modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv
5fa6c32c849940efa5682b64da0dd8b1b03d4130
2022-03-25T12:18:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv
0
null
transformers
36,600
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4695 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.2456 | 0.84 | 200 | 3.6215 | 1.0 | | 3.0637 | 1.68 | 400 | 3.3918 | 1.0 | | 3.046 | 2.52 | 600 | 3.4168 | 1.0 | | 3.0627 | 3.36 | 800 | 3.4695 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
ianMconversica/autotrain-parrot_finetune_v1-667919695
f442e2285749449b5b144eca929ada428ee1ff61
2022-03-25T15:41:11.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:McIan91/autotrain-data-parrot_finetune_v1", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ianMconversica
null
ianMconversica/autotrain-parrot_finetune_v1-667919695
0
null
transformers
36,601
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - McIan91/autotrain-data-parrot_finetune_v1 co2_eq_emissions: 207.64739623144084 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 667919695 - CO2 Emissions (in grams): 207.64739623144084 ## Validation Metrics - Loss: 0.06461456418037415 - Rouge1: 70.5184 - Rouge2: 66.9204 - RougeL: 70.4464 - RougeLsum: 70.4705 - Gen Len: 18.5385 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/McIan91/autotrain-parrot_finetune_v1-667919695 ```
ssardorf/pegasus-xsum-new-dataset
51e5415452fbf72f8e67237c4a8793a87cafeb0c
2022-03-25T13:12:00.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ssardorf
null
ssardorf/pegasus-xsum-new-dataset
0
null
transformers
36,602
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-new-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-new-dataset This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8355 - Rouge1: 48.7306 - Rouge2: 34.1291 - Rougel: 44.0778 - Rougelsum: 45.7139 - Gen Len: 30.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cpu - Datasets 1.18.3 - Tokenizers 0.11.6
huggingtweets/rivatez
076dec8ca3cb9d2b248bfbeda7bddcc0eae80f7e
2022-03-25T14:57:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rivatez
0
null
transformers
36,603
--- language: en thumbnail: http://www.huggingtweets.com/rivatez/1648220244511/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421403684085374979/SoqYa6o3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riva</div> <div style="text-align: center; font-size: 14px;">@rivatez</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riva. | Data | Riva | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 780 | | Short tweets | 405 | | Tweets kept | 1993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qe0i10s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rivatez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rivatez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggan/pix2pix-test
14ede9d5fa8e6bfbd36887d9592fca76285d3dd3
2022-03-25T15:40:12.000Z
[ "pytorch" ]
null
false
huggan
null
huggan/pix2pix-test
0
null
null
36,604
Entry not found
huggingtweets/_stevenshoe-mkobach
4f3ff5cfadf90e31e2f40d8347f2eb471d6e0377
2022-03-25T22:23:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/_stevenshoe-mkobach
0
null
transformers
36,605
--- language: en thumbnail: http://www.huggingtweets.com/_stevenshoe-mkobach/1648247026634/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374075536595505154/1_1jV_AF_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505053150478229505/wAa1lc04_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Kobach & Steven Shoemaker</div> <div style="text-align: center; font-size: 14px;">@_stevenshoe-mkobach</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Kobach & Steven Shoemaker. | Data | Matthew Kobach | Steven Shoemaker | | --- | --- | --- | | Tweets downloaded | 3242 | 1319 | | Retweets | 136 | 56 | | Short tweets | 443 | 125 | | Tweets kept | 2663 | 1138 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/48je6le3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_stevenshoe-mkobach's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oih18qf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oih18qf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_stevenshoe-mkobach') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ianMconversica/autotrain-phrasinator-reverse-670319725
0c75aa8c414f07abfe5153ce377bf6afbe9c2de4
2022-03-26T03:59:08.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:McIan91/autotrain-data-phrasinator-reverse", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ianMconversica
null
ianMconversica/autotrain-phrasinator-reverse-670319725
0
null
transformers
36,606
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - McIan91/autotrain-data-phrasinator-reverse co2_eq_emissions: 149.95517950000834 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 670319725 - CO2 Emissions (in grams): 149.95517950000834 ## Validation Metrics - Loss: 0.0022294693626463413 - Rouge1: 67.5833 - Rouge2: 65.7386 - RougeL: 67.5812 - RougeLsum: 67.585 - Gen Len: 18.907 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/McIan91/autotrain-phrasinator-reverse-670319725 ```
scasutt/wav2vec2-base_toy_train_data_fast_10pct
a1d1b6742851572c5f288d3f7a094c088e838b97
2022-03-26T12:28:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_fast_10pct
0
null
transformers
36,607
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_fast_10pct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_fast_10pct This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3087 - Wer: 0.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1309 | 1.05 | 250 | 3.4541 | 0.9982 | | 3.0499 | 2.1 | 500 | 3.0231 | 0.9982 | | 1.4839 | 3.15 | 750 | 1.4387 | 0.9257 | | 1.1697 | 4.2 | 1000 | 1.3729 | 0.8792 | | 0.9353 | 5.25 | 1250 | 1.2608 | 0.8445 | | 0.7298 | 6.3 | 1500 | 1.1867 | 0.8052 | | 0.6418 | 7.35 | 1750 | 1.2414 | 0.7997 | | 0.5698 | 8.4 | 2000 | 1.2240 | 0.7766 | | 0.5084 | 9.45 | 2250 | 1.1910 | 0.7687 | | 0.4912 | 10.5 | 2500 | 1.2241 | 0.7617 | | 0.4144 | 11.55 | 2750 | 1.2412 | 0.7477 | | 0.4153 | 12.6 | 3000 | 1.2736 | 0.7511 | | 0.405 | 13.65 | 3250 | 1.2827 | 0.7328 | | 0.3852 | 14.7 | 3500 | 1.1981 | 0.7331 | | 0.3829 | 15.75 | 3750 | 1.3035 | 0.7347 | | 0.3538 | 16.81 | 4000 | 1.3003 | 0.7240 | | 0.3385 | 17.86 | 4250 | 1.3354 | 0.7304 | | 0.3108 | 18.91 | 4500 | 1.2983 | 0.7229 | | 0.3037 | 19.96 | 4750 | 1.3087 | 0.7175 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_masked_audio
7e735c2be5f4ab34ba7e84e2ae61fc9040770ddf
2022-03-26T22:02:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_masked_audio
0
null
transformers
36,608
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_masked_audio results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_masked_audio This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1950 - Wer: 0.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1287 | 2.1 | 250 | 3.4581 | 1.0 | | 3.0259 | 4.2 | 500 | 2.8099 | 0.9999 | | 1.4881 | 6.3 | 750 | 1.2929 | 0.8950 | | 0.9665 | 8.4 | 1000 | 1.1675 | 0.8346 | | 0.7614 | 10.5 | 1250 | 1.1388 | 0.8003 | | 0.5858 | 12.6 | 1500 | 1.1510 | 0.7672 | | 0.5005 | 14.7 | 1750 | 1.1606 | 0.7532 | | 0.4486 | 16.8 | 2000 | 1.1571 | 0.7427 | | 0.4224 | 18.9 | 2250 | 1.1950 | 0.7340 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/mkobach-naval-shaneaparrish
6f0c7fd9f13d48983d865ac499c225b020a94b90
2022-03-27T00:07:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mkobach-naval-shaneaparrish
0
null
transformers
36,609
--- language: en thumbnail: http://www.huggingtweets.com/mkobach-naval-shaneaparrish/1648339620049/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374075536595505154/1_1jV_AF_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1253758424292171778/48gD7Hne_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Kobach & Shane Parrish & Naval</div> <div style="text-align: center; font-size: 14px;">@mkobach-naval-shaneaparrish</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Kobach & Shane Parrish & Naval. | Data | Matthew Kobach | Shane Parrish | Naval | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3197 | 3249 | | Retweets | 135 | 102 | 181 | | Short tweets | 444 | 147 | 617 | | Tweets kept | 2669 | 2948 | 2451 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17cy2tt4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mkobach-naval-shaneaparrish's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mkobach-naval-shaneaparrish') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
scasutt/wav2vec2-base_toy_train_data_random_noise
c0161384d07bacf7d058d26c8810b91d0a1f7d53
2022-03-27T02:27:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_random_noise
0
null
transformers
36,610
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_random_noise results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_random_noise This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0909 - Wer: 0.7351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.128 | 2.1 | 250 | 3.5052 | 1.0 | | 3.0423 | 4.2 | 500 | 2.9312 | 1.0 | | 1.4109 | 6.3 | 750 | 1.2618 | 0.8915 | | 0.9132 | 8.4 | 1000 | 1.1074 | 0.8436 | | 0.7146 | 10.5 | 1250 | 1.0397 | 0.7876 | | 0.5418 | 12.6 | 1500 | 1.0359 | 0.7662 | | 0.4649 | 14.7 | 1750 | 1.0469 | 0.7467 | | 0.4127 | 16.8 | 2000 | 1.0655 | 0.7404 | | 0.3881 | 18.9 | 2250 | 1.0909 | 0.7351 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_slow_10pct
262e5f9f0fcdd3d90ad9f24f1202fa1088ce9664
2022-03-31T13:12:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_slow_10pct
0
null
transformers
36,611
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_slow_10pct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_slow_10pct This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3248 - Wer: 0.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0663 | 2.1 | 500 | 3.0725 | 0.9982 | | 1.1679 | 4.2 | 1000 | 1.3620 | 0.8889 | | 0.6789 | 6.3 | 1500 | 1.2182 | 0.8160 | | 0.5764 | 8.4 | 2000 | 1.2469 | 0.7667 | | 0.4603 | 10.5 | 2500 | 1.2851 | 0.7533 | | 0.4085 | 12.6 | 3000 | 1.2351 | 0.7401 | | 0.3583 | 14.7 | 3500 | 1.2455 | 0.7367 | | 0.3158 | 16.81 | 4000 | 1.3663 | 0.7261 | | 0.2817 | 18.91 | 4500 | 1.3248 | 0.7175 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/psimon365
efe7fbebd991aaa95d426d7b7b0336e6373d2513
2022-03-27T02:56:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/psimon365
0
null
transformers
36,612
--- language: en thumbnail: http://www.huggingtweets.com/psimon365/1648349798068/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507859834107879426/d5Jqrb7Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Psimon 🌐</div> <div style="text-align: center; font-size: 14px;">@psimon365</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Psimon 🌐. | Data | Psimon 🌐 | | --- | --- | | Tweets downloaded | 181 | | Retweets | 0 | | Short tweets | 34 | | Tweets kept | 147 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q7gcbo7v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @psimon365's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kyaiz92o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kyaiz92o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/psimon365') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
scasutt/wav2vec2-base_toy_train_data
d8538840a0622efceb2e67937fa761a79580bbc9
2022-04-24T11:51:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data
0
null
transformers
36,613
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2522 - Wer: 0.7297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0033 | 4.2 | 500 | 2.7702 | 1.0 | | 1.055 | 8.4 | 1000 | 1.2671 | 0.8667 | | 0.6628 | 12.6 | 1500 | 1.1952 | 0.7883 | | 0.5023 | 16.8 | 2000 | 1.1435 | 0.7659 | | 0.4535 | 21.01 | 2500 | 1.1889 | 0.7458 | | 0.3604 | 25.21 | 3000 | 1.2650 | 0.7378 | | 0.3175 | 29.41 | 3500 | 1.2522 | 0.7297 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/baguioni-elonmusk-jacobe
bfe02f36b207d8d767667c39f23b256ecf3fb311
2022-03-27T22:44:21.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/baguioni-elonmusk-jacobe
0
null
transformers
36,614
--- language: en thumbnail: http://www.huggingtweets.com/baguioni-elonmusk-jacobe/1648421056394/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1025926108984664064/2ZHTSIof_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506662013707046914/hVtCPrPL_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Rowel Atienza & baguio</div> <div style="text-align: center; font-size: 14px;">@baguioni-elonmusk-jacobe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Rowel Atienza & baguio. | Data | Elon Musk | Rowel Atienza | baguio | | --- | --- | --- | --- | | Tweets downloaded | 1621 | 100 | 3012 | | Retweets | 69 | 29 | 1090 | | Short tweets | 520 | 4 | 527 | | Tweets kept | 1032 | 67 | 1395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xuj1tda/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @baguioni-elonmusk-jacobe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fpkbu3i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fpkbu3i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/baguioni-elonmusk-jacobe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jacobe
1175a77ede354a5d97822ac2aff17feb79d76ba9
2022-03-27T23:02:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jacobe
0
1
transformers
36,615
--- language: en thumbnail: http://www.huggingtweets.com/jacobe/1648422127637/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1025926108984664064/2ZHTSIof_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rowel Atienza</div> <div style="text-align: center; font-size: 14px;">@jacobe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rowel Atienza. | Data | Rowel Atienza | | --- | --- | | Tweets downloaded | 100 | | Retweets | 29 | | Short tweets | 4 | | Tweets kept | 67 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1uzq4b7w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jacobe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ouo6sis) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ouo6sis/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jacobe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/freudwarrior123
168bd47ff3345ff046ee83272a50fbb5e627cfc6
2022-03-28T04:26:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/freudwarrior123
0
null
transformers
36,616
--- language: en thumbnail: http://www.huggingtweets.com/freudwarrior123/1648441457881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1443547125770559488/QNDa_bi1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">freudwarrior123</div> <div style="text-align: center; font-size: 14px;">@freudwarrior123</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from freudwarrior123. | Data | freudwarrior123 | | --- | --- | | Tweets downloaded | 859 | | Retweets | 274 | | Short tweets | 34 | | Tweets kept | 551 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3798mw2s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freudwarrior123's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2n7ltssk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2n7ltssk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freudwarrior123') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tau/t5_4_1024_0.3_epoch1
3b3babc010354d507c6cda431af7f75fe3241146
2022-03-28T04:36:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5_4_1024_0.3_epoch1
0
null
transformers
36,617
Entry not found
aps/flava_full_pretrained_encoders_torchmm
37e5f284d9f212bf88346de1b095d3326bee81da
2022-03-28T06:03:42.000Z
[ "pytorch", "license:bsd-3-clause" ]
null
false
aps
null
aps/flava_full_pretrained_encoders_torchmm
0
null
null
36,618
--- license: bsd-3-clause ---
malteos/specter-wol
486b1790030f953b0edd4e5df46ec1e7264b0a82
2022-04-11T13:06:57.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2202.06671", "transformers", "license:mit" ]
feature-extraction
false
malteos
null
malteos/specter-wol
0
null
transformers
36,619
--- license: mit --- Replicated [SPECTER model](https://huggingface.co/allenai/specter) based on w/o leakage training corpus with `seed=0`. See [Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings](https://arxiv.org/abs/2202.06671).
huggingtweets/nsawaikar
a5e27eed2b9fa5c0ac05873fb19d8c8bfec76197
2022-03-28T07:54:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nsawaikar
0
null
transformers
36,620
--- language: en thumbnail: http://www.huggingtweets.com/nsawaikar/1648454046318/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508184022052184064/yqLU6MxW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nathan.eth</div> <div style="text-align: center; font-size: 14px;">@nsawaikar</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nathan.eth. | Data | Nathan.eth | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 336 | | Short tweets | 621 | | Tweets kept | 2293 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pn1domem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nsawaikar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/g9hqx5dx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/g9hqx5dx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nsawaikar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meryemtnar/dummy-model
102d5a9a548f468a435706fc372aa26b92ad3d5c
2022-03-28T08:52:40.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
meryemtnar
null
meryemtnar/dummy-model
0
null
transformers
36,621
Entry not found
huggingtweets/abeshinzo
19e51293f177b4f9169fed267748879283d13b79
2022-03-28T12:19:48.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/abeshinzo
0
null
transformers
36,622
--- language: en thumbnail: http://www.huggingtweets.com/abeshinzo/1648469983562/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1765776666/s-abetwitter1_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">安倍晋三</div> <div style="text-align: center; font-size: 14px;">@abeshinzo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 安倍晋三. | Data | 安倍晋三 | | --- | --- | | Tweets downloaded | 2365 | | Retweets | 77 | | Short tweets | 1629 | | Tweets kept | 659 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37uwbwzs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @abeshinzo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ib1nsfa1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ib1nsfa1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/abeshinzo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
scasutt/wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
161f1ce9f9779bb9d318e13530ea093f02c6d977
2022-03-29T11:29:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
0
null
transformers
36,623
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5945 - Wer: 0.4929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4049 | 1.05 | 250 | 3.3497 | 1.0 | | 3.0851 | 2.1 | 500 | 3.4440 | 1.0 | | 2.3512 | 3.15 | 750 | 1.5938 | 0.9317 | | 1.1762 | 4.2 | 1000 | 0.8481 | 0.7333 | | 0.903 | 5.25 | 1250 | 0.7180 | 0.6484 | | 0.6754 | 6.3 | 1500 | 0.6603 | 0.6044 | | 0.5961 | 7.35 | 1750 | 0.6410 | 0.5778 | | 0.5325 | 8.4 | 2000 | 0.6245 | 0.5545 | | 0.4685 | 9.45 | 2250 | 0.5925 | 0.5359 | | 0.4526 | 10.5 | 2500 | 0.5991 | 0.5345 | | 0.3975 | 11.55 | 2750 | 0.5916 | 0.5228 | | 0.3672 | 12.6 | 3000 | 0.5882 | 0.5037 | | 0.3774 | 13.65 | 3250 | 0.5693 | 0.5028 | | 0.3489 | 14.7 | 3500 | 0.5645 | 0.5018 | | 0.3593 | 15.75 | 3750 | 0.5977 | 0.5043 | | 0.3167 | 16.81 | 4000 | 0.6049 | 0.5018 | | 0.3225 | 17.86 | 4250 | 0.6172 | 0.4921 | | 0.2807 | 18.91 | 4500 | 0.5937 | 0.4923 | | 0.2889 | 19.96 | 4750 | 0.5945 | 0.4929 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
frtna/jwt300_mt-Italian-to-Spanish
eb508c6d628c682e9aa598d2ebdb779e498bc463
2022-03-29T09:16:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frtna
null
frtna/jwt300_mt-Italian-to-Spanish
0
null
transformers
36,624
Entry not found
nsorros/my_model
1ca0f1004087c8dd2d9b061fc6ccde55d20f7326
2022-03-29T06:57:45.000Z
[ "pytorch", "bert", "transformers" ]
null
false
nsorros
null
nsorros/my_model
0
null
transformers
36,625
Entry not found
tau/random_4_1024_0.3_epoch1
1dfebf7584cd0e9ca0ea394469a600c775b5df18
2022-03-29T07:13:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/random_4_1024_0.3_epoch1
0
null
transformers
36,626
Entry not found
parvezmrobin/bugsplainer-t5
341ea3f73303d769017e8d9a3de4ae5b7e68d900
2022-03-29T08:50:56.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
parvezmrobin
null
parvezmrobin/bugsplainer-t5
0
null
transformers
36,627
Entry not found
regel-corpus/hunflair-promoter
b0ef69d55695cf02752eb06829c5d7c6c59b5f7a
2022-04-20T09:53:48.000Z
[ "pytorch", "en", "flair", "hunflair", "token-classification", "sequence-tagger-model" ]
token-classification
false
regel-corpus
null
regel-corpus/hunflair-promoter
0
null
flair
36,628
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "Two putative extended promoters consensus sequences (p1 and p2)." --- ## HunFlair model for PROMOTER [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for promoter entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Promoter | DNA promoter region | --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-promoter") text = "The upstream region of the glnA gene contained two putative extended promoter consensus sequences (p1 and p2)." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [16]: "p1" [− Labels: Promoter (0.9878)] Span [18]: "p2" [− Labels: Promoter (0.9216)] ``` So, the entities "*p1*" and "*p2*" (labeled as a **promoter**) are found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ``` --- ### Cite Please cite the following paper when using this model. ``` @Article{regel, author = {Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Schülke, Markus and Seelow, Dominik and Leser, Ulf}, date = {2022}, journaltitle = {Under review}, title = {RegEl corpus: Identifying DNA regulatory elements in the scientific literature}, volume = {-}, groups = {-}, publisher = {-}, } ```
krinal214/augmented
2b785ad155d12d61f2ffd1b0bfd63d687594df03
2022-03-29T16:58:16.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/augmented
0
null
transformers
36,629
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # augmented This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0609 | 1.0 | 9787 | 0.5104 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
huggan/dcgan-celeba-faces
ea3909f3b15841570439ae98592761e683e593e7
2022-03-29T16:26:19.000Z
[ "pytorch" ]
null
false
huggan
null
huggan/dcgan-celeba-faces
0
null
null
36,630
Entry not found
princeton-nlp/CoFi-SQuAD-s93
12b9561bc240e6f80b4ca73396728c9289453d03
2022-05-01T01:18:37.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2204.00408", "transformers", "autotrain_compatible" ]
question-answering
false
princeton-nlp
null
princeton-nlp/CoFi-SQuAD-s93
0
null
transformers
36,631
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 93% sparsity on dataset SQuAD 1.1. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
negfir/bert_uncased_L-10_H-512_A-8
b781e55369c1dac3a1a2d7e9bc74b51f47158853
2022-04-06T00:04:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-512_A-8
0
null
transformers
36,632
Entry not found
negfir/bert_uncased_L-8_H-768_A-12
d3836e2daba75466aa4a9061d3d0cf0f88e64755
2022-04-06T01:13:33.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-768_A-12
0
null
transformers
36,633
Entry not found
negfir/bert_uncased_L-6_H-768_A-12
3ace3991be2101bd45f2da3980a5820685a2e792
2022-04-06T02:38:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-6_H-768_A-12
0
null
transformers
36,634
Entry not found
negfir/bert_uncased_L-6_H-128_A-2
89c4ba14f848bf6bffbac2052c5c555eeda99420
2022-04-06T03:20:58.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-6_H-128_A-2
0
null
transformers
36,635
Entry not found
negfir/bert_uncased_L-4_H-768_A-12
8b91c6f49f71ccd028241794b31da008f4c9cbc0
2022-04-06T03:47:33.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-768_A-12
0
null
transformers
36,636
Entry not found
negfir/bert_uncased_L-4_H-256_A-4
fbf178c024fd3adf5fe6edda7aeed7753696e94b
2022-04-06T04:15:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-256_A-4
0
null
transformers
36,637
Entry not found
negfir/bert_uncased_L-4_H-128_A-2
2154774db804ba598dede52966d5bd4983608d91
2022-04-06T04:23:16.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-128_A-2
0
null
transformers
36,638
Entry not found
negfir/bert_uncased_L-2_H-256_A-4
dba1eeea3631d2599cfc99ca55ad01f6b28eca28
2022-04-06T05:03:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-256_A-4
0
null
transformers
36,639
Entry not found
negfir/bert_uncased_L-2_H-128_A-2
88ec169bb038405da12bb96937d643956aeb231a
2022-04-06T05:09:02.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-128_A-2
0
null
transformers
36,640
Entry not found
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_noise_0.1
4f17d875b5ebbd5ed9a585a65b5b27b5ea7bc448
2022-03-30T12:26:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_noise_0.1
0
null
transformers
36,641
Entry not found
mimicheng/codeparrot-ds-sample-2ep-29mar
438812b53858fb944af8bfdfffd6c33655e04996
2022-03-30T09:50:15.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mimicheng
null
mimicheng/codeparrot-ds-sample-2ep-29mar
0
null
transformers
36,642
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-2ep-29mar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-2ep-29mar This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2585 | 1.86 | 5000 | 1.6283 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.2+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_random_high_pass
578c37c9ab715d5d1c034744ab28521154138d09
2022-03-30T16:37:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_random_high_pass
0
null
transformers
36,643
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_random_high_pass results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_random_high_pass This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2841 - Wer: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.061 | 2.1 | 500 | 3.0551 | 1.0 | | 1.1294 | 4.2 | 1000 | 1.3102 | 0.8777 | | 0.7051 | 6.3 | 1500 | 1.2081 | 0.8092 | | 0.5421 | 8.4 | 2000 | 1.2280 | 0.7684 | | 0.448 | 10.5 | 2500 | 1.2459 | 0.7506 | | 0.3777 | 12.6 | 3000 | 1.3533 | 0.7631 | | 0.3611 | 14.7 | 3500 | 1.2058 | 0.7291 | | 0.3177 | 16.81 | 4000 | 1.3168 | 0.7185 | | 0.279 | 18.91 | 4500 | 1.2841 | 0.7222 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
myunusseker/distilbert-base-uncased-go-emotion
041dc956c1fd047936d052ec41aa4749f146de1a
2022-03-30T20:11:16.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
myunusseker
null
myunusseker/distilbert-base-uncased-go-emotion
0
null
transformers
36,644
Entry not found
huggingtweets/tojibaceo
2bf5a46166486a2447bfad866932240062160412
2022-06-03T04:08:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tojibaceo
0
null
transformers
36,645
--- language: en thumbnail: http://www.huggingtweets.com/tojibaceo/1654229333065/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508824472924659725/267f4Lkm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tojiba CPU Corp (🏭,🏭)</div> <div style="text-align: center; font-size: 14px;">@tojibaceo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tojiba CPU Corp (🏭,🏭). | Data | Tojiba CPU Corp (🏭,🏭) | | --- | --- | | Tweets downloaded | 1401 | | Retweets | 706 | | Short tweets | 239 | | Tweets kept | 456 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32gtdln5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tojibaceo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19scebmc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19scebmc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tojibaceo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
unjustify/autotrain-IWant-689220804
05896acc3f5f89847bfb873d62894cc24b1357c0
2022-03-31T06:46:48.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:unjustify/autotrain-data-IWant", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
unjustify
null
unjustify/autotrain-IWant-689220804
0
null
transformers
36,646
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - unjustify/autotrain-data-IWant co2_eq_emissions: 39.40549299946679 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 689220804 - CO2 Emissions (in grams): 39.40549299946679 ## Validation Metrics - Loss: 2.0426149368286133 - Rouge1: 54.9813 - Rouge2: 44.923 - RougeL: 54.0399 - RougeLsum: 54.2553 - Gen Len: 16.6211 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/unjustify/autotrain-IWant-689220804 ```
jjeamin/ArcaneStyleTransfer
65a6ac8dd26e56ea910d342931a66392b4a6a147
2022-04-04T01:57:26.000Z
[ "pytorch", "onnx", "license:apache-2.0" ]
null
false
jjeamin
null
jjeamin/ArcaneStyleTransfer
0
2
null
36,647
--- license: apache-2.0 ---
xxazz/chatbot
80ab6849154a047c73bf7229e0ca63880c7b8384
2022-03-31T16:00:07.000Z
[ "pytorch", "transformers" ]
null
false
xxazz
null
xxazz/chatbot
0
null
transformers
36,648
Entry not found
johnowhitaker/orbgan_e1
db6d10f2e31c150109ba339ad766b2711c9d0978
2022-04-05T07:31:52.000Z
[ "pytorch", "en", "dataset:glid3_orbs", "lightweightgan", "license:apache-2.0" ]
null
false
johnowhitaker
null
johnowhitaker/orbgan_e1
0
1
null
36,649
--- language: en tags: - lightweightgan license: apache-2.0 datasets: - glid3_orbs --- # orbgan lightweight GAN trained on my glid-3 orbs (https://huggingface.co/datasets/johnowhitaker/glid3_orbs) for demo I'm working on. Training notebook: https://colab.research.google.com/drive/16o1TdrxnQ54Msbr813XfPVsnEt2QTRAa?usp=sharing Inference notebook: https://colab.research.google.com/drive/1e7dR2dptM8F1xhRcyy-Aqow9YSe0NE3z?usp=sharing The lightwightgan code has an assert requiring a GPU. For inference on the CPU we ned to re-define the Generator class and some other functions - see minimal example here: https://colab.research.google.com/drive/1fnHLdJ7niPMGOOBjGkNsnc6iADpf1Ujd?usp=sharing . This approach was used to make the demo space here: https://huggingface.co/spaces/johnowhitaker/orbgan_demo Please credit if you use this, and feedback on the code is welcomed :) EDIT: you may need to use an older version of lightweightgan, eg from commit 708633205d60c99b1b9d4e6b47eb3722aa4159d6 since there have been some recent changes that happened after this model was trained. ## Demo: ```python from lightweight_gan import Generator import torch from matplotlib import pyplot as plt from huggingface_hub import PyTorchModelHubMixin # Initialize a generator model gan_new = Generator(latent_dim=256, image_size=256, attn_res_layers = [32]) # Load from local saved state dict # gan_new.load_state_dict(torch.load('/content/orbgan_e3_state_dict.pt')) # Load from model hub: class GeneratorWithPyTorchModelHubMixin(gan_new.__class__, PyTorchModelHubMixin): pass gan_new.__class__ = GeneratorWithPyTorchModelHubMixin gan_new = gan_new.from_pretrained('johnowhitaker/orbgan_e1', latent_dim=256, image_size=256, attn_res_layers = [32]) # View some examples n_rows = 3 ims = gan_new(torch.randn(n_rows**2, 256)).clamp_(0., 1.) fig, axs = plt.subplots(n_rows, n_rows, figsize=(9, 9)) for i, ax in enumerate(axs.flatten()): ax.imshow(ims[i].permute(1, 2, 0).detach().cpu().numpy()) plt.tight_layout() ```
mT0/mt0_xl_t0pp_ckpt_1025000
fd88982281dd30b0650cc2b7562638c5941accc0
2022-03-31T17:27:17.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mT0
null
mT0/mt0_xl_t0pp_ckpt_1025000
0
null
transformers
36,650
Entry not found
anisdismail/celebA-orientation-detection
99773ed9762dd50104a92f36b8193265776ee687
2022-03-31T21:51:37.000Z
[ "en", "dataset:nielsr/CelebA-faces", "image-classification", "pytorch", "license:cc-by-nc-4.0", "model-index" ]
image-classification
false
anisdismail
null
anisdismail/celebA-orientation-detection
0
1
null
36,651
--- language: - en license: cc-by-nc-4.0 tags: - image-classification - pytorch datasets: - nielsr/CelebA-faces model-index: - name: celebA_orientation_detection_model results: - task: type: image_classification # Required. Example: automatic-speech-recognition name: Image Classification # Optional. Example: Speech Recognition dataset: type: nielsr/CelebA-faces name: CelebA-faces metrics: - type: f1score # Required. Example: wer value: 0.97 # Required. Example: 20.90 name: Val F1 Score # Optional. Example: Test WER --- ## Detecting the Orientation of CelebA pictures using Deep Learning This model has been trained on a modified version of the CelebA-faces dataset, which was made from flipping 20,000 images upside down and keeping 20,000 images intact.<br> The model relies on Resnet-18 as a backbone and is connected to one output node to classify whether the images are flipped upside down (1) or not (0).
tonyalves/output
a48bb1735615c797c7af913f713f6920205490e6
2022-04-03T14:24:57.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tonyalves
null
tonyalves/output
0
null
transformers
36,652
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Wer: 0.1352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.1367 | 0.64 | 500 | 3.8825 | 1.0 | | 2.9677 | 1.29 | 1000 | 2.9498 | 1.0 | | 1.5884 | 1.93 | 1500 | 0.6722 | 0.6493 | | 1.2292 | 2.57 | 2000 | 0.3635 | 0.3202 | | 1.1314 | 3.22 | 2500 | 0.2970 | 0.2680 | | 1.0879 | 3.86 | 3000 | 0.2671 | 0.2486 | | 1.0344 | 4.5 | 3500 | 0.2625 | 0.2239 | | 1.0109 | 5.15 | 4000 | 0.2520 | 0.2230 | | 0.9966 | 5.79 | 4500 | 0.2280 | 0.2105 | | 0.9815 | 6.43 | 5000 | 0.2254 | 0.2179 | | 0.9744 | 7.08 | 5500 | 0.2301 | 0.2137 | | 0.9487 | 7.72 | 6000 | 0.2224 | 0.2051 | | 0.9431 | 8.37 | 6500 | 0.2105 | 0.1992 | | 0.9365 | 9.01 | 7000 | 0.2114 | 0.2019 | | 0.9268 | 9.65 | 7500 | 0.2097 | 0.1988 | | 0.9292 | 10.3 | 8000 | 0.2120 | 0.1986 | | 0.929 | 10.94 | 8500 | 0.2048 | 0.1998 | | 0.9017 | 11.58 | 9000 | 0.2035 | 0.1999 | | 0.8898 | 12.23 | 9500 | 0.1961 | 0.1908 | | 0.8799 | 12.87 | 10000 | 0.1945 | 0.1817 | | 0.869 | 13.51 | 10500 | 0.1929 | 0.1844 | | 0.8572 | 14.16 | 11000 | 0.1941 | 0.1888 | | 0.8691 | 14.8 | 11500 | 0.1912 | 0.1804 | | 0.8645 | 15.44 | 12000 | 0.1950 | 0.1851 | | 0.8468 | 16.09 | 12500 | 0.1879 | 0.1770 | | 0.8405 | 16.73 | 13000 | 0.1881 | 0.1759 | | 0.8647 | 17.37 | 13500 | 0.1861 | 0.1740 | | 0.8477 | 18.02 | 14000 | 0.1782 | 0.1702 | | 0.811 | 18.66 | 14500 | 0.1915 | 0.1757 | | 0.8165 | 19.3 | 15000 | 0.1820 | 0.1724 | | 0.8166 | 19.95 | 15500 | 0.1798 | 0.1697 | | 0.8167 | 20.59 | 16000 | 0.1805 | 0.1752 | | 0.7908 | 21.24 | 16500 | 0.1761 | 0.1699 | | 0.7925 | 21.88 | 17000 | 0.1740 | 0.1709 | | 0.7803 | 22.52 | 17500 | 0.1815 | 0.1727 | | 0.7839 | 23.17 | 18000 | 0.1737 | 0.1694 | | 0.7815 | 23.81 | 18500 | 0.1732 | 0.1630 | | 0.767 | 24.45 | 19000 | 0.1724 | 0.1648 | | 0.7672 | 25.1 | 19500 | 0.1706 | 0.1596 | | 0.7691 | 25.74 | 20000 | 0.1718 | 0.1618 | | 0.7547 | 26.38 | 20500 | 0.1694 | 0.1565 | | 0.7498 | 27.03 | 21000 | 0.1706 | 0.1582 | | 0.7459 | 27.67 | 21500 | 0.1663 | 0.1586 | | 0.7374 | 28.31 | 22000 | 0.1651 | 0.1567 | | 0.7499 | 28.96 | 22500 | 0.1668 | 0.1549 | | 0.7471 | 29.6 | 23000 | 0.1667 | 0.1553 | | 0.7369 | 30.24 | 23500 | 0.1659 | 0.1556 | | 0.7389 | 30.89 | 24000 | 0.1668 | 0.1538 | | 0.7197 | 31.53 | 24500 | 0.1687 | 0.1561 | | 0.71 | 32.17 | 25000 | 0.1666 | 0.1516 | | 0.7199 | 32.82 | 25500 | 0.1640 | 0.1523 | | 0.7194 | 33.46 | 26000 | 0.1659 | 0.1528 | | 0.6923 | 34.11 | 26500 | 0.1662 | 0.1507 | | 0.7054 | 34.75 | 27000 | 0.1641 | 0.1486 | | 0.6955 | 35.39 | 27500 | 0.1634 | 0.1497 | | 0.7084 | 36.04 | 28000 | 0.1618 | 0.1478 | | 0.6917 | 36.68 | 28500 | 0.1589 | 0.1471 | | 0.687 | 37.32 | 29000 | 0.1589 | 0.1450 | | 0.6914 | 37.97 | 29500 | 0.1588 | 0.1465 | | 0.6646 | 38.61 | 30000 | 0.1602 | 0.1468 | | 0.6667 | 39.25 | 30500 | 0.1588 | 0.1444 | | 0.6754 | 39.9 | 31000 | 0.1587 | 0.1455 | | 0.6632 | 40.54 | 31500 | 0.1586 | 0.1461 | | 0.6619 | 41.18 | 32000 | 0.1571 | 0.1441 | | 0.6561 | 41.83 | 32500 | 0.1564 | 0.1420 | | 0.6492 | 42.47 | 33000 | 0.1539 | 0.1437 | | 0.6649 | 43.11 | 33500 | 0.1512 | 0.1406 | | 0.6511 | 43.76 | 34000 | 0.1539 | 0.1384 | | 0.6551 | 44.4 | 34500 | 0.1520 | 0.1384 | | 0.6452 | 45.05 | 35000 | 0.1510 | 0.1368 | | 0.6155 | 45.69 | 35500 | 0.1522 | 0.1375 | | 0.628 | 46.33 | 36000 | 0.1522 | 0.1366 | | 0.6389 | 46.97 | 36500 | 0.1513 | 0.1377 | | 0.6265 | 47.62 | 37000 | 0.1512 | 0.1369 | | 0.6197 | 48.26 | 37500 | 0.1511 | 0.1362 | | 0.621 | 48.91 | 38000 | 0.1510 | 0.1357 | | 0.6259 | 49.55 | 38500 | 0.1506 | 0.1353 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
bmichele/poetry-generation-nextline-mbart-ws-fi-single
53404dee7930347147261545f84e35e6545594a0
2022-04-01T11:51:32.000Z
[ "pytorch" ]
null
false
bmichele
null
bmichele/poetry-generation-nextline-mbart-ws-fi-single
0
null
null
36,653
# poetry-generation-nextline-mbart-ws-fi-single * `nextline`: generates a poem line from previous line(s) * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `ws`: trained on Wikisource data * `fi`: Finnish language * `single`: uses only last poem line as input for generation
notexist/ttt
9eaa84e33b63a72207047f523dd287d61464cba6
2022-04-01T13:16:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
notexist
null
notexist/ttt
0
null
transformers
36,654
--- license: apache-2.0 ---
bmichele/poetry-generation-firstline-mbart-ws-fi-sorted
311f3ef62e9db0ad7c5621dab2760be05f6882e3
2022-04-01T13:03:49.000Z
[ "pytorch" ]
null
false
bmichele
null
bmichele/poetry-generation-firstline-mbart-ws-fi-sorted
0
null
null
36,655
TODO: This is still a demo model, the file does not match with the model card!!! # poetry-generation-firstline-mbart-ws-fi-sorted * `nextline`: generates the first poem line from keywords * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `ws`: trained on Wikisource data * `fi`: Finnish language * `sorted`: the order of input keywords matter when generating candidates
rahulacj/mbart-large-cc25-finetuned-hi-to-en-v1
b7d8bf616d19b61134dafba61c5385c86993495e
2022-04-02T14:18:26.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
rahulacj
null
rahulacj/mbart-large-cc25-finetuned-hi-to-en-v1
0
null
transformers
36,656
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-cc25-finetuned-hi-to-en-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-hi-to-en-v1 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4978 - Bleu: 33.3366 - Gen Len: 22.7806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.6774 | 1.0 | 3955 | 1.5499 | 7.9551 | 73.7518 | | 1.2296 | 2.0 | 7910 | 1.4846 | 32.8075 | 23.7341 | | 0.9127 | 3.0 | 11865 | 1.5345 | 31.9747 | 23.6264 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hou/t5-base-finetuned-en-to-ug
82085827de1bbb059bbc3b0f864f6d602d8e81b8
2022-04-01T15:35:06.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hou
null
hou/t5-base-finetuned-en-to-ug
0
null
transformers
36,657
Entry not found
huggingtweets/chapocheck
ff65c201ad5a8eaf8aedbb2f2248bb6d6e257dab
2022-04-01T22:07:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chapocheck
0
null
transformers
36,658
--- language: en thumbnail: http://www.huggingtweets.com/chapocheck/1648850858747/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1191821996759404547/HY5C5aOW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cum Town (mostly Nick Mullen) quotes</div> <div style="text-align: center; font-size: 14px;">@chapocheck</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cum Town (mostly Nick Mullen) quotes. | Data | Cum Town (mostly Nick Mullen) quotes | | --- | --- | | Tweets downloaded | 1264 | | Retweets | 90 | | Short tweets | 75 | | Tweets kept | 1099 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/x77h239f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chapocheck's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18r1isa5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18r1isa5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chapocheck') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/clortown
87818638c93d0d77ea73c078787069f462749cf1
2022-04-02T04:51:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/clortown
0
null
transformers
36,659
--- language: en thumbnail: http://www.huggingtweets.com/clortown/1648875085007/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488574779351187458/RlIQNUFG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">yeosang elf agenda</div> <div style="text-align: center; font-size: 14px;">@clortown</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from yeosang elf agenda. | Data | yeosang elf agenda | | --- | --- | | Tweets downloaded | 3140 | | Retweets | 538 | | Short tweets | 463 | | Tweets kept | 2139 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cupnlna/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clortown's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uii743r9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uii743r9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clortown') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
iiShreya/wikineural-multilingual-ner
30b79b6a2c8ab4eae0dcd57bce1b6e4ea238c6df
2022-04-11T19:53:32.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
iiShreya
null
iiShreya/wikineural-multilingual-ner
0
null
transformers
36,660
Entry not found
huggingtweets/percybotshelley
a65ccfecace2bebeefbe947667e6cd907af1a4d9
2022-04-02T05:27:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/percybotshelley
0
null
transformers
36,661
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/780200431859269633/kXZwDd_Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Romantic Poetry Bot</div> <div style="text-align: center; font-size: 14px;">@percybotshelley</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Romantic Poetry Bot. | Data | Romantic Poetry Bot | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 0 | | Short tweets | 20 | | Tweets kept | 3185 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bj4pakr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @percybotshelley's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yfs8v92) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yfs8v92/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/percybotshelley') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
juancavallotti/t5-base-es-en
51d7d90a7cb2fba82bd7505cf3727060be523f40
2022-04-02T06:02:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
juancavallotti
null
juancavallotti/t5-base-es-en
0
null
transformers
36,662
Entry not found
mczolly/DialoGPT-small-the-doctor
2019fa6c913e32927a241b8fb9998e0623ebdcfb
2022-04-02T11:20:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mczolly
null
mczolly/DialoGPT-small-the-doctor
0
null
transformers
36,663
--- tags: - conversational --- # Doctor Who model
huggingtweets/sanjabh
eb82f20e98d9371abfa8e0609cb7169b3b7b67cb
2022-04-02T12:14:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/sanjabh
0
null
transformers
36,664
--- language: en thumbnail: http://www.huggingtweets.com/sanjabh/1648901691950/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484080880222351360/FtDB2j4B_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lucid Dreams</div> <div style="text-align: center; font-size: 14px;">@sanjabh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lucid Dreams. | Data | Lucid Dreams | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 373 | | Short tweets | 137 | | Tweets kept | 2740 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s7tzf32/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sanjabh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cl1cjnx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cl1cjnx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sanjabh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mnne/duck-and-cover-genre-encoder
6456abe1f444db42e60c7663171873d0cd8a8907
2022-04-02T13:53:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mnne
null
mnne/duck-and-cover-genre-encoder
0
null
transformers
36,665
# Duck and Cover - Genre Autoencoder This model is part of the [duck_and_cover](https://github.com/mcschmitz/duck_and_cover) repository. Scope of this repository is to generate album covers based on several conditions like release year, artist & album name, and genre(s) using different types of GANs. The possible list of genres that this encoder covers can be found [here](https://github.com/mcschmitz/duck_and_cover/blob/master/data/genres.txt). For training [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini) has been finetuned on a list of 466.045 albums with different genre combinations taken from the aforementioned list to embed genre information, while a simple Linear Layer was trained to decode and predict the given genre from the embeddings. The albums are real-world albums retrieved using the Spotify API. The intention behind this model is that Hard Rock is somehow related to Rock, while Pop Rock is related to Rock as well and a BERT Tokenizer can capture this information as a lot of music genres are described by using pre- and suffixes. The model was validated on 133.155 during training and tested on 66.578. It yields a 98.29% Exact Match ratio on the testset and a 98.24% Exact Match Ratio on the validation set, which is extremely high given that the model can embed up to 3452 labels and most of the albums only had up to 5 labels. ## Usage The model can be used to embed genres to a 256 dimensional space using the following input. ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("mnne/duck-and-cover-genre-encoder") tokenizer = AutoTokenizer.from_pretrained("mnne/duck-and-cover-genre-encoder") genres = " , ".join(["classic soul", "memphis soul", "soul", "soul blues", "southern soul"]) x = tokenizer([genres], return_tensors="pt") output = model(**x) ```
shwetha/distilbert-base-uncased-finetuned-squad
10860c1feb7aace883cc1633b820bc45d3358599
2022-04-02T17:11:25.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
shwetha
null
shwetha/distilbert-base-uncased-finetuned-squad
0
null
transformers
36,666
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.5925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 5.9198 | | No log | 2.0 | 4 | 5.7019 | | No log | 3.0 | 6 | 5.5925 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.10.2+cpu - Datasets 2.0.0 - Tokenizers 0.10.3
notexist/ttt2
7bf57ef3be42c0eb082096ba5115870f19c82e3f
2022-04-02T15:09:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
notexist
null
notexist/ttt2
0
null
transformers
36,667
--- license: apache-2.0 ---
hou/plt5-small-finetuned-en-to-ug
449dd87f5c5a03f488fd48dcdfa868ef525eeba9
2022-04-02T15:48:58.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hou
null
hou/plt5-small-finetuned-en-to-ug
0
null
transformers
36,668
Entry not found
vocab-transformers/distilbert-mlm-500k
26a5b9c50244234234181556b75db33c1fa69b0c
2022-04-02T21:12:46.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-mlm-500k
0
null
transformers
36,669
distilbert-base-uncased trained for 500K steps with batch size 64 on C4, MSMARCO, Wikipedia, S2ORC, News
vocab-transformers/distilbert-mlm-750k
8bd8ce434dda17543bd9045ef980d4b2798074db
2022-04-02T21:15:27.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-mlm-750k
0
null
transformers
36,670
distilbert-base-uncased trained for 750K steps with batch size 64 on C4, MSMARCO, Wikipedia, S2ORC, News
vocab-transformers/distilbert-mlm-best
fa0c296950940d35f3a7af05fa0b17a3db26c79a
2022-04-02T21:18:53.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-mlm-best
0
null
transformers
36,671
distilbert-base-uncased trained for 680K steps (lowest loss on dev dataset) with batch size 64 on C4, MSMARCO, Wikipedia, S2ORC, News
notexist/tttf
45c7ff3da49f31a8a3b50b6c1f219717c9931622
2022-04-03T03:11:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
notexist
null
notexist/tttf
0
null
transformers
36,672
Entry not found
jsunster/distilbert-base-uncased-finetuned-squad
b17448ee1e94fcc3c40d94b6d03ac6c388fe319a
2022-04-03T14:46:14.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
jsunster
null
jsunster/distilbert-base-uncased-finetuned-squad
0
null
transformers
36,673
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2823 | 1.0 | 2767 | 1.1980 | | 1.0336 | 2.0 | 5534 | 1.1334 | | 0.8513 | 3.0 | 8301 | 1.1476 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
johnowhitaker/orbgan_dark
07442305009323382ddcd756ef19d91e1616b516
2022-04-05T07:31:24.000Z
[ "pytorch" ]
null
false
johnowhitaker
null
johnowhitaker/orbgan_dark
0
null
null
36,674
A version of https://huggingface.co/johnowhitaker/orbgan_e1 trained on only dark images
johnowhitaker/orbgan_light
5d339f335c098469ae95024a52c9a68790c2b642
2022-04-05T07:31:09.000Z
[ "pytorch" ]
null
false
johnowhitaker
null
johnowhitaker/orbgan_light
0
null
null
36,675
A version of https://huggingface.co/johnowhitaker/orbgan_e1 trained on only light images
pszemraj/gpt-peter-2.7B
f58910bfe8e51da0ffa59fce4f9d934f53e693b0
2022-05-24T12:09:16.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "gpt-neo", "gpt-peter", "chatbot" ]
text-generation
false
pszemraj
null
pszemraj/gpt-peter-2.7B
0
null
transformers
36,676
--- tags: - gpt-neo - gpt-peter - chatbot inference: False --- # pszemraj/gpt-peter-2.7B - This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on about 80k WhatsApp and iMessage texts. - The model is too large to use the inference API. linked [here](https://colab.research.google.com/gist/pszemraj/a59b43813437b43973c8f8f9a3944565/testing-pszemraj-gpt-peter-2-7b.ipynb) is a notebook for testing in Colab. - alternatively, you can message [a bot on telegram](http://t.me/GPTPeter_bot) where I test LLMs for dialogue generation - the telegram bot code and the model training code can be found [in this repository](https://github.com/pszemraj/ai-msgbot) ## Usage in python Install the transformers library if you don't have it: ``` pip install -U transformers ``` load the model into a `pipeline` object: ``` from transformers import pipeline import torch my_chatbot = pipeline('text-generation', 'pszemraj/gpt-peter-2.7B', device=0 if torch.cuda.is_available() else -1, ) ``` generate text! ``` my_chatbot('Did you ever hear the tragedy of Darth Plagueis The Wise?') ``` _(example above for simplicity, but adding generation parameters such as `no_repeat_ngram_size` are recommended to get better generations)_ ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
pfloyd/opus-mt-es-en-finetuned-es-to-en
7f575fadfd216078587df305b9ad9ac4912f4c5c
2022-04-08T03:30:30.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
pfloyd
null
pfloyd/opus-mt-es-en-finetuned-es-to-en
0
null
transformers
36,677
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-es-en-finetuned-es-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-es-en-finetuned-es-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-en](https://huggingface.co/Helsinki-NLP/opus-mt-es-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5851 - Bleu: 71.1382 - Gen Len: 10.3225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 112 | 0.5693 | 71.7823 | 10.3676 | | No log | 2.0 | 224 | 0.5744 | 69.5504 | 10.6739 | | No log | 3.0 | 336 | 0.5784 | 71.6553 | 10.3117 | | No log | 4.0 | 448 | 0.5826 | 71.0576 | 10.3261 | | 0.2666 | 5.0 | 560 | 0.5851 | 71.1382 | 10.3225 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
microsoft/cvt-13-384
36a5cfac1b06d6f792894faef9f1df9f331cdda1
2022-05-18T16:11:53.000Z
[ "pytorch", "cvt", "image-classification", "dataset:imagenet-1k", "arxiv:2103.15808", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
microsoft
null
microsoft/cvt-13-384
0
null
transformers
36,678
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Convolutional Vision Transformer (CvT) CvT-13 model pre-trained on ImageNet-1k at resolution 384x384. It was introduced in the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Wu et al. and first released in [this repository](https://github.com/microsoft/CvT). Disclaimer: The team releasing CvT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, CvtForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-13-384') model = CvtForImageClassification.from_pretrained('microsoft/cvt-13-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ```
medhabi/bert-base-uncased-finetuned-imdb
96a0b865f623a6f08c1b3bb5c75de98826704a66
2022-04-04T14:29:57.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
medhabi
null
medhabi/bert-base-uncased-finetuned-imdb
0
null
transformers
36,679
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-imdb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6449 | 1.0 | 157 | 2.3557 | | 2.4402 | 2.0 | 314 | 2.2897 | | 2.3804 | 3.0 | 471 | 2.3011 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
leixu/xlm-roberta-base-finetuned-panx-de
1cc6bb8e73bd013be936597eddec9125c721db60
2022-04-04T14:38:14.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
leixu
null
leixu/xlm-roberta-base-finetuned-panx-de
0
null
transformers
36,680
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8605061131646289 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1377 - F1: 0.8605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2573 | 1.0 | 525 | 0.1651 | 0.8199 | | 0.1296 | 2.0 | 1050 | 0.1482 | 0.8413 | | 0.081 | 3.0 | 1575 | 0.1377 | 0.8605 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
gao-huggingface/T5-IDX-Event
71c7d06f53bc12f9b021496e22cc8096f64db9a6
2022-04-04T16:01:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gao-huggingface
null
gao-huggingface/T5-IDX-Event
0
null
transformers
36,681
Entry not found
gao-huggingface/T5-IDX-Descriptor
9bad56cb92cb90e22ef09ed8305345e670eae043
2022-04-04T16:05:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gao-huggingface
null
gao-huggingface/T5-IDX-Descriptor
0
null
transformers
36,682
Entry not found
gao-huggingface/T5-IDX-Subdescriptor
abb736d96cb7050e156a24b4550ab31e16fa0ceb
2022-04-04T16:08:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gao-huggingface
null
gao-huggingface/T5-IDX-Subdescriptor
0
null
transformers
36,683
Entry not found
gao-huggingface/T5-IDX-Subdescriptor-Flat-Model
9b1a1d9194f85d8831016e1c73d1cd5174e2cec5
2022-04-04T16:14:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gao-huggingface
null
gao-huggingface/T5-IDX-Subdescriptor-Flat-Model
0
null
transformers
36,684
Entry not found
johnowhitaker/butterfly-gan-10k
77c982e96cea2b04c88fd57320ee36fc34f33fae
2022-04-04T18:12:07.000Z
[ "pytorch" ]
null
false
johnowhitaker
null
johnowhitaker/butterfly-gan-10k
0
null
null
36,685
Badly trained lightweightgan - ignore
huggingtweets/weirdokun
35ab7e8e4c99111a2acfff1c5890d66da0940363
2022-04-04T16:40:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/weirdokun
0
null
transformers
36,686
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447886082163417093/l0n43HWC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">#LetLeniLead</div> <div style="text-align: center; font-size: 14px;">@weirdokun</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from #LetLeniLead. | Data | #LetLeniLead | | --- | --- | | Tweets downloaded | 3114 | | Retweets | 544 | | Short tweets | 273 | | Tweets kept | 2297 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wraydb99/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @weirdokun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lf5g2np) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lf5g2np/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/weirdokun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ucl-snlp-group-11/t5-base-separations-cryptic-crosswords
ba8116fe4d8205845d0e13d9cd23a144e50041bd
2022-04-04T17:24:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ucl-snlp-group-11
null
ucl-snlp-group-11/t5-base-separations-cryptic-crosswords
0
null
transformers
36,687
Entry not found
salma-elshafey/opus-mt-ar-en-finetuned-ar-to-en
5332a0f34064f0a6c9858e1129e3283d74f844ec
2022-05-20T13:52:33.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
salma-elshafey
null
salma-elshafey/opus-mt-ar-en-finetuned-ar-to-en
0
null
transformers
36,688
Entry not found
ntoldalagi/nick_asr_v2
d80d7625565ec8c0a9728ae4ed7d65c8289865e4
2022-04-14T04:08:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
ntoldalagi
null
ntoldalagi/nick_asr_v2
0
null
transformers
36,689
--- tags: - generated_from_trainer model-index: - name: nick_asr_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nick_asr_v2 This model is a fine-tuned version of [ntoldalagi/nick_asr_v2](https://huggingface.co/ntoldalagi/nick_asr_v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4562 - Wer: 0.6422 - Cer: 0.2409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:------:|:---------------:|:------:| | 0.2616 | 0.44 | 300 | 0.2905 | 1.2200 | 0.7496 | | 0.441 | 0.87 | 600 | 0.2866 | 1.1936 | 0.7385 | | 0.4366 | 1.31 | 900 | 0.2795 | 1.1584 | 0.7274 | | 0.3982 | 1.75 | 1200 | 0.2808 | 1.2033 | 0.7274 | | 0.3891 | 2.18 | 1500 | 0.2753 | 1.2044 | 0.7166 | | 0.3508 | 2.91 | 2000 | 1.2382 | 0.7220 | 0.2743 | | 0.2783 | 4.37 | 3000 | 1.3327 | 0.7177 | 0.2705 | | 0.2495 | 5.82 | 4000 | 1.2286 | 0.6749 | 0.2638 | | 0.1982 | 7.28 | 5000 | 1.3073 | 0.6721 | 0.2585 | | 0.1717 | 8.73 | 6000 | 1.2941 | 0.6627 | 0.2500 | | 0.1508 | 10.19 | 7000 | 1.3625 | 0.6584 | 0.2490 | | 0.1329 | 11.64 | 8000 | 1.3863 | 0.6584 | 0.2474 | | 0.1303 | 13.1 | 9000 | 1.3714 | 0.6534 | 0.2449 | | 0.1159 | 14.56 | 10000 | 1.4043 | 0.6473 | 0.2442 | | 0.1015 | 16.01 | 11000 | 1.4245 | 0.6498 | 0.2419 | | 0.098 | 17.47 | 12000 | 1.4410 | 0.6440 | 0.2425 | | 0.0869 | 18.92 | 13000 | 1.4562 | 0.6422 | 0.2409 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
jeremykke/bert-base-uncased-finetuned-swag
cc4838418d58996bb421f9fbc5b774e49f5954db
2022-04-05T15:29:55.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "dataset:swag", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
jeremykke
null
jeremykke/bert-base-uncased-finetuned-swag
0
null
transformers
36,690
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0087 - Accuracy: 0.7911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7545 | 1.0 | 4597 | 0.5963 | 0.7695 | | 0.3914 | 2.0 | 9194 | 0.6152 | 0.7879 | | 0.1385 | 3.0 | 13791 | 1.0087 | 0.7911 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
johnowhitaker/colorb_gan
ca2dd2bf84f265d20320ac2a05d7b3673fc6a8f5
2022-04-05T07:43:07.000Z
[ "pytorch" ]
null
false
johnowhitaker
null
johnowhitaker/colorb_gan
0
null
null
36,691
A lightweightgan trained briefly on https://huggingface.co/datasets/johnowhitaker/colorbs See https://huggingface.co/johnowhitaker/orbgan_e1 for training script and so on, since this was basically just copying that and running on a new dataset. Note: lightweightgan code was updated between training orbgan_e1 and this one, so if you're trying to run the CPU inference notebook you'll get errors. See an updated version running this model on a CPU here: https://colab.research.google.com/drive/16XKJ7XZeSI0rvUf1GU6m9qrmwr1pMRWy?usp=sharing See demo on spaces here: https://huggingface.co/spaces/huggan/Colorb_GAN
laboratory/fatima-challenge
c47446382c4fbb58d43acac81177c6606ead0852
2022-04-05T19:55:40.000Z
[ "pytorch" ]
null
false
laboratory
null
laboratory/fatima-challenge
0
null
null
36,692
Entry not found
akiyamasho/AnimeBackgroundGAN-Shinkai
d162ca947aab5aa943c3586bda550812831d5cf4
2022-04-05T17:11:49.000Z
[ "pytorch", "gan", "image-to-image", "license:mit" ]
image-to-image
false
akiyamasho
null
akiyamasho/AnimeBackgroundGAN-Shinkai
0
7
pytorch
36,693
--- license: mit library_name: pytorch tags: - gan - image-to-image --- # AnimeBackgroundGAN (CartoonGAN by Chen et. al.) <img src="https://m.media-amazon.com/images/M/MV5BZTExN2EwMmYtNDcwZS00ZmI1LTk1NGQtNTQ3YWFjMmY3YjQwXkEyXkFqcGdeQXVyNTU1OTUzNDg@._V1_.jpg" alt="5 Centimetres per Second directed by Makoto Shinkai" style="height: 300px;"/> - [Makoto Shinkai (新海誠)](https://en.wikipedia.org/wiki/Makoto_Shinkai) pre-trained model from [CartoonGAN](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]`. - This model can transform real-life photos into Japanese-animation-like backgrounds, following the style of movies such as [Kimi no Na wa](https://en.wikipedia.org/wiki/Kimi_no_Na_wa) with a photorealistic painting style. - The implementation is in PyTorch (see [source code here](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN/blob/main/network/Transformer.py)). - Check out the demo here: [![Demo in Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN) # Other pre-trained model versions The other versions were also trained from movies of the different Japanese animation directors. ##### Mamoru Hosoda(細田守) - director of [Wolf Children](https://en.wikipedia.org/wiki/Wolf_Children), with a distinct mild and cool background style - [Director Profile](https://en.wikipedia.org/wiki/Mamoru_Hosoda) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Hosoda ##### Satoshi Kon(今敏) - director of [Paprika](https://en.wikipedia.org/wiki/Paprika_(2006_film)) with a distinct high contrast, reddish hue style - [Director Profile](https://en.wikipedia.org/wiki/Satoshi_Kon) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Kon ##### Hayao Miyazaki(宮崎駿) - director of [Howl's Moving Castle](https://en.wikipedia.org/wiki/Howl%27s_Moving_Castle_(film)) with a relatively soft and painterly style - [Director Profile](https://en.wikipedia.org/wiki/Hayao_Miyazaki) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Miyazaki ### Credits - Paper at [CartoonGAN: Generative Adversarial Networks for Photo Cartoonization](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]` - Original PyTorch implementation was created by [Yijun Li](https://github.com/Yijunmaverick/) - Spaces/Models re-packaging and implementation by [Shō Akiyama](https://github.com/Yijunmaverick/). ##### Special Thanks - [Nima Boscarino](https://github.com/NimaBoscarino) - [Omar Sanseviero](https://github.com/osanseviero)
akiyamasho/AnimeBackgroundGAN-Hosoda
088b541fd09b113b286fbd032b3ed3a77f5953ca
2022-04-05T17:11:29.000Z
[ "pytorch", "gan", "image-to-image", "license:mit" ]
image-to-image
false
akiyamasho
null
akiyamasho/AnimeBackgroundGAN-Hosoda
0
1
pytorch
36,694
--- license: mit library_name: pytorch tags: - gan - image-to-image --- # AnimeBackgroundGAN-Hosoda (CartoonGAN by Chen et. al.) <img src="https://m.media-amazon.com/images/M/MV5BYjgxYjk4OTktZjU3Ni00YzE5LTkyMmItMzI4YzY1YTlhNDg2XkEyXkFqcGdeQXVyNzEyMDQ1MDA@._V1_.jpg" alt="Mirai directed by Mamoru Hosoda" style="height: 300px;"/> - [Mamoru Hosoda(細田守)](https://en.wikipedia.org/wiki/Mamoru_Hosoda) pre-trained model from [CartoonGAN](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]`. - This model can transform real-life photos into Japanese-animation-like backgrounds, following the style of movies such as [Wolf Children](https://en.wikipedia.org/wiki/Wolf_Children), with a distinct mild and cool background style. - The implementation is in PyTorch (see [source code here](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN/blob/main/network/Transformer.py)). - Check out the demo here: [![Demo in Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN) # Other pre-trained model versions The other versions were also trained from movies of the different Japanese animation directors. ##### Makoto Shinkai (新海誠) - director of [Kimi no Na wa](https://en.wikipedia.org/wiki/Kimi_no_Na_wa) with a photorealistic painting style - [Director Profile](https://en.wikipedia.org/wiki/Makoto_Shinkai) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Shinkai ##### Satoshi Kon(今敏) - director of [Paprika](https://en.wikipedia.org/wiki/Paprika_(2006_film)) with a distinct high contrast, reddish hue style - [Director Profile](https://en.wikipedia.org/wiki/Satoshi_Kon) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Kon ##### Hayao Miyazaki(宮崎駿) - director of [Howl's Moving Castle](https://en.wikipedia.org/wiki/Howl%27s_Moving_Castle_(film)) with a relatively soft and painterly style - [Director Profile](https://en.wikipedia.org/wiki/Hayao_Miyazaki) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Miyazaki ### Credits - Paper at [CartoonGAN: Generative Adversarial Networks for Photo Cartoonization](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]` - Original PyTorch implementation was created by [Yijun Li](https://github.com/Yijunmaverick/) - Spaces/Models re-packaging and implementation by [Shō Akiyama](https://github.com/Yijunmaverick/). ##### Special Thanks - [Nima Boscarino](https://github.com/NimaBoscarino) - [Omar Sanseviero](https://github.com/osanseviero)
akiyamasho/AnimeBackgroundGAN-Miyazaki
c93786c4e4766e43afd2949ca7314ccad61f1d79
2022-04-05T17:11:21.000Z
[ "pytorch", "gan", "image-to-image", "license:mit" ]
image-to-image
false
akiyamasho
null
akiyamasho/AnimeBackgroundGAN-Miyazaki
0
1
pytorch
36,695
--- license: mit library_name: pytorch tags: - gan - image-to-image --- # AnimeBackgroundGAN-Miyazaki (CartoonGAN by Chen et. al.) <img src="https://m.media-amazon.com/images/M/MV5BMTM4MTg2MjAzN15BMl5BanBnXkFtZTcwMTk1NzEyNw@@._V1_.jpg" alt="Howl's Moving Castle directed by Hayao Miyazaki" style="height: 300px;"/> - [Hayao Miyazaki(宮崎駿)](https://en.wikipedia.org/wiki/Hayao_Miyazaki) pre-trained model from [CartoonGAN](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]`. - This model can transform real-life photos into Japanese-animation-like backgrounds, following the style of movies such as [Howl's Moving Castle](https://en.wikipedia.org/wiki/Howl%27s_Moving_Castle_(film)) with a relatively soft and painterly style. - The implementation is in PyTorch (see [source code here](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN/blob/main/network/Transformer.py)). - Check out the demo here: [![Demo in Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN) # Other pre-trained model versions The other versions were also trained from movies of the different Japanese animation directors. ##### Mamoru Hosoda(細田守) - director of [Wolf Children](https://en.wikipedia.org/wiki/Wolf_Children), with a distinct mild and cool background style - [Director Profile](https://en.wikipedia.org/wiki/Mamoru_Hosoda) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Hosoda ##### Satoshi Kon(今敏) - director of [Paprika](https://en.wikipedia.org/wiki/Paprika_(2006_film)) with a distinct high contrast, reddish hue style - [Director Profile](https://en.wikipedia.org/wiki/Satoshi_Kon) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Kon ##### Makoto Shinkai (新海誠) - director of [Kimi no Na wa](https://en.wikipedia.org/wiki/Kimi_no_Na_wa) with a photorealistic painting style - [Director Profile](https://en.wikipedia.org/wiki/Makoto_Shinkai) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Shinkai ### Credits - Paper at [CartoonGAN: Generative Adversarial Networks for Photo Cartoonization](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]` - Original PyTorch implementation was created by [Yijun Li](https://github.com/Yijunmaverick/) - Spaces/Models re-packaging and implementation by [Shō Akiyama](https://github.com/Yijunmaverick/). ##### Special Thanks - [Nima Boscarino](https://github.com/NimaBoscarino) - [Omar Sanseviero](https://github.com/osanseviero)
akiyamasho/AnimeBackgroundGAN-Kon
8a701306dfa2e7825132db4c0793522540a4281c
2022-04-05T17:11:40.000Z
[ "pytorch", "gan", "image-to-image", "license:mit" ]
image-to-image
false
akiyamasho
null
akiyamasho/AnimeBackgroundGAN-Kon
0
1
pytorch
36,696
--- license: mit library_name: pytorch tags: - gan - image-to-image --- # AnimeBackgroundGAN (CartoonGAN by Chen et. al.) <img src="https://m.media-amazon.com/images/M/MV5BNjNjYTRkNGUtMGQ2MS00MTFiLTg0OTEtYTM3MmM1YTY1OTM1XkEyXkFqcGdeQXVyNjc3OTE4Nzk@._V1_.jpg" alt="Paprika directed by Satoshi Kon" style="height: 300px;"/> - [Satoshi Kon(今敏)](https://en.wikipedia.org/wiki/Satoshi_Kon) pre-trained model from [CartoonGAN](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]`. - This model can transform real-life photos into Japanese-animation-like backgrounds, following the style of movies such as [Paprika](https://en.wikipedia.org/wiki/Paprika_(2006_film)) with a distinct high contrast, reddish hue style. - The implementation is in PyTorch (see [source code here](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN/blob/main/network/Transformer.py)). - Check out the demo here: [![Demo in Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akiyamasho/AnimeBackgroundGAN) # Other pre-trained model versions The other versions were also trained from movies of the different Japanese animation directors. ##### Mamoru Hosoda(細田守) - director of [Wolf Children](https://en.wikipedia.org/wiki/Wolf_Children), with a distinct mild and cool background style - [Director Profile](https://en.wikipedia.org/wiki/Mamoru_Hosoda) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Hosoda ##### Makoto Shinkai (新海誠) - director of [Kimi no Na wa](https://en.wikipedia.org/wiki/Kimi_no_Na_wa) with a photorealistic painting style - [Director Profile](https://en.wikipedia.org/wiki/Makoto_Shinkai) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Shinkai ##### Hayao Miyazaki(宮崎駿) - director of [Howl's Moving Castle](https://en.wikipedia.org/wiki/Howl%27s_Moving_Castle_(film)) with a relatively soft and painterly style - [Director Profile](https://en.wikipedia.org/wiki/Hayao_Miyazaki) - **Model Repository**: https://huggingface.co/akiyamasho/AnimeBackgroundGAN-Miyazaki ### Credits - Paper at [CartoonGAN: Generative Adversarial Networks for Photo Cartoonization](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf) `[Chen et al., CVPR18]` - Original PyTorch implementation was created by [Yijun Li](https://github.com/Yijunmaverick/) - Spaces/Models re-packaging and implementation by [Shō Akiyama](https://github.com/Yijunmaverick/). ##### Special Thanks - [Nima Boscarino](https://github.com/NimaBoscarino) - [Omar Sanseviero](https://github.com/osanseviero)
robvanderg/bert-base-multilingual-cased-segment1
2e54511d2c080c4e843556c16e6e303b0db8b4db
2022-04-05T12:39:54.000Z
[ "pytorch", "bert", "feature-extraction", "multilingual", "dataset:Wikipedia", "transformers", "hack" ]
feature-extraction
false
robvanderg
null
robvanderg/bert-base-multilingual-cased-segment1
0
null
transformers
36,697
--- language: - multilingual tags: - hack datasets: - Wikipedia --- ## bert-base-multilingual-cased-segment1 This is a version of multilingual bert (bert-base-multilingual-cased), where the segment embedding of the 1's is copied into the 0's. Yes, that's all there is to it. We have found that this improves performance substantially in low-resource setups for word-level tasks (e.g. average 2.5 LAS on a variety of UD treebanks). More details are to be released in our LREC2022 paper titled: Frustratingly Easy Performance Improvements for Cross-lingual Transfer: A Tale on BERT and Segment Embeddings. These embeddings are generated by the following code ``` import AutoModel baseEmbeddings = AutoModel.from_pretrained("bert-base-multilingual-cased") tte = baseEmbeddings.embeddings.token_type_embeddings.weight.clone().detach() baseEmbeddings.embeddings.token_type_embeddings.weight[0,:] = tte[1,:] ``` More details and other varieties can be found in the repo: https://bitbucket.org/robvanderg/segmentembeds/ Note that when using this model on a single sentence task (or word-level task), the results would be similar as just using `token_type_id=1` for all tokens.
gulgulglut/DialoGPT-small-Rick
65ab139692517c9413e1f5bf96ffef0b6528bbdc
2022-04-05T14:09:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
gulgulglut
null
gulgulglut/DialoGPT-small-Rick
0
null
transformers
36,698
--- tags: - conversational --- # Harry Potter DialoGPT Model
rowan1224/electra-slp
211ab5e7c2370defefb8edd0b9b5158c151fd599
2022-04-05T16:39:43.000Z
[ "pytorch", "electra", "question-answering", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
rowan1224
null
rowan1224/electra-slp
0
null
transformers
36,699
--- license: mit ---