modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
akiyamasho/stylegan3-anime-faces-generator
4da4d662284d5b51d069c77c102c5282ef647fc7
2022-04-07T15:43:08.000Z
[ "pytorch", "image-generation", "gan", "stylegan", "stylegan3", "nvidia", "license:mit" ]
null
false
akiyamasho
null
akiyamasho/stylegan3-anime-faces-generator
0
1
pytorch
36,700
--- license: mit library_name: pytorch tags: - image-generation - gan - stylegan - stylegan3 - nvidia --- # Anime Faces Generator (StyleGAN3 by NVIDIA) <img width="679" alt="Generated Faces" src="https://user-images.githubusercontent.com/35907066/161809457-e6467724-5942-4a89-b379-85ddfd6ac86c.png"> This is a [StyleGAN3 PyTorch](https://github.com/NVlabs/stylegan3) model trained on this [Anime Face Dataset](https://github.com/bchao1/Anime-Face-Dataset). ### Usage Demo on Spaces is not yet implemented. You can run the model pickle file locally using the instructions in this generator-script-only subset of the StyleGAN3 repo: - https://github.com/venture-anime/stylegan3-anime-faces-generator ### Dataset & Model Details The [Anime Face Dataset](https://github.com/bchao1/Anime-Face-Dataset) was created by Mckinsey666. Training was done in [Paperspace Gradient](https://gradient.run/) on a free `RTX-5000` instance with the following parameters: - Configuration: `stylegan3-t` - GPUs: `1` - Batch Size: `8` - Gamma: `0.5` - Final tick: `102` - Final fid50k_full value (this pickle): `9.26043547642206`. # Train your own StyleGAN3 on PaperSpace or Colab You can use the notebooks here for a ready-to-use training pipeline https://github.com/akiyamasho/stylegan3-training-notebook
rowan1224/distilbert-squad-slp
eab2e72e91f3adef63eb92f27fd6222329fcb7d7
2022-04-05T16:27:09.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rowan1224
null
rowan1224/distilbert-squad-slp
0
null
transformers
36,701
Entry not found
rowan1224/albert-squad-slp
b94fccf1d4eb339da011697f8ce6c12ed68d7faf
2022-04-05T16:33:32.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rowan1224
null
rowan1224/albert-squad-slp
0
null
transformers
36,702
Entry not found
huggingtweets/benk14894427
65dfd5874bf687f60c9d3f728012f49f0d521933
2022-04-05T19:26:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/benk14894427
0
null
transformers
36,703
--- language: en thumbnail: http://www.huggingtweets.com/benk14894427/1649186779847/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442847071829204995/C-gqdXsf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Benk</div> <div style="text-align: center; font-size: 14px;">@benk14894427</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Benk. | Data | Benk | | --- | --- | | Tweets downloaded | 269 | | Retweets | 6 | | Short tweets | 34 | | Tweets kept | 229 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zhhq7f1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @benk14894427's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ns3y5oi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ns3y5oi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/benk14894427') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vladimir-lomonosov/gpt2-wikitext2
0c2c2301f186e3ee8cf7028811bfacbc60af64a4
2022-04-05T21:45:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
vladimir-lomonosov
null
vladimir-lomonosov/gpt2-wikitext2
0
null
transformers
36,704
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5574 | 1.0 | 2249 | 6.4738 | | 6.1911 | 2.0 | 4498 | 6.1998 | | 6.0051 | 3.0 | 6747 | 6.1153 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.5.1+cu92 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/vivchen_
105111087202f7879d8f47c56f74b8b15ad2ec60
2022-04-05T20:13:38.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/vivchen_
0
null
transformers
36,705
--- language: en thumbnail: http://www.huggingtweets.com/vivchen_/1649189613639/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1453748100594642948/BAASh9m3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vivian</div> <div style="text-align: center; font-size: 14px;">@vivchen_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vivian. | Data | Vivian | | --- | --- | | Tweets downloaded | 1616 | | Retweets | 39 | | Short tweets | 166 | | Tweets kept | 1411 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vqb4rpuh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vivchen_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1xzxtr20) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1xzxtr20/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vivchen_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vocab-transformers/dense_encoder-distilbert-frozen_emb
8cb4a54e5cd5c9cb4b9922bcae5ff4cd58dadf24
2022-04-05T21:13:38.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
vocab-transformers
null
vocab-transformers/dense_encoder-distilbert-frozen_emb
0
null
transformers
36,706
# Dense Encoder - Distilbert - Frozen Token Embeddings This model is a distilbert-base-uncased model trained for 30 epochs (235k steps), 64 batch size with MarginMSE Loss on MS MARCO dataset. The token embeddings were frozen. | Dataset | Model with updated token embeddings | Model with frozen embeddings | | --- | :---: | :---: | | TREC-DL 19 | 70.68 | 68.60 | | TREC-DL 20 | 67.69 | 70.21 | | FiQA | 28.89 | 28.60 | | Robust04 | 39.56 | 39.08 | | TREC-COVID v2 | 69.80 | 69.84 | | TREC-NEWS | 37.97 | 38.27 | | Avg. 4 BEIR tasks | 44.06 | 43.95 |
huggingtweets/jorgegos
f28a6d055eb2dae47caef2892e850bbc0d372b8b
2022-04-05T21:17:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jorgegos
0
null
transformers
36,707
--- language: en thumbnail: http://www.huggingtweets.com/jorgegos/1649193376372/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1125539522983399425/1iUPUMbd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jorge Gosalvez</div> <div style="text-align: center; font-size: 14px;">@jorgegos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jorge Gosalvez. | Data | Jorge Gosalvez | | --- | --- | | Tweets downloaded | 151 | | Retweets | 50 | | Short tweets | 17 | | Tweets kept | 84 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kbrvpqs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jorgegos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jyhp60o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jyhp60o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jorgegos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
harish3110/xlm-roberta-base-finetuned-panx-de
1e351c9aa0a26488f85a26e919a5b0862e850d23
2022-04-05T22:23:34.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
harish3110
null
harish3110/xlm-roberta-base-finetuned-panx-de
0
null
transformers
36,708
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.862053266560437 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1354 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.254 | 1.0 | 525 | 0.1652 | 0.8254 | | 0.1293 | 2.0 | 1050 | 0.1431 | 0.8489 | | 0.0797 | 3.0 | 1575 | 0.1354 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.13.3 - Tokenizers 0.10.3
notexist/tttff
5fe2a73b3204733e07d8dc1d57e875c8f3b90a2f
2022-04-05T22:52:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
notexist
null
notexist/tttff
0
null
transformers
36,709
Entry not found
NimaBoscarino/DiffusionCLIP-CelebA_HQ
6635400b9744702c5c6fb2751172c3153b6d9263
2022-04-06T02:03:13.000Z
[ "arxiv:1710.10196", "pytorch", "diffusion", "image-to-image" ]
image-to-image
false
NimaBoscarino
null
NimaBoscarino/DiffusionCLIP-CelebA_HQ
0
null
pytorch
36,710
--- library_name: pytorch tags: - diffusion - image-to-image --- # DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation - Faces Creators: Gwanghyun Kim, Taesung Kwon, Jong Chul Ye <img src="https://github.com/submission10095/DiffusionCLIP_temp/raw/master/imgs/main1.png" alt="Excerpt from DiffusionCLIP paper showcasing comparison of DiffusionCLIP versus other methods for image reconstruction, manipulation, and style transfer." style="height: 300px;"/> DiffusionCLIP is a diffusion model which is well suited for image manipulation thanks to its nearly perfect inversion capability, which is an important advantage over GAN-based models. This checkpoint was trained on the [CelebA-HQ Dataset](https://arxiv.org/abs/1710.10196), available on the Hugging Face Hub: https://huggingface.co/datasets/huggan/CelebA-HQ. This checkpoint is most appropriate for manipulation, reconstruction, and style transfer on images of human faces using the DiffusionCLIP model. To use ID loss for preserving Human face identity, you are required to download the [pretrained IR-SE50 model](https://drive.google.com/file/u/1/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view) from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch). Additional information is available on [the GitHub repository](https://github.com/gwang-kim/DiffusionCLIP). ### Credits - Code repository available at: https://github.com/gwang-kim/DiffusionCLIP ### Citation ``` @article{kim2021diffusionclip, title={Diffusionclip: Text-guided image manipulation using diffusion models}, author={Kim, Gwanghyun and Ye, Jong Chul}, journal={arXiv preprint arXiv:2110.02711}, year={2021} } ```
NimaBoscarino/DiffusionCLIP-LSUN_Bedroom
5ee194f5ea85e377b4c7723dca507dbf0c225bfc
2022-04-06T02:39:53.000Z
[ "pytorch", "diffusion", "image-to-image" ]
image-to-image
false
NimaBoscarino
null
NimaBoscarino/DiffusionCLIP-LSUN_Bedroom
0
null
pytorch
36,711
--- library_name: pytorch tags: - diffusion - image-to-image --- # DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation - Bedrooms Creators: Gwanghyun Kim, Taesung Kwon, Jong Chul Ye <img src="https://github.com/submission10095/DiffusionCLIP_temp/raw/master/imgs/main1.png" alt="Excerpt from DiffusionCLIP paper showcasing comparison of DiffusionCLIP versus other methods for image reconstruction, manipulation, and style transfer." style="height: 300px;"/> DiffusionCLIP is a diffusion model which is well suited for image manipulation thanks to its nearly perfect inversion capability, which is an important advantage over GAN-based models. This checkpoint was trained on the ["Bedrooms" category of the LSUN Dataset](https://www.yf.io/p/lsun). This checkpoint is most appropriate for manipulation, reconstruction, and style transfer on images of indoor locations, such as bedrooms. The weights should be loaded into the [DiffusionCLIP model](https://github.com/gwang-kim/DiffusionCLIP). ### Credits - Code repository available at: https://github.com/gwang-kim/DiffusionCLIP ### Citation ``` @article{kim2021diffusionclip, title={Diffusionclip: Text-guided image manipulation using diffusion models}, author={Kim, Gwanghyun and Ye, Jong Chul}, journal={arXiv preprint arXiv:2110.02711}, year={2021} } ```
pbdevpros/beirt-irish-translation
f241eb8d973c7f2df7e6ae1c04d583886faed256
2022-04-07T19:14:00.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
pbdevpros
null
pbdevpros/beirt-irish-translation
0
null
transformers
36,712
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: beirt-irish-translation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beirt-irish-translation This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0227 - Bleu: 78.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
luxiao/alilingjie
9135a6a88bb8102780c638627adeafefdf0ffe05
2022-04-06T07:44:47.000Z
[ "pytorch", "transformers", "license:apache-2.0" ]
null
false
luxiao
null
luxiao/alilingjie
0
1
transformers
36,713
--- license: apache-2.0 ---
jimregan/psst-partial-timit
cdbd3aa685e215171bf05e75047bdb488e92e680
2022-04-15T21:45:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:jimregan/psst", "dataset:timit_asr", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jimregan
null
jimregan/psst-partial-timit
0
null
transformers
36,714
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition datasets: - jimregan/psst - timit_asr --- This repository contains a number of experiments for the [PSST Challenge](https://psst.study/). As the test set is unavailable, all numbers are based on the validation set. The experiments in the tables below were finetuned on [Wav2vec 2.0 Base, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec) Our overall best performing model (**FER** 9\.2%, **PER:** 21\.0%) was based on [Wav2vec 2.0 Large, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec) (git tag: `larger-rir`), with the TIMIT subset augmented with Room Impulse Response, based on the experiments below, on the base model. ## Augmented TIMIT subset Using a subset of TIMIT that could map easily to the phoneset used by the PSST Challenge data (a list of IDs are in the repository), we experimented with augmenting the data to better match the PSST data. The best results were obtained using Room Impulse Response (tag: `rir`) | **Augmentation** | **FER** | **PER** | **Git tag** | | :----------------------------------------------- | :-------- | :--------- | :---------------------------------- | | unaugmented | 10\.2% | 22\.5% | huggingface-unaugmented | | Gaussian noise | 10\.0% | 22\.1% | gaussian | | Pitchshift | 9\.6% | 22\.9% | pitchshift | | RIR | **9\.6%** | **21\.8%** | rir | | Time stretch | 10\.1% | 22\.8% | timestretch | | Gaussian noise + RIR | 10\.0% | 23\.4% | gaussian-rir | | Pitchshift + Gaussian noise | 9\.9% | 22\.9% | pitchshift-gaussian | | Pitchshift + RIR | 9\.9% | 22\.8% | pitchshift-rir | | Tim estretch + Gaussian noise | 10\.2% | 22\.8% | timestretch-gaussian | | Time stretch + Pitchshift | 9\.8% | 22\.0% | timestretch-pitchshift | | Time stretch + RIR | 9\.7% | 22\.2% | timestretch-rir | | Pitchshift + Gaussian noise + RIR | 10\.1% | 23\.5% | pitchshift-gaussian-rir | | Time stretch + Gaussian noise + RIR | 9\.7% | 22\.3% | timestretch-gaussian-rir | | Time stretch + Pitchshift + Gaussian noise | 10\.2% | 22\.9% | timestretch-pitchshift-gaussian | | Time stretch + Pitchshift + RIR | 10\.2% | 22\.5% | timestretch-pitchshift-rir | | Time stretch + Pitchshift + Gaussian noise + RIR | 10\.9% | 24\.1% | timestretch-pitchshift-gaussian-rir | ## LM experiments We experimented with a number of language model configurations, combining the data from the PSST challenge, the subset of TIMIT we used, and CMUdict. We tried combining CMUdict data in a number of ways: unmodified, with a silence token added at the start of the pronunciation, at the end, and at both the start and the end. The best result was from a 5-gram model, with silences added at the end of the CMUdict data (git tag: `lm-nosil-cmudict-sile.5`). Evaluation was performed using scripts provided by the PSST Challenge's organisers, so there are no scripts in place to automatically use the LM with the transformers library. | | **n-gram** | **FER** | **PER** | **Tag** | | :----------------------------- | :--------- | :--------- | :--------- | :--------- | | Baseline + TIMIT | --- | **10\.2%** | 22\.5% | huggingface-unaugmented | | All silences | 4 | 10\.5% | 23\.0% | lm-allsil.4 | | | 5 | 10\.5% | 22\.6% | lm-allsil.5 | | | 6 | 10\.3% | 22\.3% | lm-allsil.6 | | No silences | 4 | 10\.3% | 22\.6% | lm-nosil.4 | | | 5 | **10\.2%** | 22\.2% | lm-nosil.5 | | | 6 | **10\.2%** | 22\.4% | lm-nosil.6 | | PSST and TIMIT without silence | | | | | | Unmodified CMUdict | 4 | 10\.3% | 22\.6% | lm-nosil-cmudict-nosil.4 | | | 5 | 10\.2% | 22\.2% | lm-nosil-cmudict-nosil.5 | | | 6 | **10\.2%** | 22\.4% | lm-nosil-cmudict-nosil.6 | | CMUdict-end | 4 | 10\.3% | 22\.6% | lm-nosil-cmudict-sile.4 | | | 5 | **10\.2%** | **22\.1%** | lm-nosil-cmudict-sile.5 | | | 6 | **10\.2%** | 22\.3% | lm-nosil-cmudict-sile.6 | | CMUdict-start | 4 | 10\.4% | 22\.6% | lm-nosil-cmudict-sils.4 | | | 5 | 10\.3% | 22\.4% | lm-nosil-cmudict-sils.5 | | | 6 | 10\.3% | 22\.3% | lm-nosil-cmudict-sils.6 | | CMUdict-both | 4 | 10\.4% | 22\.7% | lm-nosil-cmudict-silb.4 | | | 5 | 10\.4% | 22\.3% | lm-nosil-cmudict-silb.5 | | | 6 | 10\.3% | 22\.3% | lm-nosil-cmudict-silb.6 | | Unmodified PSST and TIMIT | | | | | | Unmodified CMUdict | 4 | 10\.3% | 22\.8% | lm-orig-cmudict-nosil.4 | | | 5 | 10\.3% | 22\.4% | lm-orig-cmudict-nosil.5 | | | 6 | **10\.2%** | 22\.4% | lm-orig-cmudict-nosil.6 | | CMUdict-end | 4 | 10\.3% | 22\.7% | lm-orig-cmudict-sile.4 | | | 5 | **10\.2%** | 22\.2% | lm-orig-cmudict-sile.5 | | | 6 | **10\.2%** | 22\.3% | lm-orig-cmudict-sile.6 | | CMUdict-start | 4 | 10\.5% | 22\.8% | lm-orig-cmudict-sils.4 | | | 5 | 10\.4% | 22\.5% | lm-orig-cmudict-sils.5 | | | 6 | 10\.3% | 22\.4% | lm-orig-cmudict-sils.6 | | CMUdict-both | 4 | 10\.5% | 22\.8% | lm-orig-cmudict-silb.4 | | | 5 | 10\.4% | 22\.4% | lm-orig-cmudict-silb.5 | | | 6 | 10\.4% | 22\.4% | lm-orig-cmudict-silb.6 |
hou/opus-tatoeba-en-tr-finetuned-en-to-ug-finetuned-en-to-ug
e7c4a36ab46ade9a6546376b6e19a02a2c579f1a
2022-04-06T19:49:32.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hou
null
hou/opus-tatoeba-en-tr-finetuned-en-to-ug-finetuned-en-to-ug
0
null
transformers
36,715
Entry not found
huggingtweets/chrismedlandf1-elonmusk-scarbstech
1d9279aea58a69215c569b640666f683c2580577
2022-04-06T13:53:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chrismedlandf1-elonmusk-scarbstech
0
null
transformers
36,716
--- language: en thumbnail: http://www.huggingtweets.com/chrismedlandf1-elonmusk-scarbstech/1649253035547/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/456005573/scarbs_400x400.JPG&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1252178304192389120/bXT3lbuR_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Craig Scarborough & Chris Medland</div> <div style="text-align: center; font-size: 14px;">@chrismedlandf1-elonmusk-scarbstech</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Craig Scarborough & Chris Medland. | Data | Elon Musk | Craig Scarborough | Chris Medland | | --- | --- | --- | --- | | Tweets downloaded | 2621 | 3249 | 3250 | | Retweets | 116 | 387 | 196 | | Short tweets | 795 | 646 | 102 | | Tweets kept | 1710 | 2216 | 2952 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m6vm0tf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrismedlandf1-elonmusk-scarbstech's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mnfs00gg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mnfs00gg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrismedlandf1-elonmusk-scarbstech') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/twommof1
0e1e9279bc2e1596118cbf908bc132eb21b8822f
2022-04-06T14:06:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/twommof1
0
null
transformers
36,717
--- language: en thumbnail: http://www.huggingtweets.com/twommof1/1649253931186/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433115414679150596/6E1j0ONi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tommo</div> <div style="text-align: center; font-size: 14px;">@twommof1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tommo. | Data | Tommo | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 136 | | Short tweets | 642 | | Tweets kept | 2448 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1576eaj6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @twommof1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f5f44et) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f5f44et/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/twommof1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/chrismedlandf1
0d3897a547b773c26355752f5d47bcae8541c630
2022-04-06T14:38:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chrismedlandf1
0
null
transformers
36,718
--- language: en thumbnail: http://www.huggingtweets.com/chrismedlandf1/1649255880540/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1252178304192389120/bXT3lbuR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Medland</div> <div style="text-align: center; font-size: 14px;">@chrismedlandf1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Medland. | Data | Chris Medland | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 196 | | Short tweets | 102 | | Tweets kept | 2952 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jton7o0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrismedlandf1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qle9s0v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qle9s0v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrismedlandf1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
smeoni/nbme-distilroberta-base
8ea46ed31f1bd9e9dd0f8ec5a70730f8aa8afdda
2022-04-06T19:59:51.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/nbme-distilroberta-base
0
null
transformers
36,719
Entry not found
arakesh/test1223
350c2aecea52679162e6f69b3ed85fbdeae368ef
2022-04-06T19:23:25.000Z
[ "pytorch" ]
null
false
arakesh
null
arakesh/test1223
0
null
null
36,720
Entry not found
arakesh/cnn-dummy
060a2f682f1941fbcede31f2f80997ed3b024c32
2022-04-06T19:20:33.000Z
[ "pytorch" ]
null
false
arakesh
null
arakesh/cnn-dummy
0
null
null
36,721
Entry not found
ucl-snlp-group-11/byt5-small-cryptic-crosswords
d5f0cdbfd4cc49739d0b3df8bf30d9e451bcb964
2022-04-06T21:03:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ucl-snlp-group-11
null
ucl-snlp-group-11/byt5-small-cryptic-crosswords
0
null
transformers
36,722
Entry not found
ucl-snlp-group-11/t5-small-cryptic-crosswords
ae58fadb6b05a677b72c836221beeaa609a21d4f
2022-04-06T21:15:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ucl-snlp-group-11
null
ucl-snlp-group-11/t5-small-cryptic-crosswords
0
null
transformers
36,723
Entry not found
ucl-snlp-group-11/t5-base-cryptic-crosswords
eaa80a2a82cb739ea7e91788a06bdf4995742cc6
2022-04-06T21:18:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ucl-snlp-group-11
null
ucl-snlp-group-11/t5-base-cryptic-crosswords
0
null
transformers
36,724
Entry not found
ID56/FF-Vision-CIFAR
a09be01e5f3326c99112be6ad3c0639e57fb8117
2022-04-12T07:06:43.000Z
[ "pytorch", "dataset:cifar10", "image-classification", "license:cc-by-sa-4.0" ]
image-classification
false
ID56
null
ID56/FF-Vision-CIFAR
0
null
null
36,725
--- thumbnail: "https://huggingface.co/ID56/FF-Vision-CIFAR/resolve/main/assets/cover_image.png" license: cc-by-sa-4.0 tags: - image-classification datasets: - cifar10 metrics: - accuracy inference: false --- # CIFAR-10 Upside Down Classifier For the Fatima Fellowship 2022 Coding Challenge, DL for Vision track. <a href="https://wandb.ai/dealer56/cifar-updown-classifier/reports/CIFAR-10-Upside-Down-Classifier-Fatima-Fellowship-2022-Coding-Challenge-Vision---VmlldzoxODA2MDE4" target="_parent"><img src="https://img.shields.io/badge/weights-%26biases-ffcf40" alt="W&B Report"/></a> <img src="https://huggingface.co/ID56/FF-Vision-CIFAR/resolve/main/assets/cover_image.png" alt="Cover Image" width="800"/> ## Usage ### Model Definition ```python from torch import nn import timm from huggingface_hub import PyTorchModelHubMixin class UpDownEfficientNetB0(nn.Module, PyTorchModelHubMixin): """A simple Hub Mixin wrapper for timm EfficientNet-B0. Used to classify whether an image is upright or flipped down, on CIFAR-10.""" def __init__(self, **kwargs): super().__init__() self.base_model = timm.create_model('efficientnet_b0', num_classes=1, drop_rate=0.2, drop_path_rate=0.2) self.config = kwargs.pop("config", None) def forward(self, input): return self.base_model(input) ``` ### Loading the Model from Hub ```python net = UpDownEfficientNetB0.from_pretrained("ID56/FF-Vision-CIFAR") ``` ### Running Inference ```python from torchvision import transforms CIFAR_MEAN = (0.4914, 0.4822, 0.4465) CIFAR_STD = (0.247, 0.243, 0.261) transform = transforms.Compose([ transforms.Resize(40, 40), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD) ]) image = load_some_image() # Load some PIL Image or uint8 HWC image array image = transform(image) # Convert to CHW image tensor image = image.unsqueeze(0) # Add batch dimension net.eval() pred = net(image) ```
lilapapazian/DialoGPT-small-harrypotter
1c5e1e809fa3a3ec7be695e4f85c11affc48fbb2
2022-04-07T00:42:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lilapapazian
null
lilapapazian/DialoGPT-small-harrypotter
0
null
transformers
36,726
--- tags: - conversational --- # Harry Potter DialoGPT Model
tau/false_large_t5_5_1024_0.3_epoch1
ef9decbb4e2f3272446c450c9fae8b5a68b28b61
2022-04-07T04:45:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_t5_5_1024_0.3_epoch1
0
null
transformers
36,727
Entry not found
tau/false_large_t5_lm_5_1024_0.3_epoch1
382f70fe3eefe04d9b51c01bab89cbe407d5b640
2022-04-07T04:49:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_t5_lm_5_1024_0.3_epoch1
0
null
transformers
36,728
Entry not found
tau/false_large_pmi_para0_sentNone_spanNone_5_1024_0.3_epoch1
757d67f0b2b1be13bc7b47767889411ef37fd969
2022-04-07T04:53:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_pmi_para0_sentNone_spanNone_5_1024_0.3_epoch1
0
null
transformers
36,729
Entry not found
tau/false_large_pmi_paraNone_sent0_spanNone_5_1024_0.3_epoch1
77beb28edb6760b777f0ead692284a49dc6f74f9
2022-04-07T04:59:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_pmi_paraNone_sent0_spanNone_5_1024_0.3_epoch1
0
null
transformers
36,730
Entry not found
tau/false_large_pmi_paraNone_sentNone_span0_5_1024_0.3_epoch1
5d1e5ebdd870a20ed3661f11749b8adb9a147fcb
2022-04-07T05:02:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_pmi_paraNone_sentNone_span0_5_1024_0.3_epoch1
0
null
transformers
36,731
Entry not found
tau/false_large_pmi_para0_sent1_span2_5_1024_0.3_epoch1
63b82f38e79fe24837b7a0f3bacf923515386e35
2022-04-07T05:09:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_pmi_para0_sent1_span2_5_1024_0.3_epoch1
0
null
transformers
36,732
Entry not found
tau/false_large_rouge_para0_sentNone_spanNone_5_1024_0.3_epoch1
aeed765c2f32be494d60672b02328c7211bda4a9
2022-04-07T05:14:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_rouge_para0_sentNone_spanNone_5_1024_0.3_epoch1
0
null
transformers
36,733
Entry not found
tau/false_large_rouge_paraNone_sent0_spanNone_5_1024_0.3_epoch1
0aab8eea404bf9c5b7e62b8932cd9a8957b83758
2022-04-07T05:18:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_rouge_paraNone_sent0_spanNone_5_1024_0.3_epoch1
0
null
transformers
36,734
Entry not found
tau/false_large_rouge_para0_sent1_span2_5_1024_0.3_epoch1
505bf319532d5da826ffdd5a7c687372d0c0d567
2022-04-07T05:29:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_rouge_para0_sent1_span2_5_1024_0.3_epoch1
0
null
transformers
36,735
Entry not found
tau/false_large_random_para0_sentNone_spanNone_5_1024_0.3_epoch1
07e52297b34b250339121c68c85a9d79f6627fad
2022-04-07T05:33:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_random_para0_sentNone_spanNone_5_1024_0.3_epoch1
0
null
transformers
36,736
Entry not found
tau/false_large_random_paraNone_sentNone_span0_5_1024_0.3_epoch1
b66d52873c0005bf110b0b1562d8a3699adb2145
2022-04-07T05:44:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_random_paraNone_sentNone_span0_5_1024_0.3_epoch1
0
null
transformers
36,737
Entry not found
tau/false_large_random_para0_sent1_span2_5_1024_0.3_epoch1
062d32a84deec5031f8deba89e0e1be914a6942d
2022-04-07T05:47:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_random_para0_sent1_span2_5_1024_0.3_epoch1
0
null
transformers
36,738
Entry not found
swagat-panda/multilingual-pos-tagger-indian-context-muril
8a9466ea4afec0ac8bb3c81e279327807245fa14
2022-04-07T12:12:05.000Z
[ "pytorch", "bert", "transformers" ]
null
false
swagat-panda
null
swagat-panda/multilingual-pos-tagger-indian-context-muril
0
null
transformers
36,739
Entry not found
huggingtweets/joshrevellyt-mattywtf1-twommof1
d63f23b38fc2da3a781a6b2f8d3088d1b167a98f
2022-04-07T07:58:36.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/joshrevellyt-mattywtf1-twommof1
0
null
transformers
36,740
--- language: en thumbnail: http://www.huggingtweets.com/joshrevellyt-mattywtf1-twommof1/1649318312148/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362391177438384130/3qb0i7rG_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433115414679150596/6E1j0ONi_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477038610083770369/u-wIlo9G_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Gallagher & Tommo & Josh Revell</div> <div style="text-align: center; font-size: 14px;">@joshrevellyt-mattywtf1-twommof1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Gallagher & Tommo & Josh Revell. | Data | Matt Gallagher | Tommo | Josh Revell | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3241 | 3204 | | Retweets | 125 | 136 | 350 | | Short tweets | 343 | 646 | 499 | | Tweets kept | 2782 | 2459 | 2355 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v11nskx9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joshrevellyt-mattywtf1-twommof1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/udahi8v4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/udahi8v4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joshrevellyt-mattywtf1-twommof1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
guillaumegg/wav2vec2-base-timit-demo-4
d85d745e6aadb9c61340fe94c25d5c10159450aa
2022-04-07T09:34:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
guillaumegg
null
guillaumegg/wav2vec2-base-timit-demo-4
0
null
transformers
36,741
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-4 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53-french](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-french) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
huggingtweets/chrismedlandf1-formula24hrs-tgruener
837458f0103942a680c9af71a2c6dc53e1cba66f
2022-04-07T09:48:09.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chrismedlandf1-formula24hrs-tgruener
0
null
transformers
36,742
--- language: en thumbnail: http://www.huggingtweets.com/chrismedlandf1-formula24hrs-tgruener/1649324884859/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1252178304192389120/bXT3lbuR_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1017184407495553024/MXfiA6IH_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477602005917085696/PyJPHN6Z_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Medland & Tobi Grüner 🏁 & F24</div> <div style="text-align: center; font-size: 14px;">@chrismedlandf1-formula24hrs-tgruener</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Medland & Tobi Grüner 🏁 & F24. | Data | Chris Medland | Tobi Grüner 🏁 | F24 | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3207 | 431 | | Retweets | 196 | 652 | 9 | | Short tweets | 102 | 27 | 96 | | Tweets kept | 2952 | 2528 | 326 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2548ya6e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrismedlandf1-formula24hrs-tgruener's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17v4dkk8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17v4dkk8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrismedlandf1-formula24hrs-tgruener') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shonenkov-AI/rudalle-xl-surrealist
a69434033e4f7d2e67675a257bb0fe0256308461
2022-04-12T23:57:50.000Z
[ "pytorch" ]
null
false
shonenkov-AI
null
shonenkov-AI/rudalle-xl-surrealist
0
6
null
36,743
ruDALLE Surrealist XL --- ![](https://huggingface.co/shonenkov-AI/rudalle-xl-surrealist/resolve/main/pics/logo.png) [Alex Shonenkov](https://github.com/shonenkov-AI) trained the model. It is fine-tuning of [Malevich XL](https://huggingface.co/sberbank-ai/rudalle-Malevich) on the surreal data of famous art creators. + Task: text2image generation with custom aspect ratio + Parameters: 1.3 B + Training Data: 190 text-image pairs
vocab-transformers/distilbert-word2vec_256k-MLM_500k
a7caecd1aab4bc73cd99d0ff22c630a6e656c0bf
2022-04-07T12:52:12.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-word2vec_256k-MLM_500k
0
null
transformers
36,744
# DistilBERT with word2vec token embeddings This model has a word2vec token embedding matrix with 256k entries. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 500k steps (batch size 64). The token embeddings were NOT updated.
vocab-transformers/distilbert-word2vec_256k-MLM_750k
17f4cc670715d149609f1d34fb5d5206b84a235a
2022-04-07T12:57:05.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-word2vec_256k-MLM_750k
0
null
transformers
36,745
# DistilBERT with word2vec token embeddings This model has a word2vec token embedding matrix with 256k entries. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 750k steps (batch size 64). The token embeddings were NOT updated.
vocab-transformers/distilbert-tokenizer_256k-MLM_250k
b6d88bd36390b11e0d130b335cda1ba4fdd90517
2022-04-07T13:11:45.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-tokenizer_256k-MLM_250k
0
null
transformers
36,746
# DistilBERT with 256k token embeddings This model was initialized with a word2vec token embedding matrix with 256k entries, but these token embeddings were updated during MLM. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 250k steps (batch size 64). The token embeddings were updated during MLM. For the same model but with frozen token embeddings while MLM training see: https://huggingface.co/vocab-transformers/distilbert-word2vec_256k-MLM_250k
vocab-transformers/distilbert-tokenizer_256k-MLM_500k
39f887545ae354572533fbc4763aefaa9f8ffe4e
2022-04-07T13:11:35.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-tokenizer_256k-MLM_500k
0
null
transformers
36,747
# DistilBERT with 256k token embeddings This model was initialized with a word2vec token embedding matrix with 256k entries, but these token embeddings were updated during MLM. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 500k steps (batch size 64). The token embeddings were updated during MLM. For the same model but with frozen token embeddings while MLM training see: https://huggingface.co/vocab-transformers/distilbert-word2vec_256k-MLM_500k
vocab-transformers/distilbert-tokenizer_256k-MLM_750k
5acf07523dcc82a6107cce644761ccc8f93a027b
2022-04-07T13:11:23.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-tokenizer_256k-MLM_750k
0
null
transformers
36,748
# DistilBERT with 256k token embeddings This model was initialized with a word2vec token embedding matrix with 256k entries, but these token embeddings were updated during MLM. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 750k steps (batch size 64). The token embeddings were updated during MLM. For the same model but with frozen token embeddings while MLM training see: https://huggingface.co/vocab-transformers/distilbert-word2vec_256k-MLM_750k
jeremykke/albert-base-v2-finetuned-swag-v2
c40397e11b978b182040df7d930ad3162b729a71
2022-04-07T16:18:27.000Z
[ "pytorch", "tensorboard", "albert", "multiple-choice", "transformers" ]
multiple-choice
false
jeremykke
null
jeremykke/albert-base-v2-finetuned-swag-v2
0
null
transformers
36,749
Entry not found
huggingtweets/zahedparsa2
2cfa125548d36f42c8a8eb692916420cd5b8536f
2022-04-07T15:33:34.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/zahedparsa2
0
null
transformers
36,750
--- language: en thumbnail: http://www.huggingtweets.com/zahedparsa2/1649345587235/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1244120919901175808/3krEqdBW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zahedparsa</div> <div style="text-align: center; font-size: 14px;">@zahedparsa2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zahedparsa. | Data | Zahedparsa | | --- | --- | | Tweets downloaded | 107 | | Retweets | 2 | | Short tweets | -1389 | | Tweets kept | 1494 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16gyx5yn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zahedparsa2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l5lakelq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l5lakelq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zahedparsa2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mohamad_yazdi
74460f4dbb050253000abfc403c3c8cba5626722
2022-04-07T23:39:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mohamad_yazdi
0
null
transformers
36,751
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1496116344869244938/d7ZIiJV__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mohamad yazdi</div> <div style="text-align: center; font-size: 14px;">@mohamad_yazdi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mohamad yazdi. | Data | mohamad yazdi | | --- | --- | | Tweets downloaded | 62 | | Retweets | 0 | | Short tweets | -401 | | Tweets kept | 463 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pfnvvlqn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mohamad_yazdi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xegerdmo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xegerdmo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mohamad_yazdi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jeremykke/albert-base-v2-finetuned-swags
e3053832cbd25d975af2641065cd6b927a3cb4ed
2022-04-07T20:14:06.000Z
[ "pytorch", "tensorboard", "albert", "multiple-choice", "transformers" ]
multiple-choice
false
jeremykke
null
jeremykke/albert-base-v2-finetuned-swags
0
null
transformers
36,752
Entry not found
huggingtweets/timjdillon
25b0fb432603ef6f95a674347a91fd54ddcf87b9
2022-04-07T19:04:06.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/timjdillon
0
null
transformers
36,753
--- language: en thumbnail: http://www.huggingtweets.com/timjdillon/1649358240896/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1010263656456744960/bXOUw0hb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Dillon</div> <div style="text-align: center; font-size: 14px;">@timjdillon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Dillon. | Data | Tim Dillon | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 658 | | Short tweets | 293 | | Tweets kept | 2289 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1egbnexm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timjdillon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yr18emq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yr18emq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timjdillon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rematchka/Bert_fake_news_detection
ae84a300764918f502f76c388933c2d0555e1df0
2022-04-07T22:10:00.000Z
[ "pytorch", "bert", "transformers" ]
null
false
rematchka
null
rematchka/Bert_fake_news_detection
0
null
transformers
36,754
# Description This model is Part of the NLP assignment for Fatima Fellowship. This model is a fine-tuned version of 'bert-base-uncased' on the below dataset: [Fake News Dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset). It achieves the following results on the evaluation set: - Accuracy: 0.995 - Precision: 0.995 - Recall: 0.995 - F_score: 0.995 # Labels Fake news: 0 Real news: 1 # Using this model in your code To use this model, first download it from the hugging face website: ```python import transformers from transformers import AutoTokenizer class Fake_Real_Model_Arch_test(transformers.PreTrainedModel): def __init__(self,bert): super(Fake_Real_Model_Arch_test,self).__init__(config=AutoConfig.from_pretrained(MODEL_NAME)) self.bert = bert num_classes = 2 # number of targets to predict embedding_dim = 768 # length of embedding dim self.fc1 = nn.Linear(embedding_dim, num_classes) self.softmax = nn.Softmax() def forward(self, text_id, text_mask): outputs= self.bert(text_id, attention_mask=text_mask) outputs = outputs[1] # get hidden layers logit = self.fc1(outputs) return self.softmax(logit) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = Fake_Real_Model_Arch_test(AutoModel.from_pretrained("rematchka/Bert_fake_news_detection")) ```
huggingtweets/elonmusk-marknorm-timjdillon
90221c0b37d7f03fac55f4293cb022574c9a5f73
2022-04-07T19:55:58.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-marknorm-timjdillon
0
null
transformers
36,755
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1010263656456744960/bXOUw0hb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468306462245994496/x8koB4rb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Tim Dillon & mark normand</div> <div style="text-align: center; font-size: 14px;">@elonmusk-marknorm-timjdillon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Tim Dillon & mark normand. | Data | Elon Musk | Tim Dillon | mark normand | | --- | --- | --- | --- | | Tweets downloaded | 400 | 3240 | 3202 | | Retweets | 14 | 658 | 116 | | Short tweets | 117 | 293 | 477 | | Tweets kept | 269 | 2289 | 2609 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yk5i85xt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-marknorm-timjdillon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zuzgzjdk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zuzgzjdk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-marknorm-timjdillon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rematchka/Bert-model
e23adc1f0ea54656310b796f6529864f5ee48a79
2022-04-07T21:22:54.000Z
[ "pytorch", "bert", "transformers" ]
null
false
rematchka
null
rematchka/Bert-model
0
null
transformers
36,756
Entry not found
huggingtweets/abovethebed
c377c9a8a09600439c7443f8511dc67c016bcdd2
2022-04-08T10:16:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/abovethebed
0
null
transformers
36,757
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1317183233495388160/nLbBT6WF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">3bkreno</div> <div style="text-align: center; font-size: 14px;">@abovethebed</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 3bkreno. | Data | 3bkreno | | --- | --- | | Tweets downloaded | 484 | | Retweets | 111 | | Short tweets | -468 | | Tweets kept | 841 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17s3cgho/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @abovethebed's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2al4dbp2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2al4dbp2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/abovethebed') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
medhabi/distilbert-base-uncased-score-pred-night
dde9a249bf128211b1984ae3e8c4f0c3f74333b0
2022-04-08T12:42:20.000Z
[ "pytorch", "text-to-rating", "transformers" ]
null
false
medhabi
null
medhabi/distilbert-base-uncased-score-pred-night
0
null
transformers
36,758
Entry not found
jessicammow/DialoGPT-small-ronswanson
cc1ecf8c9e5615b48815e7fc2308729addbabd20
2022-04-08T00:25:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
jessicammow
null
jessicammow/DialoGPT-small-ronswanson
0
null
transformers
36,759
--- tags: - conversational --- # Ron Swanson DialoGPT Model
jessicammow/DialoGPT-medium-leslieknope
15fe5bddf08fb0d733fc0d598361f7ebe9ae5c82
2022-04-08T03:08:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
jessicammow
null
jessicammow/DialoGPT-medium-leslieknope
0
null
transformers
36,760
--- tags: - conversational ---
transZ/BART_shared_v2
30c3e192ec2d6df3c428c2108a745518ff67883d
2022-04-08T03:58:41.000Z
[ "pytorch", "shared_bart_v2", "transformers" ]
null
false
transZ
null
transZ/BART_shared_v2
0
null
transformers
36,761
Entry not found
huggingtweets/onlinepete-utilitylimb
6fcb07ccbe5213a991d95b452e23098e970ecfed
2022-04-08T06:46:14.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/onlinepete-utilitylimb
0
null
transformers
36,762
--- language: en thumbnail: http://www.huggingtweets.com/onlinepete-utilitylimb/1649400369339/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1641418276/tumblr_lule5ckvND1qz4yoco1_1280_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/456958582731603969/QZKpv6eI_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bandit & im pete online</div> <div style="text-align: center; font-size: 14px;">@onlinepete-utilitylimb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bandit & im pete online. | Data | bandit | im pete online | | --- | --- | --- | | Tweets downloaded | 653 | 3190 | | Retweets | 7 | 94 | | Short tweets | 9 | 1003 | | Tweets kept | 637 | 2093 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gnqf0jm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @onlinepete-utilitylimb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bphxzxt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bphxzxt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/onlinepete-utilitylimb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jaeyeon/wav2vec2-child-en-tokenizer-4
af91175dbbb4c7cccf15971e2e106d526e2fef5d
2022-04-10T05:28:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jaeyeon
null
jaeyeon/wav2vec2-child-en-tokenizer-4
0
null
transformers
36,763
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-child-en-tokenizer-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-child-en-tokenizer-4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4709 - Wer: 0.3769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0334 | 1.72 | 100 | 1.4709 | 0.3769 | | 0.0332 | 3.45 | 200 | 1.4709 | 0.3769 | | 0.0343 | 5.17 | 300 | 1.4709 | 0.3769 | | 0.032 | 6.9 | 400 | 1.4709 | 0.3769 | | 0.0332 | 8.62 | 500 | 1.4709 | 0.3769 | | 0.0327 | 10.34 | 600 | 1.4709 | 0.3769 | | 0.0331 | 12.07 | 700 | 1.4709 | 0.3769 | | 0.0334 | 13.79 | 800 | 1.4709 | 0.3769 | | 0.0319 | 15.52 | 900 | 1.4709 | 0.3769 | | 0.0338 | 17.24 | 1000 | 1.4709 | 0.3769 | | 0.0321 | 18.97 | 1100 | 1.4709 | 0.3769 | | 0.0367 | 20.69 | 1200 | 1.4709 | 0.3769 | | 0.0331 | 22.41 | 1300 | 1.4709 | 0.3769 | | 0.0332 | 24.14 | 1400 | 1.4709 | 0.3769 | | 0.0347 | 25.86 | 1500 | 1.4709 | 0.3769 | | 0.0319 | 27.59 | 1600 | 1.4709 | 0.3769 | | 0.0302 | 29.31 | 1700 | 1.4709 | 0.3769 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
medhabi/distilbert-base-uncased-score-pred-night-2
e1207938b8d358106190eb920f69f9f2e79b8f61
2022-04-08T12:43:15.000Z
[ "pytorch", "text-to-rating", "transformers" ]
null
false
medhabi
null
medhabi/distilbert-base-uncased-score-pred-night-2
0
null
transformers
36,764
Entry not found
jppaolim/v9PT
807e528bce6d126e3fe2ec656790908a1a90fe8b
2022-04-08T10:14:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jppaolim
null
jppaolim/v9PT
0
null
transformers
36,765
Entry not found
lucypallent/distilbert-base-uncased-finetuned-test-headline
317684caceea24560df527190ad11d3a3d875283
2022-04-09T12:16:31.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
lucypallent
null
lucypallent/distilbert-base-uncased-finetuned-test-headline
0
null
transformers
36,766
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-test-headline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-test-headline This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.6745 | 1.0 | 8 | 4.8602 | | 4.8694 | 2.0 | 16 | 4.3241 | | 4.5442 | 3.0 | 24 | 4.3963 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/emarobot
3c752e8bcddfcff92be40fb7f1248182306a5199
2022-04-08T11:13:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/emarobot
0
null
transformers
36,767
--- language: en thumbnail: http://www.huggingtweets.com/emarobot/1649416424059/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1317183233495388160/nLbBT6WF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">3bkreno</div> <div style="text-align: center; font-size: 14px;">@emarobot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 3bkreno. | Data | 3bkreno | | --- | --- | | Tweets downloaded | 970 | | Retweets | 111 | | Short tweets | 129 | | Tweets kept | 841 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mfd65acm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emarobot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1i5j7avt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1i5j7avt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emarobot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lilpeeplyric
26503527d6e3941dd4887fd424d9bf5349963ccc
2022-04-08T15:15:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lilpeeplyric
0
null
transformers
36,768
--- language: en thumbnail: http://www.huggingtweets.com/lilpeeplyric/1649430909105/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445263525878902787/yW8p2-e__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lil peep lyrics bot</div> <div style="text-align: center; font-size: 14px;">@lilpeeplyric</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lil peep lyrics bot. | Data | lil peep lyrics bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jgq3lf6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lilpeeplyric's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lbjza1d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lbjza1d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lilpeeplyric') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
krinal214/augmented_Squad_Translated
af6b682b37c5f259d23a6813c1524c35a758a04a
2022-04-08T18:15:59.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/augmented_Squad_Translated
0
null
transformers
36,769
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: augmented_Squad_Translated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # augmented_Squad_Translated This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1154 | 1.0 | 10835 | 0.5251 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/notsorobot
a9edc5c92f65756a4cbb16ce6c34e8342ba80f40
2022-04-09T12:41:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/notsorobot
0
null
transformers
36,770
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1317183233495388160/nLbBT6WF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">3bkreno</div> <div style="text-align: center; font-size: 14px;">@notsorob</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 3bkreno. | Data | 3bkreno | | --- | --- | | Tweets downloaded | 26419 | | Retweets | 111 | | Short tweets | -8796 | | Tweets kept | 8796 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l7p1yze/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @notsorob's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ypaq5o5y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ypaq5o5y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/notsorob') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
modhp/wav2vec2-model2-torgo
6f9049b9778659ada00097aa787fde726952ef3c
2022-04-11T23:31:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
modhp
null
modhp/wav2vec2-model2-torgo
0
null
transformers
36,771
--- tags: - generated_from_trainer model-index: - name: wav2vec2-model2-torgo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-model2-torgo This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9975 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 12.5453 | 0.76 | 500 | 14.6490 | 1.0 | | 4.8036 | 1.53 | 1000 | 8.4523 | 1.0 | | 5.0421 | 2.29 | 1500 | 5.4114 | 1.0 | | 5.2055 | 3.05 | 2000 | 11.0507 | 1.0 | | 4.6389 | 3.82 | 2500 | 4.6792 | 1.0 | | 4.5523 | 4.58 | 3000 | 4.7855 | 1.0 | | 4.7843 | 5.34 | 3500 | 11.2783 | 1.0 | | 4.6066 | 6.11 | 4000 | 8.7807 | 1.0 | | 4.7382 | 6.87 | 4500 | 2942.0220 | 1.0 | | 130.5733 | 7.63 | 5000 | 5.8412 | 1.0 | | 4.4972 | 8.4 | 5500 | 17.7038 | 1.0 | | 4.5196 | 9.16 | 6000 | 11.4548 | 1.0 | | 4.3198 | 9.92 | 6500 | 6.0885 | 1.0 | | 4.4273 | 10.69 | 7000 | 6.7374 | 1.0 | | 4.2783 | 11.45 | 7500 | 4.7276 | 1.0 | | 4.2985 | 12.21 | 8000 | 6.1412 | 1.0 | | 4.3262 | 12.98 | 8500 | 5.2621 | 1.0 | | 4.1705 | 13.74 | 9000 | 5.2214 | 1.0 | | 4.3176 | 14.5 | 9500 | 5.5359 | 1.0 | | 3.9808 | 15.27 | 10000 | 4.1537 | 1.0 | | 4.0228 | 16.03 | 10500 | 4.2962 | 1.0 | | 4.0595 | 16.79 | 11000 | 7.6361 | 1.0 | | 4.0088 | 17.56 | 11500 | 6.8715 | 1.0 | | 3.8727 | 18.32 | 12000 | 8.8657 | 1.0 | | 4.0073 | 19.08 | 12500 | 5.8170 | 1.0 | | 3.8511 | 19.85 | 13000 | 13.9836 | 1.0 | | 4.0899 | 20.61 | 13500 | 5.3287 | 1.0 | | 3.8782 | 21.37 | 14000 | 8.0635 | 1.0 | | 3.9235 | 22.14 | 14500 | 5.5129 | 1.0 | | 3.7276 | 22.9 | 15000 | 5.0819 | 1.0 | | 3.7908 | 23.66 | 15500 | 6.1458 | 1.0 | | 3.9176 | 24.43 | 16000 | 4.6094 | 1.0 | | 3.8477 | 25.19 | 16500 | 5.1406 | 1.0 | | 3.6917 | 25.95 | 17000 | 4.5684 | 1.0 | | 3.8568 | 26.72 | 17500 | 4.0306 | 1.0 | | 3.7231 | 27.48 | 18000 | 5.6331 | 1.0 | | 3.8145 | 28.24 | 18500 | 8.2997 | 1.0 | | 3.7809 | 29.01 | 19000 | 5.7468 | 1.0 | | 3.5995 | 29.77 | 19500 | 4.9975 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.3 - Tokenizers 0.11.6
nateraw/some-timm-model
eec88812d2589a7853f4b6edead9596fe4c97838
2022-04-08T20:41:36.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/some-timm-model
0
null
timm
36,772
--- tags: - image-classification - timm library_tag: timm --- # Model card for some-timm-model
huggan/pix2pix-cityscapes
b182bc5aba10b79ccf396edc6a4bd7bda16a2084
2022-04-09T15:47:22.000Z
[ "pytorch" ]
null
false
huggan
null
huggan/pix2pix-cityscapes
0
null
null
36,773
Entry not found
huggan/pix2pix-facades
5ccb50ec907eec310280a5944fdf2576bd9647c5
2022-04-09T12:54:21.000Z
[ "pytorch" ]
null
false
huggan
null
huggan/pix2pix-facades
0
null
null
36,774
Entry not found
nielsr/pix2pix-facades
f9e626c7e0150070b4c2dcf3bfc035ae7d88709d
2022-04-09T13:08:54.000Z
[ "pytorch" ]
null
false
nielsr
null
nielsr/pix2pix-facades
0
null
null
36,775
Entry not found
huggan/pix2pix-facades-demo
3784ab6be149f42f77ffb5b9c9cba8e18fbe2fb4
2022-04-11T08:09:26.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
huggan
null
huggan/pix2pix-facades-demo
0
null
null
36,776
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- This was run from this implementation: https://github.com/NielsRogge/community-events-1/blob/improve_pix2pix/huggan/pytorch/pix2pix/train.py The command to run was: ```bash accelerate launch train.py --checkpoint_interval 1 --push_to_hub --output_dir pix2pix-facades --hub_model_id huggan/pix2pix-facades-demo --wandb ```
jppaolim/v10Accel
66d6b7a6b1421709436686d363cd5558ee442e4e
2022-04-09T14:56:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jppaolim
null
jppaolim/v10Accel
0
null
transformers
36,777
Entry not found
nielsr/pix2pix-cityscapes
c0434e7e162215547891c08236dba545fc004e7b
2022-04-09T16:16:17.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
nielsr
null
nielsr/pix2pix-cityscapes
0
null
null
36,778
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
krinal214/bert-all-translated
c815f6f9d7ca45929e8f5cb2d2dd655edf1a1e5c
2022-04-09T18:39:02.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/bert-all-translated
0
null
transformers
36,779
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-all-translated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-all-translated This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2067 | 1.0 | 6319 | 0.5775 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
masakhane/afribyt5_bam_fr_news
8518ac7d80061bc6908247ebfc99c665449dc0cd
2022-04-11T13:34:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_bam_fr_news
0
null
transformers
36,780
--- license: afl-3.0 ---
masakhane/byt5_bam_fr_news
426647906fbfeea6f8257bf2181e26a4279ac98c
2022-04-11T13:41:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_bam_fr_news
0
null
transformers
36,781
--- license: afl-3.0 ---
masakhane/m2m100_418M_bam_fr_rel_news
9f551b90947792ad688a0c0eb034916842280b4d
2022-04-11T14:44:01.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bam_fr_rel_news
0
null
transformers
36,782
--- license: afl-3.0 ---
masakhane/m2m100_418M_bam_fr_rel
63a2b4aa6472a40584e0a64f6056337ec743516d
2022-04-11T15:21:06.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bam_fr_rel
0
null
transformers
36,783
--- license: afl-3.0 ---
masakhane/mbart50_bam_fr_news
5673525f9353f5382242815a265df4878590a252
2022-04-11T14:22:32.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_bam_fr_news
0
null
transformers
36,784
--- license: afl-3.0 ---
masakhane/mt5_fr_bam_news
c28fd2748421f6efcae9b89a9ed7e0e4c8bc59a1
2022-04-11T13:53:55.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_fr_bam_news
0
null
transformers
36,785
--- license: afl-3.0 ---
gemasphi/laprador-document-encoder
6ffa4ce19e7427cd735d45342f2775e555f882aa
2022-04-09T18:35:02.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador-document-encoder
0
null
sentence-transformers
36,786
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggan/fastgan-few-shot-fauvism-still-life
502ee8340517914274b3defaf5dfe3a29240c71f
2022-05-06T22:29:19.000Z
[ "pytorch", "dataset:huggan/few-shot-fauvism-still-life", "arxiv:2101.04775", "huggan", "gan", "unconditional-image-generation", "license:mit" ]
unconditional-image-generation
false
huggan
null
huggan/fastgan-few-shot-fauvism-still-life
0
null
null
36,787
--- tags: - huggan - gan - unconditional-image-generation datasets: - huggan/few-shot-fauvism-still-life # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # Generate fauvism still life image using FastGAN ## Model description [FastGAN model](https://arxiv.org/abs/2101.04775) is a Generative Adversarial Networks (GAN) training on a small amount of high-fidelity images with minimum computing cost. Using a skip-layer channel-wise excitation module and a self-supervised discriminator trained as a feature-encoder, the model was able to converge after some hours of training for either 100 high-quality images or 1000 images datasets. This model was trained on a dataset of 124 high-quality Fauvism painting images. #### How to use ```python # Clone this model git clone https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life/ def load_generator(model_name_or_path): generator = Generator(in_channels=256, out_channels=3) generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) _ = generator.eval() return generator def _denormalize(input: torch.Tensor) -> torch.Tensor: return (input * 127.5) + 127.5 # Load generator generator = load_generator("huggan/fastgan-few-shot-fauvism-still-life") # Generate a random noise image noise = torch.zeros(1, 256, 1, 1, device=device).normal_(0.0, 1.0) with torch.no_grad(): gan_images, _ = generator(noise) gan_images = _denormalize(gan_images.detach()) save_image(gan_images, "sample.png", nrow=1, normalize=True) ``` #### Limitations and bias * Converge faster and better with small datasets (less than 1000 samples) ## Training data [few-shot-fauvism-still-life](https://huggingface.co/datasets/huggan/few-shot-fauvism-still-life) ## Generated Images ![Example image](example.png) ### BibTeX entry and citation info ```bibtex @article{FastGAN, title={Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis}, author={Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal}, journal={ICLR}, year={2021} } ```
iyedr8/DialoGPT-small-rick
1ce7258632c3f27dcbfde84da5312824ee57cfb6
2022-04-10T00:21:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
iyedr8
null
iyedr8/DialoGPT-small-rick
0
null
transformers
36,788
--- tags: - conversational --- #Morty DialoGPT Model
uhlenbeckmew/distilroberta-base-1
1a3a2c62ed971d16913ccbf21392c252f43b3b74
2022-04-26T05:53:42.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
uhlenbeckmew
null
uhlenbeckmew/distilroberta-base-1
0
null
transformers
36,789
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-1 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0133 | 1.0 | 1388 | 2.8166 | | 2.8418 | 2.0 | 2776 | 2.7113 | | 2.7683 | 3.0 | 4164 | 2.6634 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/fitfounder
152520db7f6cc73152bd603db0955dd4df234676
2022-04-10T10:09:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fitfounder
0
null
transformers
36,790
--- language: en thumbnail: http://www.huggingtweets.com/fitfounder/1649585355118/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1279092409587163137/eN82f_KT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dan Go</div> <div style="text-align: center; font-size: 14px;">@fitfounder</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dan Go. | Data | Dan Go | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 47 | | Short tweets | 653 | | Tweets kept | 2550 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lrz0j2b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fitfounder's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8hmcij96) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8hmcij96/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fitfounder') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
krinal214/bert-all-squad_que_translated
e45c6ec4a30e5d2de58ea191c03235031a017f06
2022-04-14T22:09:34.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/bert-all-squad_que_translated
0
null
transformers
36,791
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-all-squad_que_translated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-all-squad_que_translated This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0746 | 1.0 | 18011 | 0.5174 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.11.6
laampt/distilbert-base-uncased-finetuned-squad
e4231484ada4b3fcf29c63fd37f889dca2c01a1d
2022-04-10T13:15:06.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
laampt
null
laampt/distilbert-base-uncased-finetuned-squad
0
null
transformers
36,792
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
krinal214/bert-all-squad_all_translated
5e1afc9fcc07aba0505a333d91c2a70268906293
2022-04-10T19:04:17.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/bert-all-squad_all_translated
0
null
transformers
36,793
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-all-squad_all_translated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-all-squad_all_translated This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.022 | 1.0 | 21579 | 0.5261 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/gceh
69dbae8182db987e5e4669cc0542c09b7ec42996
2022-04-22T21:26:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gceh
0
null
transformers
36,794
--- language: en thumbnail: http://www.huggingtweets.com/gceh/1650662812216/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487906000875180033/7mInu58B_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Geoff Evamy Hill</div> <div style="text-align: center; font-size: 14px;">@gceh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Geoff Evamy Hill. | Data | Geoff Evamy Hill | | --- | --- | | Tweets downloaded | 3195 | | Retweets | 1491 | | Short tweets | 123 | | Tweets kept | 1581 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24mcziml/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gceh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/217yb92j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/217yb92j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gceh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mT0/mt0_xl_t0pp_ckpt_1012500
39066c5147b633c581c7b5e89b2faee5577a0ddf
2022-04-10T18:55:20.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mT0
null
mT0/mt0_xl_t0pp_ckpt_1012500
0
null
transformers
36,795
Entry not found
huggingtweets/graveyard_plots-hel_ql-witheredstrings
d638c5fef4ed3eba5b66c17cee3d0f3a88671d01
2022-04-10T19:16:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/graveyard_plots-hel_ql-witheredstrings
0
null
transformers
36,796
--- language: en thumbnail: http://www.huggingtweets.com/graveyard_plots-hel_ql-witheredstrings/1649618186549/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511852580216967169/b1Aiv2t3_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1457045233783701504/fnjAg6lH_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1332861091119046661/7ZD3Nqqg_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">GHANEM & Anthropos & darth hattie</div> <div style="text-align: center; font-size: 14px;">@graveyard_plots-hel_ql-witheredstrings</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from GHANEM & Anthropos & darth hattie. | Data | GHANEM | Anthropos | darth hattie | | --- | --- | --- | --- | | Tweets downloaded | 413 | 1175 | 1288 | | Retweets | 1 | 354 | 9 | | Short tweets | 18 | 92 | 146 | | Tweets kept | 394 | 729 | 1133 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26q7h6ze/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @graveyard_plots-hel_ql-witheredstrings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vrvcbh4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vrvcbh4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/graveyard_plots-hel_ql-witheredstrings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nordicshrew
8d271fdf45825eba7d8cd317417bfc0ad62fb403
2022-04-10T22:04:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nordicshrew
0
null
transformers
36,797
--- language: en thumbnail: http://www.huggingtweets.com/nordicshrew/1649628249290/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1129935220260704256/RSmw3S0E_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">guelph’s finest poster</div> <div style="text-align: center; font-size: 14px;">@nordicshrew</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from guelph’s finest poster. | Data | guelph’s finest poster | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 429 | | Short tweets | 145 | | Tweets kept | 2645 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ywrep7o1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nordicshrew's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jti1kl9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jti1kl9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nordicshrew') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/s_m_frank
88da22e3e23b161860fb39f7c24c76366f96c42d
2022-04-10T22:28:09.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/s_m_frank
0
null
transformers
36,798
--- language: en thumbnail: http://www.huggingtweets.com/s_m_frank/1649629685555/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1480658144833515525/DS0AOK_d_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cute junco observer</div> <div style="text-align: center; font-size: 14px;">@s_m_frank</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cute junco observer. | Data | cute junco observer | | --- | --- | | Tweets downloaded | 1253 | | Retweets | 482 | | Short tweets | 184 | | Tweets kept | 587 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s2slp94/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @s_m_frank's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bjkzwlr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bjkzwlr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/s_m_frank') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggan/fastgan-few-shot-painting
2d74d156bb01bad125b6dc62b0f75df4a8447d44
2022-05-06T22:31:52.000Z
[ "pytorch", "dataset:huggan/few-shot-art-painting", "arxiv:2101.04775", "huggan", "gan", "unconditional-image-generation", "license:mit" ]
unconditional-image-generation
false
huggan
null
huggan/fastgan-few-shot-painting
0
null
null
36,799
--- tags: - huggan - gan - unconditional-image-generation datasets: - huggan/few-shot-art-painting # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # Generate paiting image using FastGAN ## Model description [FastGAN model](https://arxiv.org/abs/2101.04775) is a Generative Adversarial Networks (GAN) training on a small amount of high-fidelity images with minimum computing cost. Using a skip-layer channel-wise excitation module and a self-supervised discriminator trained as a feature-encoder, the model was able to converge after some hours of training for either 100 high-quality images or 1000 images datasets. This model was trained on a dataset of 1000 high-quality images of art paintings. #### How to use ```python # Clone this model git clone https://huggingface.co/huggan/fastgan-few-shot-painting/ def load_generator(model_name_or_path): generator = Generator(in_channels=256, out_channels=3) generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) _ = generator.eval() return generator def _denormalize(input: torch.Tensor) -> torch.Tensor: return (input * 127.5) + 127.5 # Load generator generator = load_generator("fastgan-few-shot-painting") # Generate a random noise image noise = torch.zeros(1, 256, 1, 1, device=device).normal_(0.0, 1.0) with torch.no_grad(): gan_images, _ = generator(noise) gan_images = _denormalize(gan_images.detach()) save_image(gan_images, "sample.png", nrow=1, normalize=True) ``` #### Limitations and bias * Converge faster and better with small datasets (less than 1000 samples) ## Training data [few-shot-art-painting](https://huggingface.co/datasets/huggan/few-shot-art-painting) ## Generated Images ![Example image](example.png) ### BibTeX entry and citation info ```bibtex @article{FastGAN, title={Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis}, author={Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal}, journal={ICLR}, year={2021} } ```