modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
facebook/regnet-x-032
c2f07bf7b2d97ae5279125dd15ba52456c2b64e2
2022-06-30T10:14:28.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-032
0
null
transformers
36,500
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
krinal214/bert-all
76a7fc429293e49c41464ef839cc01093ea2de90
2022-03-15T21:02:20.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/bert-all
0
null
transformers
36,501
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tydiqa model-index: - name: bert-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-all This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 0.5985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1556 | 1.0 | 3552 | 0.5985 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
huggingtweets/theshiftnews
c9da2de7c6dc40de124deb4c8cec3979bb1f66f1
2022-03-15T20:56:54.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/theshiftnews
0
null
transformers
36,502
--- language: en thumbnail: http://www.huggingtweets.com/theshiftnews/1647377809961/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1318831968352612352/blMpdUu4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Shift News</div> <div style="text-align: center; font-size: 14px;">@theshiftnews</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Shift News. | Data | The Shift News | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 446 | | Short tweets | 43 | | Tweets kept | 2727 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1k4siv5q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @theshiftnews's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2cedhhrz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2cedhhrz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/theshiftnews') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/maltatoday-netnewsmalta-one_news_malta
e4ea8f1e4c1623810d2abd8ad155a725e5f6dad0
2022-03-15T21:21:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/maltatoday-netnewsmalta-one_news_malta
0
null
transformers
36,503
--- language: en thumbnail: http://www.huggingtweets.com/maltatoday-netnewsmalta-one_news_malta/1647379141053/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442160889596026883/gq6jcObz_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1047423145077030912/0B4-Tgba_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1333858206012084227/XP6EKW-K_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ONE news & NETnews & MaltaToday</div> <div style="text-align: center; font-size: 14px;">@maltatoday-netnewsmalta-one_news_malta</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ONE news & NETnews & MaltaToday. | Data | ONE news | NETnews | MaltaToday | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3250 | | Retweets | 0 | 0 | 1 | | Short tweets | 17 | 1 | 3 | | Tweets kept | 3233 | 3249 | 3246 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lme9vpn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maltatoday-netnewsmalta-one_news_malta's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zkwd2sgh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zkwd2sgh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maltatoday-netnewsmalta-one_news_malta') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/independentmlt-maltatoday-thetimesofmalta
e6b0986f44f803a91e90ecca2f310d1189fd6df2
2022-03-15T22:00:58.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/independentmlt-maltatoday-thetimesofmalta
0
null
transformers
36,504
--- language: en thumbnail: http://www.huggingtweets.com/independentmlt-maltatoday-thetimesofmalta/1647381547913/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1333858206012084227/XP6EKW-K_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419612859244457987/Ph3kXUL3_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1338811551994826752/XQnrubON_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MaltaToday & Times of Malta & The Malta Independent</div> <div style="text-align: center; font-size: 14px;">@independentmlt-maltatoday-thetimesofmalta</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MaltaToday & Times of Malta & The Malta Independent. | Data | MaltaToday | Times of Malta | The Malta Independent | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3250 | | Retweets | 1 | 0 | 5 | | Short tweets | 3 | 0 | 1 | | Tweets kept | 3246 | 3250 | 3244 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2z9a8ves/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @independentmlt-maltatoday-thetimesofmalta's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/117uvo5a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/117uvo5a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/independentmlt-maltatoday-thetimesofmalta') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kSaluja/roberta-finetuned-ner
0587792d41258f900e6f493efa3cbbc586bd3726
2022-03-16T00:00:41.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/roberta-finetuned-ner
0
null
transformers
36,505
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1322 - Precision: 0.9772 - Recall: 0.9782 - F1: 0.9777 - Accuracy: 0.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 253 | 0.1694 | 0.9636 | 0.9555 | 0.9595 | 0.9617 | | 0.4479 | 2.0 | 506 | 0.1374 | 0.9743 | 0.9762 | 0.9752 | 0.9743 | | 0.4479 | 3.0 | 759 | 0.1322 | 0.9772 | 0.9782 | 0.9777 | 0.9767 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
willcai/wav2vec2_common_voice_accents_3
32b359201268a0e60a1f7aa870d30ff170b61885
2022-03-17T03:04:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_3
0
null
transformers
36,506
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.584 | 1.27 | 400 | 1.1439 | | 0.481 | 2.55 | 800 | 0.1986 | | 0.2384 | 3.82 | 1200 | 0.1060 | | 0.1872 | 5.1 | 1600 | 0.1016 | | 0.158 | 6.37 | 2000 | 0.0942 | | 0.1427 | 7.64 | 2400 | 0.0646 | | 0.1306 | 8.92 | 2800 | 0.0612 | | 0.1197 | 10.19 | 3200 | 0.0423 | | 0.1129 | 11.46 | 3600 | 0.0381 | | 0.1054 | 12.74 | 4000 | 0.0326 | | 0.0964 | 14.01 | 4400 | 0.0293 | | 0.0871 | 15.29 | 4800 | 0.0239 | | 0.0816 | 16.56 | 5200 | 0.0168 | | 0.0763 | 17.83 | 5600 | 0.0202 | | 0.0704 | 19.11 | 6000 | 0.0224 | | 0.0669 | 20.38 | 6400 | 0.0208 | | 0.063 | 21.66 | 6800 | 0.0074 | | 0.0585 | 22.93 | 7200 | 0.0126 | | 0.0548 | 24.2 | 7600 | 0.0086 | | 0.0512 | 25.48 | 8000 | 0.0080 | | 0.0487 | 26.75 | 8400 | 0.0052 | | 0.0455 | 28.03 | 8800 | 0.0062 | | 0.0433 | 29.3 | 9200 | 0.0042 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
kSaluja/roberta-finetuned-ner-without-data-sort
d8afdcca4a015ce9d24c0e4487711ce09dd2799a
2022-03-16T01:27:44.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/roberta-finetuned-ner-without-data-sort
0
null
transformers
36,507
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-finetuned-ner-without-data-sort results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-ner-without-data-sort This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0420 - Precision: 0.9914 - Recall: 0.9909 - F1: 0.9912 - Accuracy: 0.9920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.1879 | 0.9378 | 0.9414 | 0.9396 | 0.9493 | | No log | 2.0 | 426 | 0.1038 | 0.9725 | 0.9750 | 0.9737 | 0.9751 | | 0.4424 | 3.0 | 639 | 0.0701 | 0.9861 | 0.9851 | 0.9856 | 0.9863 | | 0.4424 | 4.0 | 852 | 0.0637 | 0.9882 | 0.9880 | 0.9881 | 0.9880 | | 0.0675 | 5.0 | 1065 | 0.0546 | 0.9851 | 0.9878 | 0.9865 | 0.9879 | | 0.0675 | 6.0 | 1278 | 0.0480 | 0.9894 | 0.9904 | 0.9899 | 0.9901 | | 0.0675 | 7.0 | 1491 | 0.0473 | 0.9919 | 0.9904 | 0.9912 | 0.9911 | | 0.0426 | 8.0 | 1704 | 0.0441 | 0.9921 | 0.9916 | 0.9919 | 0.9921 | | 0.0426 | 9.0 | 1917 | 0.0426 | 0.9921 | 0.9916 | 0.9919 | 0.9922 | | 0.033 | 10.0 | 2130 | 0.0420 | 0.9914 | 0.9909 | 0.9912 | 0.9920 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
libalabala/marian-finetuned-kde4-en-to-fr
129f66031b566e4c281679da03e5a6082e740d80
2022-03-17T08:13:54.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
libalabala
null
libalabala/marian-finetuned-kde4-en-to-fr
0
null
transformers
36,508
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
sraza/wav2vec2-large-xls-r-300m-ur-colab
95a2d55143b4d15afefd528159b34f6f1edccdd7
2022-06-07T06:57:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sraza
null
sraza/wav2vec2-large-xls-r-300m-ur-colab
0
1
transformers
36,509
ASR for urdu language. Dataset used is common voice and also some self collected data.
mazenalasali/layoutlmv2-finetuned-funsd-test
73090e876b5906cb44383124c1eb809a10462eba
2022-03-16T13:02:29.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
mazenalasali
null
mazenalasali/layoutlmv2-finetuned-funsd-test
0
null
transformers
36,510
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-funsd-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd-test This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 2.0.0 - Tokenizers 0.11.6
krinal214/xlm-3lang
a882fe9e6b96617f34a0706960727bc571439cd7
2022-03-16T12:55:35.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/xlm-3lang
0
null
transformers
36,511
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: xlm-eng-beng-tel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-eng-beng-tel This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2927 | 1.0 | 810 | 0.7303 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
newtonkwan/gpt2-xl-ft-0
db4a67ee4b48f80835f01f347b6563a004db673e
2022-03-16T21:58:33.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-0
0
null
transformers
36,512
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-0 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.96 | 6 | 5.1701 | | No log | 1.96 | 12 | 4.1214 | | No log | 2.96 | 18 | 2.5305 | | No log | 3.96 | 24 | 2.0324 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.31455421447754 ### Dataset Size Size: 1000
horsbug98/Part_2_mBERT_Model_E1
e4c205ab6b6426bb5e73a2a2daf75391f1db8806
2022-03-16T17:01:57.000Z
[ "pytorch", "bert", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
horsbug98
null
horsbug98/Part_2_mBERT_Model_E1
0
null
transformers
36,513
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_mbert_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_mbert_task2_1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
nandezgarcia/distilbert-base-uncased-finetuned-squad-d5716d28
f7ee7a8a1c00fbe8bd63b5b39f56c92e631b896f
2022-03-16T18:26:49.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:1910.01108", "question-answering", "license:apache-2.0" ]
question-answering
false
nandezgarcia
null
nandezgarcia/distilbert-base-uncased-finetuned-squad-d5716d28
0
null
null
36,514
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
newtonkwan/gpt2-xl-ft-1
e31681d9c0b1f44f2bb0ece35e1417058f31bdbc
2022-03-16T23:52:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-1
0
null
transformers
36,515
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-with-non-challenging results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-with-non-challenging This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2020 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 31 | 1.5517 | | No log | 1.99 | 62 | 1.3733 | | No log | 2.99 | 93 | 1.4207 | | No log | 3.99 | 124 | 1.4872 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6 ### Perplexity Score: 28.26373863220215 ### Dataset Size Size: 5000
radev/xlm-roberta-base-finetuned-panx-de
7509bc5d172ff94e83a2a43745e655b52ea1cb49
2022-03-23T22:27:27.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
radev
null
radev/xlm-roberta-base-finetuned-panx-de
0
null
transformers
36,516
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8593216480764853 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1807 | 0.8065 | | 0.2218 | 2.0 | 526 | 0.1365 | 0.8485 | | 0.2218 | 3.0 | 789 | 0.1345 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/ericson_ubbhult
aea9b060ee62687896756b9314a5a21af9d65867
2022-05-31T08:40:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ericson_ubbhult
0
null
transformers
36,517
--- language: en thumbnail: http://www.huggingtweets.com/ericson_ubbhult/1653986423351/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1829196789/bild_400x400.JPG&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jan Ericson πŸ‡ΈπŸ‡ͺπŸ‡ΊπŸ‡¦</div> <div style="text-align: center; font-size: 14px;">@ericson_ubbhult</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jan Ericson πŸ‡ΈπŸ‡ͺπŸ‡ΊπŸ‡¦. | Data | Jan Ericson πŸ‡ΈπŸ‡ͺπŸ‡ΊπŸ‡¦ | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 434 | | Short tweets | 232 | | Tweets kept | 2583 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/imczgylz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ericson_ubbhult's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mmecont) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mmecont/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ericson_ubbhult') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
negfir/Distill_4L
8b26884cda182d4c3a282a833fc13efef715d399
2022-03-17T01:15:51.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/Distill_4L
0
null
transformers
36,518
Entry not found
lijingxin/mt5_squad_zen_qg
92cae6a68faa8641e55e839d71f56384ef2d14c6
2022-03-17T08:54:02.000Z
[ "pytorch" ]
null
false
lijingxin
null
lijingxin/mt5_squad_zen_qg
0
null
null
36,519
Entry not found
huggingtweets/missdaytona
2da37ecd99a863945b0c77c4b6e3c3b9eaf14014
2022-03-17T10:44:00.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/missdaytona
0
null
transformers
36,520
--- language: en thumbnail: http://www.huggingtweets.com/missdaytona/1647513656155/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487686479/Tanner1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">xx</div> <div style="text-align: center; font-size: 14px;">@missdaytona</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from xx. | Data | xx | | --- | --- | | Tweets downloaded | 162 | | Retweets | 0 | | Short tweets | 29 | | Tweets kept | 133 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gy072xq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @missdaytona's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8310y47m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8310y47m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/missdaytona') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
saghar/TinyBERT_L-4_H-312_v2-finetuned-wikitext103
a6f79a9bce22cb094fa6b0598487e1ceec701e96
2022-03-17T15:59:39.000Z
[ "pytorch", "bert", "fill-mask", "dataset:wikitext", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
saghar
null
saghar/TinyBERT_L-4_H-312_v2-finetuned-wikitext103
0
null
transformers
36,521
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: TinyBERT_L-4_H-312_v2-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyBERT_L-4_H-312_v2-finetuned-wikitext103 This model is a fine-tuned version of [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 6.4638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0604 | 1.0 | 3125 | 6.6745 | | 6.7122 | 2.0 | 6250 | 6.5061 | | 6.6289 | 3.0 | 9375 | 6.4638 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
mideind/IceBERT-mC4-is
6802afb1a400df0c5a5eb9eb508cdf7ad8b07a48
2022-03-17T14:05:41.000Z
[ "pytorch", "roberta", "fill-mask", "is", "arxiv:2201.05601", "transformers", "icelandic", "masked-lm", "license:agpl-3.0", "autotrain_compatible" ]
fill-mask
false
mideind
null
mideind/IceBERT-mC4-is
0
null
transformers
36,522
--- language: is widget: - text: MÑ bjóða þér <mask> í kvâld? - text: Forseti <mask> er Ñgæt. - text: Súpan var <mask> Ñ bragðið. tags: - roberta - icelandic - masked-lm - pytorch license: agpl-3.0 --- *We do not recommend the use of this model besides for comparison with the other IceBERT models* # IceBERT-mC4-is This model was trained with fairseq using the RoBERTa-base architecture. It is one of many models we have trained for Icelandic, see the paper referenced below for further details. It was trained on the Icelandic part of the mC4 dataset. ## Citation The model is described in this paper [https://arxiv.org/abs/2201.05601](https://arxiv.org/abs/2201.05601). Please cite the paper if you make use of the model. ``` @article{DBLP:journals/corr/abs-2201-05601, author = {V{\'{e}}steinn Sn{\ae}bjarnarson and Haukur Barri S{\'{\i}}monarson and P{\'{e}}tur Orri Ragnarsson and Svanhv{\'{\i}}t Lilja Ing{\'{o}}lfsd{\'{o}}ttir and Haukur P{\'{a}}ll J{\'{o}}nsson and Vilhj{\'{a}}lmur {\TH}orsteinsson and Hafsteinn Einarsson}, title = {A Warm Start and a Clean Crawled Corpus - {A} Recipe for Good Language Models}, journal = {CoRR}, volume = {abs/2201.05601}, year = {2022}, url = {https://arxiv.org/abs/2201.05601}, eprinttype = {arXiv}, eprint = {2201.05601}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-05601.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
mideind/IceBERT-xlmr-ic3
51ac5ff8594fb6c26028bd3cf700a9c91cbf9d9f
2022-03-17T14:02:17.000Z
[ "pytorch", "roberta", "fill-mask", "is", "arxiv:2201.05601", "transformers", "icelandic", "masked-lm", "license:agpl-3.0", "autotrain_compatible" ]
fill-mask
false
mideind
null
mideind/IceBERT-xlmr-ic3
0
null
transformers
36,523
--- language: is widget: - text: MÑ bjóða þér <mask> í kvâld? - text: Forseti <mask> er Ñgæt. - text: Súpan var <mask> Ñ bragðið. tags: - roberta - icelandic - masked-lm - pytorch license: agpl-3.0 --- # IceBERT-xlmr-ic3 This model was trained with fairseq using the RoBERTa-base architecture. The model `xlm-roberta-base` was used as a starting point. It is one of many models we have trained for Icelandic, see the paper referenced below for further details. The training data used is shown in the table below. | Dataset | Size | Tokens | |------------------------------------------------------|---------|--------| | Icelandic Common Crawl Corpus (IC3) | 4.9 GB | 824M | ## Citation The model is described in this paper [https://arxiv.org/abs/2201.05601](https://arxiv.org/abs/2201.05601). Please cite the paper if you make use of the model. ``` @article{DBLP:journals/corr/abs-2201-05601, author = {V{\'{e}}steinn Sn{\ae}bjarnarson and Haukur Barri S{\'{\i}}monarson and P{\'{e}}tur Orri Ragnarsson and Svanhv{\'{\i}}t Lilja Ing{\'{o}}lfsd{\'{o}}ttir and Haukur P{\'{a}}ll J{\'{o}}nsson and Vilhj{\'{a}}lmur {\TH}orsteinsson and Hafsteinn Einarsson}, title = {A Warm Start and a Clean Crawled Corpus - {A} Recipe for Good Language Models}, journal = {CoRR}, volume = {abs/2201.05601}, year = {2022}, url = {https://arxiv.org/abs/2201.05601}, eprinttype = {arXiv}, eprint = {2201.05601}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-05601.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
sanchit-gandhi/wav2vec2-2-bart-debug
fb493c8c3f5b768ee26118fde0d9a82b1f8a64fd
2022-03-17T16:28:55.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-bart-debug
0
null
transformers
36,524
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
transZ/BART_shared_aug
fc40ec2c70d30620befbd1c5c99daaeba6f44614
2022-04-15T11:08:38.000Z
[ "pytorch", "shared_bart", "transformers" ]
null
false
transZ
null
transZ/BART_shared_aug
0
null
transformers
36,525
Entry not found
niksss/Hinglish-HATEBERT
635c85ccc835f6b51c8905eda7072e80ba737e50
2022-03-17T18:43:00.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:afl-3.0" ]
feature-extraction
false
niksss
null
niksss/Hinglish-HATEBERT
0
null
transformers
36,526
--- license: afl-3.0 --- Fine-Tune it using this [nb](https://colab.research.google.com/drive/1JRmrAYR0pcEWyni_VtT4SSFxZ5adlAhS?usp=sharing)
artemis13fowl/bert-base-cased-imdb
02268ffdcad91ee5ccfc0565fecaa8ce4c0ef6bb
2022-03-18T10:01:35.000Z
[ "pytorch" ]
null
false
artemis13fowl
null
artemis13fowl/bert-base-cased-imdb
0
null
null
36,527
Entry not found
artemis13fowl/bert-base-cased-imdb-tmp
64f89a3dad051077d0cffac3192afd0656ff75fe
2022-03-18T09:53:17.000Z
[ "pytorch" ]
null
false
artemis13fowl
null
artemis13fowl/bert-base-cased-imdb-tmp
0
null
null
36,528
Entry not found
nairoj/Bert_ANT
677c5a6eb063e68a284897df74c955c411f7f64d
2022-05-30T14:29:36.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
nairoj
null
nairoj/Bert_ANT
0
null
transformers
36,529
--- license: mit ---
facebook/regnet-x-080
4f41bade4f37141a9aea824fd3bf7519733f0a46
2022-06-30T10:14:32.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-080
0
null
transformers
36,530
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-x-160
30ed4735d93a87db5d5b2c41c0c7049c13b01265
2022-06-30T10:14:35.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-160
0
null
transformers
36,531
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-y-016
5f453e35ddd0a5c1297dec982ac984a1359a8850
2022-06-28T11:38:42.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-016
0
null
transformers
36,532
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
huggingtweets/sappublicsector
2e18aab40d1f2ffe63a52d119fe53a451e663995
2022-03-18T17:46:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/sappublicsector
0
null
transformers
36,533
--- language: en thumbnail: http://www.huggingtweets.com/sappublicsector/1647625586483/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486782108030930950/2JS43mTA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SAP Public Sector</div> <div style="text-align: center; font-size: 14px;">@sappublicsector</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SAP Public Sector. | Data | SAP Public Sector | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 38 | | Short tweets | 0 | | Tweets kept | 3162 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2alb74qi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sappublicsector's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sppp2pwd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sppp2pwd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sappublicsector') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lilitket/xlsrhylm
b008f39a81dd60bd8942eb477b17a89d8d3fb51b
2022-03-19T00:55:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/xlsrhylm
0
null
transformers
36,534
Entry not found
huggingtweets/abombayboy
155cd3400d646f558929100dbbd399fa7ba46a27
2022-03-19T16:13:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/abombayboy
0
null
transformers
36,535
--- language: en thumbnail: http://www.huggingtweets.com/abombayboy/1647706387106/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1465673407178043396/aYbTBRbu_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bombay Boy</div> <div style="text-align: center; font-size: 14px;">@abombayboy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bombay Boy. | Data | Bombay Boy | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 927 | | Short tweets | 181 | | Tweets kept | 2130 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3paz3q98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @abombayboy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/331ordwj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/331ordwj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/abombayboy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lilitket/xlsrhylm_new
b281d3db8e2f0eb72f7cb7c08c5c65d2f469544f
2022-03-19T18:14:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/xlsrhylm_new
0
null
transformers
36,536
Entry not found
saghar/xtremedistil-l6-h384-uncased-finetuned-wikitext103
51fe482cad6255dd36a48bd62fdb1a6b5cfd0abd
2022-03-20T23:45:34.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "dataset:wikitext", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
saghar
null
saghar/xtremedistil-l6-h384-uncased-finetuned-wikitext103
0
null
transformers
36,537
--- license: mit tags: - generated_from_trainer datasets: - wikitext model-index: - name: xtremedistil-l6-h384-uncased-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h384-uncased-finetuned-wikitext103 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 6.5526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1974 | 1.0 | 3125 | 6.7483 | | 6.8171 | 2.0 | 6250 | 6.5962 | | 6.7483 | 3.0 | 9375 | 6.5526 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 1.1.1 - Tokenizers 0.10.1
willcai/wav2vec2_common_voice_accents_6
6b37d3882b9045280124b84d9d3b73a6f580b128
2022-03-20T08:23:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_6
0
null
transformers
36,538
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_6 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8539 | 25.0 | 400 | 0.3711 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
pinkducky/Monica_Bot
dc42f3598b1113eda2c2295a2a090ff50726c6c0
2022-03-20T13:16:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pinkducky
null
pinkducky/Monica_Bot
0
null
transformers
36,539
--- tags: - conversational --- # My Awesome Model
wasilkas/wav2vec2-base-timit-demo-colab
c2daa6d33a2e222d6aa33dec71c6d49b69c5e661
2022-03-20T20:04:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
wasilkas
null
wasilkas/wav2vec2-base-timit-demo-colab
0
null
transformers
36,540
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the TIMIT dataset. It achieves the following results on the evaluation set: - Loss: 0.4491 - Wer: 0.3382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4787 | 4.0 | 500 | 1.4190 | 0.9939 | | 0.5835 | 8.0 | 1000 | 0.4711 | 0.4370 | | 0.219 | 12.0 | 1500 | 0.4555 | 0.3994 | | 0.1251 | 16.0 | 2000 | 0.4515 | 0.3654 | | 0.0834 | 20.0 | 2500 | 0.4923 | 0.3564 | | 0.0632 | 24.0 | 3000 | 0.4410 | 0.3399 | | 0.0491 | 28.0 | 3500 | 0.4491 | 0.3382 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
snehatyagi/wav2vec2_timit
7ca4c48bdd89ff2464c6fb337f351c021fd15ea2
2022-03-23T05:41:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
snehatyagi
null
snehatyagi/wav2vec2_timit
0
null
transformers
36,541
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2_timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_timit This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0791 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.1506 | 2.4 | 300 | 3.1294 | 1.0 | | 3.0957 | 4.8 | 600 | 3.0791 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.6
tau/fewsion_2_1024_0.3_epoch1
68a87bfab18b5773e3aa09dcd0d85f8d886a9de6
2022-03-21T07:48:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/fewsion_2_1024_0.3_epoch1
0
null
transformers
36,542
Entry not found
tau/pegasus_1024_0.3_epoch1_v2
4da6a01fd5f5c446a871e8064692a59f2255c3e2
2022-03-21T07:53:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/pegasus_1024_0.3_epoch1_v2
0
null
transformers
36,543
Entry not found
tau/random_1024_0.3_epoch1_v2
fe801f51d07d7cb8f3da162fda8f36781af61e2f
2022-03-21T07:58:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/random_1024_0.3_epoch1_v2
0
null
transformers
36,544
Entry not found
tau/t5_1024_0.3_epoch1_v2
cefb4d893c8fd080e9c8e68ba2328190b2324562
2022-03-21T08:04:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5_1024_0.3_epoch1_v2
0
null
transformers
36,545
Entry not found
huggingtweets/victoriamonet
1287bde7987dffa450938ede8e5a1e97fae5d043
2022-03-21T13:07:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/victoriamonet
0
null
transformers
36,546
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504478055275802628/EuQs8_M7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Victoria MonΓ©t</div> <div style="text-align: center; font-size: 14px;">@victoriamonet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Victoria MonΓ©t. | Data | Victoria MonΓ©t | | --- | --- | | Tweets downloaded | 3172 | | Retweets | 302 | | Short tweets | 593 | | Tweets kept | 2277 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qwme5s7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @victoriamonet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zqoy9ki) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zqoy9ki/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/victoriamonet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rupertboneham-rupertskids-survivorcbs
dfde4fd79f34ff824a3b6c1014940fc23774fb3a
2022-03-21T13:31:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rupertboneham-rupertskids-survivorcbs
0
null
transformers
36,547
--- language: en thumbnail: http://www.huggingtweets.com/rupertboneham-rupertskids-survivorcbs/1647869465531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2879716355/bd3a0d75f2ec004c61cf470e66895eda_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984777181963448321/GZEqLnVr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488244197467381765/3F2BzfCJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rupert Boneham & Rupert Boneham & SURVIVOR</div> <div style="text-align: center; font-size: 14px;">@rupertboneham-rupertskids-survivorcbs</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rupert Boneham & Rupert Boneham & SURVIVOR. | Data | Rupert Boneham | Rupert Boneham | SURVIVOR | | --- | --- | --- | --- | | Tweets downloaded | 3139 | 352 | 3222 | | Retweets | 710 | 151 | 551 | | Short tweets | 142 | 17 | 540 | | Tweets kept | 2287 | 184 | 2131 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m3rl64a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rupertboneham-rupertskids-survivorcbs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o5vktei) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o5vktei/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rupertboneham-rupertskids-survivorcbs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ukr-models/uk-ner-quantized
49e0989c9bb6c908bc09864e96e57e48a5af9bb7
2022-03-22T17:37:16.000Z
[ "pytorch", "uk", "ukrainian", "license:mit" ]
null
false
ukr-models
null
ukr-models/uk-ner-quantized
0
1
null
36,548
--- language: - uk tags: - ukrainian license: mit --- ## Model Description Quantized version [uk-ner model](https://huggingface.co/ukr-models/uk-ner). Returns B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG tags ## How to Use After cloning the repository, please use the following code (download script get_predictions.py from the repository, it uses [package tokenize_uk](https://pypi.org/project/tokenize_uk/) for splitting) ```py from transformers import AutoTokenizer import torch from get_predictions import get_word_predictions tokenizer = AutoTokenizer.from_pretrained("./") model = torch.load("./pytorch_model.bin") labels_list = ['O','B-PER','I-PER','B-ORG','I-ORG','B-LOC','I-LOC'] texts = ["Могила Вараса Π¨Π΅Π²Ρ‡Π΅Π½ΠΊΠ° β€” місцС поховання Π²ΠΈΠ΄Π°Ρ‚Π½ΠΎΠ³ΠΎ ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΅Ρ‚Π° Вараса Π¨Π΅Π²Ρ‡Π΅Π½ΠΊΠ° Π² місті ΠšΠ°Π½Ρ–Π² (Π§Π΅Ρ€ΠΊΠ°ΡΡŒΠΊΠ° ΠΎΠ±Π»Π°ΡΡ‚ΡŒ) Π½Π° Π§Π΅Ρ€Π½Π΅Ρ‡Ρ–ΠΉ Π³ΠΎΡ€Ρ–, Π½Π°Π΄ яким Ρ–Π· 1939 Ρ€ΠΎΠΊΡƒ височіє Π±Ρ€ΠΎΠ½Π·ΠΎΠ²ΠΈΠΉ ΠΏΠ°ΠΌ'ятник Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ ΡΠΊΡƒΠ»ΡŒΠΏΡ‚ΠΎΡ€Π° ΠœΠ°Ρ‚Π²Ρ–Ρ ΠœΠ°Π½Ρ–Π·Π΅Ρ€Π°."] get_word_predictions(model, tokenizer, texts, labels_list) ```
huggingtweets/rebeudeter
76944e900bd7defcf17bcfc094d90115eec0c9e2
2022-03-21T17:55:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rebeudeter
0
null
transformers
36,549
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421289007753859077/3X1VHMRx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billy β˜„οΈπŸ§‘</div> <div style="text-align: center; font-size: 14px;">@rebeudeter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Billy β˜„οΈπŸ§‘. | Data | Billy β˜„οΈπŸ§‘ | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 363 | | Short tweets | 205 | | Tweets kept | 2652 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mz5i9lj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rebeudeter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qau529e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qau529e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rebeudeter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ukr-models/uk-morph-quantized
a12725c157526fa38278b9dd112b31e30800e4cc
2022-03-22T17:29:18.000Z
[ "pytorch", "uk", "ukrainian", "license:mit" ]
null
false
ukr-models
null
ukr-models/uk-morph-quantized
0
null
null
36,550
--- language: - uk tags: - ukrainian license: mit --- ## Model Description Quantized version [uk-morph model](https://huggingface.co/ukr-models/uk-morph). Returns both UPOS and morphological features (joined by double underscore symbol) ## How to Use After cloning the repository, please use the following code (download script get_predictions.py from the repository, it uses [package tokenize_uk](https://pypi.org/project/tokenize_uk/) for splitting) ```py from transformers import AutoTokenizer import torch from get_predictions import get_word_predictions tokenizer = AutoTokenizer.from_pretrained("./") model = torch.load("./pytorch_model.bin") with open('./morph_labels.txt', 'r') as labels_file: labels_list = labels_file.readlines() labels_list = [label.strip() for label in labels_list] texts = ["Могила Вараса Π¨Π΅Π²Ρ‡Π΅Π½ΠΊΠ° β€” місцС поховання Π²ΠΈΠ΄Π°Ρ‚Π½ΠΎΠ³ΠΎ ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΅Ρ‚Π° Вараса Π¨Π΅Π²Ρ‡Π΅Π½ΠΊΠ° Π² місті ΠšΠ°Π½Ρ–Π² (Π§Π΅Ρ€ΠΊΠ°ΡΡŒΠΊΠ° ΠΎΠ±Π»Π°ΡΡ‚ΡŒ) Π½Π° Π§Π΅Ρ€Π½Π΅Ρ‡Ρ–ΠΉ Π³ΠΎΡ€Ρ–, Π½Π°Π΄ яким Ρ–Π· 1939 Ρ€ΠΎΠΊΡƒ височіє Π±Ρ€ΠΎΠ½Π·ΠΎΠ²ΠΈΠΉ ΠΏΠ°ΠΌ'ятник Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ ΡΠΊΡƒΠ»ΡŒΠΏΡ‚ΠΎΡ€Π° ΠœΠ°Ρ‚Π²Ρ–Ρ ΠœΠ°Π½Ρ–Π·Π΅Ρ€Π°."] get_word_predictions(model, tokenizer, texts, labels_list) ```
huggingtweets/elonmusk-garyvee
88928fcdde48869ffd1447940415455d43ec6f25
2022-03-21T19:57:10.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-garyvee
0
null
transformers
36,551
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-garyvee/1647892564866/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493524673962852353/qRxbC9Xq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Gary Vaynerchuk</div> <div style="text-align: center; font-size: 14px;">@elonmusk-garyvee</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Gary Vaynerchuk. | Data | Elon Musk | Gary Vaynerchuk | | --- | --- | --- | | Tweets downloaded | 2200 | 3247 | | Retweets | 102 | 712 | | Short tweets | 671 | 842 | | Tweets kept | 1427 | 1693 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/abt9l46e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-garyvee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-garyvee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kazandaev/opus-mt-en-ru-finetuned-v2
41160cf6ad82e56f8c1698870e50268a54af1349
2022-03-22T15:25:15.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
kazandaev
null
kazandaev/opus-mt-en-ru-finetuned-v2
0
null
transformers
36,552
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-ru-finetuned-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ru-finetuned-v2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7517 - Bleu: 41.0306 - Gen Len: 29.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss | |:-------------:|:-----:|:------:|:-------:|:-------:|:---------------:| | 0.8091 | 1.0 | 85978 | 39.9389 | 29.6753 | 0.7727 | | 0.7826 | 2.0 | 171956 | 0.7679 | 40.1955 | 29.5947 | | 0.7804 | 3.0 | 257934 | 0.7609 | 40.3659 | 29.5642 | | 0.7695 | 4.0 | 343912 | 0.7551 | 40.7947 | 29.5568 | | 0.7546 | 5.0 | 429890 | 0.7517 | 41.0306 | 29.5078 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
ntoldalagi/C0_LID_DEV
78039d1646f5ec0eaace16c43e50e25e410582c7
2022-03-28T15:46:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ntoldalagi
null
ntoldalagi/C0_LID_DEV
0
null
transformers
36,553
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: C0_LID_DEV --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # C0_LID_DEV This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.8267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.0 | 25 | inf | 0.8426 | | 1.5354 | 0.17 | 2000 | inf | 0.8198 | | 1.5688 | 0.33 | 4000 | inf | 0.8271 | | 1.5294 | 0.5 | 6000 | inf | 0.8339 | | 1.1947 | 0.67 | 8000 | inf | 0.8260 | | 1.1534 | 0.83 | 10000 | inf | 0.8267 | | 1.1484 | 1.0 | 12000 | inf | 0.8267 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
lsb/wav2vec2-base-lm-pemlsb-la-v2
0f36d0642287f3e247bdfac16ea53bdecd555e2f
2022-03-21T21:41:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "license:agpl-3.0" ]
automatic-speech-recognition
false
lsb
null
lsb/wav2vec2-base-lm-pemlsb-la-v2
0
null
transformers
36,554
--- license: agpl-3.0 ---
tau/random_1024_0.3_epoch2_v2
b451308f191f15a82e684be0a4c0473e287c19a0
2022-03-22T10:51:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/random_1024_0.3_epoch2_v2
0
null
transformers
36,555
Entry not found
tau/t5_1024_0.3_epoch2_v2
4aa56399b0c19fae9e70d18dda0f002351275c7c
2022-03-22T10:56:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5_1024_0.3_epoch2_v2
0
null
transformers
36,556
Entry not found
tau/t5_lm_1024_0.3_epoch2_v2
45ac26c4c1f705c88a39da439d5cf8b9165ab22c
2022-03-22T11:02:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5_lm_1024_0.3_epoch2_v2
0
null
transformers
36,557
Entry not found
huggingtweets/laurentozon
0f0c1be2f210bb6d4760b05b0c8a35bf4ec5ebcd
2022-03-22T12:21:52.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/laurentozon
0
null
transformers
36,558
--- language: en thumbnail: http://www.huggingtweets.com/laurentozon/1647951707700/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505670688635564034/K4L2yhhB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laurent Ozon</div> <div style="text-align: center; font-size: 14px;">@laurentozon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laurent Ozon. | Data | Laurent Ozon | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 753 | | Short tweets | 382 | | Tweets kept | 2057 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uddth9b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laurentozon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dzqbuuu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dzqbuuu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laurentozon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rahulkuruvilla/COVID-BERTa
07cec39b45e963d677f0551322f07593b51329f9
2022-03-22T22:56:36.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulkuruvilla
null
rahulkuruvilla/COVID-BERTa
0
null
transformers
36,559
Entry not found
rahulkuruvilla/COVID-DistilBERTb
bb5583fae97f2f29adecec4f76590bd7765413e1
2022-03-22T21:54:46.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulkuruvilla
null
rahulkuruvilla/COVID-DistilBERTb
0
null
transformers
36,560
Entry not found
rahulkuruvilla/COVID-BERTb
38465425fd533c4975c8e0dc2eccf860693ee28e
2022-03-22T21:57:46.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulkuruvilla
null
rahulkuruvilla/COVID-BERTb
0
null
transformers
36,561
Entry not found
rahulkuruvilla/COVID-BERTc
a652cdfc639d1d45cf043c8be31da70a7618f306
2022-03-22T22:24:22.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulkuruvilla
null
rahulkuruvilla/COVID-BERTc
0
null
transformers
36,562
Entry not found
rahulkuruvilla/COVID-DistilBERTc
af771023a5bc00111d9411b4881517ab081b2cd5
2022-03-22T22:28:31.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulkuruvilla
null
rahulkuruvilla/COVID-DistilBERTc
0
null
transformers
36,563
Entry not found
mimicheng/codeparrot-ds-sample
f77824dd2887e11a555377a6a8606ebe37de68a1
2022-03-23T05:30:38.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mimicheng
null
mimicheng/codeparrot-ds-sample
0
null
transformers
36,564
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5057 | 0.93 | 5000 | 1.6003 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
voidful/metaICL_audio_hr_to_lr
f6324c30b4e0961424075e7facb161e6b75cbc0d
2022-03-23T08:01:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
voidful
null
voidful/metaICL_audio_hr_to_lr
0
null
transformers
36,565
Entry not found
huggan/dcgan-mnist
3e84366820d1e21da74bdbb43ff2beb36163a9d4
2022-03-24T14:12:34.000Z
[ "pytorch", "generic", "text-to-image" ]
text-to-image
false
huggan
null
huggan/dcgan-mnist
0
1
generic
36,566
--- tags: - text-to-image library_name: generic --- # Digit generation using DCGAN
tau/fewsion_single_mask_1024_0.3_epoch1
13f46ac084397cf98d1534036537d9b9a9ad4553
2022-03-23T12:14:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/fewsion_single_mask_1024_0.3_epoch1
0
null
transformers
36,567
Entry not found
tau/t5_single_mask_1024_0.3_epoch1
7187956a6b8728358538e09ccd82115a195f2444
2022-03-23T12:22:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5_single_mask_1024_0.3_epoch1
0
null
transformers
36,568
Entry not found
huggan/dcgan-test
49b50762dad0d9f717c2885cabcf53adb2d2429d
2022-03-23T15:06:10.000Z
[ "pytorch" ]
null
false
huggan
null
huggan/dcgan-test
0
null
null
36,569
Entry not found
pere/test-t5-small-direct
68f7d6dfdfcc3fd597858fd626e7cdf8d2158036
2022-03-23T15:45:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pere
null
pere/test-t5-small-direct
0
null
transformers
36,570
This is a control model. Converted directly from the original TF dataset format. ```` gsutil cp -R gs://t5-data/pretrained_models/small/ . wget https://huggingface.co/t5-small/raw/main/config.json python3 convert_t5_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path "dump/small/" --config_file "config.json" --pytorch_dump_path "/home/perk/dirconv" ```
huggingtweets/pierreavdb
6b9765b70cc5524b369bc92c651316feeec97617
2022-03-23T16:50:02.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/pierreavdb
0
null
transformers
36,571
--- language: en thumbnail: http://www.huggingtweets.com/pierreavdb/1648054135143/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479780096483512323/LmKFSR3X_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pierre</div> <div style="text-align: center; font-size: 14px;">@pierreavdb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pierre. | Data | Pierre | | --- | --- | | Tweets downloaded | 1064 | | Retweets | 172 | | Short tweets | 133 | | Tweets kept | 759 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21bimkjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pierreavdb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ji40nkbv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pierreavdb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/stedmanhalliday
27a4c69dac9c60bd6ac70d6835abb013dfecb6ef
2022-03-23T17:16:45.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/stedmanhalliday
0
null
transformers
36,572
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500999718331199496/yhpq7J8H_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SODI</div> <div style="text-align: center; font-size: 14px;">@stedmanhalliday</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SODI. | Data | SODI | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 59 | | Short tweets | 559 | | Tweets kept | 2632 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4ry6l5q3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stedmanhalliday's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lxo4zkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lxo4zkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stedmanhalliday') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/metakuna
95443d72f2a1ddcbf57d6b1cebe8f1b227180d6c
2022-03-23T17:48:52.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/metakuna
0
null
transformers
36,573
--- language: en thumbnail: http://www.huggingtweets.com/metakuna/1648057688512/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493720826935398408/hB4ndxdj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">metakuna (8/100 blog posts)</div> <div style="text-align: center; font-size: 14px;">@metakuna</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from metakuna (8/100 blog posts). | Data | metakuna (8/100 blog posts) | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 242 | | Short tweets | 524 | | Tweets kept | 2469 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9uv1luph/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @metakuna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1k1mb79h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1k1mb79h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/metakuna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rickyflows
7e9df88c59361ab31e5ff679ef544339f1d99086
2022-03-23T18:12:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rickyflows
0
null
transformers
36,574
--- language: en thumbnail: http://www.huggingtweets.com/rickyflows/1648058984275/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385231541278855171/lgH-Kso5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">∞ ricky flowstate ∞</div> <div style="text-align: center; font-size: 14px;">@rickyflows</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ∞ ricky flowstate ∞. | Data | ∞ ricky flowstate ∞ | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 86 | | Short tweets | 506 | | Tweets kept | 2657 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gn0lyrdk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rickyflows's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fkt1gts) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fkt1gts/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rickyflows') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lucca_dev
09f36b8ae9a36af23c736546d7eb53e5e77578e0
2022-03-23T18:20:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lucca_dev
0
null
transformers
36,575
--- language: en thumbnail: http://www.huggingtweets.com/lucca_dev/1648059357338/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475818681628246021/sf4z2j_9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lucca</div> <div style="text-align: center; font-size: 14px;">@lucca_dev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lucca. | Data | Lucca | | --- | --- | | Tweets downloaded | 2525 | | Retweets | 17 | | Short tweets | 100 | | Tweets kept | 2408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bq4zgob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lucca_dev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kuasht1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kuasht1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lucca_dev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mattiasinspace
4f2ec557999536e0ec2d59ae6f1f4b057026c30f
2022-03-23T18:30:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mattiasinspace
0
null
transformers
36,576
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434246328788398081/M7Httz0A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mattias in Deep</div> <div style="text-align: center; font-size: 14px;">@mattiasinspace</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mattias in Deep. | Data | Mattias in Deep | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 26 | | Short tweets | 196 | | Tweets kept | 3027 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2r9u5eoz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattiasinspace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ua0ungm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ua0ungm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattiasinspace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/eigenrobot-moridinamael
b1d19fc862520fe0e17991091e8421a38da57c95
2022-03-23T18:42:22.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/eigenrobot-moridinamael
0
null
transformers
36,577
--- language: en thumbnail: http://www.huggingtweets.com/eigenrobot-moridinamael/1648060937936/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/615582548010229761/0zg9awKn_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1492994204758278144/rDnqNReU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Twisted Mentat Matt & eigenrobot</div> <div style="text-align: center; font-size: 14px;">@eigenrobot-moridinamael</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Twisted Mentat Matt & eigenrobot. | Data | Twisted Mentat Matt | eigenrobot | | --- | --- | --- | | Tweets downloaded | 3145 | 3247 | | Retweets | 1670 | 119 | | Short tweets | 230 | 651 | | Tweets kept | 1245 | 2477 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3njfftkj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eigenrobot-moridinamael's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1nbxxa8l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1nbxxa8l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eigenrobot-moridinamael') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/interrogami
a1f8046809b30fc31f3cc9fe11968bc02bb5dcad
2022-03-23T19:41:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/interrogami
0
null
transformers
36,578
--- language: en thumbnail: http://www.huggingtweets.com/interrogami/1648064415193/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1502292592914046984/F1N4kjHh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">interrobang</div> <div style="text-align: center; font-size: 14px;">@interrogami</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from interrobang. | Data | interrobang | | --- | --- | | Tweets downloaded | 1453 | | Retweets | 20 | | Short tweets | 139 | | Tweets kept | 1294 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1awhdfgt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @interrogami's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ibo4fum) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ibo4fum/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/interrogami') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ryiacy
9ad1c5e9bb4e5417f9c0509ea72e98330eacf171
2022-03-23T19:51:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ryiacy
0
null
transformers
36,579
--- language: en thumbnail: http://www.huggingtweets.com/ryiacy/1648065062687/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424813722011410434/73S-oYNT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cyriac</div> <div style="text-align: center; font-size: 14px;">@ryiacy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cyriac. | Data | cyriac | | --- | --- | | Tweets downloaded | 1050 | | Retweets | 32 | | Short tweets | 60 | | Tweets kept | 958 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26de85bt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ryiacy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ryiacy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/thanksthoth
772f89a0ef717ad4b0f463fdd1aab6cfec2be946
2022-03-23T20:22:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thanksthoth
0
null
transformers
36,580
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477531697814011904/6OQ-pQZG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rod (πŸ™‚πŸ‘)</div> <div style="text-align: center; font-size: 14px;">@thanksthoth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rod (πŸ™‚πŸ‘). | Data | Rod (πŸ™‚πŸ‘) | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 154 | | Short tweets | 693 | | Tweets kept | 2398 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pd014k0e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thanksthoth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tswc3hnf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tswc3hnf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thanksthoth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sparklyrainbows/DialoGPT-small-harrypotter
94124b62699bd1ae38f66cbd38bf80f203992cac
2022-03-23T21:43:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
sparklyrainbows
null
sparklyrainbows/DialoGPT-small-harrypotter
0
null
transformers
36,581
Entry not found
negfir/bert_uncased_L-12_H-512_A-8
4e79fe73c8dc6679caa8352bae5725aba72d60ef
2022-04-05T22:13:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-12_H-512_A-8
0
null
transformers
36,582
Entry not found
huggingtweets/btohtoh-willitbetoomuch
9bbaea2a6bd211d3363cf05a9eab5e20efe3bfc9
2022-03-24T02:06:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/btohtoh-willitbetoomuch
0
null
transformers
36,583
--- language: en thumbnail: http://www.huggingtweets.com/btohtoh-willitbetoomuch/1648087519902/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488467916198539265/3pTy_Kr3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh & unloading</div> <div style="text-align: center; font-size: 14px;">@btohtoh-willitbetoomuch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh & unloading. | Data | BToh | unloading | | --- | --- | --- | | Tweets downloaded | 3241 | 85 | | Retweets | 347 | 0 | | Short tweets | 480 | 3 | | Tweets kept | 2414 | 82 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d3flykp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh-willitbetoomuch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lp51jew) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lp51jew/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh-willitbetoomuch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
issue89/DialoGPT-small-house
e0e84860e909b99a5f3954e316a1fc57038a31ba
2022-03-24T03:48:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
issue89
null
issue89/DialoGPT-small-house
0
null
transformers
36,584
--- tags: - conversational --- # House DialoGPT Model
quincyqiang/chinese-roberta-wwm-ext
54e43bd61d0885381fc266758278ef1a4fe89ed6
2022-03-24T04:58:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
quincyqiang
null
quincyqiang/chinese-roberta-wwm-ext
0
null
transformers
36,585
--- license: apache-2.0 ---
huggingtweets/iopred
3b6d11c2b7ecc43854abf98f9f8426f5da997b2c
2022-03-24T22:38:36.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/iopred
0
null
transformers
36,586
--- language: en thumbnail: http://www.huggingtweets.com/iopred/1648161500488/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/804464329202409472/_-74eUkS_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">diet dr. kit</div> <div style="text-align: center; font-size: 14px;">@iopred</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from diet dr. kit. | Data | diet dr. kit | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 177 | | Short tweets | 258 | | Tweets kept | 2805 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/52vmud4n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iopred's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i464eff) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i464eff/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iopred') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tariqnasheed
e673fd9cdcd8b60175aab3b284e9ac8e9ecd8c6f
2022-03-24T08:54:50.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tariqnasheed
0
null
transformers
36,587
--- language: en thumbnail: http://www.huggingtweets.com/tariqnasheed/1648112086220/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506809010988539910/bBCRvJ4K_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tariq Nasheed πŸ‡ΊπŸ‡Έ</div> <div style="text-align: center; font-size: 14px;">@tariqnasheed</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tariq Nasheed πŸ‡ΊπŸ‡Έ. | Data | Tariq Nasheed πŸ‡ΊπŸ‡Έ | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 273 | | Short tweets | 396 | | Tweets kept | 2566 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f1jq7tem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tariqnasheed's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dn7iubq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dn7iubq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tariqnasheed') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kytalli-vi0linheart
bd0faba430abf54cd876e82f3835418ce4877891
2022-03-24T09:38:01.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kytalli-vi0linheart
0
null
transformers
36,588
--- language: en thumbnail: http://www.huggingtweets.com/kytalli-vi0linheart/1648114676311/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1376749372831002627/2B9FZTnI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal & G</div> <div style="text-align: center; font-size: 14px;">@kytalli-vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal & G. | Data | sal | G | | --- | --- | --- | | Tweets downloaded | 3114 | 3249 | | Retweets | 421 | 55 | | Short tweets | 541 | 226 | | Tweets kept | 2152 | 2968 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tj76wad/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kytalli-vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kytalli-vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/madeleine
7586f4090ee9c321c375970b419d4c10703ac135
2022-03-24T09:38:39.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/madeleine
0
null
transformers
36,589
--- language: en thumbnail: http://www.huggingtweets.com/madeleine/1648114714373/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1227670393453936642/6rdB_DqU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Madeleine Albright</div> <div style="text-align: center; font-size: 14px;">@madeleine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Madeleine Albright. | Data | Madeleine Albright | | --- | --- | | Tweets downloaded | 1111 | | Retweets | 249 | | Short tweets | 3 | | Tweets kept | 859 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a3z3e8y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @madeleine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q01k6dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q01k6dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/madeleine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/vi0linheart
a405f60b1b4f15025ad4f25f2b610463ded90208
2022-03-24T10:11:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/vi0linheart
0
null
transformers
36,590
--- language: en thumbnail: http://www.huggingtweets.com/vi0linheart/1648116634962/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal</div> <div style="text-align: center; font-size: 14px;">@vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal. | Data | sal | | --- | --- | | Tweets downloaded | 3114 | | Retweets | 421 | | Short tweets | 541 | | Tweets kept | 2152 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21y9qo98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t019c6m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t019c6m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rronigj
bfee78bd061fce8f33e65629f3e9459ef26dbd1c
2022-03-24T12:47:01.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rronigj
0
null
transformers
36,591
--- language: en thumbnail: http://www.huggingtweets.com/rronigj/1648126016294/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251916496307175424/rFilH506_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rron Gjinovci</div> <div style="text-align: center; font-size: 14px;">@rronigj</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rron Gjinovci. | Data | Rron Gjinovci | | --- | --- | | Tweets downloaded | 173 | | Retweets | 45 | | Short tweets | 24 | | Tweets kept | 104 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33ceg6s6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rronigj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nokbt1r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nokbt1r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rronigj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
negfir/bert_uncased_L-10_H-768_A-12
2ca221427dbe1605765307e3fb44eebf9d1fe247
2022-04-05T23:33:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-768_A-12
0
null
transformers
36,592
Entry not found
huggingtweets/untiltrees
345f74628fdda66d019e784199b235edb8db07f8
2022-03-24T16:08:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/untiltrees
0
null
transformers
36,593
--- language: en thumbnail: http://www.huggingtweets.com/untiltrees/1648138126631/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1350186722596974593/lANAV_Xj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dancing Box</div> <div style="text-align: center; font-size: 14px;">@untiltrees</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dancing Box. | Data | Dancing Box | | --- | --- | | Tweets downloaded | 994 | | Retweets | 41 | | Short tweets | 91 | | Tweets kept | 862 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36kia24g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @untiltrees's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8md8jogv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8md8jogv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/untiltrees') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/janieclone-wretched_worm
40a44774f610da6c3bfd701071a75ebc0b018a8e
2022-03-24T16:50:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/janieclone-wretched_worm
0
null
transformers
36,594
--- language: en thumbnail: http://www.huggingtweets.com/janieclone-wretched_worm/1648140650284/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478043369578266624/vWL3TXE0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504460028270501895/uqbdF11C_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wretched worm & Columbine Janie</div> <div style="text-align: center; font-size: 14px;">@janieclone-wretched_worm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wretched worm & Columbine Janie. | Data | wretched worm | Columbine Janie | | --- | --- | --- | | Tweets downloaded | 3226 | 544 | | Retweets | 313 | 197 | | Short tweets | 572 | 60 | | Tweets kept | 2341 | 287 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jmx6vuf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @janieclone-wretched_worm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kpqts6sn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kpqts6sn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/janieclone-wretched_worm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pere/tt5-base
a63a43f839e6e4449541329ec960e1bc819119e9
2022-03-24T20:53:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pere
null
pere/tt5-base
0
null
transformers
36,595
Entry not found
pere/tt5-3B
544a050ba01cb72bfb70efb3b5dc05811ad9ab27
2022-03-24T20:55:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pere
null
pere/tt5-3B
0
null
transformers
36,596
Entry not found
vumichien/albert-base-v2
30da5ca6ce61f6ddc66e33b979ed5935bbe7cda0
2022-03-25T00:30:34.000Z
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
vumichien
null
vumichien/albert-base-v2
0
null
transformers
36,597
Entry not found
Jezia/pytorch-pretrained-BigGAN
d2036299cae6f42dec12156892e38480d62af49b
2022-03-25T10:53:53.000Z
[ "dataset:ImageNet", "pytorch", "biggan", "license:apache-2.0" ]
null
false
Jezia
null
Jezia/pytorch-pretrained-BigGAN
0
null
pytorch
36,598
--- license: apache-2.0 library_name: pytorch tags: - biggan datasets: - ImageNet --- ## Model description This is an op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind [biggan-deep-128](https://tfhub.dev/deepmind/biggan-deep-128/1). ## Training and evaluation data Model is trained on [ImageNet dataset](https://tfhub.dev/s?dataset=imagenet-ilsvrc-2012-cls). The dataset consists of 10000 classes. All images are resized to 64 * 64 for the sake of convenience. The model takes noise as input and then Conv2DTranspose is used to do upsampling. The output shape consists of 128, 256, or 512 images depending on the model. ## How to use this model You can use this model to generate new images. ``` import torch from pytorch_pretrained_biggan import (BigGAN, one_hot_from_names, truncated_noise_sample, save_as_images, display_in_terminal) model = BigGAN.from_pretrained('biggan-deep-256') ``` You can generate examples using a noise vector. ``` with torch.no_grad(): output = model(noise_vector, class_vector, truncation) ``` ## Intended use and biases This model is not intended for production. ### Generated images ![Example](./example.png) ### Credits @thomwolf Thomas Wolf @vfdev-5 vfdev
scasutt/wav2vec2-base_toy_train_data_augment_0.1.csv
c6dfdd82117b962619af359e515c6a8395f34813
2022-03-25T11:45:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_augment_0.1.csv
0
null
transformers
36,599
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_augment_0.1.csv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_augment_0.1.csv This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3933 - Wer: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2787 | 0.84 | 200 | 3.5920 | 1.0 | | 3.0613 | 1.68 | 400 | 3.4069 | 1.0 | | 3.0481 | 2.52 | 600 | 3.4811 | 1.0 | | 2.896 | 3.36 | 800 | 2.3933 | 0.9997 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6