modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
NAACL2022/spider-nq-question-encoder
d2e07f122d4ca43d40095ead872a6b9951339594
2022-07-09T19:15:59.000Z
[ "pytorch", "dpr", "feature-extraction", "arxiv:2112.07708", "transformers" ]
feature-extraction
false
NAACL2022
null
NAACL2022/spider-nq-question-encoder
18
4
transformers
8,900
# Spider-NQ: Question Encoder This is the question encoder of the model fine-tuned on Natural Questions (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708). ## Usage We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both. **Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token type ids are all 0-s. An example usage: ```python from transformers import AutoTokenizer, DPRQuestionEncoder tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-nq-question-encoder") model = DPRQuestionEncoder.from_pretrained("NAACL2022/spider-nq-question-encoder") question = "Who is the villain in lord of the rings" input_dict = tokenizer(question, return_tensors="pt") del input_dict["token_type_ids"] outputs = model(**input_dict) ```
aatmasidha/distilbert-base-uncased-newsmodelclassification
e24375800e5aca9acad0a8bb500a576913012d55
2022-07-18T09:04:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aatmasidha
null
aatmasidha/distilbert-base-uncased-newsmodelclassification
18
null
transformers
8,901
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-newsmodelclassification results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9278415074713384 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-newsmodelclassification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2177 - Accuracy: 0.928 - F1: 0.9278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8104 | 1.0 | 250 | 0.3057 | 0.9105 | 0.9084 | | 0.2506 | 2.0 | 500 | 0.2177 | 0.928 | 0.9278 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
TimKond/S-BioLinkBert-MedQuAD
2bb9fcce285771183ba11f0539411e565bdb7403
2022-07-12T17:28:55.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
TimKond
null
TimKond/S-BioLinkBert-MedQuAD
18
null
sentence-transformers
8,902
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # TimKond/S-BioLinkBert-MedQuAD This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('TimKond/S-BioLinkBert-MedQuAD') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TimKond/S-BioLinkBert-MedQuAD') model = AutoModel.from_pretrained('TimKond/S-BioLinkBert-MedQuAD') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=TimKond/S-BioLinkBert-MedQuAD) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 17595 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 7037, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RobertoFont/gpt2-large-bne-milunanoches
5b32767243feb747026e2a9ca998b0619f6dbe36
2022-07-15T17:22:19.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
RobertoFont
null
RobertoFont/gpt2-large-bne-milunanoches
18
null
transformers
8,903
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-large-bne-milunanoches results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-large-bne-milunanoches This model is a fine-tuned version of [PlanTL-GOB-ES/gpt2-large-bne](https://huggingface.co/PlanTL-GOB-ES/gpt2-large-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.97 | 25 | 3.2210 | | No log | 1.97 | 50 | 2.9247 | | No log | 2.97 | 75 | 2.8850 | | No log | 3.97 | 100 | 2.9118 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Johny201/autotrain-article_pred-1142742075
b47ca1e9a50400459a6a328da66176cb164b6a10
2022-07-17T10:31:21.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Johny201/autotrain-data-article_pred", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Johny201
null
Johny201/autotrain-article_pred-1142742075
18
null
transformers
8,904
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Johny201/autotrain-data-article_pred co2_eq_emissions: 3.973071565343572 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1142742075 - CO2 Emissions (in grams): 3.973071565343572 ## Validation Metrics - Loss: 0.6098461151123047 - Accuracy: 0.7227722772277227 - Precision: 0.6805555555555556 - Recall: 0.9074074074074074 - AUC: 0.7480299448384554 - F1: 0.7777777777777779 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Johny201/autotrain-article_pred-1142742075 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Johny201/autotrain-article_pred-1142742075", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Johny201/autotrain-article_pred-1142742075", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
domenicrosati/pegasus-xsum-finetuned-paws
1b13d84a776bb988c995b48e0eedeef8d9b0cef7
2022-07-17T17:20:35.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:paws", "transformers", "paraphrasing", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
domenicrosati
null
domenicrosati/pegasus-xsum-finetuned-paws
18
null
transformers
8,905
--- tags: - paraphrasing - generated_from_trainer datasets: - paws metrics: - rouge model-index: - name: pegasus-xsum-finetuned-paws results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: paws type: paws args: labeled_final metrics: - name: Rouge1 type: rouge value: 92.4371 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-finetuned-paws This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the paws dataset. It achieves the following results on the evaluation set: - Loss: 2.1199 - Rouge1: 92.4371 - Rouge2: 75.4061 - Rougel: 84.1519 - Rougelsum: 84.1958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.1481 | 1.46 | 1000 | 2.0112 | 93.7727 | 73.3021 | 84.2963 | 84.2506 | | 2.0113 | 2.93 | 2000 | 2.0579 | 93.813 | 73.4119 | 84.3674 | 84.2693 | | 2.054 | 4.39 | 3000 | 2.0890 | 93.3926 | 73.3727 | 84.2814 | 84.1649 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
naem1023/electra-phrase-clause-classification-dev
88c782df3662e865ed019c7d62038803f86e2a47
2022-07-25T05:17:52.000Z
[ "pytorch", "electra", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
naem1023
null
naem1023/electra-phrase-clause-classification-dev
18
null
transformers
8,906
--- license: apache-2.0 ---
erikanesse/test-trainer-gbb-4
97170c598ca76bb4a008cea67e7eaa08c02574ec
2022-07-20T20:04:33.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
erikanesse
null
erikanesse/test-trainer-gbb-4
18
1
transformers
8,907
--- tags: - generated_from_trainer model-index: - name: test-trainer-gbb-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer-gbb-4 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Danessely/distilroberta-base-finetuned-dna
9738b6cf8bcc95d56e8ecc0f5e542d436d936028
2022-07-20T11:17:31.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Danessely
null
Danessely/distilroberta-base-finetuned-dna
18
null
transformers
8,908
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-dna results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-dna This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1615 | 1.0 | 8014 | 1.1578 | | 1.1559 | 2.0 | 16028 | 1.1561 | | 1.1503 | 3.0 | 24042 | 1.1475 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DL4NLP-Group4/huawei-noahTinyBERT_General_6L_768_HotpotQA
67cfa2244eddf60dd16ed67bb62668f16fc20f12
2022-07-25T09:51:16.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:HotpotQA", "transformers", "tag1", "tag2", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
DL4NLP-Group4
null
DL4NLP-Group4/huawei-noahTinyBERT_General_6L_768_HotpotQA
18
null
transformers
8,909
--- language: - en tags: - tag1 - tag2 license: apache-2.0 datasets: - HotpotQA metrics: - SQuad --- This model fine-tuned `huawei-noahTinyBERT_General_6L_768` on `HotpotQA`. | EM | F1 | |------------|----------| | 31.552419 | 53.535072 |
Evelyn18/roberta-base-spanish-squades-modelo2
a2ce6eafb9b0624efdfc613e63230c1addfdbb6a
2022-07-22T23:23:22.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-modelo2
18
null
transformers
8,910
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-modelo2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo2 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 1.8825 | | No log | 2.0 | 12 | 1.7787 | | No log | 3.0 | 18 | 2.0521 | | No log | 4.0 | 24 | 2.2991 | | No log | 5.0 | 30 | 2.4029 | | No log | 6.0 | 36 | 2.4358 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
BigSalmon/InformalToFormalLincoln58Paraphrase
e0f66e221429b8dec0707ccef1fa7b94506d8a3a
2022-07-26T23:10:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln58Paraphrase
18
null
transformers
8,911
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln58Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln58Paraphrase") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` make longer ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: embodies compassion. longer: is the personification of compassion. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: work in an office ). translated into journalism speak: ( beaver away in windowless offices / toil in drab cubicles / clock in at faceless workstations / report for duty in cheerless quarters / log hours in colorless confines / clack away on keyboards in offices with cinderblock walls / stare at computer screens in bland partitions / shuffle through mounds of paperwork in humdrum offices ). *** original: easy job ). translated into journalism speak: ( cushy / hassle-free / uninvolved / vanilla / sedentary / straightforward / effortless / lax / plush / frictionless / painless ) ( gig / perch / post / trade / calling / paycheck ). *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` original: big businesses ). translated into journalism speak: corporate ( behemoths / heavyweights / titans / steamrollers / powerhouses / bigwigs / kahunas / brutes / honchos / barons / kingpins / rainmakers / headliners ). *** original: environmental movement ). translated into journalism speak: ( green lobby / conservationist camp / tree-huggers / ecology-obsessed / sustainability crusaders / preservation-crazed / ecological campaigners ). *** original: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ```
simecek/knotted_proteins_demo_model
beb41f53eb7ef8e560fa0f6d047777f1dcf384de
2022-07-27T10:35:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
simecek
null
simecek/knotted_proteins_demo_model
18
null
transformers
8,912
Entry not found
xlm-mlm-enro-1024
7f160633a5699aafb54fe49e89dd7fe52afefc67
2022-07-22T08:08:35.000Z
[ "pytorch", "tf", "xlm", "fill-mask", "multilingual", "en", "ro", "arxiv:1901.07291", "arxiv:1910.09700", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
fill-mask
false
null
null
xlm-mlm-enro-1024
17
null
transformers
8,913
--- language: - multilingual - en - ro license: cc-by-nc-4.0 --- # xlm-mlm-enro-1024 # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 6. [Environmental Impact](#environmental-impact) 7. [Technical Specifications](#technical-specifications) 8. [Citation](#citation) 9. [Model Card Authors](#model-card-authors) 10. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details The XLM model was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample, Alexis Conneau. xlm-mlm-enro-1024 is a transformer pretrained using a masked language modeling (MLM) objective for English-Romanian. This model uses language embeddings to specify the language used at inference. See the [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) for further details. ## Model Description - **Developed by:** Guillaume Lample, Alexis Conneau, see [associated paper](https://arxiv.org/abs/1901.07291) - **Model type:** Language model - **Language(s) (NLP):** English-Romanian - **License:** license: cc-by-nc-4.0 - **Related Models:** [xlm-clm-enfr-1024](https://huggingface.co/xlm-clm-enfr-1024), [xlm-clm-ende-1024](https://huggingface.co/xlm-clm-ende-1024), [xlm-mlm-enfr-1024](https://huggingface.co/xlm-mlm-enfr-1024), [xlm-mlm-ende-1024](https://huggingface.co/xlm-mlm-ende-1024) - **Resources for more information:** - [Associated paper](https://arxiv.org/abs/1901.07291) - [GitHub Repo](https://github.com/facebookresearch/XLM) - [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) # Uses ## Direct Use The model is a language model. The model can be used for masked language modeling. ## Downstream Use To learn more about this task and potential downstream uses, see the Hugging Face [fill mask docs](https://huggingface.co/tasks/fill-mask) and the [Hugging Face Multilingual Models for Inference](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) docs. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. # Training The model developers write: > In all experiments, we use a Transformer architecture with 1024 hidden units, 8 heads, GELU activations (Hendrycks and Gimpel, 2016), a dropout rate of 0.1 and learned positional embeddings. We train our models with the Adam op- timizer (Kingma and Ba, 2014), a linear warm- up (Vaswani et al., 2017) and learning rates varying from 10^−4 to 5.10^−4. See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for links, citations, and further details on the training data and training procedure. The model developers also write that: > If you use these models, you should use the same data preprocessing / BPE codes to preprocess your data. See the associated [GitHub Repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details. # Evaluation ## Testing Data, Factors & Metrics The model developers evaluated the model on the [WMT'16 English-Romanian](https://huggingface.co/datasets/wmt16) dataset using the [BLEU metric](https://huggingface.co/spaces/evaluate-metric/bleu). See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for further details on the testing data, factors and metrics. ## Results For xlm-mlm-enro-1024 results, see Tables 1-3 of the [associated paper](https://arxiv.org/pdf/1901.07291.pdf). # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications The model developers write: > We implement all our models in PyTorch (Paszke et al., 2017), and train them on 64 Volta GPUs for the language modeling tasks, and 8 GPUs for the MT tasks. We use float16 operations to speed up training and to reduce the memory usage of our models. See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for further details. # Citation **BibTeX:** ```bibtex @article{lample2019cross, title={Cross-lingual language model pretraining}, author={Lample, Guillaume and Conneau, Alexis}, journal={arXiv preprint arXiv:1901.07291}, year={2019} } ``` **APA:** - Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291. # Model Card Authors This model card was written by the team at Hugging Face. # How to Get Started with the Model More information needed. This model uses language embeddings to specify the language used at inference. See the [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) for further details.
AI-Nordics/bert-large-swedish-cased
b7925d4c25c2ec8ebc0e73493c18180e5875d34e
2022-02-15T16:52:53.000Z
[ "pytorch", "megatron-bert", "fill-mask", "sv", "transformers", "autotrain_compatible" ]
fill-mask
false
AI-Nordics
null
AI-Nordics/bert-large-swedish-cased
17
5
transformers
8,914
--- language: sv --- # A Swedish Bert model ## Model description This model follows the Bert Large model architecture as implemented in [Megatron-LM framework](https://github.com/NVIDIA/Megatron-LM). It was trained with a batch size of 512 in 600k steps. The model contains following parameters: <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 340M | | \\(n_{layers}\\) | 24 | | \\(n_{heads}\\) | 16 | | \\(n_{ctx}\\) | 1024 | | \\(n_{vocab}\\) | 30592 | ## Training data The model is pretrained on a Swedish text corpus of around 85 GB from a variety of sources as shown below. <figure> | Dataset | Genre | Size(GB)| |----------------------|------|------| | Anföranden | Politics |0.9| |DCEP|Politics|0.6| |DGT|Politics|0.7| |Fass|Medical|0.6| |Författningar|Legal|0.1| |Web data|Misc|45.0| |JRC|Legal|0.4| |Litteraturbanken|Books|0.3O| |SCAR|Misc|28.0| |SOU|Politics|5.3| |Subtitles|Drama|1.3| |Wikipedia|Facts|1.8| ## Intended uses & limitations The raw model can be used for the usual tasks of masked language modeling or next sentence prediction. It is also often fine-tuned on a downstream task to improve its performance in a specific domain/task. <br> <br> ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("AI-Nordics/bert-large-swedish-cased") model = AutoModelForMaskedLM.from_pretrained("AI-Nordics/bert-large-swedish-cased")
ARTeLab/it5-summarization-mlsum
5373dc3b5f7d63a7f338a5c565dd5a18b6376805
2022-05-03T06:06:51.000Z
[ "pytorch", "t5", "text2text-generation", "it", "dataset:ARTeLab/mlsum-it", "transformers", "summarization", "model-index", "autotrain_compatible" ]
summarization
false
ARTeLab
null
ARTeLab/it5-summarization-mlsum
17
null
transformers
8,915
--- tags: - summarization language: - it metrics: - rouge model-index: - name: summarization_mlsum results: [] datasets: - ARTeLab/mlsum-it --- # summarization_mlsum This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on MLSum-it for Abstractive Summarization. It achieves the following results: - Loss: 2.0190 - Rouge1: 19.3739 - Rouge2: 5.9753 - Rougel: 16.691 - Rougelsum: 16.7862 - Gen Len: 32.5268 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-mlsum") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-mlsum") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
AkshatSurolia/ConvNeXt-FaceMask-Finetuned
5127ba7a1dc3ca50b44c2bf75326818fa1bc8d37
2022-02-18T13:51:14.000Z
[ "pytorch", "convnext", "image-classification", "dataset:Face-Mask18K", "transformers", "license:apache-2.0" ]
image-classification
false
AkshatSurolia
null
AkshatSurolia/ConvNeXt-FaceMask-Finetuned
17
null
transformers
8,916
--- license: apache-2.0 tags: - image-classification datasets: - Face-Mask18K --- # ConvNeXt for Face Mask Detection ConvNeXt model pre-trained and fine-tuned on Self Currated Custom Face-Mask18K Dataset (18k images, 2 classes) at resolution 224x224. It was introduced in the paper A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao et al. ## Training Metrics epoch = 3.54 total_flos = 1195651761GF train_loss = 0.0079 train_runtime = 1:08:20.25 train_samples_per_second = 14.075 train_steps_per_second = 0.22 --- ## Evaluation Metrics epoch = 3.54 eval_accuracy = 0.9961 eval_loss = 0.0151 eval_runtime = 0:01:23.47 eval_samples_per_second = 43.079 eval_steps_per_second = 5.391
Aleksandar/bert-srb-ner
1774bdf93f0afd493632d7ebd5d3dc4e3e3c31c6
2021-09-07T21:20:22.000Z
[ "pytorch", "bert", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
Aleksandar
null
Aleksandar/bert-srb-ner
17
null
transformers
8,917
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model_index: - name: bert-srb-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: sr metric: name: Accuracy type: accuracy value: 0.9546696220907545 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-srb-ner This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3561 - Precision: 0.8909 - Recall: 0.9082 - F1: 0.8995 - Accuracy: 0.9547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3907 | 1.0 | 625 | 0.2316 | 0.8255 | 0.8314 | 0.8285 | 0.9259 | | 0.2091 | 2.0 | 1250 | 0.1920 | 0.8598 | 0.8731 | 0.8664 | 0.9420 | | 0.1562 | 3.0 | 1875 | 0.1833 | 0.8608 | 0.8820 | 0.8713 | 0.9441 | | 0.0919 | 4.0 | 2500 | 0.1985 | 0.8712 | 0.8886 | 0.8798 | 0.9476 | | 0.0625 | 5.0 | 3125 | 0.2195 | 0.8762 | 0.8923 | 0.8842 | 0.9485 | | 0.0545 | 6.0 | 3750 | 0.2320 | 0.8706 | 0.9004 | 0.8852 | 0.9495 | | 0.0403 | 7.0 | 4375 | 0.2459 | 0.8817 | 0.8957 | 0.8887 | 0.9505 | | 0.0269 | 8.0 | 5000 | 0.2603 | 0.8813 | 0.9021 | 0.8916 | 0.9516 | | 0.0193 | 9.0 | 5625 | 0.2916 | 0.8812 | 0.8949 | 0.8880 | 0.9500 | | 0.0162 | 10.0 | 6250 | 0.2938 | 0.8814 | 0.9025 | 0.8918 | 0.9520 | | 0.0134 | 11.0 | 6875 | 0.3330 | 0.8809 | 0.8961 | 0.8885 | 0.9497 | | 0.0076 | 12.0 | 7500 | 0.3141 | 0.8840 | 0.9025 | 0.8932 | 0.9524 | | 0.0069 | 13.0 | 8125 | 0.3292 | 0.8819 | 0.9065 | 0.8940 | 0.9535 | | 0.0053 | 14.0 | 8750 | 0.3454 | 0.8844 | 0.9018 | 0.8930 | 0.9523 | | 0.0038 | 15.0 | 9375 | 0.3519 | 0.8912 | 0.9061 | 0.8986 | 0.9539 | | 0.0034 | 16.0 | 10000 | 0.3437 | 0.8894 | 0.9038 | 0.8965 | 0.9539 | | 0.0024 | 17.0 | 10625 | 0.3518 | 0.8896 | 0.9072 | 0.8983 | 0.9543 | | 0.0018 | 18.0 | 11250 | 0.3572 | 0.8877 | 0.9072 | 0.8973 | 0.9543 | | 0.0015 | 19.0 | 11875 | 0.3554 | 0.8910 | 0.9081 | 0.8994 | 0.9549 | | 0.0011 | 20.0 | 12500 | 0.3561 | 0.8909 | 0.9082 | 0.8995 | 0.9547 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Aries/T5_question_answering
03a6a5b19f0b7b776ae4c7b3dac91464a8f59c71
2021-06-23T02:02:37.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aries
null
Aries/T5_question_answering
17
null
transformers
8,918
Entry not found
BSC-TeMU/roberta-base-bne-sqac
f86245feb25c0ed586c0ca0bbcd9d35e0e83f7b7
2021-10-21T10:30:10.000Z
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
BSC-TeMU
null
BSC-TeMU/roberta-base-bne-sqac
17
3
transformers
8,919
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "qa" - "question answering" datasets: - "BSC-TeMU/SQAC" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-sqac # Spanish RoBERTa-base trained on BNE finetuned for Spanish Question Answering Corpus (SQAC) dataset. RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the [SQAC corpus](https://huggingface.co/datasets/BSC-TeMU/SQAC). ## Evaluation and results F1 Score: 0.7923 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-ner
1e8669667dc99b989defa2bb336c866dff546528
2021-10-17T11:14:08.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-ca-ner
17
null
transformers
8,920
--- language: - ar license: apache-2.0 widget: - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع" --- # CAMeLBERT-CA NER Model ## Model description **CAMeLBERT-CA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Classical Arabic (CA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-ca-ner') >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-ner') >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع") [{'word': 'أبوظبي', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'الإمارات', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'العربية', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'المتحدة', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CenIA/albert-base-spanish-finetuned-mldoc
60c591701e9640db2aa2d4b3cb63cf59a0c81e0f
2022-01-10T10:15:50.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-base-spanish-finetuned-mldoc
17
null
transformers
8,921
Entry not found
CenIA/bert-base-spanish-wwm-uncased-finetuned-ner
82c7146b2bba0bc24f9e8284abc9bd45999f5735
2021-12-28T21:18:27.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-ner
17
null
transformers
8,922
Entry not found
CleveGreen/JobClassifier
a00e957489ddc0ca9a22d11d5dd9b7c4c92a7bd7
2021-08-03T18:10:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/JobClassifier
17
null
transformers
8,923
Entry not found
Davlan/xlm-roberta-base-finetuned-luo
867d5ab268a019e58091c7e4aada56b95cc045ab
2021-06-30T21:21:39.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "luo", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-luo
17
null
transformers
8,924
Hugging Face's logo --- language: luo datasets: --- # xlm-roberta-base-finetuned-luo ## Model description **xlm-roberta-base-finetuned-luo** is a **Luo RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Luo language texts. It provides **better performance** than the XLM-RoBERTa on named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Luo corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-luo') >>> unmasker("Obila ma Changamwe <mask> pedho achije angwen mag njore") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | luo_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 74.86 | 75.27 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/xlm-roberta-base-finetuned-wolof
b1a3292ca97ed8112b28cc7107d761e1e3783fa1
2021-06-30T15:56:31.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "wo", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-wolof
17
null
transformers
8,925
Hugging Face's logo --- language: wo datasets: --- # xlm-roberta-base-finetuned-wolof ## Model description **xlm-roberta-base-finetuned-luganda** is a **Wolof RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Wolof language texts. It provides **better performance** than the XLM-RoBERTa on named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Wolof corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-wolof') >>> unmasker("Màkki Sàll feeñal na ay xalaatam ci mbir yu am solo yu soxal <mask> ak Afrik.") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Bible OT](http://biblewolof.com/) + [OPUS](https://opus.nlpl.eu/) + News Corpora (Lu Defu Waxu, Saabal, and Wolof Online) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | wo_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 63.86 | 68.31 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/xlm-roberta-base-finetuned-yoruba
6d9e5182a87d1a4e8b2a3feb66fc7c6b3c665b45
2021-05-28T13:53:56.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "yo", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-yoruba
17
null
transformers
8,926
Hugging Face's logo --- language: yo datasets: --- # xlm-roberta-base-finetuned-yoruba ## Model description **xlm-roberta-base-finetuned-yoruba** is a **Yoruba RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Yorùbá language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Yorùbá corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-yoruba') >>> unmasker("Arẹmọ Phillip to jẹ ọkọ <mask> Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun") [{'sequence': '<s> Arẹmọ Phillip to jẹ ọkọ Queen Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun</s>', 'score': 0.24844281375408173, 'token': 44109, 'token_str': '▁Queen'}, {'sequence': '<s> Arẹmọ Phillip to jẹ ọkọ ile Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun</s>', 'score': 0.1665010154247284, 'token': 1350, 'token_str': '▁ile'}, {'sequence': '<s> Arẹmọ Phillip to jẹ ọkọ ti Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun</s>', 'score': 0.07604238390922546, 'token': 1053, 'token_str': '▁ti'}, {'sequence': '<s> Arẹmọ Phillip to jẹ ọkọ baba Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun</s>', 'score': 0.06353845447301865, 'token': 12878, 'token_str': '▁baba'}, {'sequence': '<s> Arẹmọ Phillip to jẹ ọkọ Oba Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun</s>', 'score': 0.03836742788553238, 'token': 82879, 'token_str': '▁Oba'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on Bible, JW300, [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt), [Yoruba Embedding corpus](https://huggingface.co/datasets/yoruba_text_c3) and [CC-Aligned](https://opus.nlpl.eu/), Wikipedia, news corpora (BBC Yoruba, VON Yoruba, Asejere, Alaroye), and other small datasets curated from friends. ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | yo_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 77.58 | 83.66 [BBC Yorùbá Textclass](https://huggingface.co/datasets/yoruba_bbc_topics) | | ### BibTeX entry and citation info By David Adelani ``` ```
EhsanAghazadeh/xlnet-large-cased-CoLA_A
48a6ccfe1c747c145e5f74d93f4c85bd35bf43c4
2021-04-19T10:05:16.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/xlnet-large-cased-CoLA_A
17
null
transformers
8,927
Entry not found
Emmanuel/bert-finetuned-ner
a6e1e133d710c8cbd1c251326c220fd6a366098f
2021-12-01T11:05:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Emmanuel
null
Emmanuel/bert-finetuned-ner
17
null
transformers
8,928
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9317394888705688 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9412842508536686 - name: Accuracy type: accuracy value: 0.9865779713898863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Precision: 0.9317 - Recall: 0.9510 - F1: 0.9413 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0872 | 1.0 | 1756 | 0.0660 | 0.9152 | 0.9350 | 0.9250 | 0.9827 | | 0.0386 | 2.0 | 3512 | 0.0579 | 0.9374 | 0.9498 | 0.9436 | 0.9864 | | 0.0225 | 3.0 | 5268 | 0.0603 | 0.9317 | 0.9510 | 0.9413 | 0.9866 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Geotrend/distilbert-base-25lang-cased
fda800c1a39bf7e8f2498f1646fa60dd0e40eb6c
2021-07-26T16:11:17.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-25lang-cased
17
1
transformers
8,929
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # distilbert-base-25lang-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. Handled languages: en, fr, es, de, zh, ar, ru, vi, el, bg, th, tr, hi, ur, sw, nl, uk, ro, pt, it, lt, no, pl, da and ja. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-25lang-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-25lang-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-ja-cased
a0d6bc69bf1e1d710a37f2beba947fee997bd530
2021-07-29T17:01:48.000Z
[ "pytorch", "distilbert", "fill-mask", "ja", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-ja-cased
17
null
transformers
8,930
--- language: ja datasets: wikipedia license: apache-2.0 --- # distilbert-base-ja-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-ja-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-ja-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Helsinki-NLP/opus-mt-ccs-en
7b9239b35748e55442b0f85d89614a1156c371b1
2021-01-18T07:53:32.000Z
[ "pytorch", "marian", "text2text-generation", "ka", "ccs", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ccs-en
17
null
transformers
8,931
--- language: - ka - ccs - en tags: - translation license: apache-2.0 --- ### ccs-eng * source group: South Caucasian languages * target group: English * OPUS readme: [ccs-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ccs-eng/README.md) * model: transformer * source language(s): kat * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kat-eng.kat.eng | 18.0 | 0.357 | | Tatoeba-test.multi.eng | 18.0 | 0.357 | ### System Info: - hf_name: ccs-eng - source_languages: ccs - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ccs-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ka', 'ccs', 'en'] - src_constituents: {'kat'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ccs-eng/opus2m-2020-07-31.test.txt - src_alpha3: ccs - tgt_alpha3: eng - short_pair: ccs-en - chrF2_score: 0.35700000000000004 - bleu: 18.0 - brevity_penalty: 1.0 - ref_len: 5992.0 - src_name: South Caucasian languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: ccs - tgt_alpha2: en - prefer_old: False - long_pair: ccs-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-crs-en
7ee4bb979dd28886b7d98f890298c4548e84a847
2021-09-09T21:28:59.000Z
[ "pytorch", "marian", "text2text-generation", "crs", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-crs-en
17
null
transformers
8,932
--- tags: - translation license: apache-2.0 --- ### opus-mt-crs-en * source languages: crs * target languages: en * OPUS readme: [crs-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/crs-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/crs-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.crs.en | 42.9 | 0.589 |
Helsinki-NLP/opus-mt-da-es
59b50e55d16babe69b0facb1fb1c4dfb175328fe
2021-09-09T21:29:56.000Z
[ "pytorch", "marian", "text2text-generation", "da", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-da-es
17
null
transformers
8,933
--- tags: - translation license: apache-2.0 --- ### opus-mt-da-es * source languages: da * target languages: es * OPUS readme: [da-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.da.es | 53.7 | 0.715 |
Helsinki-NLP/opus-mt-de-hu
4b30440320ea86d33b6927fe70c46e20f671da86
2021-09-09T21:31:50.000Z
[ "pytorch", "marian", "text2text-generation", "de", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-hu
17
null
transformers
8,934
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-hu * source languages: de * target languages: hu * OPUS readme: [de-hu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-hu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-hu/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-hu/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-hu/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.de.hu | 34.3 | 0.588 |
Helsinki-NLP/opus-mt-el-sv
e8894cf2f5713e1cc68fe7710636ecc4b4dc99d7
2021-09-09T21:33:54.000Z
[ "pytorch", "marian", "text2text-generation", "el", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-el-sv
17
null
transformers
8,935
--- tags: - translation license: apache-2.0 --- ### opus-mt-el-sv * source languages: el * target languages: sv * OPUS readme: [el-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/el-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/el-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/el-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/el-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | GlobalVoices.el.sv | 23.6 | 0.498 |
Helsinki-NLP/opus-mt-en-ln
95c6ade5cb0569f7f73a98a8b1dbb4955ddd3107
2021-09-09T21:36:55.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ln", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ln
17
null
transformers
8,936
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ln * source languages: en * target languages: ln * OPUS readme: [en-ln](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ln/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ln/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ln/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ln/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ln | 36.7 | 0.588 |
Helsinki-NLP/opus-mt-en-ng
02eba1d2ddf774aec3558ae031c3795d4ded61c8
2021-09-09T21:37:58.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ng", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ng
17
null
transformers
8,937
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ng * source languages: en * target languages: ng * OPUS readme: [en-ng](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ng/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ng/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ng/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ng/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ng | 24.8 | 0.496 |
Helsinki-NLP/opus-mt-eo-es
a79df1be257257e0247b626143f263d7a6b28ab8
2021-09-09T21:40:57.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-es
17
null
transformers
8,938
--- tags: - translation license: apache-2.0 --- ### opus-mt-eo-es * source languages: eo * target languages: es * OPUS readme: [eo-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/eo-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/eo-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/eo-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/eo-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.eo.es | 44.2 | 0.631 |
Helsinki-NLP/opus-mt-es-ber
f7a613f7b3b150e1edeeaebcd692388cbe55dc74
2021-09-09T21:41:19.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ber", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ber
17
null
transformers
8,939
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ber * source languages: es * target languages: ber * OPUS readme: [es-ber](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ber/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ber/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ber/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ber/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.ber | 21.8 | 0.444 |
Helsinki-NLP/opus-mt-es-ro
6f05b59d19efade88c6b62c383d542ddadda6d5c
2021-09-09T21:44:23.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ro", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ro
17
null
transformers
8,940
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ro * source languages: es * target languages: ro * OPUS readme: [es-ro](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ro/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ro/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ro/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ro/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.ro | 45.7 | 0.666 |
Helsinki-NLP/opus-mt-eu-ru
5e5ec0f9c48f49314b9c83d0f6b338d4efa81fef
2021-01-18T08:31:17.000Z
[ "pytorch", "marian", "text2text-generation", "eu", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eu-ru
17
null
transformers
8,941
--- language: - eu - ru tags: - translation license: apache-2.0 --- ### eus-rus * source group: Basque * target group: Russian * OPUS readme: [eus-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eus-rus/README.md) * model: transformer-align * source language(s): eus * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eus-rus/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eus-rus/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eus-rus/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eus.rus | 31.3 | 0.502 | ### System Info: - hf_name: eus-rus - source_languages: eus - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eus-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eu', 'ru'] - src_constituents: {'eus'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eus-rus/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eus-rus/opus-2020-06-16.test.txt - src_alpha3: eus - tgt_alpha3: rus - short_pair: eu-ru - chrF2_score: 0.502 - bleu: 31.3 - brevity_penalty: 0.9420000000000001 - ref_len: 2428.0 - src_name: Basque - tgt_name: Russian - train_date: 2020-06-16 - src_alpha2: eu - tgt_alpha2: ru - prefer_old: False - long_pair: eus-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI
56e0e8ec89bd4161facd110b562332a309596562
2021-09-09T21:52:33.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "nb", "no", "nn", "ru", "sv", "en", "sami", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI
17
null
transformers
8,942
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi_nb_no_nn_ru_sv_en-SAMI * source languages: fi,nb,no,nn,ru,sv,en * target languages: se,sma,smj,smn,sms * OPUS readme: [fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms/README.md) * dataset: opus+giella * model: transformer-align * pre-processing: normalization + SentencePiece * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus+giella-2020-04-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms/opus+giella-2020-04-18.zip) * test set translations: [opus+giella-2020-04-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms/opus+giella-2020-04-18.test.txt) * test set scores: [opus+giella-2020-04-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms/opus+giella-2020-04-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | giella.fi.sms | 58.4 | 0.776 |
Helsinki-NLP/opus-mt-kwy-en
b369959cbe8dfdb1dceab0263ec2d7d1243deeb1
2021-09-10T13:54:28.000Z
[ "pytorch", "marian", "text2text-generation", "kwy", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-kwy-en
17
null
transformers
8,943
--- tags: - translation license: apache-2.0 --- ### opus-mt-kwy-en * source languages: kwy * target languages: en * OPUS readme: [kwy-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kwy-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/kwy-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kwy-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kwy-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kwy.en | 31.6 | 0.466 |
Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa
a28144143d1d5e600ba792309d0ca0befa49cc41
2021-12-05T13:40:34.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "en", "arxiv:2111.05754", "transformers", "autotrain_compatible" ]
fill-mask
false
Intel
null
Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa
17
null
transformers
8,944
--- language: en --- # 85% Sparse DistilBERT-Base (uncased) Prune OFA This model is a result from our paper [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754) presented in ENLSP NeurIPS Workshop 2021. For further details on the model and its result, see our paper and our implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
Kamel/t5-darija-summarization
a37681e9e9616578ea07b11011686e7c290755ed
2022-05-24T08:40:29.000Z
[ "pytorch", "t5", "text2text-generation", "ar", "transformers", "autotrain_compatible" ]
text2text-generation
false
Kamel
null
Kamel/t5-darija-summarization
17
null
transformers
8,945
--- language: ar widget: - text: " كشف الملياردير الميريكاني ومؤسس شركة “مايكروسوفت”، بيل كَيتس، بللي ماعندوش حتى فلوس رقمية، وكيفضل يستثمر فلوسو فالأشياء اللي عندها قيمة، حسب كلامو. جريدة “بريطانية قالت أن تصريحات كَيتس على العملات المشفرة كانت بمناسبة حدث “سولني على أي حاجة”، اللي تنظم على موقع “ريديت” الشهير.بيل كَيتس اللي واصلة لافورتين ديالو ل116 مليار دولار، وهو رابع أغنى رجل فالعالم، جات تصريحاتو بالتزامن مع خسارة العملات الرقمية لتريليون دولار من قيمتها فعام 2022، وضاعت فحوالي 200 مليار دولار من قيمتها ف24 ساعة فقط فوقت سابق من هذا الشهر." ---
KoichiYasuoka/bert-base-japanese-unidic-luw-upos
b9ed3ff80dec8b8890849f75b001525385081eda
2022-05-23T16:18:10.000Z
[ "pytorch", "bert", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/bert-base-japanese-unidic-luw-upos
17
null
transformers
8,946
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # bert-base-japanese-unidic-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` [fugashi](https://pypi.org/project/fugashi), [unidic-lite](https://pypi.org/project/unidic-lite) and [pytokenizations](https://pypi.org/project/pytokenizations) are required. ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
Langame/convai-gpt-j-6B-8bit
3bb74579a62111484f8da22fb2c9aac80e10b586
2021-12-28T20:20:49.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
Langame
null
Langame/convai-gpt-j-6B-8bit
17
1
transformers
8,947
Entry not found
LiqiangXiao/summarization
895bc8522abd1a957220caca3f6812026bce7fd7
2022-01-20T05:01:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
LiqiangXiao
null
LiqiangXiao/summarization
17
4
transformers
8,948
## Copy-or-Rewrite This repository contains the code of paper "Copy or Rewrite: Hybrid Summarization with Hierarchical Reinforcement Learning". A model built for human-like summarization task and trained with Actor-critic Reinforcement Learning. This work significantly improved the ROUGE scores on CNN/DM dataset by 1.7 and augmented the informativity and readability of generated summaries. It implemented a more human-like workflow for summarization task solving the information loss problem. It contains a novel hierarchical transformer module to represent article in both word and sentence level, a new reinforcement learning method that can effectively train two-step model. ## Model description Copy-or-Rewrite is a model to improve the workflow of summarization models. Existing methods that adopt an extract-then-abstract strategy have achieved impressive results, yet they suffer from the information loss in the abstraction step because they compress all the selected sentences without distinguish. Especially when the whole sentence is summary-worthy, salient content would be lost by compression. To address this problem, we pro- pose HYSUM, a hybrid framework for summarization that can flexibly switch between copying sentence and rewriting sentence according to the degree of redundancy. In this way, our approach can effectively combine the advantages of two branches of summarization, juggling informativity and conciseness. Moreover, we based on Hierarchical Reinforcement Learning, propose an end-to-end reinforcing method to bridge together the extraction module and rewriting module, which can enhance the cooperation between them. Automatic evaluation shows that our approach significantly outperforms the state-of-the-arts on the CNN/DailyMail corpus. Human evaluation also demonstrates that our generated summaries are more informative and concise than popular models. ## Intended uses & limitations With this repository, you can generate informative and concise summaries for input articles. For other tasks, you may used the hierarchical representation module to effectively represent the article. The parameters of the model is pre-trained on CNN/DM dataset. You may need to fine-tune it other your own dataset when needed. ## How to use from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("LiqiangXiao/summarization") model = AutoModelForSeq2SeqLM.from_pretrained("LiqiangXiao/summarization") ## Training data This model used the non-anonymous version of CNN/Daily Mail dataset. ## BibTeX entry and citation info @inproceedings{DBLP:conf/aaai/XiaoWHJ20, author = {Liqiang Xiao and Lu Wang and Hao He and Yaohui Jin}, title = {Copy or Rewrite: Hybrid Summarization with Hierarchical Reinforcement Learning}, booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI} 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA, February 7-12, 2020}, pages = {9306--9313}, publisher = {{AAAI} Press}, year = {2020}, url = {https://aaai.org/ojs/index.php/AAAI/article/view/6470}, timestamp = {Tue, 02 Feb 2021 08:00:14 +0100}, biburl = {https://dblp.org/rec/conf/aaai/XiaoWHJ20.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
Maelstrom77/roberta-large-mnli
97ce0942bc885c801e7130270360da8a3df4e3ba
2021-10-04T14:15:23.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Maelstrom77
null
Maelstrom77/roberta-large-mnli
17
null
transformers
8,949
Entry not found
Magolor/deepstruct
a9d6ab6a2dc7d55530a047055a2c831ff00ad7bb
2022-07-07T07:38:26.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Magolor
null
Magolor/deepstruct
17
null
transformers
8,950
Entry not found
NDugar/deberta-v2-xlarge-mnli
9eb624deda78b9b426bb8ebebe6d22ea3ddfb520
2021-12-17T17:05:08.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "transformers", "deberta-v3", "deberta-v2`", "deberta-mnli", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
NDugar
null
NDugar/deberta-v2-xlarge-mnli
17
null
transformers
8,951
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- I tried to train v3 xl to mnli using my own training code and got this result.
Norod78/hebrew_poetry-gpt_neo-tiny
e54c4c90fb550e9cc8c1cc1b35f4ebefcf4fefa7
2022-07-04T07:26:05.000Z
[ "pytorch", "gpt_neo", "text-generation", "he", "transformers", "license:mit" ]
text-generation
false
Norod78
null
Norod78/hebrew_poetry-gpt_neo-tiny
17
null
transformers
8,952
--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "שתי רכבות דוהרות בתוך עיני" - text: "הים כחול ואני" - text: "שם היצירה:" - text: "רציתי" license: mit --- # hebrew_poetry-gpt_neo-tiny Hebrew poetry text generation model, fined tuned upon [hebrew-gpt_neo-tiny](https://huggingface.co/Norod78/hebrew-gpt_neo-tiny) which was trained using [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). Each was trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program. ## Datasets 1. Text from [New stage](http://stage.co.il/) 2. A dataset containing Hebrew lyrics
Palak/xlm-roberta-large_squad
63239100dd057b6e558c206136645a36f3e5a485
2021-12-25T20:19:12.000Z
[ "pytorch", "xlm-roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Palak
null
Palak/xlm-roberta-large_squad
17
null
transformers
8,953
--- tags: - generated_from_trainer datasets: - squad model-index: - name: xlm-roberta-base_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eval This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad dataset. - eval_exact_match": 85.96026490066225 - "eval_f1": 92.25000664341768 - "eval_samples": 10918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.67 ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
SEBIS/legal_t5_small_summ_multitask_en
2a5c14ca327fe3fc93ed077e69afd90157c7b04d
2021-06-23T11:25:29.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_multitask_en
17
null
transformers
8,954
Entry not found
Sid51/ChanBot
77c32d28ac08838896cc360cdf7df03880d90735
2021-06-12T17:02:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Sid51
null
Sid51/ChanBot
17
null
transformers
8,955
Entry not found
Tereveni-AI/gpt2-124M-uk-fiction
50a873cc91bf7ebb4f864884b27de35ac96b2c96
2021-05-21T11:16:43.000Z
[ "pytorch", "jax", "gpt2", "uk", "transformers" ]
null
false
Tereveni-AI
null
Tereveni-AI/gpt2-124M-uk-fiction
17
2
transformers
8,956
--- language: uk --- Note: **default code snippet above won't work** because we are using `AlbertTokenizer` with `GPT2LMHeadModel`, see [issue](https://github.com/huggingface/transformers/issues/4285). ## GPT2 124M Trained on Ukranian Fiction ### Training details Model was trained on corpus of 4040 fiction books, 2.77 GiB in total. Evaluation on [brown-uk](https://github.com/brown-uk/corpus) gives perplexity of 50.16. ### Example usage: ```python from transformers import AlbertTokenizer, GPT2LMHeadModel tokenizer = AlbertTokenizer.from_pretrained("Tereveni-AI/gpt2-124M-uk-fiction") model = GPT2LMHeadModel.from_pretrained("Tereveni-AI/gpt2-124M-uk-fiction") input_ids = tokenizer.encode("Но зла Юнона, суча дочка,", add_special_tokens=False, return_tensors='pt') outputs = model.generate( input_ids, do_sample=True, num_return_sequences=3, max_length=50 ) for i, out in enumerate(outputs): print("{}: {}".format(i, tokenizer.decode(out))) ``` Prints something like this: ```bash 0: Но зла Юнона, суча дочка, яка затьмарила всі її таємниці: І хто з'їсть її душу, той помре». І, не дочекавшись гніву богів, посунула в пітьму, щоб не бачити перед собою. Але, за 1: Но зла Юнона, суча дочка, і довела мене до божевілля. Але він не знав нічого. Після того як я його побачив, мені стало зле. Я втратив рівновагу. Але в мене не було часу на роздуми. Я вже втратив надію 2: Но зла Юнона, суча дочка, не нарікала нам! — раптом вигукнула Юнона. — Це ти, старий йолопе! — мовила вона, не перестаючи сміятись. — Хіба ти не знаєш, що мені подобається ходити з тобою? ```
Yv/bert-finetuned-ner
7317243761a7afb2022d2258a0da636638d3f993
2021-12-23T13:08:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Yv
null
Yv/bert-finetuned-ner
17
null
transformers
8,957
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9369817578772802 - name: Recall type: recall value: 0.9508582968697409 - name: F1 type: f1 value: 0.9438690277313732 - name: Accuracy type: accuracy value: 0.9868575969859305 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - Precision: 0.9370 - Recall: 0.9509 - F1: 0.9439 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 1756 | 0.0633 | 0.9197 | 0.9362 | 0.9279 | 0.9833 | | 0.0386 | 2.0 | 3512 | 0.0572 | 0.9351 | 0.9483 | 0.9417 | 0.9866 | | 0.0214 | 3.0 | 5268 | 0.0598 | 0.9370 | 0.9509 | 0.9439 | 0.9869 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
airKlizz/xlm-roberta-base-germeval21-toxic-with-data-augmentation
e70c08c3fdcefc97a19dd2d3683a4907295835a3
2021-07-12T14:44:31.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
airKlizz
null
airKlizz/xlm-roberta-base-germeval21-toxic-with-data-augmentation
17
null
transformers
8,958
Entry not found
alireza7/TRANSFORMER-persian-base-PN-summary
26cb3aa982743edc58b5b6649a7084321fcc3aa2
2021-09-29T19:26:30.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/TRANSFORMER-persian-base-PN-summary
17
null
transformers
8,959
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
amazon-sagemaker-community/xlm-roberta-en-ru-emoji-v2
68d021702db7486df720c1fa321611456f5105ad
2021-11-19T10:36:39.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
amazon-sagemaker-community
null
amazon-sagemaker-community/xlm-roberta-en-ru-emoji-v2
17
null
transformers
8,960
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-en-ru-emoji-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-en-ru-emoji-v2 This model is a fine-tuned version of [DeepPavlov/xlm-roberta-large-en-ru](https://huggingface.co/DeepPavlov/xlm-roberta-large-en-ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3356 - Accuracy: 0.3102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 200 | 3.0592 | 0.1204 | | No log | 0.81 | 400 | 2.5356 | 0.2480 | | 2.6294 | 1.21 | 600 | 2.4570 | 0.2569 | | 2.6294 | 1.62 | 800 | 2.3332 | 0.2832 | | 1.9286 | 2.02 | 1000 | 2.3354 | 0.2803 | | 1.9286 | 2.42 | 1200 | 2.3610 | 0.2881 | | 1.9286 | 2.83 | 1400 | 2.3004 | 0.2973 | | 1.7312 | 3.23 | 1600 | 2.3619 | 0.3026 | | 1.7312 | 3.64 | 1800 | 2.3596 | 0.3032 | | 1.5816 | 4.04 | 2000 | 2.2972 | 0.3072 | | 1.5816 | 4.44 | 2200 | 2.3077 | 0.3073 | | 1.5816 | 4.85 | 2400 | 2.3356 | 0.3102 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
tner/xlm-roberta-large-fin
3f890642c00d19fa8a5acd7d3d5217f17705e80d
2021-02-13T00:04:30.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-fin
17
null
transformers
8,961
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-fin") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-fin") ```
bettertextapp/m2m_1.2B_paraphrase_en_de_v1
b6a8b5bb37161fe24e583fc707492d7c75f31a17
2022-02-14T22:18:29.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
bettertextapp
null
bettertextapp/m2m_1.2B_paraphrase_en_de_v1
17
null
transformers
8,962
Entry not found
bhavikardeshna/xlm-roberta-base-chinese
15724e33738f0cee130f28b9fdd4f374280afcbf
2021-12-21T11:40:50.000Z
[ "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/xlm-roberta-base-chinese
17
null
transformers
8,963
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bigwiz83/sapbert-from-pubmedbert-squad2
5a14b59be173f2073caae87ddd7a1e5a3ee3053f
2021-07-02T12:05:14.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad_v2", "transformers", "autotrain_compatible" ]
question-answering
false
bigwiz83
null
bigwiz83/sapbert-from-pubmedbert-squad2
17
null
transformers
8,964
--- datasets: - squad_v2 model_index: - name: sapbert-from-pubmedbert-squad2 results: - task: name: Question Answering type: question-answering dataset: name: squad_v2 type: squad_v2 args: squad_v2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sapbert-from-pubmedbert-squad2 This model is a fine-tuned version of [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.035 | 1.0 | 8298 | 0.9545 | | 0.8053 | 2.0 | 16596 | 0.9988 | | 0.5949 | 3.0 | 24894 | 0.9909 | | 0.4878 | 4.0 | 33192 | 1.1428 | | 0.3932 | 5.0 | 41490 | 1.2582 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.8.0 - Datasets 1.4.1 - Tokenizers 0.10.2
cahya/wav2vec2-base-turkish
e9a97a269d58efb5393becfb7f55a484e0070e80
2022-03-23T18:26:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-base-turkish
17
4
transformers
8,965
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2 Base Turkish by Cahya results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 9.437 - name: Test CER type: cer value: 3.325 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 8.147 - name: Test CER type: cer value: 2.802 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 28.011 - name: Test CER type: cer value: 10.66 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 33.62 --- # This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: | | Dataset | WER | CER | |---|-------------------------------|---------|----------| | 1 | Common Voice 6.1 | 9.437 | 3.325 | | 2 | Common Voice 7.0 | 8.147 | 2.802 | | 3 | Common Voice 8.0 | 8.335 | 2.336 | | 4 | Speech Recognition Community | 28.011 | 10.66 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) 'train', 'validation' and 'other' split were used for training. - [Media Speech](https://www.openslr.org/108/) - [Magic Hub](https://magichub.com/) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 6 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1224 | 3.45 | 500 | 0.1641 | 0.1396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
chompk/wav2vec2-large-xlsr-thai-tokenized
34e0e546655dc18f64ba77bb6fe9734099179432
2021-07-06T00:36:51.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "th", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning", "license:apache-2.0" ]
automatic-speech-recognition
false
chompk
null
chompk/wav2vec2-large-xlsr-thai-tokenized
17
1
transformers
8,966
--- language: th datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning license: apache-2.0 --- # Wav2Vec2-Large-XLSR-53 in Thai Language (Train with deepcut tokenizer)
clue/xlnet_chinese_large
f3b3caf82b5f00cfcd9a8c0aeb410045a1ffb3d4
2020-12-11T21:36:08.000Z
[ "pytorch", "xlnet", "zh", "transformers" ]
null
false
clue
null
clue/xlnet_chinese_large
17
null
transformers
8,967
--- language: zh --- ## xlnet_chinese_large ### Overview **Language model:** xlnet-large **Model size:** 1.3G **Language:** Chinese **Training data:** [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020) **Eval data:** [CLUE dataset](https://github.com/CLUEbenchmark/CLUE) ### Results For results on downstream tasks like text classification, please refer to [this repository](https://github.com/CLUEbenchmark/CLUE). ### Usage ``` import torch from transformers import XLNetTokenizer,XLNetModel tokenizer = XLNetTokenizer.from_pretrained("clue/xlnet_chinese_large") xlnet = XLNetModel.from_pretrained("clue/xlnet_chinese_large") ``` ### About CLUE benchmark Organization of Language Understanding Evaluation benchmark for Chinese: tasks & datasets, baselines, pre-trained Chinese models, corpus and leaderboard. Github: https://github.com/CLUEbenchmark Website: https://www.cluebenchmarks.com/
cointegrated/rut5-base-review
1d402e7b4c0e9f35f5339066031110d64f789c13
2021-10-17T17:54:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cointegrated
null
cointegrated/rut5-base-review
17
null
transformers
8,968
Entry not found
coppercitylabs/uzbert-base-uncased
6eeb1c69ceff3201f343cff4a1d9b8148d06fbac
2021-09-22T08:17:56.000Z
[ "pytorch", "bert", "fill-mask", "uz", "dataset:webcrawl", "arxiv:2108.09814", "transformers", "uzbert", "uzbek", "cyrillic", "license:mit", "autotrain_compatible" ]
fill-mask
false
coppercitylabs
null
coppercitylabs/uzbert-base-uncased
17
null
transformers
8,969
--- language: uz tags: - uzbert - uzbek - bert - cyrillic license: mit datasets: - webcrawl --- # UzBERT base model (uncased) Pretrained model on Uzbek language (Cyrillic script) using a masked language modeling and next sentence prediction objectives. ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='coppercitylabs/uzbert-base-uncased') >>> unmasker("Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг [MASK], мутафаккири ва давлат арбоби бўлган.") [ { 'token_str': 'шоири', 'token': 13587, 'score': 0.7974384427070618, 'sequence': 'алишер навоий – улуғ ўзбек ва бошқа туркий халқларнинг шоири, мутафаккир ##и ва давлат арбоби бўлган.' }, { 'token_str': 'олими', 'token': 18500, 'score': 0.09166576713323593, 'sequence': 'алишер навоий – улуғ ўзбек ва бошқа туркий халқларнинг олими, мутафаккир ##и ва давлат арбоби бўлган.' }, { 'token_str': 'асосчиси', 'token': 7469, 'score': 0.02451123297214508, 'sequence': 'алишер навоий – улуғ ўзбек ва бошқа туркий халқларнинг асосчиси, мутафаккир ##и ва давлат арбоби бўлган.' }, { 'token_str': 'ёзувчиси', 'token': 22439, 'score': 0.017601722851395607, 'sequence': 'алишер навоий – улуғ ўзбек ва бошқа туркий халқларнинг ёзувчиси, мутафаккир ##и ва давлат арбоби бўлган.' }, { 'token_str': 'устози', 'token': 11494, 'score': 0.010115668177604675, 'sequence': 'алишер навоий – улуғ ўзбек ва бошқа туркий халқларнинг устози, мутафаккир ##и ва давлат арбоби бўлган.' } ] ``` ## Training data UzBERT model was pretrained on \~625K news articles (\~142M words). ## BibTeX entry and citation info ```bibtex @misc{mansurov2021uzbert, title={{UzBERT: pretraining a BERT model for Uzbek}}, author={B. Mansurov and A. Mansurov}, year={2021}, eprint={2108.09814}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
dannersm/wav2vec2-large-xlsr-53-chilean-lessons
fc5388b20b8afb4be53bf80d1de2dca741bb3262
2022-06-27T19:29:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
dannersm
null
dannersm/wav2vec2-large-xlsr-53-chilean-lessons
17
null
transformers
8,970
Entry not found
davanstrien/vit-manuscripts
3fa6a7df4cca9cc4ddac498fdf3f9927b3adc7eb
2022-02-02T22:40:58.000Z
[ "pytorch", "tensorboard", "vit_mae", "pretraining", "transformers", "masked-auto-encoding", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
davanstrien
null
davanstrien/vit-manuscripts
17
null
transformers
8,971
--- license: apache-2.0 tags: - masked-auto-encoding - generated_from_trainer model-index: - name: vit-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-manuscripts This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/manuscript_iiif_test dataset. It achieves the following results on the evaluation set: - Loss: 0.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5303 | 1.0 | 34 | 0.5134 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
dbsamu/deberta-base-finetuned-ner
78d2a24e72ddf68e980726259541f0609409b7f0
2022-01-21T18:25:55.000Z
[ "pytorch", "tensorboard", "deberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dbsamu
null
dbsamu/deberta-base-finetuned-ner
17
1
transformers
8,972
Entry not found
digit82/kogpt2-summarization
d93f0fd19efd0368bc6ca379b5b0a96845d8f439
2021-09-22T14:45:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
digit82
null
digit82/kogpt2-summarization
17
null
transformers
8,973
Entry not found
edugp/wav2vec2-xls-r-300m-36-tokens-with-lm-es
717efd18b6d11e578de166c376ab1b5a7a9f5593
2022-03-23T18:28:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
edugp
null
edugp/wav2vec2-xls-r-300m-36-tokens-with-lm-es
17
null
transformers
8,974
--- license: apache-2.0 language: - es tags: - es - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-36-tokens-with-lm-es results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: common_voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 0.08677014042867702 - name: Test CER type: cer value: 0.02810974186831335 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 31.68 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 34.45 --- # Wav2Vec2-xls-r-300m-36-tokens-with-lm-es <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.0868 - Cer: 0.0281 This model consists of a Wav2Vec2 model with an additional KenLM 5-gram language model for CTC decoding. The model is trained removing all characters that are not lower-case unaccented letters between `a-z` or the Spanish accented vowels `á`, `é`, `í`, `ó`, `ú` or the dieresis on the vowel `u` - `ü`. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 3.6512 | 0.07 | 400 | 0.5734 | 0.4325 | | 0.4404 | 0.14 | 800 | 0.3329 | 0.3021 | | 0.3465 | 0.22 | 1200 | 0.3067 | 0.2871 | | 0.3214 | 0.29 | 1600 | 0.2808 | 0.2694 | | 0.319 | 0.36 | 2000 | 0.2755 | 0.2677 | | 0.3015 | 0.43 | 2400 | 0.2667 | 0.2437 | | 0.3102 | 0.51 | 2800 | 0.2679 | 0.2475 | | 0.2955 | 0.58 | 3200 | 0.2591 | 0.2421 | | 0.292 | 0.65 | 3600 | 0.2547 | 0.2404 | | 0.2961 | 0.72 | 4000 | 0.2824 | 0.2716 | | 0.2906 | 0.8 | 4400 | 0.2531 | 0.2321 | | 0.2886 | 0.87 | 4800 | 0.2668 | 0.2573 | | 0.2934 | 0.94 | 5200 | 0.2608 | 0.2454 | | 0.2844 | 1.01 | 5600 | 0.2414 | 0.2233 | | 0.2649 | 1.09 | 6000 | 0.2412 | 0.2198 | | 0.2587 | 1.16 | 6400 | 0.2432 | 0.2211 | | 0.2631 | 1.23 | 6800 | 0.2414 | 0.2225 | | 0.2584 | 1.3 | 7200 | 0.2489 | 0.2290 | | 0.2588 | 1.37 | 7600 | 0.2341 | 0.2156 | | 0.2581 | 1.45 | 8000 | 0.2323 | 0.2155 | | 0.2603 | 1.52 | 8400 | 0.2423 | 0.2231 | | 0.2527 | 1.59 | 8800 | 0.2381 | 0.2192 | | 0.2588 | 1.66 | 9200 | 0.2323 | 0.2176 | | 0.2543 | 1.74 | 9600 | 0.2391 | 0.2151 | | 0.2528 | 1.81 | 10000 | 0.2295 | 0.2091 | | 0.2535 | 1.88 | 10400 | 0.2317 | 0.2099 | | 0.2501 | 1.95 | 10800 | 0.2225 | 0.2105 | | 0.2441 | 2.03 | 11200 | 0.2356 | 0.2180 | | 0.2275 | 2.1 | 11600 | 0.2341 | 0.2115 | | 0.2281 | 2.17 | 12000 | 0.2269 | 0.2117 | | 0.227 | 2.24 | 12400 | 0.2367 | 0.2125 | | 0.2471 | 2.32 | 12800 | 0.2307 | 0.2090 | | 0.229 | 2.39 | 13200 | 0.2231 | 0.2005 | | 0.2325 | 2.46 | 13600 | 0.2243 | 0.2100 | | 0.2314 | 2.53 | 14000 | 0.2252 | 0.2098 | | 0.2309 | 2.6 | 14400 | 0.2269 | 0.2089 | | 0.2267 | 2.68 | 14800 | 0.2155 | 0.1976 | | 0.225 | 2.75 | 15200 | 0.2263 | 0.2067 | | 0.2309 | 2.82 | 15600 | 0.2196 | 0.2041 | | 0.225 | 2.89 | 16000 | 0.2212 | 0.2052 | | 0.228 | 2.97 | 16400 | 0.2192 | 0.2028 | | 0.2136 | 3.04 | 16800 | 0.2169 | 0.2042 | | 0.2038 | 3.11 | 17200 | 0.2173 | 0.1998 | | 0.2035 | 3.18 | 17600 | 0.2185 | 0.2002 | | 0.207 | 3.26 | 18000 | 0.2358 | 0.2120 | | 0.2102 | 3.33 | 18400 | 0.2213 | 0.2019 | | 0.211 | 3.4 | 18800 | 0.2176 | 0.1980 | | 0.2099 | 3.47 | 19200 | 0.2186 | 0.1960 | | 0.2093 | 3.55 | 19600 | 0.2208 | 0.2016 | | 0.2046 | 3.62 | 20000 | 0.2138 | 0.1960 | | 0.2095 | 3.69 | 20400 | 0.2222 | 0.2023 | | 0.2106 | 3.76 | 20800 | 0.2159 | 0.1964 | | 0.2066 | 3.83 | 21200 | 0.2083 | 0.1931 | | 0.2119 | 3.91 | 21600 | 0.2130 | 0.1957 | | 0.2167 | 3.98 | 22000 | 0.2210 | 0.1987 | | 0.1973 | 4.05 | 22400 | 0.2112 | 0.1930 | | 0.1917 | 4.12 | 22800 | 0.2107 | 0.1891 | | 0.1903 | 4.2 | 23200 | 0.2132 | 0.1911 | | 0.1903 | 4.27 | 23600 | 0.2077 | 0.1883 | | 0.1914 | 4.34 | 24000 | 0.2054 | 0.1901 | | 0.1943 | 4.41 | 24400 | 0.2059 | 0.1885 | | 0.1943 | 4.49 | 24800 | 0.2095 | 0.1899 | | 0.1936 | 4.56 | 25200 | 0.2078 | 0.1879 | | 0.1963 | 4.63 | 25600 | 0.2018 | 0.1884 | | 0.1934 | 4.7 | 26000 | 0.2034 | 0.1872 | | 0.2011 | 4.78 | 26400 | 0.2051 | 0.1896 | | 0.1901 | 4.85 | 26800 | 0.2059 | 0.1858 | | 0.1934 | 4.92 | 27200 | 0.2028 | 0.1832 | | 0.191 | 4.99 | 27600 | 0.2046 | 0.1870 | | 0.1775 | 5.07 | 28000 | 0.2081 | 0.1891 | | 0.175 | 5.14 | 28400 | 0.2084 | 0.1904 | | 0.19 | 5.21 | 28800 | 0.2086 | 0.1920 | | 0.1798 | 5.28 | 29200 | 0.2079 | 0.1935 | | 0.1765 | 5.35 | 29600 | 0.2145 | 0.1930 | | 0.181 | 5.43 | 30000 | 0.2062 | 0.1918 | | 0.1808 | 5.5 | 30400 | 0.2083 | 0.1875 | | 0.1769 | 5.57 | 30800 | 0.2117 | 0.1895 | | 0.1788 | 5.64 | 31200 | 0.2055 | 0.1857 | | 0.181 | 5.72 | 31600 | 0.2057 | 0.1870 | | 0.1781 | 5.79 | 32000 | 0.2053 | 0.1872 | | 0.1852 | 5.86 | 32400 | 0.2077 | 0.1904 | | 0.1832 | 5.93 | 32800 | 0.1979 | 0.1821 | | 0.1758 | 6.01 | 33200 | 0.1957 | 0.1754 | | 0.1611 | 6.08 | 33600 | 0.2028 | 0.1773 | | 0.1606 | 6.15 | 34000 | 0.2018 | 0.1780 | | 0.1702 | 6.22 | 34400 | 0.1977 | 0.1759 | | 0.1649 | 6.3 | 34800 | 0.2073 | 0.1845 | | 0.1641 | 6.37 | 35200 | 0.1947 | 0.1774 | | 0.1703 | 6.44 | 35600 | 0.2009 | 0.1811 | | 0.1716 | 6.51 | 36000 | 0.2091 | 0.1817 | | 0.1732 | 6.58 | 36400 | 0.1942 | 0.1743 | | 0.1642 | 6.66 | 36800 | 0.1930 | 0.1749 | | 0.1685 | 6.73 | 37200 | 0.1962 | 0.1716 | | 0.1647 | 6.8 | 37600 | 0.1977 | 0.1822 | | 0.1647 | 6.87 | 38000 | 0.1917 | 0.1748 | | 0.1667 | 6.95 | 38400 | 0.1948 | 0.1774 | | 0.1647 | 7.02 | 38800 | 0.2018 | 0.1783 | | 0.15 | 7.09 | 39200 | 0.2010 | 0.1796 | | 0.1663 | 7.16 | 39600 | 0.1969 | 0.1731 | | 0.1536 | 7.24 | 40000 | 0.1935 | 0.1726 | | 0.1544 | 7.31 | 40400 | 0.2030 | 0.1799 | | 0.1536 | 7.38 | 40800 | 0.1973 | 0.1772 | | 0.1559 | 7.45 | 41200 | 0.1973 | 0.1763 | | 0.1547 | 7.53 | 41600 | 0.2052 | 0.1782 | | 0.1584 | 7.6 | 42000 | 0.1965 | 0.1737 | | 0.1542 | 7.67 | 42400 | 0.1878 | 0.1725 | | 0.1525 | 7.74 | 42800 | 0.1946 | 0.1750 | | 0.1547 | 7.81 | 43200 | 0.1934 | 0.1691 | | 0.1534 | 7.89 | 43600 | 0.1919 | 0.1711 | | 0.1574 | 7.96 | 44000 | 0.1935 | 0.1745 | | 0.1471 | 8.03 | 44400 | 0.1915 | 0.1689 | | 0.1433 | 8.1 | 44800 | 0.1956 | 0.1719 | | 0.1433 | 8.18 | 45200 | 0.1980 | 0.1720 | | 0.1424 | 8.25 | 45600 | 0.1906 | 0.1681 | | 0.1428 | 8.32 | 46000 | 0.1892 | 0.1649 | | 0.1424 | 8.39 | 46400 | 0.1916 | 0.1698 | | 0.1466 | 8.47 | 46800 | 0.1970 | 0.1739 | | 0.1496 | 8.54 | 47200 | 0.1902 | 0.1662 | | 0.1408 | 8.61 | 47600 | 0.1858 | 0.1649 | | 0.1445 | 8.68 | 48000 | 0.1893 | 0.1648 | | 0.1459 | 8.76 | 48400 | 0.1875 | 0.1686 | | 0.1433 | 8.83 | 48800 | 0.1920 | 0.1673 | | 0.1448 | 8.9 | 49200 | 0.1833 | 0.1631 | | 0.1461 | 8.97 | 49600 | 0.1904 | 0.1693 | | 0.1451 | 9.04 | 50000 | 0.1969 | 0.1661 | | 0.1336 | 9.12 | 50400 | 0.1950 | 0.1674 | | 0.1362 | 9.19 | 50800 | 0.1971 | 0.1685 | | 0.1316 | 9.26 | 51200 | 0.1928 | 0.1648 | | 0.132 | 9.33 | 51600 | 0.1908 | 0.1615 | | 0.1301 | 9.41 | 52000 | 0.1842 | 0.1569 | | 0.1322 | 9.48 | 52400 | 0.1892 | 0.1616 | | 0.1391 | 9.55 | 52800 | 0.1956 | 0.1656 | | 0.132 | 9.62 | 53200 | 0.1876 | 0.1598 | | 0.1349 | 9.7 | 53600 | 0.1870 | 0.1624 | | 0.1325 | 9.77 | 54000 | 0.1834 | 0.1586 | | 0.1389 | 9.84 | 54400 | 0.1892 | 0.1647 | | 0.1364 | 9.91 | 54800 | 0.1840 | 0.1597 | | 0.1339 | 9.99 | 55200 | 0.1858 | 0.1626 | | 0.1269 | 10.06 | 55600 | 0.1875 | 0.1619 | | 0.1229 | 10.13 | 56000 | 0.1909 | 0.1619 | | 0.1258 | 10.2 | 56400 | 0.1933 | 0.1631 | | 0.1256 | 10.27 | 56800 | 0.1930 | 0.1640 | | 0.1207 | 10.35 | 57200 | 0.1823 | 0.1585 | | 0.1248 | 10.42 | 57600 | 0.1889 | 0.1596 | | 0.1264 | 10.49 | 58000 | 0.1845 | 0.1584 | | 0.1251 | 10.56 | 58400 | 0.1869 | 0.1588 | | 0.1251 | 10.64 | 58800 | 0.1885 | 0.1613 | | 0.1276 | 10.71 | 59200 | 0.1855 | 0.1575 | | 0.1303 | 10.78 | 59600 | 0.1836 | 0.1597 | | 0.1246 | 10.85 | 60000 | 0.1810 | 0.1573 | | 0.1283 | 10.93 | 60400 | 0.1830 | 0.1581 | | 0.1273 | 11.0 | 60800 | 0.1837 | 0.1619 | | 0.1202 | 11.07 | 61200 | 0.1865 | 0.1588 | | 0.119 | 11.14 | 61600 | 0.1889 | 0.1580 | | 0.1179 | 11.22 | 62000 | 0.1884 | 0.1592 | | 0.1187 | 11.29 | 62400 | 0.1824 | 0.1565 | | 0.1198 | 11.36 | 62800 | 0.1848 | 0.1552 | | 0.1154 | 11.43 | 63200 | 0.1866 | 0.1565 | | 0.1211 | 11.51 | 63600 | 0.1862 | 0.1563 | | 0.1177 | 11.58 | 64000 | 0.1816 | 0.1527 | | 0.1156 | 11.65 | 64400 | 0.1834 | 0.1540 | | 0.1144 | 11.72 | 64800 | 0.1837 | 0.1524 | | 0.119 | 11.79 | 65200 | 0.1859 | 0.1538 | | 0.1183 | 11.87 | 65600 | 0.1869 | 0.1558 | | 0.122 | 11.94 | 66000 | 0.1853 | 0.1535 | | 0.1197 | 12.01 | 66400 | 0.1871 | 0.1586 | | 0.1096 | 12.08 | 66800 | 0.1838 | 0.1540 | | 0.1074 | 12.16 | 67200 | 0.1915 | 0.1592 | | 0.1084 | 12.23 | 67600 | 0.1845 | 0.1545 | | 0.1097 | 12.3 | 68000 | 0.1904 | 0.1552 | | 0.112 | 12.37 | 68400 | 0.1846 | 0.1578 | | 0.1109 | 12.45 | 68800 | 0.1862 | 0.1549 | | 0.1114 | 12.52 | 69200 | 0.1889 | 0.1552 | | 0.1119 | 12.59 | 69600 | 0.1828 | 0.1530 | | 0.1124 | 12.66 | 70000 | 0.1822 | 0.1540 | | 0.1127 | 12.74 | 70400 | 0.1865 | 0.1589 | | 0.1128 | 12.81 | 70800 | 0.1786 | 0.1498 | | 0.1069 | 12.88 | 71200 | 0.1813 | 0.1522 | | 0.1069 | 12.95 | 71600 | 0.1895 | 0.1558 | | 0.1083 | 13.02 | 72000 | 0.1925 | 0.1557 | | 0.1009 | 13.1 | 72400 | 0.1883 | 0.1522 | | 0.1007 | 13.17 | 72800 | 0.1829 | 0.1480 | | 0.1014 | 13.24 | 73200 | 0.1861 | 0.1510 | | 0.0974 | 13.31 | 73600 | 0.1836 | 0.1486 | | 0.1006 | 13.39 | 74000 | 0.1821 | 0.1462 | | 0.0973 | 13.46 | 74400 | 0.1857 | 0.1484 | | 0.1011 | 13.53 | 74800 | 0.1822 | 0.1471 | | 0.1031 | 13.6 | 75200 | 0.1823 | 0.1489 | | 0.1034 | 13.68 | 75600 | 0.1809 | 0.1452 | | 0.0998 | 13.75 | 76000 | 0.1817 | 0.1490 | | 0.1071 | 13.82 | 76400 | 0.1808 | 0.1501 | | 0.1083 | 13.89 | 76800 | 0.1796 | 0.1475 | | 0.1053 | 13.97 | 77200 | 0.1785 | 0.1470 | | 0.0978 | 14.04 | 77600 | 0.1886 | 0.1495 | | 0.094 | 14.11 | 78000 | 0.1854 | 0.1489 | | 0.0915 | 14.18 | 78400 | 0.1854 | 0.1498 | | 0.0947 | 14.25 | 78800 | 0.1888 | 0.1500 | | 0.0939 | 14.33 | 79200 | 0.1885 | 0.1494 | | 0.0973 | 14.4 | 79600 | 0.1877 | 0.1466 | | 0.0946 | 14.47 | 80000 | 0.1904 | 0.1494 | | 0.0931 | 14.54 | 80400 | 0.1815 | 0.1473 | | 0.0958 | 14.62 | 80800 | 0.1905 | 0.1508 | | 0.0982 | 14.69 | 81200 | 0.1881 | 0.1511 | | 0.0963 | 14.76 | 81600 | 0.1823 | 0.1449 | | 0.0943 | 14.83 | 82000 | 0.1782 | 0.1458 | | 0.0981 | 14.91 | 82400 | 0.1795 | 0.1465 | | 0.0995 | 14.98 | 82800 | 0.1811 | 0.1484 | | 0.0909 | 15.05 | 83200 | 0.1822 | 0.1450 | | 0.0872 | 15.12 | 83600 | 0.1890 | 0.1466 | | 0.0878 | 15.2 | 84000 | 0.1859 | 0.1468 | | 0.0884 | 15.27 | 84400 | 0.1825 | 0.1429 | | 0.0871 | 15.34 | 84800 | 0.1816 | 0.1438 | | 0.0883 | 15.41 | 85200 | 0.1817 | 0.1433 | | 0.0844 | 15.48 | 85600 | 0.1821 | 0.1412 | | 0.0843 | 15.56 | 86000 | 0.1863 | 0.1411 | | 0.0805 | 15.63 | 86400 | 0.1863 | 0.1441 | | 0.085 | 15.7 | 86800 | 0.1808 | 0.1440 | | 0.0848 | 15.77 | 87200 | 0.1808 | 0.1421 | | 0.0844 | 15.85 | 87600 | 0.1841 | 0.1406 | | 0.082 | 15.92 | 88000 | 0.1850 | 0.1442 | | 0.0854 | 15.99 | 88400 | 0.1773 | 0.1426 | | 0.0835 | 16.06 | 88800 | 0.1888 | 0.1436 | | 0.0789 | 16.14 | 89200 | 0.1922 | 0.1434 | | 0.081 | 16.21 | 89600 | 0.1864 | 0.1448 | | 0.0799 | 16.28 | 90000 | 0.1902 | 0.1428 | | 0.0848 | 16.35 | 90400 | 0.1873 | 0.1422 | | 0.084 | 16.43 | 90800 | 0.1835 | 0.1421 | | 0.083 | 16.5 | 91200 | 0.1878 | 0.1390 | | 0.0794 | 16.57 | 91600 | 0.1877 | 0.1398 | | 0.0807 | 16.64 | 92000 | 0.1800 | 0.1385 | | 0.0829 | 16.71 | 92400 | 0.1910 | 0.1434 | | 0.0839 | 16.79 | 92800 | 0.1843 | 0.1381 | | 0.0815 | 16.86 | 93200 | 0.1812 | 0.1365 | | 0.0831 | 16.93 | 93600 | 0.1889 | 0.1383 | | 0.0803 | 17.0 | 94000 | 0.1902 | 0.1403 | | 0.0724 | 17.08 | 94400 | 0.1934 | 0.1380 | | 0.0734 | 17.15 | 94800 | 0.1865 | 0.1394 | | 0.0739 | 17.22 | 95200 | 0.1876 | 0.1395 | | 0.0758 | 17.29 | 95600 | 0.1938 | 0.1411 | | 0.0733 | 17.37 | 96000 | 0.1933 | 0.1410 | | 0.077 | 17.44 | 96400 | 0.1848 | 0.1385 | | 0.0754 | 17.51 | 96800 | 0.1876 | 0.1407 | | 0.0746 | 17.58 | 97200 | 0.1863 | 0.1371 | | 0.0732 | 17.66 | 97600 | 0.1927 | 0.1401 | | 0.0746 | 17.73 | 98000 | 0.1874 | 0.1390 | | 0.0755 | 17.8 | 98400 | 0.1853 | 0.1381 | | 0.0724 | 17.87 | 98800 | 0.1849 | 0.1365 | | 0.0716 | 17.94 | 99200 | 0.1848 | 0.1380 | | 0.074 | 18.02 | 99600 | 0.1891 | 0.1362 | | 0.0687 | 18.09 | 100000 | 0.1974 | 0.1357 | | 0.0651 | 18.16 | 100400 | 0.1942 | 0.1353 | | 0.0672 | 18.23 | 100800 | 0.1823 | 0.1363 | | 0.0671 | 18.31 | 101200 | 0.1959 | 0.1357 | | 0.0684 | 18.38 | 101600 | 0.1959 | 0.1374 | | 0.0688 | 18.45 | 102000 | 0.1904 | 0.1353 | | 0.0696 | 18.52 | 102400 | 0.1926 | 0.1364 | | 0.0661 | 18.6 | 102800 | 0.1905 | 0.1351 | | 0.0684 | 18.67 | 103200 | 0.1955 | 0.1343 | | 0.0712 | 18.74 | 103600 | 0.1873 | 0.1353 | | 0.0701 | 18.81 | 104000 | 0.1822 | 0.1354 | | 0.0688 | 18.89 | 104400 | 0.1905 | 0.1373 | | 0.0695 | 18.96 | 104800 | 0.1879 | 0.1335 | | 0.0661 | 19.03 | 105200 | 0.2005 | 0.1351 | | 0.0644 | 19.1 | 105600 | 0.1972 | 0.1351 | | 0.0627 | 19.18 | 106000 | 0.1956 | 0.1340 | | 0.0633 | 19.25 | 106400 | 0.1962 | 0.1340 | | 0.0629 | 19.32 | 106800 | 0.1937 | 0.1342 | | 0.0636 | 19.39 | 107200 | 0.1905 | 0.1355 | | 0.0631 | 19.46 | 107600 | 0.1917 | 0.1326 | | 0.0624 | 19.54 | 108000 | 0.1977 | 0.1355 | | 0.0621 | 19.61 | 108400 | 0.1941 | 0.1345 | | 0.0635 | 19.68 | 108800 | 0.1949 | 0.1336 | | 0.063 | 19.75 | 109200 | 0.1919 | 0.1317 | | 0.0636 | 19.83 | 109600 | 0.1928 | 0.1317 | | 0.0612 | 19.9 | 110000 | 0.1923 | 0.1314 | | 0.0636 | 19.97 | 110400 | 0.1923 | 0.1343 | | 0.0581 | 20.04 | 110800 | 0.2036 | 0.1332 | | 0.0573 | 20.12 | 111200 | 0.2007 | 0.1315 | | 0.0566 | 20.19 | 111600 | 0.1974 | 0.1319 | | 0.0589 | 20.26 | 112000 | 0.1958 | 0.1322 | | 0.0577 | 20.33 | 112400 | 0.1946 | 0.1307 | | 0.0587 | 20.41 | 112800 | 0.1957 | 0.1295 | | 0.0588 | 20.48 | 113200 | 0.2013 | 0.1306 | | 0.0594 | 20.55 | 113600 | 0.2010 | 0.1312 | | 0.0602 | 20.62 | 114000 | 0.1993 | 0.1314 | | 0.0583 | 20.69 | 114400 | 0.1931 | 0.1297 | | 0.059 | 20.77 | 114800 | 0.1974 | 0.1305 | | 0.0566 | 20.84 | 115200 | 0.1979 | 0.1294 | | 0.0588 | 20.91 | 115600 | 0.1944 | 0.1292 | | 0.0569 | 20.98 | 116000 | 0.1974 | 0.1309 | | 0.0554 | 21.06 | 116400 | 0.2080 | 0.1307 | | 0.0542 | 21.13 | 116800 | 0.2056 | 0.1301 | | 0.0532 | 21.2 | 117200 | 0.2027 | 0.1309 | | 0.0535 | 21.27 | 117600 | 0.1970 | 0.1287 | | 0.0533 | 21.35 | 118000 | 0.2124 | 0.1310 | | 0.0546 | 21.42 | 118400 | 0.2043 | 0.1300 | | 0.0544 | 21.49 | 118800 | 0.2056 | 0.1281 | | 0.0562 | 21.56 | 119200 | 0.1986 | 0.1273 | | 0.0549 | 21.64 | 119600 | 0.2075 | 0.1283 | | 0.0522 | 21.71 | 120000 | 0.2058 | 0.1278 | | 0.052 | 21.78 | 120400 | 0.2057 | 0.1280 | | 0.0563 | 21.85 | 120800 | 0.1966 | 0.1295 | | 0.0546 | 21.92 | 121200 | 0.2002 | 0.1285 | | 0.0539 | 22.0 | 121600 | 0.1996 | 0.1279 | | 0.0504 | 22.07 | 122000 | 0.2077 | 0.1273 | | 0.0602 | 22.14 | 122400 | 0.2055 | 0.1278 | | 0.0503 | 22.21 | 122800 | 0.2037 | 0.1283 | | 0.0496 | 22.29 | 123200 | 0.2109 | 0.1279 | | 0.0523 | 22.36 | 123600 | 0.2068 | 0.1276 | | 0.0508 | 22.43 | 124000 | 0.2051 | 0.1257 | | 0.0505 | 22.5 | 124400 | 0.2056 | 0.1269 | | 0.05 | 22.58 | 124800 | 0.1995 | 0.1268 | | 0.0496 | 22.65 | 125200 | 0.2022 | 0.1290 | | 0.0484 | 22.72 | 125600 | 0.2095 | 0.1291 | | 0.0518 | 22.79 | 126000 | 0.2132 | 0.1271 | | 0.0499 | 22.87 | 126400 | 0.2124 | 0.1263 | | 0.0485 | 22.94 | 126800 | 0.2092 | 0.1252 | | 0.0476 | 23.01 | 127200 | 0.2138 | 0.1256 | | 0.0467 | 23.08 | 127600 | 0.2119 | 0.1256 | | 0.048 | 23.15 | 128000 | 0.2138 | 0.1269 | | 0.0461 | 23.23 | 128400 | 0.2036 | 0.1244 | | 0.0467 | 23.3 | 128800 | 0.2163 | 0.1255 | | 0.0475 | 23.37 | 129200 | 0.2180 | 0.1258 | | 0.0468 | 23.44 | 129600 | 0.2129 | 0.1245 | | 0.0456 | 23.52 | 130000 | 0.2122 | 0.1250 | | 0.0458 | 23.59 | 130400 | 0.2157 | 0.1257 | | 0.0453 | 23.66 | 130800 | 0.2088 | 0.1242 | | 0.045 | 23.73 | 131200 | 0.2144 | 0.1247 | | 0.0469 | 23.81 | 131600 | 0.2113 | 0.1246 | | 0.0453 | 23.88 | 132000 | 0.2151 | 0.1234 | | 0.0471 | 23.95 | 132400 | 0.2130 | 0.1229 | | 0.0443 | 24.02 | 132800 | 0.2150 | 0.1225 | | 0.0446 | 24.1 | 133200 | 0.2166 | 0.1235 | | 0.0435 | 24.17 | 133600 | 0.2143 | 0.1222 | | 0.0407 | 24.24 | 134000 | 0.2175 | 0.1218 | | 0.0421 | 24.31 | 134400 | 0.2147 | 0.1227 | | 0.0435 | 24.38 | 134800 | 0.2193 | 0.1233 | | 0.0414 | 24.46 | 135200 | 0.2172 | 0.1225 | | 0.0419 | 24.53 | 135600 | 0.2156 | 0.1225 | | 0.0419 | 24.6 | 136000 | 0.2143 | 0.1235 | | 0.0423 | 24.67 | 136400 | 0.2179 | 0.1226 | | 0.0423 | 24.75 | 136800 | 0.2144 | 0.1221 | | 0.0424 | 24.82 | 137200 | 0.2135 | 0.1210 | | 0.0419 | 24.89 | 137600 | 0.2166 | 0.1218 | | 0.0408 | 24.96 | 138000 | 0.2151 | 0.1211 | | 0.0433 | 25.04 | 138400 | 0.2174 | 0.1214 | | 0.0395 | 25.11 | 138800 | 0.2242 | 0.1210 | | 0.0403 | 25.18 | 139200 | 0.2219 | 0.1215 | | 0.0413 | 25.25 | 139600 | 0.2225 | 0.1207 | | 0.0389 | 25.33 | 140000 | 0.2187 | 0.1202 | | 0.0395 | 25.4 | 140400 | 0.2244 | 0.1204 | | 0.0398 | 25.47 | 140800 | 0.2263 | 0.1199 | | 0.0386 | 25.54 | 141200 | 0.2165 | 0.1187 | | 0.0396 | 25.61 | 141600 | 0.2171 | 0.1187 | | 0.0406 | 25.69 | 142000 | 0.2199 | 0.1190 | | 0.0404 | 25.76 | 142400 | 0.2224 | 0.1190 | | 0.0391 | 25.83 | 142800 | 0.2230 | 0.1185 | | 0.04 | 25.9 | 143200 | 0.2208 | 0.1200 | | 0.0396 | 25.98 | 143600 | 0.2179 | 0.1191 | | 0.0353 | 26.05 | 144000 | 0.2285 | 0.1178 | | 0.0368 | 26.12 | 144400 | 0.2273 | 0.1186 | | 0.0393 | 26.19 | 144800 | 0.2247 | 0.1196 | | 0.0368 | 26.27 | 145200 | 0.2314 | 0.1181 | | 0.0373 | 26.34 | 145600 | 0.2215 | 0.1188 | | 0.038 | 26.41 | 146000 | 0.2262 | 0.1180 | | 0.0363 | 26.48 | 146400 | 0.2250 | 0.1172 | | 0.0365 | 26.56 | 146800 | 0.2299 | 0.1174 | | 0.0382 | 26.63 | 147200 | 0.2292 | 0.1165 | | 0.0365 | 26.7 | 147600 | 0.2282 | 0.1165 | | 0.0371 | 26.77 | 148000 | 0.2276 | 0.1172 | | 0.0365 | 26.85 | 148400 | 0.2280 | 0.1173 | | 0.0376 | 26.92 | 148800 | 0.2248 | 0.1164 | | 0.0365 | 26.99 | 149200 | 0.2230 | 0.1158 | | 0.0343 | 27.06 | 149600 | 0.2300 | 0.1157 | | 0.0354 | 27.13 | 150000 | 0.2298 | 0.1166 | | 0.0333 | 27.21 | 150400 | 0.2307 | 0.1158 | | 0.0353 | 27.28 | 150800 | 0.2300 | 0.1157 | | 0.036 | 27.35 | 151200 | 0.2335 | 0.1160 | | 0.0343 | 27.42 | 151600 | 0.2324 | 0.1155 | | 0.0361 | 27.5 | 152000 | 0.2300 | 0.1150 | | 0.0352 | 27.57 | 152400 | 0.2279 | 0.1146 | | 0.0353 | 27.64 | 152800 | 0.2307 | 0.1149 | | 0.0342 | 27.71 | 153200 | 0.2315 | 0.1152 | | 0.0345 | 27.79 | 153600 | 0.2290 | 0.1146 | | 0.034 | 27.86 | 154000 | 0.2319 | 0.1141 | | 0.0347 | 27.93 | 154400 | 0.2312 | 0.1144 | | 0.0338 | 28.0 | 154800 | 0.2328 | 0.1146 | | 0.0347 | 28.08 | 155200 | 0.2352 | 0.1151 | | 0.033 | 28.15 | 155600 | 0.2337 | 0.1142 | | 0.0336 | 28.22 | 156000 | 0.2345 | 0.1141 | | 0.0337 | 28.29 | 156400 | 0.2315 | 0.1143 | | 0.0314 | 28.36 | 156800 | 0.2353 | 0.1140 | | 0.0333 | 28.44 | 157200 | 0.2338 | 0.1146 | | 0.0317 | 28.51 | 157600 | 0.2345 | 0.1139 | | 0.0326 | 28.58 | 158000 | 0.2336 | 0.1143 | | 0.033 | 28.65 | 158400 | 0.2352 | 0.1137 | | 0.0325 | 28.73 | 158800 | 0.2312 | 0.1130 | | 0.0321 | 28.8 | 159200 | 0.2338 | 0.1133 | | 0.0334 | 28.87 | 159600 | 0.2335 | 0.1130 | | 0.0317 | 28.94 | 160000 | 0.2340 | 0.1126 | | 0.0321 | 29.02 | 160400 | 0.2349 | 0.1126 | | 0.032 | 29.09 | 160800 | 0.2369 | 0.1127 | | 0.0312 | 29.16 | 161200 | 0.2363 | 0.1124 | | 0.0303 | 29.23 | 161600 | 0.2363 | 0.1123 | | 0.0322 | 29.31 | 162000 | 0.2354 | 0.1124 | | 0.03 | 29.38 | 162400 | 0.2360 | 0.1122 | | 0.0299 | 29.45 | 162800 | 0.2378 | 0.1124 | | 0.0313 | 29.52 | 163200 | 0.2377 | 0.1120 | | 0.0299 | 29.59 | 163600 | 0.2367 | 0.1124 | | 0.0313 | 29.67 | 164000 | 0.2380 | 0.1120 | | 0.031 | 29.74 | 164400 | 0.2369 | 0.1120 | | 0.0327 | 29.81 | 164800 | 0.2358 | 0.1117 | | 0.0316 | 29.88 | 165200 | 0.2358 | 0.1118 | | 0.0307 | 29.96 | 165600 | 0.2362 | 0.1118 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/distilbert-tr-q-a
1fa82acdc35b00ae008477b02f181cda4e83b29a
2022-02-17T13:40:11.000Z
[ "pytorch", "bert", "question-answering", "tr", "dataset:TQuAD", "transformers", "loodos-bert-base", "TQuAD", "autotrain_compatible" ]
question-answering
false
emre
null
emre/distilbert-tr-q-a
17
null
transformers
8,975
--- language: tr tags: - question-answering - loodos-bert-base - TQuAD - tr datasets: - TQuAD --- # Turkish SQuAD Model : Question Answering Fine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset * Loodos-BERT-base: https://huggingface.co/loodos/bert-base-turkish-uncased * TQuAD dataset: https://github.com/TQuad/turkish-nlp-qa-dataset # Training Code ``` !python3 Turkish-QA.py \ --model_type bert \ --model_name_or_path loodos/bert-base-turkish-uncased --do_train \ --do_eval \ --train_file trainQ.json \ --predict_file dev1.json \ --per_gpu_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --output_dir "./model" ``` # Example Usage > Load Model ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("emre/distilbert-tr-q-a") model = AutoModelForQuestionAnswering.from_pretrained("emre/distilbert-tr-q-a") nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) ``` > Apply the model ``` def ask(question,context): temp = nlp(question=question, context=context) start_idx = temp["start"] end_idx = temp["end"] return context[start_idx:end_idx] izmir="İzmir, Türkiye'de Ege Bölgesi'nde yer alan şehir ve ülkenin 81 ilinden biridir. Ülkenin nüfus bakımından en kalabalık üçüncü şehridir. Ekonomik, tarihi ve sosyo-kültürel açıdan önde gelen şehirlerden biridir. Nüfusu 2021 itibarıyla 4.425.789 kişidir. Yüzölçümü olarak ülkenin yirmi üçüncü büyük ilidir." soru1 = "İzmir'in nüfusu kaçtır?" print(ask(soru1,izmir)) soru2 = "İzmir hangi bölgede bulunur?" print(ask(soru2,izmir)) ```
gagan3012/keytotext-gpt
90757bac25de2d1205a98b04fb8697d6fbd5ab0d
2021-05-21T16:04:39.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
gagan3012
null
gagan3012/keytotext-gpt
17
null
transformers
8,976
Entry not found
gchhablani/fnet-base-finetuned-wnli
ad9d8ca9950f2ae4480d2fcb5d9dbefb2bfb4bae
2021-09-20T09:07:59.000Z
[ "pytorch", "tensorboard", "fnet", "text-classification", "en", "dataset:glue", "arxiv:2105.03824", "transformers", "generated_from_trainer", "fnet-bert-base-comparison", "license:apache-2.0", "model-index" ]
text-classification
false
gchhablani
null
gchhablani/fnet-base-finetuned-wnli
17
null
transformers
8,977
--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - glue metrics: - accuracy model-index: - name: fnet-base-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5492957746478874 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-wnli This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6887 - Accuracy: 0.5493 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name wnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir fnet-base-finetuned-wnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7052 | 1.0 | 40 | 0.6902 | 0.5634 | | 0.6957 | 2.0 | 80 | 0.7013 | 0.4366 | | 0.6898 | 3.0 | 120 | 0.6898 | 0.5352 | | 0.6958 | 4.0 | 160 | 0.6874 | 0.5634 | | 0.6982 | 5.0 | 200 | 0.6887 | 0.5493 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
ghadeermobasher/BC4CHEMD-Modified_scibert_scivocab_cased
9cd7ec2af56ffa05d042ff3c855979b8007bf0e6
2022-01-24T03:08:45.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Modified_scibert_scivocab_cased
17
null
transformers
8,978
Entry not found
ghadeermobasher/BC4CHEMD_Imbalancedscibert_scivocab_cased
d65763bca6132fa1599e0420e0aba46a4b0de34e
2022-01-24T03:12:41.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD_Imbalancedscibert_scivocab_cased
17
null
transformers
8,979
Entry not found
giganticode/bert-base-code_comments
fc469b2f87912e102a1facfde637d445025d2521
2021-10-25T12:59:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
giganticode
null
giganticode/bert-base-code_comments
17
null
transformers
8,980
Entry not found
gsarti/covidbert-nli
477f49d112b00be886f7f5ce6fdf9f8cd73c9bd9
2021-05-19T17:48:24.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
gsarti
null
gsarti/covidbert-nli
17
null
transformers
8,981
# CovidBERT-NLI This is the model **CovidBERT** trained by DeepSet on AllenAI's [CORD19 Dataset](https://pages.semanticscholar.org/coronavirus-research) of scientific articles about coronaviruses. The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [1] using the **average pooling strategy** and a **softmax loss**. Parameter details for the original training on CORD-19 are available on [DeepSet's MLFlow](https://public-mlflow.deepset.ai/#/experiments/2/runs/ba27d00c30044ef6a33b1d307b4a6cba) **Base model**: `deepset/covid_bert_base` from HuggingFace's `AutoModel`. **Training time**: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. **Parameters**: | Parameter | Value | |------------------|-------| | Batch size | 64 | | Training steps | 23000 | | Warmup steps | 1450 | | Lowercasing | True | | Max. Seq. Length | 128 | **Performances**: The performance was evaluated on the test portion of the [STS dataset](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) using Spearman rank correlation and compared to the performances of similar models obtained with the same procedure to verify its performances. | Model | Score | |-------------------------------|-------------| | `covidbert-nli` (this) | 67.52 | | `gsarti/biobert-nli` | 73.40 | | `gsarti/scibert-nli` | 74.50 | | `bert-base-nli-mean-tokens`[2]| 77.12 | An example usage for similarity-based scientific paper retrieval is provided in the [Covid-19 Semantic Browser](https://github.com/gsarti/covid-papers-browser) repository. **References:** [1] A. Conneau et al., [Supervised Learning of Universal Sentence Representations from Natural Language Inference Data](https://www.aclweb.org/anthology/D17-1070/) [2] N. Reimers et I. Gurevych, [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://www.aclweb.org/anthology/D19-1410/)
hf-internal-testing/tiny-random-megatron-bert
b71486855a524afe43c166e689b4cb524e3ad04a
2021-07-24T15:19:56.000Z
[ "pytorch", "megatron-bert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-megatron-bert
17
null
transformers
8,982
Entry not found
huaen/question_detection
575041aae53f7da3e32f2bf1c7717029441e435a
2021-10-24T12:18:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
huaen
null
huaen/question_detection
17
1
transformers
8,983
Entry not found
huggingartists/nirvana
b1a39ba57e8f8e4056a020229fd37eba2778910f
2022-02-21T01:51:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/nirvana", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/nirvana
17
null
transformers
8,984
--- language: en datasets: - huggingartists/nirvana tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c1373962cfc3a668a3e30da9a76a34c.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nirvana</div> <a href="https://genius.com/artists/nirvana"> <div style="text-align: center; font-size: 14px;">@nirvana</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Nirvana. Dataset is available [here](https://huggingface.co/datasets/huggingartists/nirvana). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/nirvana") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1bj9eav1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Nirvana's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3vzztlsq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3vzztlsq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/nirvana') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/nirvana") model = AutoModelWithLMHead.from_pretrained("huggingartists/nirvana") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/radiohead
e0ee1924e14445e3a9d87c44efba057433172151
2022-03-09T09:46:07.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/radiohead", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/radiohead
17
null
transformers
8,985
--- language: en datasets: - huggingartists/radiohead tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/593c69b2e4bb8eb47801ce1952c5d30b.600x600x184.gif&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radiohead</div> <a href="https://genius.com/artists/radiohead"> <div style="text-align: center; font-size: 14px;">@radiohead</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Radiohead. Dataset is available [here](https://huggingface.co/datasets/huggingartists/radiohead). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/radiohead") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/35vxvq9n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Radiohead's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2bulf32i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2bulf32i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/radiohead') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/radiohead") model = AutoModelWithLMHead.from_pretrained("huggingartists/radiohead") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/_buddha_quotes
95978ab82ecc05d3b16f4d6be23d46ec3c6b3215
2021-05-21T16:55:55.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/_buddha_quotes
17
1
transformers
8,986
--- language: en thumbnail: https://www.huggingtweets.com/_buddha_quotes/1609541828144/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2409590248/73g1ywcwdlyd8ls4wa4g_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Buddha 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@_buddha_quotes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@_buddha_quotes's tweets](https://twitter.com/_buddha_quotes). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3200</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>0</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>0</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3200</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m2s8fe6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_buddha_quotes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j1ixyq8z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j1ixyq8z/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/_buddha_quotes'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/afinchwrites
eb35f213848b7ccf0f420ada35646c19def5f0f3
2021-05-21T17:47:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/afinchwrites
17
null
transformers
8,987
--- language: en thumbnail: https://www.huggingtweets.com/afinchwrites/1617758836679/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1250126825109544960/8ndvxL2E_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ashley Finch 🔞 🤖 AI Bot </div> <div style="font-size: 15px">@afinchwrites bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@afinchwrites's tweets](https://twitter.com/afinchwrites). | Data | Quantity | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 1236 | | Short tweets | 265 | | Tweets kept | 1713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bwfztuv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @afinchwrites's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39vriclf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39vriclf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/afinchwrites') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/alotoforanges
b09958ea4150c990a50747974e00e815872efb1a
2021-05-21T18:26:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alotoforanges
17
null
transformers
8,988
--- language: en thumbnail: https://www.huggingtweets.com/alotoforanges/1616898775163/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1320844146664460288/W09Z-oPC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">April 🤖 AI Bot </div> <div style="font-size: 15px">@alotoforanges bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alotoforanges's tweets](https://twitter.com/alotoforanges). | Data | Quantity | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 186 | | Short tweets | 552 | | Tweets kept | 2502 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rgdnomb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alotoforanges's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e1tznc6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e1tznc6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alotoforanges') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/broschistocks
01a3209c6719777ae0d9e111b5b29a29a66bc493
2021-05-21T21:12:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/broschistocks
17
null
transformers
8,989
--- language: en thumbnail: https://www.huggingtweets.com/broschistocks/1614095969958/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1159519240757624838/LEJGJWNz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">dessicant gourmand 🤖 AI Bot </div> <div style="font-size: 15px">@broschistocks bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@broschistocks's tweets](https://twitter.com/broschistocks). | Data | Quantity | | --- | --- | | Tweets downloaded | 664 | | Retweets | 331 | | Short tweets | 66 | | Tweets kept | 267 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qbbqieq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @broschistocks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/broschistocks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cushbomb
c83b0aa44a4026d03943775677bed9ba44f23a69
2021-05-21T23:53:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cushbomb
17
null
transformers
8,990
--- language: en thumbnail: https://www.huggingtweets.com/cushbomb/1614099144410/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1352838562622791682/X3YGO4bN_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">matt christman 🤖 AI Bot </div> <div style="font-size: 15px">@cushbomb bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cushbomb's tweets](https://twitter.com/cushbomb). | Data | Quantity | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 161 | | Short tweets | 701 | | Tweets kept | 2360 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c6zjdd90/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cushbomb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w2qoeb19) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w2qoeb19/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cushbomb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cyberbully66
f9531b85ac532d7443cc81e981eea8b715dc7db8
2021-05-21T23:59:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cyberbully66
17
null
transformers
8,991
--- language: en thumbnail: https://www.huggingtweets.com/cyberbully66/1616851006786/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375463332732403714/TP6hwUxm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">evil succubus 🤖 AI Bot </div> <div style="font-size: 15px">@cyberbully66 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cyberbully66's tweets](https://twitter.com/cyberbully66). | Data | Quantity | | --- | --- | | Tweets downloaded | 3195 | | Retweets | 397 | | Short tweets | 570 | | Tweets kept | 2228 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c5t9ev6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyberbully66's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/e4ld23gl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/e4ld23gl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cyberbully66') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/demirenjun
7ec6ba4103cddcb166d6b0c77e3fcfc2b5d9201c
2021-05-22T01:19:12.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/demirenjun
17
null
transformers
8,992
--- language: en thumbnail: https://www.huggingtweets.com/demirenjun/1617917661023/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354964611586547715/WIIHy349_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">rj bday (season) 🦜🍓💝 🤖 AI Bot </div> <div style="font-size: 15px">@demirenjun bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@demirenjun's tweets](https://twitter.com/demirenjun). | Data | Quantity | | --- | --- | | Tweets downloaded | 3199 | | Retweets | 800 | | Short tweets | 384 | | Tweets kept | 2015 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bdlmgyb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @demirenjun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ck8cxvw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ck8cxvw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/demirenjun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elhotzo
47618a248dd776dfde4eac1196f4c0f6798a0e4f
2021-05-22T02:51:10.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elhotzo
17
null
transformers
8,993
--- language: en thumbnail: https://www.huggingtweets.com/elhotzo/1613422967587/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/954348751799373825/_rztgdVC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">E L H O T Z O 🤖 AI Bot </div> <div style="font-size: 15px">@elhotzo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@elhotzo's tweets](https://twitter.com/elhotzo). | Data | Quantity | | --- | --- | | Tweets downloaded | 3222 | | Retweets | 43 | | Short tweets | 286 | | Tweets kept | 2893 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v5cgxsz8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elhotzo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x8wqa37) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x8wqa37/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elhotzo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/hoffridder
5d2b84b9f6ee14621d4080bfed04d01bb41fe3e4
2021-05-22T07:00:39.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hoffridder
17
null
transformers
8,994
--- language: en thumbnail: https://www.huggingtweets.com/hoffridder/1617780877643/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378566172946395136/MdKVnvRJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ridderhoff 🤖 AI Bot </div> <div style="font-size: 15px">@hoffridder bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hoffridder's tweets](https://twitter.com/hoffridder). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 16 | | Short tweets | 443 | | Tweets kept | 2791 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1piyzy7v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hoffridder's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/365i3db0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/365i3db0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hoffridder') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/karpathy
c69b6b6058bdceac35082062d64d4681bb89c67c
2021-05-22T10:32:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/karpathy
17
1
transformers
8,995
--- language: en thumbnail: https://www.huggingtweets.com/karpathy/1607705820861/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296667294148382721/9Pr6XrPB_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrej Karpathy 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@karpathy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@karpathy's tweets](https://twitter.com/karpathy). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3217</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>416</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>89</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2712</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m4p0ith/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @karpathy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7mm2jhgw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7mm2jhgw/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/karpathy'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/markprzepiora
f11d2881a1819bbf0dbe2fcdbae0ee74610d0b1f
2021-05-22T13:27:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/markprzepiora
17
null
transformers
8,996
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287851691874717696/za-omADx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">M⦁͘͜⦁̸̀͘⦁͘ P⦁̸̀͘⦁͏⦁͘͜⦁͟͞⦁⦁͘⦁͢͜͜⦁́ 🤖 AI Bot </div> <div style="font-size: 15px">@markprzepiora bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@markprzepiora's tweets](https://twitter.com/markprzepiora). | Data | Quantity | | --- | --- | | Tweets downloaded | 1093 | | Retweets | 55 | | Short tweets | 100 | | Tweets kept | 938 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e9iu7ts/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markprzepiora's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9mk8jcf5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9mk8jcf5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/markprzepiora') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/premiles_
43a693557ec8b844fe221603fdc6429b599acb2e
2021-05-22T19:24:17.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/premiles_
17
null
transformers
8,997
--- language: en thumbnail: https://www.huggingtweets.com/premiles_/1616685758725/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1328826791331586048/GG3K46Cu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Wonka Bourdain - FKA Irish 🤖 AI Bot </div> <div style="font-size: 15px">@premiles_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@premiles_'s tweets](https://twitter.com/premiles_). | Data | Quantity | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 538 | | Short tweets | 505 | | Tweets kept | 2176 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bdtvlgr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @premiles_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3n0ejc55) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3n0ejc55/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/premiles_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/slimepriestess
041f0a38101219268a3b5b55a2d737bf55d5d90d
2021-05-22T23:04:19.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/slimepriestess
17
null
transformers
8,998
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1319135470656180224/cxISAFko_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Octavia 🤖 AI Bot </div> <div style="font-size: 15px">@slimepriestess bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@slimepriestess's tweets](https://twitter.com/slimepriestess). | Data | Quantity | | --- | --- | | Tweets downloaded | 201 | | Retweets | 23 | | Short tweets | 16 | | Tweets kept | 162 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1f2gufmd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @slimepriestess's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3h5af3aw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3h5af3aw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/slimepriestess') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/thcphilosopher
d3f38f7fcf785dc691db08748a242b7bb698b53e
2021-05-23T01:18:12.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thcphilosopher
17
null
transformers
8,999
--- language: en thumbnail: https://www.huggingtweets.com/thcphilosopher/1616728158308/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1320456433176031232/S-_vUTA9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">The High Philosopher 🤖 AI Bot </div> <div style="font-size: 15px">@thcphilosopher bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@thcphilosopher's tweets](https://twitter.com/thcphilosopher). | Data | Quantity | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 371 | | Short tweets | 582 | | Tweets kept | 2264 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cugs1hg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thcphilosopher's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/z32eiyry) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/z32eiyry/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thcphilosopher') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)