-en-fi
160f657ed4985485d6e87b746a86e4382f67ef47
2022-06-01T13:10:26.000Z
[ "pytorch", "marian", "text2text-generation", "en", "fi", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-fi
18
null
transformers
8,840
--- language: - en - fi tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-fi results: - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: flores101-devtest type: flores_101 args: eng fin devtest metrics: - name: BLEU type: bleu value: 27.6 - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: newsdev2015 type: newsdev2015 args: eng-fin metrics: - name: BLEU type: bleu value: 24.2 - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-fin metrics: - name: BLEU type: bleu value: 39.3 - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: newstest2015 type: wmt-2015-news args: eng-fin metrics: - name: BLEU type: bleu value: 26.4 - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: newstest2016 type: wmt-2016-news args: eng-fin metrics: - name: BLEU type: bleu value: 28.8 - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: newstest2017 type: wmt-2017-news args: eng-fin metrics: - name: BLEU type: bleu value: 31.3 - task: name: Translation eng-fin type: translation args: eng-fin dataset: name: newstest2019 type: wmt-2019-news args: eng-fin metrics: - name: BLEU type: bleu value: 26.4 --- # opus-mt-tc-big-en-fi Neural machine translation model for translating from English (en) to Finnish (fi). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-09 * source language(s): eng * target language(s): fin * valid target language labels: >>fin<< * model: transformer (big) * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fin/opusTCv20210807+bt_transformer-big_2022-03-09.zip) * more information released models: [OPUS-MT eng-fin README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-fin/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>fin<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Russia is big.", "Touch wood!" ] model_name = "pytorch-models/opus-mt-tc-big-en-fi" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Venäjä on suuri. # Kosketa puuta! ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-fi") print(pipe("Russia is big.")) # expected output: Venäjä on suuri. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fin/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fin/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-fin | tatoeba-test-v2021-08-07 | 0.64352 | 39.3 | 10690 | 65122 | | eng-fin | flores101-devtest | 0.61334 | 27.6 | 1012 | 18781 | | eng-fin | newsdev2015 | 0.58367 | 24.2 | 1500 | 23091 | | eng-fin | newstest2015 | 0.60080 | 26.4 | 1370 | 19735 | | eng-fin | newstest2016 | 0.61636 | 28.8 | 3000 | 47678 | | eng-fin | newstest2017 | 0.64381 | 31.3 | 3002 | 45269 | | eng-fin | newstest2018 | 0.55626 | 19.7 | 3000 | 44836 | | eng-fin | newstest2019 | 0.58420 | 26.4 | 1997 | 38369 | | eng-fin | newstestB2016 | 0.57554 | 23.3 | 3000 | 45766 | | eng-fin | newstestB2017 | 0.60212 | 26.8 | 3002 | 45506 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: f084bad * port time: Tue Mar 22 14:42:32 EET 2022 * port machine: LM0-400-22516.local
efederici/sentence-it5-base
73d3d9a749d4fbe85c54e501b334f9000a7f43cb
2022-03-29T23:09:01.000Z
[ "pytorch", "t5", "it", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
efederici
null
efederici/sentence-it5-base
18
2
sentence-transformers
8,841
--- pipeline_tag: sentence-similarity language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-IT5-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-base)) base model. It is trained on a dataset made from question/context pairs ([squad-it](https://github.com/crux82/squad-it)), tags/news-article pairs, headline/text pairs ([change-it](https://huggingface.co/datasets/gsarti/change_it)) and on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-IT5-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-base') model = AutoModel.from_pretrained('efederici/sentence-IT5-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
morenolq/spotify-podcast-advertising-classification
43e9bd006f0d401e5161434856a48a19c58bebbc
2022-07-02T12:12:18.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:Spotify Podcasts Dataset", "transformers", "classification" ]
text-classification
false
morenolq
null
morenolq/spotify-podcast-advertising-classification
18
2
transformers
8,842
--- language: "en" datasets: - Spotify Podcasts Dataset tags: - bert - classification - pytorch pipeline: - text-classification widget: - text: "__START__ [SEP] This is the first podcast on natural language processing applied to spoken language." - text: "This is the first podcast on natural language processing applied to spoken language. [SEP] You can find us on https://twitter.com/PodcastExampleClassifier." - text: "You can find us on https://twitter.com/PodcastExampleClassifier. [SEP] You can also subscribe to our newsletter https://newsletter.com/PodcastExampleClassifier." --- **General Information** This is a `bert-base-cased`, binary classification model, fine-tuned to classify a given sentence as containing advertising content or not. It leverages previous-sentence context to make more accurate predictions. The model is used in the paper 'Leveraging multimodal content for podcast summarization' published at ACM SAC 2022. **Usage:** ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained('morenolq/spotify-podcast-advertising-classification') tokenizer = AutoTokenizer.from_pretrained('morenolq/spotify-podcast-advertising-classification') desc_sentences = ["Sentence 1", "Sentence 2", "Sentence 3"] for i, s in enumerate(desc_sentences): if i==0: context = "__START__" else: context = desc_sentences[i-1] out = tokenizer(context, text, padding = "max_length", max_length = 256, truncation=True, return_attention_mask=True, return_tensors = 'pt') outputs = model(**out) print (f"{s},{outputs}") ``` The manually annotated data, used for model fine-tuning are available [here](https://github.com/MorenoLaQuatra/MATeR/blob/main/description_sentences_classification.tsv) Hereafter is the classification report of the model evaluation on the test split: ``` precision recall f1-score support 0 0.95 0.93 0.94 256 1 0.88 0.91 0.89 140 accuracy 0.92 396 macro avg 0.91 0.92 0.92 396 weighted avg 0.92 0.92 0.92 396 ``` If you find it useful, please cite the following paper: ```bibtex @inproceedings{10.1145/3477314.3507106, author = {Vaiani, Lorenzo and La Quatra, Moreno and Cagliero, Luca and Garza, Paolo}, title = {Leveraging Multimodal Content for Podcast Summarization}, year = {2022}, isbn = {9781450387132}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3477314.3507106}, doi = {10.1145/3477314.3507106}, booktitle = {Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing}, pages = {863–870}, numpages = {8}, keywords = {multimodal learning, multimodal features fusion, extractive summarization, deep learning, podcast summarization}, location = {Virtual Event}, series = {SAC '22} } ```
AnonymousSub/roberta_FT_new_newsqa
226a14e7e40e5141b3bcf6a7f94b216645990755
2022-04-05T15:12:55.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/roberta_FT_new_newsqa
18
null
transformers
8,843
Entry not found
vachevkd/qna-t5base-squad
71d22699f1562d48d6841577be0d0dc656249162
2022-04-06T18:23:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vachevkd
null
vachevkd/qna-t5base-squad
18
null
transformers
8,844
Entry not found
vachevkd/dg-t5base-race
be3fe37c79b377c9616735013c04859012fbbfe0
2022-04-06T18:30:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vachevkd
null
vachevkd/dg-t5base-race
18
null
transformers
8,845
Entry not found
ydshieh/tiny-random-gptj-for-causal-lm
f64f714d1334967753f62f401bb54e6aa8577e1d
2022-04-08T10:20:49.000Z
[ "pytorch", "tf", "gptj", "text-generation", "transformers" ]
text-generation
false
ydshieh
null
ydshieh/tiny-random-gptj-for-causal-lm
18
null
transformers
8,846
Entry not found
agdsga/chinese-pert-large-finetuned-product
b838e495b16be9d00b976d5e688aed12a27d9c73
2022-04-12T11:42:30.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index" ]
text-generation
false
agdsga
null
agdsga/chinese-pert-large-finetuned-product
18
null
transformers
8,847
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: chinese-pert-large-finetuned-product results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-pert-large-finetuned-product This model is a fine-tuned version of [hfl/chinese-pert-large](https://huggingface.co/hfl/chinese-pert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0545 | 1.0 | 3237 | 0.0532 | | 0.0451 | 2.0 | 6474 | 0.0465 | | 0.0414 | 3.0 | 9711 | 0.0439 | | 0.0198 | 4.0 | 12948 | 0.0220 | | 0.0191 | 5.0 | 16185 | 0.0217 | | 0.0188 | 6.0 | 19422 | 0.0215 | | 0.0185 | 7.0 | 22659 | 0.0212 | | 0.0183 | 8.0 | 25896 | 0.0209 | | 0.0181 | 9.0 | 29133 | 0.0208 | | 0.018 | 10.0 | 32370 | 0.0208 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
nielsr/convnext-tiny-224-finetuned-eurosat-albumentations
5aac61b2ae3092a51c276a26fa85dbc2ef29dd70
2022-04-12T12:40:48.000Z
[ "pytorch", "tensorboard", "convnext", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
nielsr
null
nielsr/convnext-tiny-224-finetuned-eurosat-albumentations
18
null
transformers
8,848
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: convnext-tiny-224-finetuned-eurosat-albumentations results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9748148148148148 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat-albumentations This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Accuracy: 0.9748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.141 | 1.0 | 190 | 0.1496 | 0.9544 | | 0.0736 | 2.0 | 380 | 0.0958 | 0.9719 | | 0.0568 | 3.0 | 570 | 0.0727 | 0.9748 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Wanjiru/bert-base-multilingual_en_ner_
40da7ea7287bf8b404b27dd86e55285513008be6
2022-04-14T12:33:55.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Wanjiru
null
Wanjiru/bert-base-multilingual_en_ner_
18
1
transformers
8,849
Label ID Label Name 0 0 1. B-PER 2. I-PER 3. B-ORG 4. I-ORG 5. B-LOC 6. I-LOC
rmihaylov/bert-base-ner-theseus-bg
7a790473402b50e72e29f9b65099ce397de7ac7b
2022-04-16T19:43:53.000Z
[ "pytorch", "bert", "token-classification", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:1810.04805", "arxiv:2002.02925", "transformers", "torch", "license:mit", "autotrain_compatible" ]
token-classification
false
rmihaylov
null
rmihaylov/bert-base-ner-theseus-bg
18
null
transformers
8,850
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # BERT BASE (cased) finetuned on Bulgarian named-entity-recognition data Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is cased: it does make a difference between bulgarian and Bulgarian. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). It was finetuned on public named-entity-recognition Bulgarian data. Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925). ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import pipeline >>> >>> model = pipeline( >>> 'ner', >>> model='rmihaylov/bert-base-ner-theseus-bg', >>> tokenizer='rmihaylov/bert-base-ner-theseus-bg', >>> device=0, >>> revision=None) >>> output = model('Здравей, аз се казвам Иван.') >>> print(output) [{'end': 26, 'entity': 'B-PER', 'index': 6, 'score': 0.9937722, 'start': 21, 'word': '▁Иван'}] ```
Souvikcmsa/Roberta_Sentiment_Analysis
e3cf03e5e9636fbcee84e97ab89a74f20f2ef773
2022-04-20T08:53:33.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Souvikcmsa/autotrain-data-sentimentAnalysis_By_Souvik", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Souvikcmsa
null
Souvikcmsa/Roberta_Sentiment_Analysis
18
null
transformers
8,851
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Souvikcmsa/autotrain-data-sentimentAnalysis_By_Souvik co2_eq_emissions: 4.453029772491864 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 762623422 - CO2 Emissions (in grams): 4.453029772491864 ## Validation Metrics - Loss: 0.40843138098716736 - Accuracy: 0.8302828618968386 - Macro F1: 0.8302447939743022 - Micro F1: 0.8302828618968385 - Weighted F1: 0.8302151855901072 - Macro Precision: 0.8310980209442669 - Micro Precision: 0.8302828618968386 - Weighted Precision: 0.8313262654775467 - Macro Recall: 0.8305699539252172 - Micro Recall: 0.8302828618968386 - Weighted Recall: 0.8302828618968386 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Souvikcmsa/autotrain-sentimentAnalysis_By_Souvik-762623422 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Souvikcmsa/autotrain-sentimentAnalysis_By_Souvik-762623422", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Souvikcmsa/autotrain-sentimentAnalysis_By_Souvik-762623422", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Zia/distilbert-base-uncased-finetuned-emotion
57931d0b1cedcdf6373f68c78bdcf24522d6f6d5
2022-04-24T17:48:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Zia
null
Zia/distilbert-base-uncased-finetuned-emotion
18
null
transformers
8,852
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9365 - name: F1 type: f1 value: 0.9366968648795959 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1707 - Accuracy: 0.9365 - F1: 0.9367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0746 | 1.0 | 250 | 0.1932 | 0.9335 | 0.9330 | | 0.0565 | 2.0 | 500 | 0.1774 | 0.939 | 0.9391 | | 0.0539 | 3.0 | 750 | 0.1707 | 0.9365 | 0.9367 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
yhavinga/t5-small-24L-ccmatrix-multi
b9a8c9c56920570a39de96831255c91ece6c8a40
2022-06-14T10:29:41.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "dataset:yhavinga/ccmatrix", "transformers", "translation", "seq2seq", "license:apache-2.0", "autotrain_compatible" ]
translation
false
yhavinga
null
yhavinga/t5-small-24L-ccmatrix-multi
18
null
transformers
8,853
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned - yhavinga/ccmatrix tags: - t5 - translation - seq2seq pipeline_tag: translation widget: - text: "It is a painful and tragic spectacle that rises before me: I have drawn back the curtain from the rottenness of man. This word, in my mouth, is at least free from one suspicion: that it involves a moral accusation against humanity." - text: "For once Fletcher’s sedate features showed a certain lightness. 'I believe I will linger awhile longer.' He indicated a holoscreen which was displaying the image from an external camera. Cloud-splattered landscape was rolling past, pastel greens, browns, and blues illuminated by Duke’s radiance. 'It is not often a mortal man is permitted to view a world over the shoulder of angels.'" license: apache-2.0 --- # t5-small-24L-ccmatrix-multi A [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) model finetuned for Dutch to English and English to Dutch translation on the CCMatrix dataset. Evaluation metrics of this model are listed in the **Translation models** section below. You can use this model directly with a pipeline for text translation: ```python model_name = "yhavinga/t5-small-24L-ccmatrix-multi" from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM from transformers import pipeline import torch device_num = 0 if torch.cuda.is_available() else -1 device = "cpu" if device_num < 0 else f"cuda:{device_num}" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) params = {"max_length": 128, "num_beams": 4, "early_stopping": True} en_to_nl = pipeline("translation_en_to_nl", tokenizer=tokenizer, model=model, device=device_num) print(en_to_nl("""Young Wehling was hunched in his chair, his head in his hand. He was so rumpled, so still and colorless as to be virtually invisible.""", **params)[0]['translation_text']) nl_to_en = pipeline("translation_nl_to_en", tokenizer=tokenizer, model=model, device=device_num) print(nl_to_en("""De jonge Wehling zat gebogen in zijn stoel, zijn hoofd in zijn hand. Hij was zo stoffig, zo stil en kleurloos dat hij vrijwel onzichtbaar was.""", **params)[0]['translation_text']) ``` This **t5 eff** model has **249M** parameters. It was pre-trained with the masked language modeling objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **4d10h**, with a sequence length of **512**, batch size **128** and **851852** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,18** and **0,74**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been evaluated on summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) The next two sections provide more information on how the evaluation was performed. ## Evaluation on summarization The models below have been evaluated for summarization on 50K samples from the CNN Dailymail dataset. All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 1e-3 after a warmup of 32 steps, with a label smoothing factor of 0.05. Article and summary token lengths were set to 1024 and 142. NB: the evaluation checkpoints are not saved, since they were trained for comparison of pre-trained models only. The numbers reported are the Rouge scores on 1000 documents from the test split. The rouge1 score is visualized in the | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | ## Evaluation on translation The models below have been evaluated for English to Dutch translation on 50K samples from the CCMatrix dataset. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 5e-5 after a warmup of 32 steps, with a label smoothing factor of 0.1 and maximum sequence length of 128 tokens. The numbers reported are the Bleu scores on 1000 documents from the test split. NB: the evaluation checkpoints are not saved, since they were trained for comparison of pre-trained models only. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
davidenam/distilbert-base-uncased-finetuned-emotion
888eea940289f187a159db2ff86742f9e97203bc
2022-04-27T21:59:00.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
davidenam
null
davidenam/distilbert-base-uncased-finetuned-emotion
18
null
transformers
8,854
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9205 - name: F1 type: f1 value: 0.9203318889648883 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2230 - Accuracy: 0.9205 - F1: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3224 | 0.9055 | 0.9034 | | No log | 2.0 | 500 | 0.2230 | 0.9205 | 0.9203 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
OFA-Sys/OFA-medium
0f35145e94917f4954001fb8ac213dd626de1e72
2022-07-25T11:50:59.000Z
[ "pytorch", "ofa", "transformers", "license:apache-2.0" ]
null
false
OFA-Sys
null
OFA-Sys/OFA-medium
18
3
transformers
8,855
--- license: apache-2.0 --- # OFA-medium This is the **medium** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ``` git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-medium ``` After, refer the path to OFA-medium to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ``` >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 256 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) >>> # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] >>> # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
Truefilter/bbase_go_emotions
0a80b3900c5344f15f02bbfff149ad8751b3a4f3
2022-04-29T15:31:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Truefilter
null
Truefilter/bbase_go_emotions
18
null
transformers
8,856
Entry not found
anshr/distilgpt2_supervised_model_final
a900c56c19bb7915f875bde78759c8e3718bfff8
2022-05-02T22:15:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
anshr
null
anshr/distilgpt2_supervised_model_final
18
null
transformers
8,857
Entry not found
enimai/mbart-large-50-paraphrase-finetuned-for-fr
dea9e2d720c1c1841a19b1d30262ca061a532219
2022-05-03T17:36:09.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/mbart-large-50-paraphrase-finetuned-for-fr
18
null
transformers
8,858
--- license: apache-2.0 ---
jeremyccollinsmpi/autotrain-inference_probability_2-840226804
0f58601ed0d3f53339cfffd5f8551a554c2494f8
2022-05-17T07:41:46.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:jeremyccollinsmpi/autotrain-data-inference_probability_2", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
jeremyccollinsmpi
null
jeremyccollinsmpi/autotrain-inference_probability_2-840226804
18
null
transformers
8,859
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - jeremyccollinsmpi/autotrain-data-inference_probability_2 co2_eq_emissions: 0.02920886926438328 --- # Description The input structure is: summarize: [text]. hypothesis: [hypothesis] , and the output is 0 (hypothesis is not supported) or 1 (hypothesis is supported). This tests whether a hypothesis is true given the preceding text. Currently the model is trained on banking chatbot intent data, such as: summarize: How old do my kids need to be to use your service?. hypothesis: asking about an age limit Output: 1 # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 840226804 - CO2 Emissions (in grams): 0.02920886926438328 ## Validation Metrics - Loss: 0.09617297351360321 - Rouge1: 91.2874 - Rouge2: 0.0 - RougeL: 91.2874 - RougeLsum: 91.4174 - Gen Len: 2.4915 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_2-840226804 ```
dpuccine/bert-finetuned-ner
c3c12a639d0f92c8385161f48d0a56cf6c007ff0
2022-05-10T17:29:20.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
dpuccine
null
dpuccine/bert-finetuned-ner
18
null
transformers
8,860
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9323407775020678 - name: Recall type: recall value: 0.9485021878155503 - name: F1 type: f1 value: 0.9403520480520563 - name: Accuracy type: accuracy value: 0.9859304173779949 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0624 - Precision: 0.9323 - Recall: 0.9485 - F1: 0.9404 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.087 | 1.0 | 1756 | 0.0696 | 0.9183 | 0.9406 | 0.9293 | 0.9832 | | 0.0378 | 2.0 | 3512 | 0.0564 | 0.9355 | 0.9502 | 0.9428 | 0.9863 | | 0.0194 | 3.0 | 5268 | 0.0624 | 0.9323 | 0.9485 | 0.9404 | 0.9859 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
CEBaB/lstm.CEBaB.sa.3-class.exclusive.seed_77
acb48ae7cda063c5e2c789afb64767aaacc51814
2022-05-11T01:22:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.sa.3-class.exclusive.seed_77
18
null
transformers
8,861
Entry not found
CEBaB/lstm.CEBaB.sa.5-class.exclusive.seed_77
8804ed8fea1fad03270c0ce8ed3cda9d3af8da9b
2022-05-11T01:39:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.sa.5-class.exclusive.seed_77
18
null
transformers
8,862
Entry not found
James-kc-min/F_Roberta_classifier2
ffda557d70a9139a57f8aeb44d08eea669de586c
2022-05-11T14:15:01.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
James-kc-min
null
James-kc-min/F_Roberta_classifier2
18
null
transformers
8,863
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: F_Roberta_classifier2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # F_Roberta_classifier2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1317 - Accuracy: 0.9751 - F1: 0.9751 - Precision: 0.9751 - Recall: 0.9751 - C Report: precision recall f1-score support 0 0.97 0.98 0.98 1467 1 0.98 0.97 0.98 1466 accuracy 0.98 2933 macro avg 0.98 0.98 0.98 2933 weighted avg 0.98 0.98 0.98 2933 - C Matrix: None ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | C Report | C Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:| | 0.1626 | 1.0 | 614 | 0.0936 | 0.9707 | 0.9707 | 0.9707 | 0.9707 | precision recall f1-score support 0 0.97 0.97 0.97 1467 1 0.97 0.97 0.97 1466 accuracy 0.97 2933 macro avg 0.97 0.97 0.97 2933 weighted avg 0.97 0.97 0.97 2933 | None | | 0.0827 | 2.0 | 1228 | 0.0794 | 0.9731 | 0.9731 | 0.9731 | 0.9731 | precision recall f1-score support 0 0.96 0.98 0.97 1467 1 0.98 0.96 0.97 1466 accuracy 0.97 2933 macro avg 0.97 0.97 0.97 2933 weighted avg 0.97 0.97 0.97 2933 | None | | 0.0525 | 3.0 | 1842 | 0.1003 | 0.9737 | 0.9737 | 0.9737 | 0.9737 | precision recall f1-score support 0 0.97 0.98 0.97 1467 1 0.98 0.97 0.97 1466 accuracy 0.97 2933 macro avg 0.97 0.97 0.97 2933 weighted avg 0.97 0.97 0.97 2933 | None | | 0.0329 | 4.0 | 2456 | 0.1184 | 0.9751 | 0.9751 | 0.9751 | 0.9751 | precision recall f1-score support 0 0.98 0.97 0.98 1467 1 0.97 0.98 0.98 1466 accuracy 0.98 2933 macro avg 0.98 0.98 0.98 2933 weighted avg 0.98 0.98 0.98 2933 | None | | 0.0179 | 5.0 | 3070 | 0.1317 | 0.9751 | 0.9751 | 0.9751 | 0.9751 | precision recall f1-score support 0 0.97 0.98 0.98 1467 1 0.98 0.97 0.98 1466 accuracy 0.98 2933 macro avg 0.98 0.98 0.98 2933 weighted avg 0.98 0.98 0.98 2933 | None | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
edumunozsala/bertin_base_sentiment_analysis_es
159a628aa01ee6d5930752ac632de7327ab3fa38
2022-07-29T09:18:17.000Z
[ "pytorch", "roberta", "text-classification", "es", "dataset:IMDbreviews_es", "transformers", "sagemaker", "bertin", "TextClassification", "SentimentAnalysis", "license:apache-2.0", "model-index" ]
text-classification
false
edumunozsala
null
edumunozsala/bertin_base_sentiment_analysis_es
18
null
transformers
8,864
--- language: es tags: - sagemaker - bertin - TextClassification - SentimentAnalysis license: apache-2.0 datasets: - IMDbreviews_es metrics: - accuracy model-index: - name: bertin_base_sentiment_analysis_es results: - task: name: Sentiment Analysis type: sentiment-analysis dataset: name: "IMDb Reviews in Spanish" type: IMDbreviews_es metrics: - name: Accuracy type: accuracy value: 0.898933 - name: F1 Score type: f1 value: 0.8989063 - name: Precision type: precision value: 0.8771473 - name: Recall type: recall value: 0.9217724 widget: - text: "Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" --- # Model bertin_base_sentiment_analysis_es ## **A finetuned model for Sentiment analysis in Spanish** This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container, The base model is **Bertin base** which is a RoBERTa-base model pre-trained on the Spanish portion of mC4 using Flax. It was trained by the Bertin Project.[Link to base model](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) Article: BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling - Author = Javier De la Rosa y Eduardo G. Ponferrada y Manu Romero y Paulo Villegas y Pablo González de Prado Salas y María Grandury, - journal = Procesamiento del Lenguaje Natural, - volume = 68, number = 0, year = 2022 - url = http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403 ## Dataset The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages. Sizes of datasets: - Train dataset: 42,500 - Validation dataset: 3,750 - Test dataset: 3,750 ## Intended uses & limitations This model is intented for Sentiment Analysis for spanish corpus and finetuned specially for movie reviews but it can be applied to other kind of reviews. ## Hyperparameters { "epochs": "4", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "3e-05", "model_name": "\"bertin-project/bertin-roberta-base-spanish\"", "sagemaker_container_log_level": "20", "sagemaker_program": "\"train.py\"", } ## Evaluation results - Accuracy = 0.8989333333333334 - F1 Score = 0.8989063750333421 - Precision = 0.877147319104633 - Recall = 0.9217724288840262 ## Test results ## Model in action ### Usage for Sentiment Analysis ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("edumunozsala/bertin_base_sentiment_analysis_es") model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/bertin_base_sentiment_analysis_es") text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) output = outputs.logits.argmax(1) ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)
xhyi/CodeGen-2B-Multi
bf4b5c321dd655e9714fe284bf07c2be01fd93aa
2022-05-18T17:33:15.000Z
[ "pytorch", "codegen", "text-generation", "en", "transformers", "text generation", "causal-lm", "license:bsd-3-clause" ]
text-generation
false
xhyi
null
xhyi/CodeGen-2B-Multi
18
null
transformers
8,865
--- language: - en tags: - codegen - text generation - pytorch - causal-lm license: bsd-3-clause --- # Salesforce CodeGen ported salesforce codegen models to work on huggingface transformers without any extra code (the model specific code is bundled) ## Overview The CodeGen model was proposed in by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. From Salesforce Research. The abstract from the paper is the following: Program synthesis strives to generate a computer program as a solution to a given problem specification. We propose a conversational program synthesis approach via large language models, which addresses the challenges of searching over a vast program space and user intent specification faced in prior approaches. Our new approach casts the process of writing a specification and program as a multi-turn conversation between a user and a system. It treats program synthesis as a sequence prediction problem, in which the specification is expressed in natural language and the desired program is conditionally sampled. We train a family of large language models, called CodeGen, on natural language and programming language data. With weak supervision in the data and the scaling up of data size and model size, conversational capacities emerge from the simple autoregressive language modeling. To study the model behavior on conversational program synthesis, we develop a multi-turn programming benchmark (MTPB), where solving each problem requires multi-step synthesis via multi-turn conversation between the user and the model. Our findings show the emergence of conversational capabilities and the effectiveness of the proposed conversational program synthesis paradigm. In addition, our model CodeGen (with up to 16B parameters trained on TPU-v4) outperforms OpenAI's Codex on the HumanEval benchmark. We plan to make the training library JaxFormer including checkpoints available as open source. ## Usage `trust_remote_code` is needed because the [torch modules](https://github.com/salesforce/CodeGen/tree/main/jaxformer/hf/codegen) for the custom codegen model is bundled. ```sh from transformers import AutoModelForCausalLM, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained(model_folder, local_files_only=True) model = AutoModelForCausalLM.from_pretrained(model_folder, local_files_only=True, trust_remote_code=True) ```
steysie/paraphrase-multilingual-mpnet-base-v2-tuned-smartcat
35dce5fafed492a692d9bd072d7953a5d7fdfc00
2022-05-20T20:10:09.000Z
[ "pytorch", "xlm-roberta", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
steysie
null
steysie/paraphrase-multilingual-mpnet-base-v2-tuned-smartcat
18
null
transformers
8,866
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: paraphrase-multilingual-mpnet-base-v2-tuned-smartcat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphrase-multilingual-mpnet-base-v2-tuned-smartcat This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.0072 | 0.16 | 10000 | 0.0025 | | 0.0014 | 0.32 | 20000 | 0.0005 | | 0.0004 | 0.48 | 30000 | 0.0002 | | 0.0002 | 0.64 | 40000 | 0.0001 | | 0.0003 | 0.81 | 50000 | 0.0001 | | 0.0002 | 0.97 | 60000 | 0.0000 | | 0.0001 | 1.13 | 70000 | 0.0000 | | 0.0001 | 1.29 | 80000 | 0.0000 | | 0.0001 | 1.45 | 90000 | 0.0000 | | 0.0001 | 1.61 | 100000 | 0.0000 | | 0.0 | 1.77 | 110000 | 0.0000 | | 0.0 | 1.93 | 120000 | 0.0000 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
imohammad12/GRS-Grammar-Checker-DeBerta
5dd540d9a686c056e6c8e520a34ccdc929a547da
2022-05-26T10:48:39.000Z
[ "pytorch", "deberta", "text-classification", "en", "transformers", "grs" ]
text-classification
false
imohammad12
null
imohammad12/GRS-Grammar-Checker-DeBerta
18
null
transformers
8,867
--- language: en tags: grs --- ## Citation Please star the [GRS GitHub repo](https://github.com/imohammad12/GRS) and cite the paper if you found our model useful: ``` @inproceedings{dehghan-etal-2022-grs, title = "{GRS}: Combining Generation and Revision in Unsupervised Sentence Simplification", author = "Dehghan, Mohammad and Kumar, Dhruv and Golab, Lukasz", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.77", pages = "949--960", abstract = "We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.", } ```
gigikenneth/family-guy-bot
d02b801f8d9a48ae1d6342466a41a39a8c501ac0
2022-05-26T19:44:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
gigikenneth
null
gigikenneth/family-guy-bot
18
null
transformers
8,868
--- tags: - conversational --- # Stewie Chatbot
RANG012/SENATOR
64670b5d0bd1fbdea79a55e29b8ab405e742bd41
2022-06-01T07:17:06.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
RANG012
null
RANG012/SENATOR
18
null
transformers
8,869
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: SENATOR results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.916 - name: F1 type: f1 value: 0.9166666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SENATOR This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2707 - Accuracy: 0.916 - F1: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Yarn/distilbert-base-uncased-mnli-finetuned-mnli
f7e6ca9e289817e2de1167156bcd735673af5285
2022-06-21T18:16:47.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Yarn
null
Yarn/distilbert-base-uncased-mnli-finetuned-mnli
18
null
transformers
8,870
Entry not found
ghadeermobasher/Original-PubMedBERT-NCBI
6c6f160510ee7ee986cadbfc4cbb59a67a9116fa
2022-06-09T10:27:10.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-PubMedBERT-NCBI
18
null
transformers
8,871
Entry not found
ghadeermobasher/Orignal-SciBERT-NCBI
8d7878273baad8f4b60ecdd710658730ea91d36e
2022-06-09T11:24:21.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Orignal-SciBERT-NCBI
18
null
transformers
8,872
Entry not found
ghadeermobasher/Original-BlueBERT-BC5CDR-Disease
97893864f2f0011b7bb6040d50953a940d068b3f
2022-06-09T11:20:21.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BlueBERT-BC5CDR-Disease
18
null
transformers
8,873
Entry not found
ghadeermobasher/Original-PubMedBERT-BC5CDR-disease
9e601891312d968a56cbef491229c3d228953340
2022-06-09T11:29:40.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-PubMedBERT-BC5CDR-disease
18
null
transformers
8,874
Entry not found
ghadeermobasher/Original-BlueBERT-BC5CDR-Chemical
821bfe60dc11f695657a253fe401f6f9cebd7d38
2022-06-09T12:03:59.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BlueBERT-BC5CDR-Chemical
18
null
transformers
8,875
Entry not found
ghadeermobasher/Original-PubMedBERT-BC5CDR-Chemical
dee786252092c1135c972467ff189207f49e92fc
2022-06-09T11:55:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-PubMedBERT-BC5CDR-Chemical
18
null
transformers
8,876
Entry not found
ghadeermobasher/Original-SciBERT-BC4CHEMD-O
d1eda4a4218237ca965a2206d22d24c5bed19a7c
2022-06-09T14:06:57.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-SciBERT-BC4CHEMD-O
18
null
transformers
8,877
Entry not found
ghadeermobasher/Original-PubMedBERT-Linnaeus
9b32352012d1494fac69ccdab79f37daa4bdb6eb
2022-06-10T11:13:09.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-PubMedBERT-Linnaeus
18
null
transformers
8,878
Entry not found
Anjoe/german-poetry-gpt2-large
25d1a886fbe54bebb32bd079e22fec42d7397327
2022-07-21T14:35:09.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Anjoe
null
Anjoe/german-poetry-gpt2-large
18
null
transformers
8,879
--- license: mit tags: - generated_from_trainer model-index: - name: german-poetry-gpt2-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-poetry-gpt2-large This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on German poems. It achieves the following results on the evaluation set: - eval_loss: 3.5753 - eval_runtime: 100.7173 - eval_samples_per_second: 51.6 - eval_steps_per_second: 25.805 - epoch: 4.0 - step: 95544 ## Model description large version of gpt-2 ## Intended uses & limitations It could be used for poetry generation ## Training and evaluation data The model was trained on german poems from projekt Gutenberg ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
speechbrain/asr-wav2vec2-dvoice-amharic
ee19134f21287dd4179087aa230547ebe0ad02fa
2022-06-10T01:30:20.000Z
[ "wav2vec2", "feature-extraction", "dar", "dataset:Dvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-dvoice-amharic
18
1
speechbrain
8,880
--- language: "dar" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - Dvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Amharic (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [ALFFA](https://github.com/besacier/ALFFA_PUBLIC) Amharic dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 6.71 | 25.50 | 6.57 | 24.92 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and is trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install transformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Amharic) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-dvoice-amharic", savedir="pretrained_models/asr-wav2vec2-dvoice-amharic") asr_model.transcribe_file('speechbrain/asr-wav2vec2-dvoice-amharic/example_amharic.wav') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/DVoice/ASR/CTC python train_with_wav2vec2.py hparams/train_amh_with_wav2vec.yaml --data_folder=/localscratch/ALFFA_PUBLIC/ASR/AMHARIC/data/ ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1vNT7RjRuELs7pumBHmfYsrOp9m46D0ym?usp=sharing). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # About DVoice DVoice is a community initiative that aims to provide African low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrieved from social media. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola, and Soninke. For this project, AIOX Labs and the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London, and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes, or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business-ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems, and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network, and System Security, and Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
AnyaSchen/rugpt3_pushkin
109105f776fdec08d9eb7572a97ca6f4d92398e5
2022-06-15T11:25:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AnyaSchen
null
AnyaSchen/rugpt3_pushkin
18
null
transformers
8,881
This model was created by additional training of the giant GPT-3 medium on the works of A.S. Pushkin. Now this model can generate poetry in the style of this poet. Fine-tuning of GPT-3 was produced. ![alt text](https://lh3.googleusercontent.com/73NLTubc1m-Kiz2GJPv44cyMHQgaq32RGr7aWPfsEH5LCpqZxyqtj0TXk6Cw3gjfCzo=w2400)
rsuwaileh/IDRISI-LMR-HD-TB
3510abf3da66d8f5529faffdf1c1caf720923985
2022-07-18T09:17:42.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
rsuwaileh
null
rsuwaileh/IDRISI-LMR-HD-TB
18
null
transformers
8,882
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training, development, and test data are used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-based LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition/) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
QCRI/bert-base-cased-ccg
1019a0e7137e1ac936d702b9fd406736870848e2
2022-06-13T08:25:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
token-classification
false
QCRI
null
QCRI/bert-base-cased-ccg
18
null
transformers
8,883
--- license: cc-by-nc-4.0 ---
ghadeermobasher/BC4CHEMD-Chem-Modified-BlueBERT-384
c6ecd2e051542a5f6038ae0fbb4678b892ccef5f
2022-06-14T18:33:04.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Modified-BlueBERT-384
18
null
transformers
8,884
Entry not found
ahmeddbahaa/xlmroberta-finetune-en-cnn
b7b26302a1ad9b37274156df47ba67a328db3c16
2022-06-15T15:56:54.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "summarization", "en", "ecnoder-decoder", "xlmroberta", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/xlmroberta-finetune-en-cnn
18
null
transformers
8,885
--- tags: - summarization - en - ecnoder-decoder - xlmroberta - Abstractive Summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: xlmroberta-finetune-en-cnn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta-finetune-en-cnn This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
Bman/DialoGPT-medium-peppapig
944854efd38f7fe9d8794c4c84ebbb593e75de90
2022-06-16T21:59:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Bman
null
Bman/DialoGPT-medium-peppapig
18
1
transformers
8,886
--- tags: - conversational --- # Peppa Pig DialoGPT Model
Mahmoud1816Yasser/tmp_trainer
341e9ce2f8a3d2fe33e69074c9b2ca3f16f00c44
2022-06-17T21:10:28.000Z
[ "pytorch", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "model-index" ]
audio-classification
false
Mahmoud1816Yasser
null
Mahmoud1816Yasser/tmp_trainer
18
null
transformers
8,887
--- tags: - generated_from_trainer model-index: - name: tmp_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
langfab/distilbert-base-uncased-finetuned-movie-genre
ccccffc13708770efbe757a441061150084eb08f
2022-06-18T19:02:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
langfab
null
langfab/distilbert-base-uncased-finetuned-movie-genre
18
null
transformers
8,888
Entry not found
KoichiYasuoka/roberta-base-japanese-aozora-ud-head
50f04d6d295a46a5f4797590798fd47f9dbac45b
2022-07-20T03:52:15.000Z
[ "pytorch", "roberta", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-japanese-aozora-ud-head
18
null
transformers
8,889
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # roberta-base-japanese-aozora-ud-head ## Model Description This is a RoBERTa model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [roberta-base-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-char) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model) print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/roberta-base-japanese-aozora-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ```
Zamachi/bert-base-for-multilabel-sentence-classification
8b52a934c30c9d325322ab6771f0d04e96117457
2022-07-14T12:49:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Zamachi
null
Zamachi/bert-base-for-multilabel-sentence-classification
18
null
transformers
8,890
Entry not found
ManqingLiu/distilbert-base-uncased-finetuned-emotion
6fefcec9c6f2607ff45b73c11ca8803739f14d03
2022-06-24T06:04:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ManqingLiu
null
ManqingLiu/distilbert-base-uncased-finetuned-emotion
18
null
transformers
8,891
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.9306050612701778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Accuracy: 0.9305 - F1: 0.9306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1755 | 1.0 | 250 | 0.1831 | 0.925 | 0.9249 | | 0.1118 | 2.0 | 500 | 0.1709 | 0.9305 | 0.9306 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
austinmw/distilbert-base-uncased-finetuned-health_facts
aba654497687b32f4ec38ca684b79d277a80fd3d
2022-06-29T18:15:31.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:health_fact", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
austinmw
null
austinmw/distilbert-base-uncased-finetuned-health_facts
18
null
transformers
8,892
--- license: apache-2.0 tags: - generated_from_trainer datasets: - health_fact metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-health_facts results: - task: name: Text Classification type: text-classification dataset: name: health_fact type: health_fact args: default metrics: - name: Accuracy type: accuracy value: 0.628500823723229 - name: F1 type: f1 value: 0.6544946803476833 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-health_facts This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the health_fact dataset. It achieves the following results on the evaluation set: - Loss: 1.1227 - Accuracy: 0.6285 - F1: 0.6545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1367 | 1.0 | 154 | 0.9423 | 0.5560 | 0.6060 | | 0.9444 | 2.0 | 308 | 0.9267 | 0.5733 | 0.6170 | | 0.8248 | 3.0 | 462 | 0.9483 | 0.5832 | 0.6256 | | 0.7213 | 4.0 | 616 | 1.0119 | 0.5815 | 0.6219 | | 0.608 | 5.0 | 770 | 1.1227 | 0.6285 | 0.6545 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
andreaschandra/distilbert-base-uncased-finetuned-emotion
2ef3e9ba1e9f63ae2050802469f67e0549376e93
2022-07-13T13:16:46.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
andreaschandra
null
andreaschandra/distilbert-base-uncased-finetuned-emotion
18
null
transformers
8,893
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240890586429673 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8218 | 1.0 | 250 | 0.3165 | 0.9025 | 0.9001 | | 0.2494 | 2.0 | 500 | 0.2186 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
akhisreelibra/bert-malayalam-pos-tagger
ac3d00c95d7df32d0ead63bd00a7d18a63589554
2022-07-05T11:26:20.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
akhisreelibra
null
akhisreelibra/bert-malayalam-pos-tagger
18
null
transformers
8,894
naver/efficient-splade-VI-BT-large-query
8d4ba56f900620a2ca3efdac9a028473bf703aea
2022-07-08T13:12:22.000Z
[ "pytorch", "bert", "fill-mask", "en", "dataset:ms_marco", "transformers", "splade", "query-expansion", "document-expansion", "bag-of-words", "passage-retrieval", "knowledge-distillation", "document encoder", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
naver
null
naver/efficient-splade-VI-BT-large-query
18
null
transformers
8,895
--- license: cc-by-nc-sa-4.0 language: "en" tags: - splade - query-expansion - document-expansion - bag-of-words - passage-retrieval - knowledge-distillation - document encoder datasets: - ms_marco --- ## Efficient SPLADE Efficient SPLADE model for passage retrieval. This architecture uses two distinct models for query and document inference. This is the **query** one, please also download the **doc** one (https://huggingface.co/naver/efficient-splade-VI-BT-large-doc). For additional details, please visit: * paper: https://dl.acm.org/doi/10.1145/3477495.3531833 * code: https://github.com/naver/splade | | MRR@10 (MS MARCO dev) | R@1000 (MS MARCO dev) | Latency (PISA) ms | Latency (Inference) ms | --- | --- | --- | --- | --- | | `naver/efficient-splade-V-large` | 38.8 | 98.0 | 29.0 | 45.3 | `naver/efficient-splade-VI-BT-large` | 38.0 | 97.8 | 31.1 | 0.7 ## Citation If you use our checkpoint, please cite our work: ``` @inproceedings{10.1145/3477495.3531833, author = {Lassance, Carlos and Clinchant, St\'{e}phane}, title = {An Efficiency Study for SPLADE Models}, year = {2022}, isbn = {9781450387323}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3477495.3531833}, doi = {10.1145/3477495.3531833}, abstract = {Latency and efficiency issues are often overlooked when evaluating IR models based on Pretrained Language Models (PLMs) in reason of multiple hardware and software testing scenarios. Nevertheless, efficiency is an important part of such systems and should not be overlooked. In this paper, we focus on improving the efficiency of the SPLADE model since it has achieved state-of-the-art zero-shot performance and competitive results on TREC collections. SPLADE efficiency can be controlled via a regularization factor, but solely controlling this regularization has been shown to not be efficient enough. In order to reduce the latency gap between SPLADE and traditional retrieval systems, we propose several techniques including L1 regularization for queries, a separation of document/query encoders, a FLOPS-regularized middle-training, and the use of faster query encoders. Our benchmark demonstrates that we can drastically improve the efficiency of these models while increasing the performance metrics on in-domain data. To our knowledge, we propose the first neural models that, under the same computing constraints, achieve similar latency (less than 4ms difference) as traditional BM25, while having similar performance (less than 10% MRR@10 reduction) as the state-of-the-art single-stage neural rankers on in-domain data.}, booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, pages = {2220–2226}, numpages = {7}, keywords = {splade, latency, information retrieval, sparse representations}, location = {Madrid, Spain}, series = {SIGIR '22} } ```
annahaz/xlm-roberta-base-finetuned-misogyny-sexism
93e1a9ad2ffa4bf7151a0b92d0a6d4287f79dfad
2022-07-27T14:45:20.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-finetuned-misogyny-sexism
18
null
transformers
8,896
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-finetuned-misogyny-sexism results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny-sexism This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9064 - Accuracy: 0.8334 - F1: 0.3322 - Precision: 0.2498 - Recall: 0.4961 - Mae: 0.1666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3869 | 1.0 | 2395 | 0.2905 | 0.8778 | 0.3528 | 0.3164 | 0.3988 | 0.1222 | | 0.3539 | 2.0 | 4790 | 0.4143 | 0.8278 | 0.3465 | 0.2536 | 0.5467 | 0.1722 | | 0.3124 | 3.0 | 7185 | 0.3327 | 0.8568 | 0.3583 | 0.2864 | 0.4786 | 0.1432 | | 0.2817 | 4.0 | 9580 | 0.5621 | 0.7329 | 0.3092 | 0.1972 | 0.7160 | 0.2671 | | 0.2651 | 5.0 | 11975 | 0.4376 | 0.8520 | 0.3607 | 0.2821 | 0.5 | 0.1480 | | 0.2249 | 6.0 | 14370 | 0.5581 | 0.8326 | 0.3312 | 0.2485 | 0.4961 | 0.1674 | | 0.1958 | 7.0 | 16765 | 0.6728 | 0.8382 | 0.3234 | 0.2484 | 0.4630 | 0.1618 | | 0.1899 | 8.0 | 19160 | 0.7404 | 0.8304 | 0.3316 | 0.2471 | 0.5039 | 0.1696 | | 0.1619 | 9.0 | 21555 | 0.8309 | 0.8461 | 0.3382 | 0.2639 | 0.4708 | 0.1539 | | 0.1453 | 10.0 | 23950 | 0.9064 | 0.8334 | 0.3322 | 0.2498 | 0.4961 | 0.1666 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Shredder/My_model
0ef65cb9b1d4cb0c44e9f26b451247e082e648c0
2022-07-09T10:26:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Shredder
null
Shredder/My_model
18
null
transformers
8,897
Entry not found
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1
c8a4dda381aa3bcc92a37ae1b3545d203deb5f35
2022-07-19T03:23:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1
18
null
transformers
8,898
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5459 - Wer: 0.2463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.3909 | 1.0 | 2309 | 0.5615 | 0.2459 | | 0.4094 | 2.0 | 4618 | 0.5654 | 0.2439 | | 0.326 | 3.0 | 6927 | 0.5568 | 0.2470 | | 0.4577 | 4.0 | 9236 | 0.5795 | 0.2474 | | 0.3628 | 5.0 | 11545 | 0.5459 | 0.2463 | | 0.3135 | 6.0 | 13854 | 0.5582 | 0.2473 | | 0.5058 | 7.0 | 16163 | 0.5677 | 0.2439 | | 0.3188 | 8.0 | 18472 | 0.5646 | 0.2445 | | 0.3589 | 9.0 | 20781 | 0.5626 | 0.2479 | | 0.4021 | 10.0 | 23090 | 0.5722 | 0.2452 | | 0.4362 | 11.0 | 25399 | 0.5659 | 0.2431 | | 0.3215 | 12.0 | 27708 | 0.5658 | 0.2445 | | 0.3646 | 13.0 | 30017 | 0.5785 | 0.2459 | | 0.3757 | 14.0 | 32326 | 0.5757 | 0.2418 | | 0.3311 | 15.0 | 34635 | 0.5672 | 0.2455 | | 0.3709 | 16.0 | 36944 | 0.5669 | 0.2434 | | 0.3342 | 17.0 | 39253 | 0.5610 | 0.2455 | | 0.3236 | 18.0 | 41562 | 0.5652 | 0.2436 | | 0.3566 | 19.0 | 43871 | 0.5773 | 0.2407 | | 0.2912 | 20.0 | 46180 | 0.5764 | 0.2453 | | 0.3652 | 21.0 | 48489 | 0.5732 | 0.2423 | | 0.3785 | 22.0 | 50798 | 0.5696 | 0.2423 | | 0.3968 | 23.0 | 53107 | 0.5690 | 0.2429 | | 0.2968 | 24.0 | 55416 | 0.5800 | 0.2427 | | 0.428 | 25.0 | 57725 | 0.5704 | 0.2441 | | 0.383 | 26.0 | 60034 | 0.5739 | 0.2450 | | 0.3694 | 27.0 | 62343 | 0.5791 | 0.2437 | | 0.3449 | 28.0 | 64652 | 0.5780 | 0.2451 | | 0.3008 | 29.0 | 66961 | 0.5749 | 0.2418 | | 0.3939 | 30.0 | 69270 | 0.5737 | 0.2424 | | 0.3451 | 31.0 | 71579 | 0.5805 | 0.2402 | | 0.3513 | 32.0 | 73888 | 0.5670 | 0.2379 | | 0.3866 | 33.0 | 76197 | 0.5706 | 0.2389 | | 0.3831 | 34.0 | 78506 | 0.5635 | 0.2401 | | 0.3641 | 35.0 | 80815 | 0.5708 | 0.2405 | | 0.3345 | 36.0 | 83124 | 0.5699 | 0.2405 | | 0.2902 | 37.0 | 85433 | 0.5711 | 0.2373 | | 0.2868 | 38.0 | 87742 | 0.5713 | 0.2389 | | 0.3232 | 39.0 | 90051 | 0.5702 | 0.2392 | | 0.3277 | 40.0 | 92360 | 0.5658 | 0.2393 | | 0.3234 | 41.0 | 94669 | 0.5732 | 0.2412 | | 0.3625 | 42.0 | 96978 | 0.5740 | 0.2396 | | 0.4075 | 43.0 | 99287 | 0.5733 | 0.2389 | | 0.3473 | 44.0 | 101596 | 0.5735 | 0.2394 | | 0.3157 | 45.0 | 103905 | 0.5721 | 0.2391 | | 0.3866 | 46.0 | 106214 | 0.5715 | 0.2381 | | 0.4062 | 47.0 | 108523 | 0.5711 | 0.2380 | | 0.3871 | 48.0 | 110832 | 0.5716 | 0.2380 | | 0.2924 | 49.0 | 113141 | 0.5723 | 0.2374 | | 0.3655 | 50.0 | 115450 | 0.5709 | 0.2379 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
abecode/t5-small-finetuned-xsum
dab35e16d9bfd1b202d003f93a2aaf05280f5100
2022-07-09T18:56:13.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
abecode
null
abecode/t5-small-finetuned-xsum
18
null
transformers
8,899
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.3177 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4783 - Rouge1: 28.3177 - Rouge2: 7.7064 - Rougel: 22.2212 - Rougelsum: 22.2193 - Gen Len: 18.8307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7172 | 1.0 | 12753 | 2.4783 | 28.3177 | 7.7064 | 22.2212 | 22.2193 | 18.8307 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1