modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggan/pix2pix-edge2shoes
c33cecfe57658244f753611943fdff043fd08e39
2022-04-15T04:28:29.000Z
[ "pytorch", "dataset:huggan/edge2shoes", "arxiv:1611.07004", "huggan", "gan", "license:mit" ]
null
false
huggan
null
huggan/pix2pix-edge2shoes
0
null
null
36,800
--- tags: - huggan - gan datasets: - huggan/edge2shoes # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description [Pix2pix Model](https://arxiv.org/abs/1611.07004) is a conditional adversarial networks, a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. ## Intended uses & limitations: Used for reconstruction of images from edges #### How to use ```python from torchvision.transforms import Compose, Resize, ToTensor, Normalize from PIL import Image from torchvision.utils import save_image import cv2 from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) model = GeneratorUNet.from_pretrained('huggan/pix2pix-edge2shoes) def predict_fn(img): inp = transform(img).unsqueeze(0) out = model(inp) save_image(out, 'out.png', normalize=True) return 'out.png' predict_fn(img) ``` #### Limitations and bias * Gives unrealistic colors in the image * Patterns in the edge drawing are not recognize properly ## Training data * [edges2shoes](https://huggingface.co/datasets/huggan/edges2shoes) ## Training procedure ``` # clone the repository git clone https://github.com/huggingface/community-events.git pip install . # change directory cd community-events/huggan/pytorch/pix2pix/ # define config accelerate config # launch training with required parameters accelerate launch train.py --checkpoint_interval 10 --dataset huggan/edges2shoes --push_to_hub --model_name pix2pix-edge2shoes --batch_size 128 --n_epochs 100 ``` ## Generated Images Here, * First Image Row: Input Sketch * Second Image Row: Generated Image * Third Image Row: Target Image ![image1](34000.png) ![image2](35000.png) ### BibTeX entry and citation info ```bibtex @article{pix2pix2017, title={Image-to-Image Translation with Conditional Adversarial Networks}, author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A}, journal={CVPR}, year={2017} } ```
timhbach/Team_Gryffindor_NER
01e38cc5491a0a9c77c65ca6db7662aa38cc47d6
2022-04-29T21:13:30.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
timhbach
null
timhbach/Team_Gryffindor_NER
0
null
transformers
36,801
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Team_Gryffindor_NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Team-Gryffindor-distilbert-base-finetuned-NER-creditcardcontract-100epoch This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the Credit card agreement dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Precision: 0.7319 - Recall: 0.7064 - F1: 0.7190 - Accuracy: 0.9920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0113 | 0.33 | 500 | 0.0443 | 0.6547 | 0.7028 | 0.6779 | 0.9908 | | 0.0118 | 0.67 | 1000 | 0.0435 | 0.7207 | 0.6440 | 0.6802 | 0.9916 | | 0.013 | 1.0 | 1500 | 0.0449 | 0.7113 | 0.6826 | 0.6966 | 0.9918 | | 0.0113 | 1.34 | 2000 | 0.0434 | 0.7213 | 0.6697 | 0.6946 | 0.9915 | | 0.0121 | 1.67 | 2500 | 0.0467 | 0.6955 | 0.6789 | 0.6871 | 0.9914 | | 0.0125 | 2.01 | 3000 | 0.0417 | 0.7095 | 0.6991 | 0.7043 | 0.9920 | | 0.0106 | 2.34 | 3500 | 0.0437 | 0.7191 | 0.6624 | 0.6896 | 0.9918 | | 0.0114 | 2.68 | 4000 | 0.0468 | 0.7165 | 0.6679 | 0.6914 | 0.9920 | | 0.0125 | 3.01 | 4500 | 0.0431 | 0.6888 | 0.6862 | 0.6875 | 0.9917 | | 0.0107 | 3.35 | 5000 | 0.0446 | 0.7184 | 0.6459 | 0.6802 | 0.9913 | | 0.0096 | 3.68 | 5500 | 0.0485 | 0.6926 | 0.6532 | 0.6723 | 0.9912 | | 0.013 | 4.02 | 6000 | 0.0448 | 0.6134 | 0.6697 | 0.6404 | 0.9907 | | 0.0102 | 4.35 | 6500 | 0.0497 | 0.6895 | 0.6642 | 0.6766 | 0.9913 | | 0.0112 | 4.69 | 7000 | 0.0464 | 0.6759 | 0.6697 | 0.6728 | 0.9910 | | 0.0117 | 5.02 | 7500 | 0.0484 | 0.7451 | 0.6275 | 0.6813 | 0.9916 | | 0.0114 | 5.36 | 8000 | 0.0411 | 0.7086 | 0.6826 | 0.6953 | 0.9919 | | 0.0108 | 5.69 | 8500 | 0.0443 | 0.7041 | 0.6679 | 0.6855 | 0.9916 | | 0.0109 | 6.03 | 9000 | 0.0470 | 0.7228 | 0.6697 | 0.6952 | 0.9916 | | 0.0099 | 6.36 | 9500 | 0.0471 | 0.7253 | 0.6881 | 0.7062 | 0.9913 | | 0.0103 | 6.7 | 10000 | 0.0430 | 0.6986 | 0.7101 | 0.7043 | 0.9914 | | 0.0117 | 7.03 | 10500 | 0.0462 | 0.7327 | 0.6991 | 0.7155 | 0.9918 | | 0.0098 | 7.37 | 11000 | 0.0483 | 0.6910 | 0.6771 | 0.6840 | 0.9914 | | 0.0107 | 7.7 | 11500 | 0.0468 | 0.7189 | 0.6899 | 0.7041 | 0.9916 | | 0.0119 | 8.04 | 12000 | 0.0434 | 0.6970 | 0.6881 | 0.6925 | 0.9918 | | 0.0112 | 8.37 | 12500 | 0.0469 | 0.7007 | 0.6917 | 0.6962 | 0.9918 | | 0.011 | 8.71 | 13000 | 0.0469 | 0.6736 | 0.6514 | 0.6623 | 0.9914 | | 0.0101 | 9.04 | 13500 | 0.0451 | 0.6691 | 0.6606 | 0.6648 | 0.9913 | | 0.0099 | 9.38 | 14000 | 0.0462 | 0.7006 | 0.6826 | 0.6914 | 0.9918 | | 0.0107 | 9.71 | 14500 | 0.0444 | 0.6840 | 0.6752 | 0.6796 | 0.9915 | | 0.0118 | 10.05 | 15000 | 0.0457 | 0.7015 | 0.6771 | 0.6891 | 0.9918 | | 0.0102 | 10.38 | 15500 | 0.0500 | 0.7413 | 0.6679 | 0.7027 | 0.9919 | | 0.0107 | 10.72 | 16000 | 0.0470 | 0.7319 | 0.7064 | 0.7190 | 0.9920 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggan/fastgan-few-shot-shells
698843e8a0c88fb7384898ca5f09f82b55b26a93
2022-05-06T22:32:48.000Z
[ "pytorch", "dataset:huggan/few-shot-shells", "arxiv:2101.04775", "huggan", "gan", "unconditional-image-generation", "license:mit" ]
unconditional-image-generation
false
huggan
null
huggan/fastgan-few-shot-shells
0
null
null
36,802
--- tags: - huggan - gan - unconditional-image-generation datasets: - huggan/few-shot-shells # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # Generate shell image using FastGAN ## Model description [FastGAN model](https://arxiv.org/abs/2101.04775) is a Generative Adversarial Networks (GAN) training on a small amount of high-fidelity images with minimum computing cost. Using a skip-layer channel-wise excitation module and a self-supervised discriminator trained as a feature-encoder, the model was able to converge after some hours of training for either 100 high-quality images or 1000 images datasets. This model was trained on a dataset of 64 high-quality images of Shells. #### How to use ```python # Clone this model git clone https://huggingface.co/huggan/fastgan-few-shot-shells/ def load_generator(model_name_or_path): generator = Generator(in_channels=256, out_channels=3) generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) _ = generator.eval() return generator def _denormalize(input: torch.Tensor) -> torch.Tensor: return (input * 127.5) + 127.5 # Load generator generator = load_generator("huggan/fastgan-few-shot-shells") # Generate a random noise image noise = torch.zeros(1, 256, 1, 1, device=device).normal_(0.0, 1.0) with torch.no_grad(): gan_images, _ = generator(noise) gan_images = _denormalize(gan_images.detach()) save_image(gan_images, "sample.png", nrow=1, normalize=True) ``` #### Limitations and bias * Converge faster and better with small datasets (less than 1000 samples) ## Training data [fastgan-few-shot-shells](https://huggingface.co/datasets/huggan/few-shot-shells) ## Generated Images ![Example image](example.png) ### BibTeX entry and citation info ```bibtex @article{FastGAN, title={Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis}, author={Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal}, journal={ICLR}, year={2021} } ```
yogi/autotrain-amazon_text_sum-730222226
6562d546d0ab9d7b5484e755a88b0bd2b7e78f22
2022-04-12T09:08:15.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:yogi/autotrain-data-amazon_text_sum", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
yogi
null
yogi/autotrain-amazon_text_sum-730222226
0
null
transformers
36,803
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - yogi/autotrain-data-amazon_text_sum co2_eq_emissions: 2986.6520132805163 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 730222226 - CO2 Emissions (in grams): 2986.6520132805163 ## Validation Metrics - Loss: 2.682709217071533 - Rouge1: 19.6069 - Rouge2: 7.3367 - RougeL: 19.2706 - RougeLsum: 19.286 - Gen Len: 5.5731 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/yogi/autotrain-amazon_text_sum-730222226 ```
maesneako/gpt2-en-maptask-finetuned
90982e36897723928853d8b84b855bb00678b840
2022-04-11T16:24:18.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
maesneako
null
maesneako/gpt2-en-maptask-finetuned
0
null
transformers
36,804
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-en-maptask-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-en-maptask-finetuned This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
maveriq/mybert-base-32k
e32e57cb0b128c3576d97db67d3f8212adfee131
2022-04-11T17:35:29.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maveriq
null
maveriq/mybert-base-32k
0
null
transformers
36,805
Entry not found
tonyalves/ft-pt-br-local
19ebdfb27cc4049ab271241aa46c3ad2ef8f5faf
2022-04-11T20:39:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tonyalves
null
tonyalves/ft-pt-br-local
0
null
transformers
36,806
--- license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer model-index: - name: ft-pt-br-local results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ft-pt-br-local This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
maveriq/mybert-mini-60k
4e2290e60b2b9d2e456f03213017739ed8af3702
2022-04-11T18:18:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maveriq
null
maveriq/mybert-mini-60k
0
null
transformers
36,807
Entry not found
maveriq/lingbert-mini-60k
6fda7bd34a8e004d1d28fa6ba6152c88a4ef83c4
2022-04-11T18:21:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maveriq
null
maveriq/lingbert-mini-60k
0
null
transformers
36,808
Entry not found
maveriq/mybert-mini-172k
452439b80ef78cea8f510d6626218073dd352994
2022-04-11T18:58:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maveriq
null
maveriq/mybert-mini-172k
0
null
transformers
36,809
Entry not found
irenelizihui/MarianMT_UFAL_en_es
711f4c9569ed0f44ad622075f63cbcd79c799524
2022-04-11T23:04:22.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:wtfpl", "autotrain_compatible" ]
text2text-generation
false
irenelizihui
null
irenelizihui/MarianMT_UFAL_en_es
0
1
transformers
36,810
--- license: wtfpl --- MarianMT trained on the UFAL dataset: English to Spanish Machine Translation model.
irenelizihui/MarianMT_UFAL_en_ro
57a6309a36d6f39f6341631c4d6f25e7c83e0e2d
2022-04-11T23:03:23.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:wtfpl", "autotrain_compatible" ]
text2text-generation
false
irenelizihui
null
irenelizihui/MarianMT_UFAL_en_ro
0
1
transformers
36,811
--- license: wtfpl --- UFAL English to Romainian Machine Translation Model based on MarianMT model.
huggingtweets/angrymemorys-oldandtoothless-sadboi666_-witheredstrings
7894ac79f51f6fa3db4130c4954307ae0f593384
2022-04-11T22:44:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/angrymemorys-oldandtoothless-sadboi666_-witheredstrings
0
null
transformers
36,812
--- language: en thumbnail: http://www.huggingtweets.com/angrymemorys-oldandtoothless-sadboi666_-witheredstrings/1649717075201/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506323689456947207/xBvvxyQr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511852580216967169/b1Aiv2t3_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000610482331/8808c2f408b97fe3646f2dca86441506_400x400.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">makeouthill & VacuumF & Jason Hendricks & Angry Memories</div> <div style="text-align: center; font-size: 14px;">@angrymemorys-oldandtoothless-sadboi666_-witheredstrings</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from makeouthill & VacuumF & Jason Hendricks & Angry Memories. | Data | makeouthill | VacuumF | Jason Hendricks | Angry Memories | | --- | --- | --- | --- | --- | | Tweets downloaded | 321 | 425 | 3250 | 3199 | | Retweets | 34 | 0 | 0 | 941 | | Short tweets | 49 | 31 | 0 | 1110 | | Tweets kept | 238 | 394 | 3250 | 1148 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nh2rd94/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angrymemorys-oldandtoothless-sadboi666_-witheredstrings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/me7rzksi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/me7rzksi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angrymemorys-oldandtoothless-sadboi666_-witheredstrings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nates/LER-roberta
bc3607faa3cf871f02f36f3d6fa65f2e326b3a58
2022-04-12T03:28:11.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
nates
null
nates/LER-roberta
0
null
transformers
36,813
--- license: cc-by-4.0 widget: - text: This house was let out in tiny tenements and was inhabited by working people of all kinds--tailors, locksmiths, cooks, Germans ofsorts, girls picking up a living as best they could, petty clerks, etc. example_title: "Crime and Punishment" - text: Quixote having got on his back and the duke mounted a fine horse, they placed the duchess in the middle and set out for the castle. example_title: "Don Quixote" - text: The noble carriage of this gentleman, for whom he believed himself to be engaged, had won Planchet—that was the name of the Picard. example_title: "The Three Musketeers" --- ### Description A `roberta-base` model which has been fine tuned for token classification on the [LitBank](https://github.com/dbamman/litbank) dataset. ### Intended Use This model is ready to be used for entity recognition. It is capable of tagging the 6 entity types from [ACE 2005](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf) - Person (PER) - ORG - GPE - LOC - VEH - FAC Due to the fine-tuning domain, it is expected to work best with literary sentences.
junaidamk/mlner-mlwptok-muril
aed40ea46acad1f57295092187f1dc9810d64779
2022-04-12T08:57:48.000Z
[ "pytorch", "bert", "token-classification", "dataset:mlner2021", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
junaidamk
null
junaidamk/mlner-mlwptok-muril
0
null
transformers
36,814
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mlner2021 metrics: - precision - recall - f1 - accuracy model-index: - name: mlner-mlwptok-muril results: - task: name: Token Classification type: token-classification dataset: name: mlner2021 type: mlner2021 args: MLNER2021 metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.8112759262826688 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlner-mlwptok-muril This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on the mlner2021 dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:---:|:--------:| | 1.447 | 1.0 | 1389 | 0.9396 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.898 | 2.0 | 2778 | 0.8883 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.859 | 3.0 | 4167 | 0.8721 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.8302 | 4.0 | 5556 | 0.8666 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.8165 | 5.0 | 6945 | 0.8403 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.8143 | 6.0 | 8334 | 0.8376 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.8034 | 7.0 | 9723 | 0.8393 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.7766 | 8.0 | 11112 | 0.8383 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.794 | 9.0 | 12501 | 0.8346 | 0.0 | 0.0 | 0.0 | 0.8113 | | 0.7858 | 10.0 | 13890 | 0.8331 | 0.0 | 0.0 | 0.0 | 0.8113 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
nnair25/Gram-Vaani-Harveen-Chadda-Fine-Tuning
e3fe71a121f576da1c402418e825d13403b5d330
2022-04-13T05:52:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
automatic-speech-recognition
false
nnair25
null
nnair25/Gram-Vaani-Harveen-Chadda-Fine-Tuning
0
null
transformers
36,815
--- license: mit tags: - generated_from_trainer model-index: name: Gram-Vaani-Harveen-Chadda-Fine-Tuning --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Gram-Vaani-Harveen-Chadda-Fine-Tuning This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-hindi-him-4200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-hindi-him-4200) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8934 - Wer: 0.359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 4.5558 | 21.05 | 400 | 0.8934 | 0.359 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
johnowhitaker/mingpt-char-shakespeare
0687519135b70307e60ed5369419e1894660c49c
2022-04-12T07:56:59.000Z
[ "pytorch" ]
null
false
johnowhitaker
null
johnowhitaker/mingpt-char-shakespeare
0
null
null
36,816
Entry not found
mimi/book_data
9a4ec64cd99027097b9bac609664a53cdb72a5ac
2022-05-12T01:50:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mimi
null
mimi/book_data
0
null
transformers
36,817
Entry not found
Chris1/CycleGAN_punk2apes
7db44664d29b484eff8f9dc1094b7e82e8132384
2022-04-12T08:10:37.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
Chris1
null
Chris1/CycleGAN_punk2apes
0
null
null
36,818
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
theojolliffe/opus-mt-en-ro-finetuned-en-to-cy
2392a76de863b287ce99d91cac93c75b479d01e9
2022-04-13T11:10:10.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/opus-mt-en-ro-finetuned-en-to-cy
0
null
transformers
36,819
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-ro-finetuned-en-to-cy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-cy This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/nv1t
1db943b3f55a42605435fed5f7e017ffc23039c1
2022-04-12T10:24:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nv1t
0
null
transformers
36,820
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/521651470832136193/8-XdhaC7_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nuit</div> <div style="text-align: center; font-size: 14px;">@nv1t</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nuit. | Data | nuit | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 520 | | Short tweets | 127 | | Tweets kept | 2597 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3aj0ls3h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nv1t's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3n9kpomf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3n9kpomf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nv1t') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Chris1/ape2punk_epoch80
f42c99e06db78f53a9460695268c1ad9ee52b137
2022-04-12T11:21:48.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
Chris1
null
Chris1/ape2punk_epoch80
0
null
null
36,821
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
huggingnft/cryptopunks__2__bored-apes-yacht-club
aa592734173938947c65191aca14a719332ab0dd
2022-04-25T16:05:53.000Z
[ "pytorch", "arxiv:1703.10593", "huggan", "gan", "image-to-image", "huggingnft", "nft", "image", "images", "license:mit" ]
image-to-image
false
huggingnft
null
huggingnft/cryptopunks__2__bored-apes-yacht-club
0
1
null
36,822
--- tags: - huggan - gan - image-to-image - huggingnft - nft - image - images # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # CycleGAN for unpaired image-to-image translation. ## Model description CycleGAN for unpaired image-to-image translation. Given two image domains A and B, the following components are trained end2end to translate between such domains: - A generator A to B, named G_AB conditioned on an image from A - A generator B to A, named G_BA conditioned on an image from B - A domain classifier D_A, associated with G_AB - A domain classifier D_B, associated with G_BA At inference time, G_AB or G_BA are relevant to translate images, respectively A to B or B to A. In the general setting, this technique provides style transfer functionalities between the selected image domains A and B. This allows to obtain a generated translation by G_AB, of an image from domain A that resembles the distribution of the images from domain B, and viceversa for the generator G_BA. Under these framework, these aspects have been used to perform style transfer between NFT collections. A collection is selected as domain A, another one as domain B and the CycleGAN provides forward and backward translation between A and B. This has showed to allows high quality translation even in absence of paired sample-ground-truth data. In particular, the model performs well with stationary backgrounds (no drastic texture changes in the appearance of backgrounds) as it is capable of recognizing the attributes of each of the elements of an NFT collections. An attribute can be a variation in type of dressed fashion items such as sunglasses, earrings, clothes and also face or body attributes with respect to a common template model of the given NFT collection). ## Intended uses & limitations #### How to use ```python import torch from PIL import Image from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet from torchvision import transforms as T from torchvision.transforms import Compose, Resize, ToTensor, Normalize from torchvision.utils import make_grid from huggingface_hub import hf_hub_download, file_download from accelerate import Accelerator import json def load_lightweight_model(model_name): file_path = file_download.hf_hub_download( repo_id=model_name, filename="config.json" ) config = json.loads(open(file_path).read()) organization_name, name = model_name.split("/") model = Trainer(**config, organization_name=organization_name, name=name) model.load(use_cpu=True) model.accelerator = Accelerator() return model def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) # load the translation model from source to target images: source will be generated by a separate Lightweight GAN, w # while the target images are the result of the translation applied by the GeneratorResnet to the generated source images. # Hence, given the source domain A and target domain B, # B = Translator(GAN(A)) translator = GeneratorResNet.from_pretrained(f'huggingnft/{model_name}', input_shape=(n_channels, image_size, image_size), num_residual_blocks=9) # sample noise that is used to generate source images by the z = torch.randn(nrows, 100, 1, 1) # load the GAN generator of source images that will be translated by the translation model model = load_lightweight_model(f"huggingnft/{model_name.split('__2__')[0]}") collectionA = model.generate_app( num=timestamped_filename(), nrow=nrows, checkpoint=-1, types="default" )[1] # resize to translator model input shape resize = T.Resize((256, 256)) input = resize(collectionA) # translate the resized collectionA to collectionB collectionB = translator(input) out_transform = T.ToPILImage() results = [] for collA_image, collB_image in zip(input, collectionB): results.append( get_concat_h(out_transform(make_grid(collA_image, nrow=1, normalize=True)), out_transform(make_grid(collB_image, nrow=1, normalize=True))) ) ``` #### Limitations and bias Translation between collections provides exceptional output images in the case of NFT collections that portray subjects in the same way. If the backgrounds vary too much within either of the collections, performance degrades or many more training iterations re required to achieve acceptable results. ## Training data The CycleGAN model is trained on an unpaired dataset of samples from two selected NFT collections: colle tionA and collectionB. To this end, two collections are loaded by means of the function load_dataset in the huggingface library, as follows. A list of all available collections is available at [huggingNFT](https://huggingface.co/huggingnft) ```python from datasets import load_dataset collectionA = load_dataset("huggingnft/COLLECTION_A") collectionB = load_dataset("huggingnft/COLLECTION_B") ``` ## Training procedure #### Preprocessing The following transformations are applied to each input sample of collectionA and collectionB. The input size is fixed to RGB images of height, width = 256, 256 ```python n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ``` #### Hardware The configuration has been tested on single GPU setup on a RTX5000 and A5000, as well as multi-gpu single-rank distributed setups composed of 2 of the mentioned GPUs. #### Hyperparameters The following configuration has been kept fixed for all translation models: - learning rate 0.0002 - number of epochs 200 - learning rate decay activation at epoch 80 - number of residual blocks of the cyclegan 9 - cycle loss weight 10.0 - identity loss weight 5.0 - optimizer ADAM with beta1 0.5 and beta2 0.999 - batch size 8 - NO mixed precision training ## Eval results #### Training reports [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/CycleGAN-training-report--VmlldzoxODUxNzQz?accessToken=vueurpbhd2i8n347j880yakggs0sqdf7u0hpz3bpfsbrxcmk1jk4obg18f6wfk9w) [Boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/CycleGAN-training-report--VmlldzoxODUxNzg4?accessToken=jpyviwn7kdf5216ycrthwp6l8t3heb0lt8djt7dz12guu64qnpdh3ekecfcnoahu) #### Generated Images In the provided images, row0 and row2 represent real images from the respective collections. Row1 is the translation of the immediate above images in row0 by means of the G_AB translation model. Row3 is the translation of the immediate above images in row2 by means of the G_BA translation model. Visualization over the training iterations for [boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/Shared-panel-22-04-15-08-04-99--VmlldzoxODQ0MDI3?accessToken=45m3kxex5m3rpev3s6vmrv69k3u9p9uxcsp2k90wvbxwxzlqbqjqlnmgpl9265c0) Visualization over the training iterations for [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/Shared-panel-22-04-17-11-04-83--VmlldzoxODUxNjk5?accessToken=o25si6nflp2xst649vt6ayt56bnb95mxmngt1ieso091j2oazmqnwaf4h78vc2tu) ### References ```bibtex @misc{https://doi.org/10.48550/arxiv.1703.10593, doi = {10.48550/ARXIV.1703.10593}, url = {https://arxiv.org/abs/1703.10593}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A.}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks}, publisher = {arXiv}, year = {2017}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk, Christian Cancedda} year=2022 } ```
Chris1/real2sim
e14a0dac96ae97890973a5223a9d46ebe882e411
2022-04-12T11:33:32.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
Chris1
null
Chris1/real2sim
0
null
null
36,823
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
huggan/sim2real_cyclegan
0a60c15105b38055c6897be6d91f142fd9a903e1
2022-05-05T10:55:19.000Z
[ "pytorch", "arxiv:2104.13395", "arxiv:1703.10593", "conditional-image-generation", "image-to-image", "gan", "cyclegan", "license:mit" ]
image-to-image
false
huggan
null
huggan/sim2real_cyclegan
0
1
null
36,824
--- tags: - conditional-image-generation - image-to-image - gan - cyclegan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # CycleGAN for unpaired image-to-image translation. ## Model description CycleGAN for unpaired image-to-image translation. Given two image domains A and B, the following components are trained end2end to translate between such domains: - A generator A to B, named G_AB conditioned on an image from A - A generator B to A, named G_BA conditioned on an image from B - A domain classifier D_A, associated with G_AB - A domain classifier D_B, associated with G_BA At inference time, G_AB or G_BA are relevant to translate images, respectively A to B or B to A. In the general setting, this technique provides style transfer functionalities between the selected image domains A and B. This allows to obtain a generated translation by G_AB, of an image from domain A that resembles the distribution of the images from domain B, and viceversa for the generator G_BA. Under these framework, these aspects have been used to perform style transfer between synthetic data obtained from a simulated driving dataset, GTA5, and the real driving data from Cityscapes. This is of paramount importance to develop autonomous driving perception deep learning models, as this allows to generate synthetic data with automatic annotations which resembles real world images, without requiring the intervention of a human annotator. This is fundamental because a manual annotator has been shown to require 1.5 to 3.3 hours to create semantic and instance segmentation masks for a single images. These have been provided in the original [cityscapes paper (Cordts et al 2016)](https://arxiv.org/abs/2104.13395) and the [adverse condition dataset (Sakaridis et al. 2021)](https://arxiv.org/abs/2104.13395) paper. Hence the CycleGAN provides forward and backward translation between synthetic and real world data. This has showed to allows high quality translation even in absence of paired sample-ground-truth data. The idea behind such model is that as the synthetic data distribution gets closer to the real world one, deep models do not suffer from degraded performance due to the domain shift issue. A broad literature is available on the minimization of the domain shift, under the research branch of domain adaptation and transfer learning, of which image translation models provide an alternative approach ## Intended uses & limitations #### How to use ```python import os from PIL import Image from torchvision import transforms as T from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip from torchvision.utils import make_grid from torch.utils.data import DataLoader from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet import torch.nn as nn import torch import gradio as gr import glob def pred_pipeline(img, transforms): orig_shape = img.shape input = transforms(img) input = input.unsqueeze(0) output = model(input) out_img = make_grid(output,#.detach().cpu(), nrow=1, normalize=True) out_transform = Compose([ T.Resize(orig_shape[:2]), T.ToPILImage() ]) return out_transform(out_img) n_channels = 3 image_size = 512 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) model = GeneratorResNet.from_pretrained('Chris1/sim2real', input_shape=(n_channels, image_size, image_size), num_residual_blocks=9) real_images = model(synthetic_images) ``` #### Limitations and bias Due to the absence of paired data, some background parts of the synthetic images are seldom wrongly translated, e.g. sky is translated to vegetation. Additional pretext tasks in parallel to the discriminative classifier of fake and real samples could improve the result. One easy improvement is the use of an additional parallel branch that performs semantic segmentation on the synthetic data, in order to learn features which are common to sky and vegetation, thus disentangling their representations as separate classes. ## Training data The CycleGAN model is trained on an unpaired dataset of samples from synthetic and real driving data, respectively from the GTA5 and Cityscapes datasets. To this end, the synthetic-to-real dataset can be loaded by means of the function load_dataset in the huggingface library, as follows. ```python from datasets import load_dataset unpaired_dataset = load_dataset("huggan/sim2real_gta5_to_cityscapes") ``` This dataset contains two columns, imageA and imageB representing respectively the GTA5 and Cityscapes data. Due to the fact that the two columns have to be of the same length, GTA5 is subsampled in order to reach the same number of samples provided by the Cityscapes train split (2975) ## Training procedure #### Preprocessing The following transformations are applied to each input sample of synthetic and real data. The input size is fixed to RGB images of height, width = 512, 512. This choice has been made in order to limit the impact of upsampling the translated images to higher resolutions. ```python n_channels = 3 image_size = 512 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ``` #### Hardware The configuration has been tested on single GPU setup on a RTX5000 and A5000, as well as multi-gpu single-rank distributed setups composed of 2 of the mentioned GPUs. #### Hyperparameters The following configuration has been kept fixed for all translation models: - learning rate 0.0002 - number of epochs 200 - learning rate decay activation at epoch 100 - number of residual blocks of the cyclegan 9 - image size 512x512 - number of channels=3 - cycle loss weight 10.0 - identity loss weight 5.0 - optimizer ADAM with beta1 0.5 and beta2 0.999 - batch size 8 - NO mixed precision training ## Eval results #### Generated Images In the provided images, row0 and row2 represent the synthetic and real images from the respective datasets. Row1 is the translation of the immediate above images in row0(synthetic) by means of the G_AB translation model, to the real world style. Row3 is the translation of the immediate above images in row2(real) by means of the G_BA translation model, to the synthetic world style. Visualization over the training iterations for [synthetic (GTA5) to real (Cityscapes) translation](https://wandb.ai/chris1nexus/experiments_cyclegan_s2r_hp_opt--10/reports/CycleGAN-sim2real-training-results--VmlldzoxODUyNTk4?accessToken=tow3v4vp02aurzodedrdht15ig1cx69v5mited4dm8bgnup0z192wri0xtftaeqj) ### References ```bibtex @misc{https://doi.org/10.48550/arxiv.1703.10593, doi = {10.48550/ARXIV.1703.10593}, url = {https://arxiv.org/abs/1703.10593}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A.}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks}, publisher = {arXiv}, year = {2017}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
sanchit-gandhi/tiny-random-bart
31143b0f16b739cbadec03b5d2a0025fba90918c
2022-04-12T13:32:12.000Z
[ "pytorch", "jax", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
sanchit-gandhi
null
sanchit-gandhi/tiny-random-bart
0
null
transformers
36,825
Entry not found
Guldeniz/pix2pix_maps
a8ef56fd47c2d8f9b245daa1bd71eceb4c7ce391
2022-04-12T17:44:34.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
Guldeniz
null
Guldeniz/pix2pix_maps
0
null
null
36,826
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
huggan/pix2pix-maps-test
39acb13bdb610983eeb8c10c5edbc8bc2d700a13
2022-04-12T15:57:14.000Z
[ "pytorch", "huggan", "gan", "license:mit" ]
null
false
huggan
null
huggan/pix2pix-maps-test
0
null
null
36,827
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
nielsr/test
7717b62c60f0e314a56fb96fe9d98975826176a5
2022-04-12T15:20:09.000Z
[ "pytorch" ]
null
false
nielsr
null
nielsr/test
0
null
null
36,828
Entry not found
rajat99/SSL-Harveen-Chadda-Fine-Tuning
37d5efecb32d113c24e8eb9b2263efda5b8aa737
2022-04-12T22:07:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
automatic-speech-recognition
false
rajat99
null
rajat99/SSL-Harveen-Chadda-Fine-Tuning
0
null
transformers
36,829
--- license: mit tags: - generated_from_trainer model-index: name: SSL-Harveen-Chadda-Fine-Tuning --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SSL-Harveen-Chadda-Fine-Tuning This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-hindi-him-4200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-hindi-him-4200) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0032 - Wer: 0.1008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3793 | 4.17 | 400 | 0.5347 | 0.2584 | | 0.2137 | 8.33 | 800 | 0.8339 | 0.2664 | | 0.1282 | 12.5 | 1200 | 0.1785 | 0.1414 | | 0.0698 | 16.66 | 1600 | 0.0135 | 0.1066 | | 0.0354 | 20.83 | 2000 | 0.0351 | 0.1179 | | 0.0212 | 24.99 | 2400 | 0.0104 | 0.1035 | | 0.0066 | 29.17 | 2800 | 0.0032 | 0.1008 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
huggan/pix2pix-uavid-15
bfa54b692d5d897bf7cb4181db1535e5ce303049
2022-04-15T13:45:13.000Z
[ "pytorch", "dataset:arakesh/uavid-15-hq-mixedres", "arxiv:1611.07004", "huggan", "gan", "license:mit" ]
null
false
huggan
null
huggan/pix2pix-uavid-15
0
null
null
36,830
--- tags: - huggan - gan datasets: - arakesh/uavid-15-hq-mixedres # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description [Pix2pix Model](https://arxiv.org/abs/1611.07004) is a conditional adversarial networks, a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. ## Intended uses & limitations: Used for reconstruction of images from edges #### How to use ```python from torchvision.transforms import Compose, Resize, ToTensor, Normalize from PIL import Image from torchvision.utils import save_image import cv2 from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) model = GeneratorUNet.from_pretrained('huggan/pix2pix-uavid-15) def predict_fn(img): inp = transform(img).unsqueeze(0) out = model(inp) save_image(out, 'out.png', normalize=True) return 'out.png' predict_fn(img) ``` #### Limitations and bias * Gives unrealistic colors in the image ## Training data * [edges2shoes](https://huggingface.co/datasets/huggan/edges2shoes) ## Training procedure ``` # clone the repository git clone https://github.com/huggingface/community-events.git pip install . # change directory cd community-events/huggan/pytorch/pix2pix/ # define config accelerate config # launch training with required parameters accelerate launch train.py --checkpoint_interval 1 --dataset arakesh/uavid-15-hq-mixedres --push_to_hub --model_name pix2pix-uavid-15 --batch_size 2 --n_epochs 50 --image_size 1024 --sample_interval 500 ``` ## Generated Images Here, * First Image Row: Input Image * Second Image Row: Generated Image * Third Image Row: Target Image ![image1](34000.png) ![image2](35000.png) ### BibTeX entry and citation info ```bibtex @article{pix2pix2017, title={Image-to-Image Translation with Conditional Adversarial Networks}, author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A}, journal={CVPR}, year={2017} } ```
lilitket/20220412-203254
7988a597cdefd4bdcf9dadaae38071a50cc43f42
2022-04-13T05:04:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220412-203254
0
null
transformers
36,831
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 20220412-203254 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20220412-203254 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 5.0428 - Wer: 1.0019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:------:|:---------------:|:------:| | 16.9455 | 1.5 | 200 | 16.4676 | 1.2534 | | 15.444 | 3.01 | 400 | 14.1207 | 1.0 | | 9.5452 | 4.51 | 600 | 8.4030 | 1.0 | | 6.2565 | 6.02 | 800 | 6.5233 | 1.0 | | 5.2827 | 7.52 | 1000 | 5.6058 | 1.0 | | 4.7652 | 9.02 | 1200 | 4.9765 | 1.0 | | 4.3803 | 10.53 | 1400 | 4.4565 | 1.0 | | 4.0005 | 12.03 | 1600 | 4.0224 | 1.0 | | 3.7041 | 13.53 | 1800 | 3.6903 | 1.0 | | 3.4991 | 15.04 | 2000 | 3.4642 | 1.0 | | 3.34 | 16.54 | 2200 | 3.3425 | 1.0 | | 3.2352 | 18.05 | 2400 | 3.2617 | 1.0 | | 3.1867 | 19.55 | 2600 | 3.2358 | 1.0 | | 3.161 | 21.05 | 2800 | 3.2289 | 1.0 | | 3.145 | 22.56 | 3000 | 3.2023 | 1.0 | | 3.1203 | 24.06 | 3200 | 3.1964 | 1.0 | | 3.1109 | 25.56 | 3400 | 3.1844 | 1.0 | | 3.0958 | 27.07 | 3600 | 3.1839 | 1.0 | | 3.0732 | 28.57 | 3800 | 3.2058 | 1.0 | | 3.0535 | 30.08 | 4000 | 3.1843 | 1.0 | | 3.0243 | 31.58 | 4200 | 3.1992 | 1.0 | | 2.9829 | 33.08 | 4400 | 3.2019 | 1.0 | | 2.9219 | 34.59 | 4600 | 3.2346 | 1.0 | | 2.8313 | 36.09 | 4800 | 3.2781 | 1.0 | | 2.7186 | 37.59 | 5000 | 3.3056 | 1.0 | | 2.5745 | 39.1 | 5200 | 3.3554 | 1.0 | | 2.4028 | 40.6 | 5400 | 3.4331 | 1.0 | | 2.2645 | 42.11 | 5600 | 3.4418 | 1.0 | | 2.1303 | 43.61 | 5800 | 3.5584 | 1.0 | | 2.0257 | 45.11 | 6000 | 3.5943 | 1.0 | | 1.9223 | 46.62 | 6200 | 3.6767 | 1.0 | | 1.8344 | 48.12 | 6400 | 3.7363 | 1.0 | | 1.7574 | 49.62 | 6600 | 3.8921 | 1.0 | | 1.67 | 51.13 | 6800 | 3.9054 | 1.0 | | 1.6118 | 52.63 | 7000 | 4.0352 | 1.0 | | 1.5372 | 54.14 | 7200 | 3.9742 | 1.0 | | 1.4846 | 55.64 | 7400 | 4.1078 | 1.0 | | 1.4093 | 57.14 | 7600 | 4.1705 | 1.0 | | 1.3379 | 58.65 | 7800 | 4.2737 | 1.0 | | 1.28 | 60.15 | 8000 | 4.3662 | 1.0 | | 1.2268 | 61.65 | 8200 | 4.4278 | 1.0 | | 1.1641 | 63.16 | 8400 | 4.4831 | 1.0 | | 1.1058 | 64.66 | 8600 | 4.5354 | 1.0 | | 1.0596 | 66.17 | 8800 | 4.5983 | 1.0 | | 0.9953 | 67.67 | 9000 | 4.7143 | 1.0 | | 0.9406 | 69.17 | 9200 | 4.8536 | 1.0 | | 0.9022 | 70.68 | 9400 | 4.7732 | 1.0 | | 0.8551 | 72.18 | 9600 | 4.8929 | 1.0 | | 0.8103 | 73.68 | 9800 | 4.9513 | 1.0 | | 0.7665 | 75.19 | 10000 | 4.9530 | 1.0 | | 0.7215 | 76.69 | 10200 | 5.1471 | 1.0 | | 0.6906 | 78.2 | 10400 | 5.2295 | 1.0 | | 0.6354 | 79.7 | 10600 | 5.1287 | 1.0 | | 0.6196 | 81.2 | 10800 | 5.2081 | 1.0 | | 0.6026 | 82.71 | 11000 | 5.4323 | 1.0 | | 0.5726 | 84.21 | 11200 | 5.3907 | 1.0 | | 0.5348 | 85.71 | 11400 | 5.5669 | 1.0 | | 0.5344 | 87.22 | 11600 | 5.5685 | 1.0 | | 0.4849 | 88.72 | 11800 | 5.5814 | 1.0 | | 0.4689 | 90.23 | 12000 | 5.6186 | 1.0 | | 0.4646 | 91.73 | 12200 | 5.4834 | 1.0 | | 0.4266 | 93.23 | 12400 | 5.6463 | 1.0 | | 0.4424 | 94.74 | 12600 | 5.6562 | 1.0 | | 0.3865 | 96.24 | 12800 | 5.7463 | 1.0 | | 0.3914 | 97.74 | 13000 | 5.7014 | 1.0 | | 0.3661 | 99.25 | 13200 | 5.7543 | 1.0 | | 0.3582 | 100.75 | 13400 | 5.9172 | 1.0 | | 0.3571 | 102.26 | 13600 | 5.5968 | 1.0 | | 0.3343 | 103.76 | 13800 | 5.3691 | 1.0 | | 0.3123 | 105.26 | 14000 | 5.8917 | 1.0 | | 0.3089 | 106.77 | 14200 | 5.8054 | 1.0 | | 0.3078 | 108.27 | 14400 | 5.9066 | 1.0 | | 0.3076 | 109.77 | 14600 | 5.7379 | 1.0 | | 0.2924 | 111.28 | 14800 | 5.7931 | 1.0 | | 0.2925 | 112.78 | 15000 | 5.9529 | 1.0 | | 0.2839 | 114.29 | 15200 | 5.9881 | 1.0 | | 0.2599 | 115.79 | 15400 | 6.0081 | 1.0 | | 0.2685 | 117.29 | 15600 | 6.1049 | 1.0 | | 0.2557 | 118.8 | 15800 | 6.1154 | 1.0 | | 0.2688 | 120.3 | 16000 | 5.9336 | 1.0 | | 0.2422 | 121.8 | 16200 | 6.0492 | 1.0 | | 0.2408 | 123.31 | 16400 | 6.3155 | 1.0 | | 0.2423 | 124.81 | 16600 | 6.3437 | 1.0 | | 0.2421 | 126.32 | 16800 | 6.0979 | 1.0 | | 0.2212 | 127.82 | 17000 | 5.5551 | 1.0 | | 0.2239 | 129.32 | 17200 | 5.9007 | 1.0 | | 0.2101 | 130.83 | 17400 | 6.0142 | 1.0 | | 0.2097 | 132.33 | 17600 | 5.8984 | 1.0 | | 0.2064 | 133.83 | 17800 | 5.9705 | 1.0 | | 0.1898 | 135.34 | 18000 | 5.9915 | 1.0 | | 0.2053 | 136.84 | 18200 | 6.1079 | 1.0 | | 0.1822 | 138.35 | 18400 | 6.1324 | 1.0 | | 0.1867 | 139.85 | 18600 | 6.1122 | 1.0 | | 0.1831 | 141.35 | 18800 | 6.1476 | 1.0 | | 0.1935 | 142.86 | 19000 | 5.7248 | 1.0 | | 0.1983 | 144.36 | 19200 | 6.1466 | 1.0 | | 0.176 | 145.86 | 19400 | 5.9555 | 1.0 | | 0.1778 | 147.37 | 19600 | 6.1434 | 1.0 | | 0.1758 | 148.87 | 19800 | 6.2104 | 1.0 | | 0.1799 | 150.38 | 20000 | 6.0933 | 1.0 | | 0.1674 | 151.88 | 20200 | 6.0476 | 1.0 | | 0.1777 | 153.38 | 20400 | 5.8937 | 1.0 | | 0.1616 | 154.89 | 20600 | 6.4417 | 1.0 | | 0.1498 | 156.39 | 20800 | 6.3136 | 1.0 | | 0.1607 | 157.89 | 21000 | 5.9295 | 1.0 | | 0.1445 | 159.4 | 21200 | 6.2741 | 1.0 | | 0.1636 | 160.9 | 21400 | 6.1931 | 1.0 | | 0.1488 | 162.41 | 21600 | 6.0089 | 1.0 | | 0.1549 | 163.91 | 21800 | 5.6184 | 1.0 | | 0.1532 | 165.41 | 22000 | 6.1250 | 1.0 | | 0.1581 | 166.92 | 22200 | 6.2635 | 1.0 | | 0.146 | 168.42 | 22400 | 6.0498 | 1.0 | | 0.148 | 169.92 | 22600 | 6.3486 | 1.0 | | 0.1489 | 171.43 | 22800 | 6.1659 | 1.0 | | 0.1464 | 172.93 | 23000 | 6.2259 | 1.0 | | 0.139 | 174.44 | 23200 | 6.2796 | 1.0 | | 0.1357 | 175.94 | 23400 | 6.2119 | 1.0 | | 0.1435 | 177.44 | 23600 | 6.5722 | 1.0 | | 0.1172 | 178.95 | 23800 | 6.4221 | 1.0 | | 0.1539 | 180.45 | 24000 | 6.3963 | 1.0 | | 0.1389 | 181.95 | 24200 | 6.2367 | 1.0 | | 0.1274 | 183.46 | 24400 | 6.3693 | 1.0 | | 0.1295 | 184.96 | 24600 | 6.0819 | 1.0 | | 0.1337 | 186.47 | 24800 | 6.1525 | 1.0 | | 0.1303 | 187.97 | 25000 | 6.2520 | 1.0 | | 0.141 | 189.47 | 25200 | 6.5302 | 1.0 | | 0.1322 | 190.98 | 25400 | 6.3731 | 1.0 | | 0.1313 | 192.48 | 25600 | 6.3570 | 1.0 | | 0.1178 | 193.98 | 25800 | 6.1667 | 1.0 | | 0.1277 | 195.49 | 26000 | 6.1352 | 1.0 | | 0.1169 | 196.99 | 26200 | 6.3132 | 1.0 | | 0.1199 | 198.5 | 26400 | 6.6116 | 1.0 | | 0.1138 | 200.0 | 26600 | 6.4862 | 1.0 | | 0.1129 | 201.5 | 26800 | 6.3442 | 1.0 | | 0.1142 | 203.01 | 27000 | 6.5077 | 1.0 | | 0.1169 | 204.51 | 27200 | 6.5710 | 1.0 | | 0.111 | 206.02 | 27400 | 6.0623 | 1.0 | | 0.1198 | 207.52 | 27600 | 6.4331 | 1.0 | | 0.1108 | 209.02 | 27800 | 5.9192 | 1.0 | | 0.1121 | 210.53 | 28000 | 6.0724 | 1.0 | | 0.1171 | 212.03 | 28200 | 6.3363 | 1.0 | | 0.1188 | 213.53 | 28400 | 6.3704 | 1.0 | | 0.104 | 215.04 | 28600 | 6.5802 | 1.0 | | 0.1125 | 216.54 | 28800 | 5.4428 | 1.0 | | 0.1115 | 218.05 | 29000 | 6.4286 | 1.0 | | 0.1109 | 219.55 | 29200 | 6.6998 | 1.0 | | 0.1061 | 221.05 | 29400 | 6.3761 | 1.0 | | 0.1161 | 222.56 | 29600 | 5.8712 | 1.0 | | 0.1091 | 224.06 | 29800 | 6.1844 | 1.0 | | 0.0947 | 225.56 | 30000 | 6.5670 | 1.0 | | 0.1004 | 227.07 | 30200 | 6.2302 | 1.0 | | 0.1099 | 228.57 | 30400 | 6.4218 | 1.0 | | 0.1154 | 230.08 | 30600 | 6.4911 | 1.0 | | 0.0999 | 231.58 | 30800 | 6.4390 | 1.0 | | 0.1068 | 233.08 | 31000 | 6.2367 | 1.0 | | 0.1015 | 234.59 | 31200 | 6.0790 | 1.0 | | 0.0958 | 236.09 | 31400 | 5.9926 | 1.0 | | 0.1183 | 237.59 | 31600 | 6.3400 | 1.0 | | 0.0833 | 239.1 | 31800 | 6.4481 | 1.0 | | 0.0874 | 240.6 | 32000 | 6.4535 | 1.0 | | 0.0958 | 242.11 | 32200 | 6.0597 | 1.0 | | 0.1075 | 243.61 | 32400 | 6.3403 | 1.0 | | 0.0909 | 245.11 | 32600 | 6.1297 | 1.0 | | 0.1093 | 246.62 | 32800 | 6.2232 | 1.0 | | 0.0995 | 248.12 | 33000 | 6.7110 | 1.0 | | 0.1061 | 249.62 | 33200 | 5.8551 | 1.0 | | 0.0872 | 251.13 | 33400 | 6.0338 | 1.0 | | 0.109 | 252.63 | 33600 | 6.2880 | 1.0 | | 0.0976 | 254.14 | 33800 | 5.9304 | 1.0 | | 0.0977 | 255.64 | 34000 | 6.4527 | 1.0 | | 0.0895 | 257.14 | 34200 | 6.3178 | 1.0 | | 0.0951 | 258.65 | 34400 | 6.3646 | 1.0 | | 0.0942 | 260.15 | 34600 | 6.4405 | 1.0 | | 0.0876 | 261.65 | 34800 | 5.8373 | 1.0 | | 0.0877 | 263.16 | 35000 | 6.5296 | 1.0 | | 0.0896 | 264.66 | 35200 | 6.6644 | 1.0 | | 0.0938 | 266.17 | 35400 | 6.4721 | 1.0 | | 0.0864 | 267.67 | 35600 | 7.0132 | 1.0 | | 0.0897 | 269.17 | 35800 | 6.3767 | 1.0 | | 0.094 | 270.68 | 36000 | 6.1663 | 1.0 | | 0.0782 | 272.18 | 36200 | 5.7325 | 1.0 | | 0.0878 | 273.68 | 36400 | 6.0681 | 1.0 | | 0.0877 | 275.19 | 36600 | 6.2621 | 1.0 | | 0.0827 | 276.69 | 36800 | 5.9692 | 1.0 | | 0.0929 | 278.2 | 37000 | 6.0207 | 1.0 | | 0.0899 | 279.7 | 37200 | 5.4185 | 1.0 | | 0.0841 | 281.2 | 37400 | 5.9206 | 1.0 | | 0.0924 | 282.71 | 37600 | 6.1820 | 1.0 | | 0.0844 | 284.21 | 37800 | 6.1505 | 1.0 | | 0.0824 | 285.71 | 38000 | 6.1564 | 1.0 | | 0.0842 | 287.22 | 38200 | 5.9483 | 1.0 | | 0.0863 | 288.72 | 38400 | 5.9305 | 1.0 | | 0.0851 | 290.23 | 38600 | 5.8416 | 1.0 | | 0.079 | 291.73 | 38800 | 5.7345 | 1.0 | | 0.081 | 293.23 | 39000 | 5.7323 | 1.0 | | 0.0873 | 294.74 | 39200 | 5.9131 | 1.0 | | 0.0836 | 296.24 | 39400 | 6.1722 | 1.0 | | 0.0774 | 297.74 | 39600 | 5.9523 | 1.0 | | 0.0902 | 299.25 | 39800 | 5.8769 | 1.0 | | 0.0766 | 300.75 | 40000 | 6.2435 | 1.0 | | 0.0766 | 302.26 | 40200 | 5.7556 | 1.0 | | 0.0723 | 303.76 | 40400 | 5.4647 | 1.0 | | 0.0724 | 305.26 | 40600 | 6.0184 | 1.0 | | 0.0834 | 306.77 | 40800 | 5.8434 | 1.0 | | 0.0846 | 308.27 | 41000 | 6.0586 | 1.0 | | 0.0878 | 309.77 | 41200 | 5.7270 | 1.0 | | 0.0761 | 311.28 | 41400 | 5.7259 | 1.0 | | 0.0639 | 312.78 | 41600 | 6.0848 | 1.0 | | 0.0733 | 314.29 | 41800 | 6.0474 | 1.0 | | 0.0734 | 315.79 | 42000 | 5.9387 | 1.0 | | 0.0779 | 317.29 | 42200 | 5.6040 | 1.0 | | 0.0713 | 318.8 | 42400 | 6.3136 | 1.0 | | 0.0756 | 320.3 | 42600 | 5.8936 | 1.0 | | 0.0758 | 321.8 | 42800 | 6.3659 | 1.0 | | 0.0662 | 323.31 | 43000 | 5.8035 | 1.0 | | 0.0714 | 324.81 | 43200 | 5.3194 | 1.0 | | 0.0782 | 326.32 | 43400 | 6.0054 | 1.0 | | 0.0775 | 327.82 | 43600 | 5.8471 | 1.0 | | 0.0653 | 329.32 | 43800 | 5.4054 | 1.0 | | 0.0739 | 330.83 | 44000 | 6.0978 | 1.0 | | 0.0634 | 332.33 | 44200 | 6.0081 | 1.0 | | 0.075 | 333.83 | 44400 | 6.0761 | 1.0 | | 0.0609 | 335.34 | 44600 | 5.8444 | 1.0 | | 0.0622 | 336.84 | 44800 | 6.2485 | 1.0 | | 0.0757 | 338.35 | 45000 | 6.0131 | 1.0 | | 0.0758 | 339.85 | 45200 | 5.9577 | 1.0 | | 0.0617 | 341.35 | 45400 | 5.7657 | 1.0 | | 0.0694 | 342.86 | 45600 | 5.7509 | 1.0 | | 0.0646 | 344.36 | 45800 | 5.5593 | 1.0 | | 0.0548 | 345.86 | 46000 | 5.9096 | 1.0 | | 0.0604 | 347.37 | 46200 | 6.2313 | 1.0 | | 0.0505 | 348.87 | 46400 | 5.4780 | 1.0 | | 0.0631 | 350.38 | 46600 | 6.0868 | 1.0 | | 0.0622 | 351.88 | 46800 | 5.8833 | 1.0 | | 0.0605 | 353.38 | 47000 | 5.5888 | 1.0 | | 0.0632 | 354.89 | 47200 | 5.7510 | 1.0 | | 0.0658 | 356.39 | 47400 | 5.2321 | 1.0 | | 0.0561 | 357.89 | 47600 | 5.6745 | 1.0 | | 0.0737 | 359.4 | 47800 | 6.0472 | 1.0 | | 0.0561 | 360.9 | 48000 | 6.2185 | 1.0 | | 0.0564 | 362.41 | 48200 | 6.0749 | 1.0 | | 0.0626 | 363.91 | 48400 | 5.6136 | 1.0 | | 0.0725 | 365.41 | 48600 | 5.7983 | 1.0 | | 0.0602 | 366.92 | 48800 | 5.5020 | 1.0 | | 0.0599 | 368.42 | 49000 | 6.0626 | 1.0 | | 0.0728 | 369.92 | 49200 | 6.3407 | 1.0 | | 0.0561 | 371.43 | 49400 | 6.2899 | 1.0 | | 0.0611 | 372.93 | 49600 | 6.5780 | 1.0 | | 0.065 | 374.44 | 49800 | 6.4685 | 1.0 | | 0.0561 | 375.94 | 50000 | 5.5252 | 1.0 | | 0.0482 | 377.44 | 50200 | 5.3905 | 1.0 | | 0.0575 | 378.95 | 50400 | 5.5660 | 1.0 | | 0.0673 | 380.45 | 50600 | 6.3424 | 1.0 | | 0.0588 | 381.95 | 50800 | 6.5294 | 1.0 | | 0.0563 | 383.46 | 51000 | 5.2974 | 1.0 | | 0.0702 | 384.96 | 51200 | 5.8705 | 1.0 | | 0.0517 | 386.47 | 51400 | 5.7488 | 1.0 | | 0.0629 | 387.97 | 51600 | 5.8414 | 1.0 | | 0.0569 | 389.47 | 51800 | 5.3303 | 1.0 | | 0.0586 | 390.98 | 52000 | 5.1755 | 1.0 | | 0.0581 | 392.48 | 52200 | 6.0030 | 1.0 | | 0.0673 | 393.98 | 52400 | 5.9972 | 1.0 | | 0.0533 | 395.49 | 52600 | 6.1624 | 1.0 | | 0.0597 | 396.99 | 52800 | 5.6803 | 1.0 | | 0.0494 | 398.5 | 53000 | 5.4154 | 1.0 | | 0.0526 | 400.0 | 53200 | 5.5855 | 1.0 | | 0.0578 | 401.5 | 53400 | 5.9491 | 1.0 | | 0.0546 | 403.01 | 53600 | 5.9381 | 1.0 | | 0.0575 | 404.51 | 53800 | 5.9629 | 1.0 | | 0.0592 | 406.02 | 54000 | 5.8617 | 1.0 | | 0.0444 | 407.52 | 54200 | 5.5513 | 1.0 | | 0.0467 | 409.02 | 54400 | 5.2998 | 1.0 | | 0.0654 | 410.53 | 54600 | 5.3034 | 1.0 | | 0.0546 | 412.03 | 54800 | 5.3077 | 1.0 | | 0.0567 | 413.53 | 55000 | 5.0215 | 1.0 | | 0.0564 | 415.04 | 55200 | 5.4569 | 1.0 | | 0.0494 | 416.54 | 55400 | 5.7311 | 1.0 | | 0.0448 | 418.05 | 55600 | 5.6774 | 1.0 | | 0.0695 | 419.55 | 55800 | 5.5563 | 1.0 | | 0.0451 | 421.05 | 56000 | 6.0087 | 1.0 | | 0.0514 | 422.56 | 56200 | 5.4969 | 1.0 | | 0.0504 | 424.06 | 56400 | 6.0321 | 1.0 | | 0.0429 | 425.56 | 56600 | 5.6021 | 1.0 | | 0.0503 | 427.07 | 56800 | 5.8039 | 1.0 | | 0.0528 | 428.57 | 57000 | 5.9237 | 1.0 | | 0.0508 | 430.08 | 57200 | 5.7653 | 1.0 | | 0.0533 | 431.58 | 57400 | 6.2778 | 1.0 | | 0.048 | 433.08 | 57600 | 6.0965 | 1.0 | | 0.0492 | 434.59 | 57800 | 5.3128 | 1.0 | | 0.0438 | 436.09 | 58000 | 5.7699 | 1.0 | | 0.0525 | 437.59 | 58200 | 5.1163 | 1.0 | | 0.0573 | 439.1 | 58400 | 5.4089 | 1.0 | | 0.0587 | 440.6 | 58600 | 5.2019 | 1.0 | | 0.049 | 442.11 | 58800 | 5.4515 | 1.0 | | 0.0435 | 443.61 | 59000 | 5.5448 | 1.0 | | 0.0378 | 445.11 | 59200 | 5.8339 | 1.0 | | 0.0498 | 446.62 | 59400 | 5.4560 | 1.0 | | 0.0361 | 448.12 | 59600 | 5.5045 | 1.0 | | 0.0438 | 449.62 | 59800 | 4.8485 | 1.0 | | 0.0512 | 451.13 | 60000 | 4.9816 | 1.0 | | 0.0464 | 452.63 | 60200 | 5.2011 | 1.0 | | 0.0437 | 454.14 | 60400 | 5.6679 | 1.0 | | 0.0457 | 455.64 | 60600 | 5.7678 | 1.0 | | 0.0397 | 457.14 | 60800 | 5.6997 | 1.0 | | 0.0397 | 458.65 | 61000 | 5.2398 | 1.0 | | 0.0412 | 460.15 | 61200 | 5.3039 | 1.0 | | 0.0472 | 461.65 | 61400 | 5.9334 | 1.0 | | 0.0389 | 463.16 | 61600 | 5.6996 | 1.0 | | 0.043 | 464.66 | 61800 | 5.4419 | 1.0 | | 0.0407 | 466.17 | 62000 | 5.2868 | 1.0 | | 0.0511 | 467.67 | 62200 | 5.2794 | 1.0 | | 0.0456 | 469.17 | 62400 | 5.6698 | 1.0 | | 0.0462 | 470.68 | 62600 | 5.4807 | 1.0 | | 0.0402 | 472.18 | 62800 | 4.9668 | 1.0 | | 0.0459 | 473.68 | 63000 | 5.1433 | 1.0 | | 0.0416 | 475.19 | 63200 | 5.1973 | 1.0 | | 0.0468 | 476.69 | 63400 | 4.5775 | 1.0 | | 0.0382 | 478.2 | 63600 | 5.4247 | 1.0 | | 0.04 | 479.7 | 63800 | 5.3787 | 1.0 | | 0.0446 | 481.2 | 64000 | 5.8649 | 1.0 | | 0.0478 | 482.71 | 64200 | 5.5780 | 1.0 | | 0.0468 | 484.21 | 64400 | 5.6468 | 1.0 | | 0.0358 | 485.71 | 64600 | 5.5878 | 1.0 | | 0.0375 | 487.22 | 64800 | 6.0500 | 1.0 | | 0.0418 | 488.72 | 65000 | 5.6539 | 1.0 | | 0.0419 | 490.23 | 65200 | 6.0848 | 1.0 | | 0.0381 | 491.73 | 65400 | 5.7511 | 1.0 | | 0.0476 | 493.23 | 65600 | 5.7423 | 1.0 | | 0.0492 | 494.74 | 65800 | 5.3481 | 1.0 | | 0.0373 | 496.24 | 66000 | 6.2950 | 1.0 | | 0.0451 | 497.74 | 66200 | 5.4381 | 1.0 | | 0.0457 | 499.25 | 66400 | 5.5962 | 1.0 | | 0.0384 | 500.75 | 66600 | 5.6821 | 1.0 | | 0.037 | 502.26 | 66800 | 5.8399 | 1.0 | | 0.0378 | 503.76 | 67000 | 5.4415 | 1.0 | | 0.038 | 505.26 | 67200 | 5.6578 | 1.0 | | 0.0371 | 506.77 | 67400 | 5.6192 | 1.0 | | 0.0314 | 508.27 | 67600 | 6.0258 | 1.0 | | 0.0345 | 509.77 | 67800 | 6.4183 | 1.0 | | 0.039 | 511.28 | 68000 | 5.1909 | 1.0 | | 0.0337 | 512.78 | 68200 | 5.3650 | 1.0 | | 0.0463 | 514.29 | 68400 | 5.5936 | 1.0 | | 0.05 | 515.79 | 68600 | 5.6765 | 1.0 | | 0.0374 | 517.29 | 68800 | 5.3339 | 1.0 | | 0.0374 | 518.8 | 69000 | 5.7343 | 1.0 | | 0.0406 | 520.3 | 69200 | 5.6398 | 1.0 | | 0.0397 | 521.8 | 69400 | 5.4041 | 1.0 | | 0.0391 | 523.31 | 69600 | 5.8327 | 1.0 | | 0.0332 | 524.81 | 69800 | 5.6610 | 1.0 | | 0.0325 | 526.32 | 70000 | 5.4675 | 1.0 | | 0.0438 | 527.82 | 70200 | 5.4601 | 1.0 | | 0.0281 | 529.32 | 70400 | 5.3118 | 1.0 | | 0.0314 | 530.83 | 70600 | 5.6760 | 1.0 | | 0.039 | 532.33 | 70800 | 5.2432 | 1.0 | | 0.0293 | 533.83 | 71000 | 5.4250 | 1.0 | | 0.0334 | 535.34 | 71200 | 4.9681 | 1.0 | | 0.0341 | 536.84 | 71400 | 5.2753 | 1.0 | | 0.0368 | 538.35 | 71600 | 4.7242 | 1.0 | | 0.0339 | 539.85 | 71800 | 5.0283 | 1.0 | | 0.0285 | 541.35 | 72000 | 4.9008 | 1.0 | | 0.0323 | 542.86 | 72200 | 5.0817 | 1.0 | | 0.0391 | 544.36 | 72400 | 5.2062 | 1.0 | | 0.0337 | 545.86 | 72600 | 5.4544 | 1.0 | | 0.0352 | 547.37 | 72800 | 5.0674 | 1.0 | | 0.0419 | 548.87 | 73000 | 5.2037 | 1.0 | | 0.0314 | 550.38 | 73200 | 4.8665 | 1.0 | | 0.0324 | 551.88 | 73400 | 5.2775 | 1.0 | | 0.0329 | 553.38 | 73600 | 4.7535 | 1.0 | | 0.0304 | 554.89 | 73800 | 4.8733 | 0.9994 | | 0.0388 | 556.39 | 74000 | 5.2259 | 1.0 | | 0.0423 | 557.89 | 74200 | 5.4575 | 1.0 | | 0.034 | 559.4 | 74400 | 4.9118 | 1.0 | | 0.0289 | 560.9 | 74600 | 4.9018 | 1.0 | | 0.0317 | 562.41 | 74800 | 5.0265 | 1.0 | | 0.0346 | 563.91 | 75000 | 4.7586 | 1.0 | | 0.0238 | 565.41 | 75200 | 5.0713 | 1.0 | | 0.0275 | 566.92 | 75400 | 4.8972 | 1.0 | | 0.0291 | 568.42 | 75600 | 4.8198 | 1.0 | | 0.0371 | 569.92 | 75800 | 4.3204 | 1.0 | | 0.033 | 571.43 | 76000 | 4.5274 | 1.0 | | 0.0334 | 572.93 | 76200 | 4.8907 | 1.0 | | 0.0375 | 574.44 | 76400 | 4.6204 | 1.0 | | 0.0332 | 575.94 | 76600 | 4.4255 | 1.0 | | 0.0359 | 577.44 | 76800 | 4.8451 | 1.0 | | 0.0273 | 578.95 | 77000 | 5.8480 | 1.0 | | 0.0273 | 580.45 | 77200 | 5.2345 | 1.0 | | 0.0296 | 581.95 | 77400 | 5.3281 | 0.9994 | | 0.0332 | 583.46 | 77600 | 5.6027 | 0.9994 | | 0.0251 | 584.96 | 77800 | 5.3038 | 0.9994 | | 0.0275 | 586.47 | 78000 | 5.0464 | 1.0 | | 0.0193 | 587.97 | 78200 | 4.9974 | 0.9994 | | 0.0326 | 589.47 | 78400 | 4.6220 | 1.0 | | 0.033 | 590.98 | 78600 | 4.9772 | 1.0 | | 0.0258 | 592.48 | 78800 | 4.6183 | 1.0 | | 0.0326 | 593.98 | 79000 | 5.2420 | 1.0 | | 0.0311 | 595.49 | 79200 | 4.6937 | 1.0 | | 0.0257 | 596.99 | 79400 | 4.9505 | 1.0 | | 0.0295 | 598.5 | 79600 | 5.0226 | 1.0 | | 0.0309 | 600.0 | 79800 | 4.8904 | 1.0 | | 0.0239 | 601.5 | 80000 | 5.4780 | 1.0 | | 0.0238 | 603.01 | 80200 | 5.4525 | 1.0 | | 0.0373 | 604.51 | 80400 | 4.8573 | 0.9994 | | 0.0308 | 606.02 | 80600 | 5.1780 | 1.0 | | 0.0262 | 607.52 | 80800 | 5.4216 | 1.0 | | 0.0227 | 609.02 | 81000 | 4.9209 | 1.0 | | 0.0222 | 610.53 | 81200 | 5.4042 | 1.0 | | 0.0332 | 612.03 | 81400 | 5.2453 | 1.0 | | 0.0261 | 613.53 | 81600 | 5.3043 | 1.0 | | 0.0254 | 615.04 | 81800 | 5.7649 | 1.0 | | 0.0276 | 616.54 | 82000 | 5.1942 | 1.0 | | 0.0291 | 618.05 | 82200 | 4.9448 | 0.9994 | | 0.0275 | 619.55 | 82400 | 5.0157 | 1.0006 | | 0.0278 | 621.05 | 82600 | 4.7635 | 1.0006 | | 0.0232 | 622.56 | 82800 | 5.4406 | 1.0 | | 0.0311 | 624.06 | 83000 | 5.3966 | 1.0 | | 0.0206 | 625.56 | 83200 | 4.8876 | 1.0013 | | 0.0274 | 627.07 | 83400 | 5.4422 | 1.0 | | 0.0199 | 628.57 | 83600 | 4.9966 | 1.0006 | | 0.0253 | 630.08 | 83800 | 5.1257 | 1.0006 | | 0.027 | 631.58 | 84000 | 5.1748 | 1.0 | | 0.0312 | 633.08 | 84200 | 5.0923 | 1.0006 | | 0.0288 | 634.59 | 84400 | 5.1963 | 1.0 | | 0.0261 | 636.09 | 84600 | 4.8105 | 1.0013 | | 0.0259 | 637.59 | 84800 | 4.9715 | 1.0 | | 0.03 | 639.1 | 85000 | 5.2808 | 1.0 | | 0.0215 | 640.6 | 85200 | 5.3155 | 1.0 | | 0.028 | 642.11 | 85400 | 5.1311 | 1.0 | | 0.0268 | 643.61 | 85600 | 5.1429 | 1.0 | | 0.0238 | 645.11 | 85800 | 5.0456 | 1.0 | | 0.0273 | 646.62 | 86000 | 5.2772 | 1.0 | | 0.0196 | 648.12 | 86200 | 5.2186 | 1.0 | | 0.0212 | 649.62 | 86400 | 4.8386 | 0.9994 | | 0.0243 | 651.13 | 86600 | 5.1898 | 1.0 | | 0.0255 | 652.63 | 86800 | 5.5885 | 1.0 | | 0.0192 | 654.14 | 87000 | 5.7636 | 1.0 | | 0.0272 | 655.64 | 87200 | 5.5897 | 1.0 | | 0.0254 | 657.14 | 87400 | 5.3412 | 1.0 | | 0.0389 | 658.65 | 87600 | 5.2754 | 1.0 | | 0.025 | 660.15 | 87800 | 4.6929 | 1.0 | | 0.0268 | 661.65 | 88000 | 4.7299 | 1.0 | | 0.0303 | 663.16 | 88200 | 5.1038 | 1.0 | | 0.019 | 664.66 | 88400 | 5.4165 | 1.0 | | 0.0197 | 666.17 | 88600 | 5.3144 | 1.0 | | 0.024 | 667.67 | 88800 | 4.7525 | 1.0 | | 0.0272 | 669.17 | 89000 | 5.4154 | 1.0 | | 0.0267 | 670.68 | 89200 | 5.1149 | 0.9994 | | 0.0231 | 672.18 | 89400 | 5.3135 | 1.0 | | 0.034 | 673.68 | 89600 | 4.8940 | 1.0 | | 0.0205 | 675.19 | 89800 | 5.4456 | 1.0 | | 0.0236 | 676.69 | 90000 | 5.1145 | 1.0 | | 0.0276 | 678.2 | 90200 | 5.3905 | 1.0 | | 0.0316 | 679.7 | 90400 | 5.4222 | 1.0 | | 0.0253 | 681.2 | 90600 | 5.1456 | 1.0006 | | 0.0255 | 682.71 | 90800 | 5.3852 | 1.0 | | 0.0185 | 684.21 | 91000 | 4.9756 | 1.0 | | 0.019 | 685.71 | 91200 | 5.9086 | 1.0 | | 0.0232 | 687.22 | 91400 | 5.1278 | 1.0 | | 0.0281 | 688.72 | 91600 | 4.9946 | 1.0 | | 0.0188 | 690.23 | 91800 | 5.0910 | 1.0 | | 0.0189 | 691.73 | 92000 | 4.8426 | 1.0 | | 0.0276 | 693.23 | 92200 | 5.0411 | 1.0 | | 0.021 | 694.74 | 92400 | 4.8377 | 1.0 | | 0.0237 | 696.24 | 92600 | 4.9047 | 1.0 | | 0.0209 | 697.74 | 92800 | 4.3727 | 1.0 | | 0.0212 | 699.25 | 93000 | 4.4921 | 1.0006 | | 0.0228 | 700.75 | 93200 | 4.7233 | 1.0006 | | 0.0187 | 702.26 | 93400 | 4.7441 | 1.0006 | | 0.0217 | 703.76 | 93600 | 4.7464 | 1.0 | | 0.0254 | 705.26 | 93800 | 4.8955 | 0.9994 | | 0.0268 | 706.77 | 94000 | 5.2548 | 1.0 | | 0.0236 | 708.27 | 94200 | 5.2691 | 1.0 | | 0.0174 | 709.77 | 94400 | 4.8898 | 1.0 | | 0.0262 | 711.28 | 94600 | 4.7713 | 1.0 | | 0.0226 | 712.78 | 94800 | 4.8464 | 1.0 | | 0.0193 | 714.29 | 95000 | 5.0019 | 1.0 | | 0.0229 | 715.79 | 95200 | 5.2043 | 1.0 | | 0.014 | 717.29 | 95400 | 4.9124 | 0.9994 | | 0.0274 | 718.8 | 95600 | 4.9160 | 1.0 | | 0.0198 | 720.3 | 95800 | 5.1003 | 1.0 | | 0.0222 | 721.8 | 96000 | 4.9865 | 1.0 | | 0.0133 | 723.31 | 96200 | 5.0203 | 1.0 | | 0.0162 | 724.81 | 96400 | 4.9140 | 1.0 | | 0.024 | 726.32 | 96600 | 4.9667 | 1.0006 | | 0.0197 | 727.82 | 96800 | 5.1605 | 1.0 | | 0.0169 | 729.32 | 97000 | 5.4196 | 1.0 | | 0.0238 | 730.83 | 97200 | 5.3665 | 1.0 | | 0.0182 | 732.33 | 97400 | 5.0020 | 1.0013 | | 0.0212 | 733.83 | 97600 | 5.1674 | 1.0006 | | 0.0165 | 735.34 | 97800 | 4.9132 | 1.0013 | | 0.0242 | 736.84 | 98000 | 4.7047 | 1.0013 | | 0.022 | 738.35 | 98200 | 5.1006 | 1.0 | | 0.022 | 739.85 | 98400 | 4.7582 | 0.9994 | | 0.0178 | 741.35 | 98600 | 5.0911 | 1.0 | | 0.0197 | 742.86 | 98800 | 4.9315 | 1.0 | | 0.022 | 744.36 | 99000 | 4.4003 | 1.0019 | | 0.0114 | 745.86 | 99200 | 4.9068 | 1.0 | | 0.0184 | 747.37 | 99400 | 4.7211 | 1.0 | | 0.0227 | 748.87 | 99600 | 4.8788 | 1.0 | | 0.0127 | 750.38 | 99800 | 5.0337 | 1.0 | | 0.0193 | 751.88 | 100000 | 5.0193 | 1.0 | | 0.0167 | 753.38 | 100200 | 5.1066 | 1.0019 | | 0.0149 | 754.89 | 100400 | 5.2865 | 1.0 | | 0.0219 | 756.39 | 100600 | 5.2765 | 1.0 | | 0.0185 | 757.89 | 100800 | 5.3224 | 1.0 | | 0.0159 | 759.4 | 101000 | 5.1665 | 1.0 | | 0.0178 | 760.9 | 101200 | 5.4050 | 0.9994 | | 0.0119 | 762.41 | 101400 | 5.1887 | 0.9994 | | 0.022 | 763.91 | 101600 | 4.7725 | 1.0 | | 0.0214 | 765.41 | 101800 | 4.9794 | 1.0 | | 0.0151 | 766.92 | 102000 | 4.7806 | 1.0013 | | 0.0181 | 768.42 | 102200 | 4.3024 | 1.0006 | | 0.0166 | 769.92 | 102400 | 4.8876 | 1.0 | | 0.0211 | 771.43 | 102600 | 4.5744 | 1.0 | | 0.0184 | 772.93 | 102800 | 4.8648 | 0.9994 | | 0.02 | 774.44 | 103000 | 4.7831 | 0.9994 | | 0.0188 | 775.94 | 103200 | 4.9471 | 0.9994 | | 0.0201 | 777.44 | 103400 | 4.9495 | 1.0006 | | 0.0169 | 778.95 | 103600 | 5.2604 | 1.0 | | 0.0145 | 780.45 | 103800 | 5.5133 | 1.0 | | 0.0176 | 781.95 | 104000 | 5.1844 | 0.9994 | | 0.0149 | 783.46 | 104200 | 4.6289 | 1.0 | | 0.0181 | 784.96 | 104400 | 5.2480 | 1.0 | | 0.0132 | 786.47 | 104600 | 4.7374 | 0.9994 | | 0.0115 | 787.97 | 104800 | 5.6450 | 1.0 | | 0.014 | 789.47 | 105000 | 5.0672 | 1.0 | | 0.0181 | 790.98 | 105200 | 5.1088 | 1.0 | | 0.0181 | 792.48 | 105400 | 5.0798 | 1.0 | | 0.0146 | 793.98 | 105600 | 5.1835 | 1.0 | | 0.0219 | 795.49 | 105800 | 5.3850 | 1.0 | | 0.0222 | 796.99 | 106000 | 4.9615 | 1.0 | | 0.0176 | 798.5 | 106200 | 4.6814 | 1.0 | | 0.017 | 800.0 | 106400 | 4.9264 | 1.0 | | 0.0134 | 801.5 | 106600 | 5.0058 | 1.0 | | 0.0139 | 803.01 | 106800 | 5.1207 | 1.0 | | 0.0146 | 804.51 | 107000 | 4.8640 | 1.0006 | | 0.018 | 806.02 | 107200 | 4.6173 | 1.0 | | 0.0183 | 807.52 | 107400 | 4.8846 | 1.0 | | 0.0169 | 809.02 | 107600 | 5.2157 | 1.0006 | | 0.0128 | 810.53 | 107800 | 5.1951 | 1.0006 | | 0.0181 | 812.03 | 108000 | 4.9453 | 1.0013 | | 0.0107 | 813.53 | 108200 | 5.0670 | 1.0013 | | 0.0171 | 815.04 | 108400 | 4.8881 | 1.0006 | | 0.0144 | 816.54 | 108600 | 4.8071 | 1.0013 | | 0.0133 | 818.05 | 108800 | 4.9399 | 1.0013 | | 0.0138 | 819.55 | 109000 | 4.5266 | 1.0038 | | 0.0159 | 821.05 | 109200 | 4.9887 | 1.0025 | | 0.0157 | 822.56 | 109400 | 4.8344 | 1.0019 | | 0.0134 | 824.06 | 109600 | 5.1275 | 1.0019 | | 0.0142 | 825.56 | 109800 | 4.7311 | 1.0025 | | 0.0207 | 827.07 | 110000 | 4.5203 | 1.0050 | | 0.0125 | 828.57 | 110200 | 4.5815 | 1.0044 | | 0.0161 | 830.08 | 110400 | 4.7650 | 1.0031 | | 0.0091 | 831.58 | 110600 | 4.9839 | 1.0025 | | 0.0154 | 833.08 | 110800 | 4.9781 | 1.0013 | | 0.012 | 834.59 | 111000 | 5.0515 | 1.0025 | | 0.0182 | 836.09 | 111200 | 5.1645 | 1.0025 | | 0.0135 | 837.59 | 111400 | 5.1050 | 1.0013 | | 0.0171 | 839.1 | 111600 | 4.8125 | 1.0025 | | 0.0152 | 840.6 | 111800 | 5.4213 | 1.0038 | | 0.0103 | 842.11 | 112000 | 5.0478 | 1.0031 | | 0.0112 | 843.61 | 112200 | 4.9343 | 1.0019 | | 0.0156 | 845.11 | 112400 | 5.2666 | 1.0019 | | 0.0122 | 846.62 | 112600 | 5.0991 | 1.0031 | | 0.0178 | 848.12 | 112800 | 5.1477 | 1.0006 | | 0.0174 | 849.62 | 113000 | 5.1716 | 1.0031 | | 0.0136 | 851.13 | 113200 | 5.3554 | 1.0013 | | 0.0123 | 852.63 | 113400 | 4.8209 | 1.0019 | | 0.0095 | 854.14 | 113600 | 4.9493 | 1.0019 | | 0.0183 | 855.64 | 113800 | 4.8060 | 1.0038 | | 0.0111 | 857.14 | 114000 | 4.8071 | 1.0006 | | 0.0121 | 858.65 | 114200 | 4.7184 | 1.0006 | | 0.0079 | 860.15 | 114400 | 4.7966 | 1.0019 | | 0.0129 | 861.65 | 114600 | 4.8338 | 1.0013 | | 0.0103 | 863.16 | 114800 | 4.5879 | 1.0019 | | 0.0117 | 864.66 | 115000 | 4.7938 | 1.0025 | | 0.018 | 866.17 | 115200 | 4.6562 | 1.0 | | 0.0121 | 867.67 | 115400 | 4.6558 | 1.0 | | 0.0184 | 869.17 | 115600 | 4.7076 | 1.0 | | 0.0135 | 870.68 | 115800 | 5.1430 | 1.0 | | 0.0163 | 872.18 | 116000 | 5.2987 | 1.0019 | | 0.014 | 873.68 | 116200 | 5.0680 | 1.0019 | | 0.0114 | 875.19 | 116400 | 4.9600 | 1.0013 | | 0.0145 | 876.69 | 116600 | 5.0292 | 1.0025 | | 0.0125 | 878.2 | 116800 | 4.6149 | 1.0038 | | 0.008 | 879.7 | 117000 | 4.9819 | 1.0019 | | 0.0122 | 881.2 | 117200 | 5.0868 | 1.0019 | | 0.0157 | 882.71 | 117400 | 4.8522 | 1.0031 | | 0.0146 | 884.21 | 117600 | 4.6680 | 1.0044 | | 0.014 | 885.71 | 117800 | 4.4612 | 1.0038 | | 0.0123 | 887.22 | 118000 | 4.4058 | 1.0044 | | 0.0122 | 888.72 | 118200 | 4.6614 | 1.0038 | | 0.012 | 890.23 | 118400 | 4.7230 | 1.0019 | | 0.0159 | 891.73 | 118600 | 5.0094 | 1.0006 | | 0.0087 | 893.23 | 118800 | 4.8522 | 1.0006 | | 0.013 | 894.74 | 119000 | 4.9456 | 1.0013 | | 0.0166 | 896.24 | 119200 | 4.9068 | 1.0019 | | 0.0129 | 897.74 | 119400 | 4.9066 | 1.0019 | | 0.0136 | 899.25 | 119600 | 4.6458 | 1.0019 | | 0.0208 | 900.75 | 119800 | 4.6729 | 1.0013 | | 0.0158 | 902.26 | 120000 | 4.6674 | 1.0019 | | 0.0125 | 903.76 | 120200 | 4.5242 | 1.0025 | | 0.0098 | 905.26 | 120400 | 4.7753 | 1.0025 | | 0.0078 | 906.77 | 120600 | 4.8435 | 1.0013 | | 0.0155 | 908.27 | 120800 | 4.6419 | 1.0006 | | 0.0142 | 909.77 | 121000 | 4.7051 | 1.0013 | | 0.0098 | 911.28 | 121200 | 5.0023 | 1.0 | | 0.0097 | 912.78 | 121400 | 5.2775 | 1.0 | | 0.0103 | 914.29 | 121600 | 5.1593 | 1.0 | | 0.0115 | 915.79 | 121800 | 5.0693 | 1.0 | | 0.0129 | 917.29 | 122000 | 5.4565 | 1.0 | | 0.0123 | 918.8 | 122200 | 4.9698 | 1.0 | | 0.0176 | 920.3 | 122400 | 4.8110 | 1.0019 | | 0.0106 | 921.8 | 122600 | 4.7044 | 1.0031 | | 0.0098 | 923.31 | 122800 | 4.7205 | 1.0031 | | 0.0132 | 924.81 | 123000 | 4.5947 | 1.0013 | | 0.0122 | 926.32 | 123200 | 4.9378 | 1.0 | | 0.0101 | 927.82 | 123400 | 5.0470 | 1.0006 | | 0.0151 | 929.32 | 123600 | 4.7670 | 1.0 | | 0.0089 | 930.83 | 123800 | 4.9127 | 1.0019 | | 0.0107 | 932.33 | 124000 | 4.9719 | 1.0031 | | 0.0084 | 933.83 | 124200 | 5.0971 | 1.0025 | | 0.0111 | 935.34 | 124400 | 4.6700 | 1.0031 | | 0.0121 | 936.84 | 124600 | 4.7236 | 1.0031 | | 0.0104 | 938.35 | 124800 | 4.7380 | 1.0019 | | 0.0101 | 939.85 | 125000 | 4.8754 | 1.0025 | | 0.0145 | 941.35 | 125200 | 5.0708 | 1.0031 | | 0.0096 | 942.86 | 125400 | 4.8973 | 1.0031 | | 0.0158 | 944.36 | 125600 | 5.1670 | 1.0019 | | 0.0106 | 945.86 | 125800 | 5.0989 | 1.0044 | | 0.0157 | 947.37 | 126000 | 5.0135 | 1.0044 | | 0.0092 | 948.87 | 126200 | 4.7069 | 1.0025 | | 0.0121 | 950.38 | 126400 | 4.6865 | 1.0031 | | 0.0117 | 951.88 | 126600 | 4.6496 | 1.0050 | | 0.0107 | 953.38 | 126800 | 5.0900 | 1.0025 | | 0.0107 | 954.89 | 127000 | 4.8722 | 1.0025 | | 0.0137 | 956.39 | 127200 | 4.7971 | 1.0013 | | 0.0106 | 957.89 | 127400 | 5.0268 | 1.0025 | | 0.0138 | 959.4 | 127600 | 5.1737 | 1.0019 | | 0.01 | 960.9 | 127800 | 5.2657 | 1.0025 | | 0.0101 | 962.41 | 128000 | 5.0265 | 1.0019 | | 0.0092 | 963.91 | 128200 | 5.4657 | 1.0019 | | 0.0109 | 965.41 | 128400 | 5.5858 | 1.0019 | | 0.0078 | 966.92 | 128600 | 5.2281 | 1.0031 | | 0.0111 | 968.42 | 128800 | 4.9028 | 1.0013 | | 0.0068 | 969.92 | 129000 | 4.8840 | 1.0019 | | 0.008 | 971.43 | 129200 | 5.3572 | 1.0013 | | 0.0108 | 972.93 | 129400 | 5.0857 | 1.0025 | | 0.0128 | 974.44 | 129600 | 5.1988 | 1.0019 | | 0.0088 | 975.94 | 129800 | 4.9510 | 1.0025 | | 0.013 | 977.44 | 130000 | 5.3014 | 1.0019 | | 0.0108 | 978.95 | 130200 | 4.9356 | 1.0019 | | 0.0112 | 980.45 | 130400 | 4.8090 | 1.0025 | | 0.0115 | 981.95 | 130600 | 5.0231 | 1.0038 | | 0.0166 | 983.46 | 130800 | 4.8263 | 1.0019 | | 0.0061 | 984.96 | 131000 | 4.7797 | 1.0025 | | 0.0097 | 986.47 | 131200 | 4.8421 | 1.0019 | | 0.0115 | 987.97 | 131400 | 4.9492 | 1.0031 | | 0.0058 | 989.47 | 131600 | 4.9278 | 1.0013 | | 0.0089 | 990.98 | 131800 | 4.8451 | 1.0013 | | 0.0133 | 992.48 | 132000 | 4.8694 | 1.0013 | | 0.0074 | 993.98 | 132200 | 5.0419 | 1.0006 | | 0.0088 | 995.49 | 132400 | 5.2701 | 1.0013 | | 0.0116 | 996.99 | 132600 | 5.2893 | 1.0006 | | 0.0068 | 998.5 | 132800 | 4.9237 | 1.0019 | | 0.0096 | 1000.0 | 133000 | 5.0376 | 1.0013 | | 0.0097 | 1001.5 | 133200 | 5.0571 | 1.0025 | | 0.009 | 1003.01 | 133400 | 5.0585 | 1.0019 | | 0.0077 | 1004.51 | 133600 | 4.9175 | 1.0013 | | 0.0099 | 1006.02 | 133800 | 5.0497 | 1.0013 | | 0.0042 | 1007.52 | 134000 | 4.9861 | 1.0013 | | 0.0114 | 1009.02 | 134200 | 5.0604 | 1.0 | | 0.0079 | 1010.53 | 134400 | 4.9738 | 1.0 | | 0.0039 | 1012.03 | 134600 | 5.2350 | 1.0006 | | 0.0081 | 1013.53 | 134800 | 4.8783 | 1.0006 | | 0.0072 | 1015.04 | 135000 | 5.0616 | 1.0019 | | 0.0059 | 1016.54 | 135200 | 4.9421 | 1.0006 | | 0.0052 | 1018.05 | 135400 | 5.2076 | 1.0006 | | 0.0072 | 1019.55 | 135600 | 4.7459 | 1.0019 | | 0.0137 | 1021.05 | 135800 | 4.4156 | 1.0025 | | 0.0086 | 1022.56 | 136000 | 4.7582 | 1.0038 | | 0.006 | 1024.06 | 136200 | 4.6716 | 1.0013 | | 0.0086 | 1025.56 | 136400 | 4.9067 | 1.0006 | | 0.0074 | 1027.07 | 136600 | 5.1224 | 1.0 | | 0.0099 | 1028.57 | 136800 | 4.8046 | 1.0006 | | 0.0129 | 1030.08 | 137000 | 5.0482 | 1.0 | | 0.011 | 1031.58 | 137200 | 4.9666 | 1.0019 | | 0.0071 | 1033.08 | 137400 | 5.0899 | 1.0013 | | 0.0067 | 1034.59 | 137600 | 5.0229 | 1.0006 | | 0.0044 | 1036.09 | 137800 | 5.0371 | 1.0013 | | 0.0101 | 1037.59 | 138000 | 4.9919 | 0.9994 | | 0.006 | 1039.1 | 138200 | 5.1368 | 0.9994 | | 0.0105 | 1040.6 | 138400 | 4.8836 | 0.9987 | | 0.0084 | 1042.11 | 138600 | 4.7600 | 1.0025 | | 0.0089 | 1043.61 | 138800 | 4.9488 | 1.0019 | | 0.0075 | 1045.11 | 139000 | 5.0581 | 1.0006 | | 0.0109 | 1046.62 | 139200 | 5.1216 | 1.0006 | | 0.0028 | 1048.12 | 139400 | 5.0811 | 0.9981 | | 0.0044 | 1049.62 | 139600 | 4.8405 | 1.0013 | | 0.0067 | 1051.13 | 139800 | 5.0062 | 1.0013 | | 0.0057 | 1052.63 | 140000 | 5.0492 | 1.0006 | | 0.0062 | 1054.14 | 140200 | 5.0783 | 1.0 | | 0.0076 | 1055.64 | 140400 | 5.1404 | 1.0 | | 0.0132 | 1057.14 | 140600 | 5.1925 | 1.0006 | | 0.0043 | 1058.65 | 140800 | 5.0225 | 1.0019 | | 0.0032 | 1060.15 | 141000 | 4.9694 | 1.0019 | | 0.004 | 1061.65 | 141200 | 5.1353 | 1.0006 | | 0.0092 | 1063.16 | 141400 | 5.2068 | 1.0013 | | 0.0092 | 1064.66 | 141600 | 5.0825 | 1.0013 | | 0.0057 | 1066.17 | 141800 | 5.0087 | 1.0013 | | 0.0048 | 1067.67 | 142000 | 4.9626 | 1.0025 | | 0.0052 | 1069.17 | 142200 | 5.0154 | 1.0006 | | 0.0094 | 1070.68 | 142400 | 5.0147 | 1.0019 | | 0.008 | 1072.18 | 142600 | 4.9181 | 1.0006 | | 0.0073 | 1073.68 | 142800 | 4.9787 | 1.0019 | | 0.0063 | 1075.19 | 143000 | 4.9458 | 1.0025 | | 0.0069 | 1076.69 | 143200 | 5.0951 | 1.0019 | | 0.005 | 1078.2 | 143400 | 4.8268 | 1.0019 | | 0.008 | 1079.7 | 143600 | 4.8822 | 1.0019 | | 0.0047 | 1081.2 | 143800 | 5.1148 | 1.0019 | | 0.0138 | 1082.71 | 144000 | 4.9464 | 1.0 | | 0.0054 | 1084.21 | 144200 | 4.9410 | 1.0013 | | 0.0061 | 1085.71 | 144400 | 5.1612 | 1.0006 | | 0.0095 | 1087.22 | 144600 | 5.0962 | 1.0006 | | 0.0069 | 1088.72 | 144800 | 5.0092 | 1.0 | | 0.0041 | 1090.23 | 145000 | 5.0815 | 1.0 | | 0.0104 | 1091.73 | 145200 | 5.0631 | 1.0006 | | 0.0025 | 1093.23 | 145400 | 5.1077 | 1.0006 | | 0.0068 | 1094.74 | 145600 | 4.9715 | 1.0019 | | 0.006 | 1096.24 | 145800 | 5.0608 | 1.0013 | | 0.0081 | 1097.74 | 146000 | 5.1091 | 1.0013 | | 0.0068 | 1099.25 | 146200 | 5.1470 | 1.0013 | | 0.0047 | 1100.75 | 146400 | 5.1790 | 1.0006 | | 0.0054 | 1102.26 | 146600 | 5.2646 | 1.0 | | 0.0092 | 1103.76 | 146800 | 5.2853 | 1.0013 | | 0.0066 | 1105.26 | 147000 | 5.0318 | 1.0013 | | 0.008 | 1106.77 | 147200 | 5.0337 | 1.0013 | | 0.0034 | 1108.27 | 147400 | 5.0388 | 1.0013 | | 0.011 | 1109.77 | 147600 | 5.0256 | 1.0019 | | 0.0072 | 1111.28 | 147800 | 5.0236 | 1.0019 | | 0.0129 | 1112.78 | 148000 | 5.0792 | 1.0019 | | 0.0063 | 1114.29 | 148200 | 5.1229 | 1.0 | | 0.0045 | 1115.79 | 148400 | 5.1730 | 1.0013 | | 0.0049 | 1117.29 | 148600 | 5.1491 | 1.0006 | | 0.0039 | 1118.8 | 148800 | 5.1083 | 1.0013 | | 0.008 | 1120.3 | 149000 | 5.0877 | 1.0019 | | 0.0058 | 1121.8 | 149200 | 5.0018 | 1.0019 | | 0.0046 | 1123.31 | 149400 | 5.0775 | 1.0013 | | 0.0057 | 1124.81 | 149600 | 5.0081 | 1.0006 | | 0.0048 | 1126.32 | 149800 | 5.0912 | 1.0013 | | 0.0031 | 1127.82 | 150000 | 5.0987 | 1.0019 | | 0.0059 | 1129.32 | 150200 | 5.0811 | 1.0013 | | 0.0043 | 1130.83 | 150400 | 5.1520 | 1.0019 | | 0.0071 | 1132.33 | 150600 | 5.2432 | 1.0019 | | 0.0115 | 1133.83 | 150800 | 5.1358 | 1.0019 | | 0.0061 | 1135.34 | 151000 | 5.0458 | 1.0019 | | 0.0068 | 1136.84 | 151200 | 5.1654 | 1.0019 | | 0.0107 | 1138.35 | 151400 | 5.0748 | 1.0019 | | 0.0053 | 1139.85 | 151600 | 5.1501 | 1.0019 | | 0.0058 | 1141.35 | 151800 | 5.2146 | 1.0019 | | 0.0053 | 1142.86 | 152000 | 5.2234 | 1.0013 | | 0.0034 | 1144.36 | 152200 | 5.2226 | 1.0019 | | 0.0058 | 1145.86 | 152400 | 5.2033 | 1.0019 | | 0.0039 | 1147.37 | 152600 | 5.2151 | 1.0019 | | 0.0111 | 1148.87 | 152800 | 5.1126 | 1.0019 | | 0.0054 | 1150.38 | 153000 | 5.2183 | 1.0019 | | 0.0068 | 1151.88 | 153200 | 5.2718 | 1.0019 | | 0.0074 | 1153.38 | 153400 | 5.1996 | 1.0019 | | 0.0064 | 1154.89 | 153600 | 5.1910 | 1.0019 | | 0.0058 | 1156.39 | 153800 | 5.1924 | 1.0019 | | 0.004 | 1157.89 | 154000 | 5.2096 | 1.0019 | | 0.0046 | 1159.4 | 154200 | 5.1493 | 1.0019 | | 0.0066 | 1160.9 | 154400 | 5.1710 | 1.0019 | | 0.0055 | 1162.41 | 154600 | 5.1339 | 1.0019 | | 0.0076 | 1163.91 | 154800 | 5.1114 | 1.0019 | | 0.0078 | 1165.41 | 155000 | 5.1069 | 1.0019 | | 0.0039 | 1166.92 | 155200 | 5.1307 | 1.0019 | | 0.0029 | 1168.42 | 155400 | 5.1418 | 1.0025 | | 0.0033 | 1169.92 | 155600 | 5.0614 | 1.0025 | | 0.005 | 1171.43 | 155800 | 5.0568 | 1.0025 | | 0.0048 | 1172.93 | 156000 | 5.0617 | 1.0025 | | 0.005 | 1174.44 | 156200 | 5.0957 | 1.0025 | | 0.0072 | 1175.94 | 156400 | 5.0974 | 1.0025 | | 0.0052 | 1177.44 | 156600 | 5.0740 | 1.0025 | | 0.0042 | 1178.95 | 156800 | 5.0641 | 1.0019 | | 0.0057 | 1180.45 | 157000 | 5.0398 | 1.0013 | | 0.0063 | 1181.95 | 157200 | 4.9869 | 1.0019 | | 0.0046 | 1183.46 | 157400 | 5.0102 | 1.0019 | | 0.005 | 1184.96 | 157600 | 4.9957 | 1.0019 | | 0.0044 | 1186.47 | 157800 | 5.0196 | 1.0019 | | 0.0041 | 1187.97 | 158000 | 5.0451 | 1.0019 | | 0.0053 | 1189.47 | 158200 | 5.0466 | 1.0019 | | 0.0078 | 1190.98 | 158400 | 5.0443 | 1.0019 | | 0.0061 | 1192.48 | 158600 | 5.0306 | 1.0019 | | 0.0069 | 1193.98 | 158800 | 5.0399 | 1.0019 | | 0.0114 | 1195.49 | 159000 | 5.0391 | 1.0019 | | 0.0126 | 1196.99 | 159200 | 5.0403 | 1.0019 | | 0.0067 | 1198.5 | 159400 | 5.0430 | 1.0019 | | 0.0044 | 1200.0 | 159600 | 5.0428 | 1.0019 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.6
markn/adalm-bio-small
22824f560e494e077e6e898a5c22497d3931e521
2022-04-12T21:12:35.000Z
[ "pytorch", "bert", "transformers", "license:mit" ]
null
false
markn
null
markn/adalm-bio-small
0
null
transformers
36,832
--- license: mit ---
huggan/fastgan-few-shot-aurora
8234db31eec47eb4720a814f42455ed30b89b6c0
2022-05-06T22:30:43.000Z
[ "pytorch", "dataset:huggan/few-shot-aurora", "arxiv:2101.04775", "huggan", "gan", "unconditional-image-generation", "license:mit" ]
unconditional-image-generation
false
huggan
null
huggan/fastgan-few-shot-aurora
0
null
null
36,833
--- tags: - huggan - gan - unconditional-image-generation datasets: - huggan/few-shot-aurora # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # Generate aurora image using FastGAN ## Model description [FastGAN model](https://arxiv.org/abs/2101.04775) is a Generative Adversarial Networks (GAN) training on a small amount of high-fidelity images with minimum computing cost. Using a skip-layer channel-wise excitation module and a self-supervised discriminator trained as a feature-encoder, the model was able to converge after some hours of training for either 100 high-quality images or 1000 images datasets. This model was trained on a dataset of 272 high-quality images of aurora. #### How to use ```python # Clone this model git clone https://huggingface.co/huggan/fastgan-few-shot-aurora/ def load_generator(model_name_or_path): generator = Generator(in_channels=256, out_channels=3) generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) _ = generator.eval() return generator def _denormalize(input: torch.Tensor) -> torch.Tensor: return (input * 127.5) + 127.5 # Load generator generator = load_generator("huggan/fastgan-few-shot-aurora") # Generate a random noise image noise = torch.zeros(1, 256, 1, 1, device=device).normal_(0.0, 1.0) with torch.no_grad(): gan_images, _ = generator(noise) gan_images = _denormalize(gan_images.detach()) save_image(gan_images, "sample.png", nrow=1, normalize=True) ``` #### Limitations and bias * Converge faster and better with small datasets (less than 1000 samples) ## Training data [few-shot-aurora](https://huggingface.co/datasets/huggan/few-shot-aurora) ## Generated Images ![Example image](example.png) ### BibTeX entry and citation info ```bibtex @article{FastGAN, title={Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis}, author={Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal}, journal={ICLR}, year={2021} } ```
mimicheng/codeparrot-ds-sample-1ep-12apr
74d9d6d5c5bed469b64e79b2909849c6d58a4044
2022-04-13T07:16:11.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mimicheng
null
mimicheng/codeparrot-ds-sample-1ep-12apr
0
null
transformers
36,834
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-1ep-12apr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-1ep-12apr This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8723 | 0.37 | 1000 | 2.5340 | | 2.1776 | 0.74 | 2000 | 1.9947 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/radfemman
8e54c05acd96a0f147b5c263888801474421829f
2022-04-13T06:22:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/radfemman
0
null
transformers
36,835
--- language: en thumbnail: http://www.huggingtweets.com/radfemman/1649830938917/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428572680882688005/rqGxWIRJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Radfem Ally 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@radfemman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Radfem Ally 🇺🇸. | Data | Radfem Ally 🇺🇸 | | --- | --- | | Tweets downloaded | 227 | | Retweets | 33 | | Short tweets | 14 | | Tweets kept | 180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29ku9tl5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @radfemman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33qza7xp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33qza7xp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/radfemman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggan/pix2pix-maps
29b247f1f7559f1667e3c516666c631ebfd785a1
2022-04-13T16:25:52.000Z
[ "pytorch", "dataset:huggan/maps", "arxiv:1611.07004", "huggan", "gan", "license:mit" ]
null
false
huggan
null
huggan/pix2pix-maps
0
null
null
36,836
--- tags: - huggan - gan datasets: - huggan/maps # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # Pix2Pix trained on the maps dataset ## Model description This model is a [Pix2Pix](https://arxiv.org/abs/1611.07004) model trained on the [huggan/maps](https://huggingface.co/datasets/huggan/maps) dataset. The goal for the model is to turn a satellite map into a geographic map à la Google Maps, and the other way around. The model was trained using the [example script](https://github.com/huggingface/community-events/tree/main/huggan/pytorch/pix2pix) provided by HuggingFace as part of the [HugGAN sprint](https://github.com/huggingface/community-events/tree/main/huggan). ## Intended uses & limitations #### How to use ```python from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet from PIL import Image from torchvision.utils import save_image image = Image.open("...") generator = GeneratorUNet.from_pretrained("huggan/pix2pix-maps") pixel_values = transform(image).unsqueeze(0) output = generator(pixel_values) save_image(output, 'output.png', normalize=True) ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data The data used was huggan/maps. ## Training procedure The following command was used: ```bash accelerate launch train.py --dataset huggan/maps --push_to_hub --model_name pix2pix-maps --checkpoint_interval 1 ``` ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/IsolaZZE16, author = {Phillip Isola and Jun{-}Yan Zhu and Tinghui Zhou and Alexei A. Efros}, title = {Image-to-Image Translation with Conditional Adversarial Networks}, journal = {CoRR}, volume = {abs/1611.07004}, year = {2016}, url = {http://arxiv.org/abs/1611.07004}, eprinttype = {arXiv}, eprint = {1611.07004}, timestamp = {Mon, 13 Aug 2018 16:49:05 +0200}, biburl = {https://dblp.org/rec/journals/corr/IsolaZZE16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
obokkkk/kobert-finetuned-klue-v2
ef5f1945d614548e889146ce106b4d581af5e79e
2022-04-13T11:24:54.000Z
[ "pytorch", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
obokkkk
null
obokkkk/kobert-finetuned-klue-v2
0
null
transformers
36,837
--- tags: - generated_from_trainer model-index: - name: kobert-finetuned-klue-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobert-finetuned-klue-v2 This model is a fine-tuned version of [monologg/kobert](https://huggingface.co/monologg/kobert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.6289 | 0.54 | 500 | 5.3024 | | 5.3083 | 1.08 | 1000 | 5.3707 | | 5.3518 | 1.62 | 1500 | 5.3039 | | 5.2912 | 2.16 | 2000 | 5.2800 | | 5.2282 | 2.7 | 2500 | 5.2301 | | 5.1498 | 3.24 | 3000 | 5.2435 | | 5.079 | 3.78 | 3500 | 5.1997 | | 4.8886 | 4.32 | 4000 | 5.1350 | | 4.8166 | 4.86 | 4500 | 5.1441 | | 4.5615 | 5.4 | 5000 | 5.1485 | | 4.4183 | 5.94 | 5500 | 5.0775 | | 4.1282 | 6.48 | 6000 | 5.0402 | | 4.1214 | 7.02 | 6500 | 5.1331 | | 3.7792 | 7.56 | 7000 | 5.1314 | | 3.7455 | 8.1 | 7500 | 5.1936 | | 3.5369 | 8.64 | 8000 | 5.1931 | | 3.4832 | 9.18 | 8500 | 5.2678 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
vabadeh213/autotrain-wikihow-737822494
c22a2d5b572f10ea0fd77e1a1cde9c2bf6bd8cf8
2022-04-13T13:07:34.000Z
[ "pytorch", "mt5", "text2text-generation", "ja", "dataset:vabadeh213/autotrain-data-wikihow", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
vabadeh213
null
vabadeh213/autotrain-wikihow-737822494
0
null
transformers
36,838
--- tags: autotrain language: ja widget: - text: "脅威を感じた蛇は再び襲いかかります。したがって、噛まれた際は速やかに蛇の攻撃範囲から離れましょう。 少なくとも6mは間合いを取りましょう。できる限り速やかに医療処置を求めることが大切です。ほとんどの病院は、毒蛇用の抗毒素(血清)を用意しています。病院に到着する前の応急手当だけでは、あまり症状の改善にはつながりません。被害現場からすぐさま救急サービスに通報できれば不幸中の幸いです。救急車を呼べない場合は、何としても助けを求め、みなさんまたは被害者を最寄りの病院へ搬送しなければなりません。みなさんに噛みついた蛇がガラガラヘビかどうかが分からない場合でも、すぐに病院へ直行しましょう。実際に毒が体に回り、症状が出始めたとしても、病院にいれば安心できるでしょう。噛まれた箇所を心臓よりも上に置くと、毒を含んだ血液が猛スピードで心臓に流れ込みます。救助が来るまでの間、できれば被害者の体を静止させましょう。体を動かすと血流が増大し、あっという間に毒が回ります。したがって、毒蛇に噛まれた際は体の動きを最小限に抑えて安静にすることが大切です。もちろん、みなさんの周りに誰もいなければ、じっとしている場合ではありません。すぐに助けを求めましょう。" - text: "噛み傷の周囲は大きく腫れ上がります。傷口の周りの衣類はすべて取り除きましょう。また、患部に付けているアクセサリー類も取り外しましょう。アクセサリーを付けたままにすると、患部が腫れた際に血管を締め付けてしまうため、場合によっては大切なアクセサリーを切断する羽目になります。30秒ほど噛み傷からそのまま出血させましょう。出血とともに、ある程度は毒が傷口から排出されるでしょう。毒を少しでも吸引できればそれに越したことはありません。ただし、必ず毒蛇用の吸引器を使いましょう。吸引ポンプには詳しい取扱説明書が付属しているはずですが、基本的にポンプを直接噛み傷に当てて毒を吸い出します。傷口を水で洗ってはいけません。皮膚を洗い流してしまうと、後で毒の種類を特定しにくくなります。医療者は皮膚に残った毒からガラガラヘビの種類を特定し、みなさんの症状に最適な治療法を決定します。添え木または三角巾で固定すれば、患部の血流を抑えることができます。できるだけ血流を抑えて毒の回りを遅らせましょう。腕を吊るす場合は、衣類を三角形に折り畳むか、または三角形に切りましょう。肘を中心にして腕を三角巾で包みます。みなさんまたは被害者の肘を布の形に合わせて曲げましょう。三角巾の端同士を肩口で結び合わせます。肘から先を三角形の底辺で固定したら、手を外に出します。 板切れや丸めた新聞紙を添え木にして腕や脚を支えましょう。それらが手元になければ、衣類を丸めて使いましょう。添え木を腕や脚の側面に当て、傷口の上下の関節を伸ばして固定します。ベルト、テープ、包帯といった手元にあるものを使って添え木をしっかりと縛り付けましょう。ただし、直接傷口の上から縛ってはいけません。傷口の上下いずれかの側で縛りましょう。患部の腫れが酷い場合は、添え木の圧迫を緩める必要があります。" - text: "被害者に話しかけましょう。次々に質問を投げかけ、できる限り被害者の意識を噛み傷から逸らしましょう。 不安やパニックは心拍を上昇させ、毒の回りを速めます。みなさん自身が噛まれた場合は、とにかく落ち着きましょう。何度かゆっくりと深く息をして緊張をほぐしましょう。アメリカに滞在中のみなさんは、できれば救急車を待つ間、アメリカ中毒情報センター(1-800-222-1222)に連絡を取りましょう。噛まれた箇所が腫れ上がれば、一目でそれは毒蛇によるものと判断できます。それと同時に皮膚の変色が起こるでしょう。また、一連の細かい刺傷が残る無毒蛇の噛み傷とは違い、毒蛇の噛み傷は1カ所ないしは2カ所に目立った刺傷が残るのが特徴です。これは毒牙の発達に伴い、歯が退化しているためです。さらに、めまい、患部の激しい痛み、視覚障害、他の箇所のチクチクした痛み、そして極度の発汗といった症状も、毒蛇による噛み傷のサインです。皮膚が青ざめるのはショック症状の典型です。 他のサインとして、心拍の上昇、過呼吸、吐き気、めまいなどがあります。また、被害者の瞳孔が拡大していないかをチェックしましょう。被害者がショック症状を起こしつつある場合は、仰向けに寝かせて足を30cmほど浮かせましょう。さらに、毛布や上着などで体を包んで温めましょう。呼吸、咳、または体の動きといった生体反応が見られない場合は、直ちに心肺蘇生が必要です。これらの物質は毒の回りを加速させます。したがって、ガラガラヘビに噛まれた直後にアルコールまたはカフェイン飲料で水分補給をするのは禁物です。" datasets: - vabadeh213/autotrain-data-wikihow co2_eq_emissions: 361.800665798794 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 737822494 - CO2 Emissions (in grams): 361.800665798794 ## Validation Metrics - Loss: 2.326287031173706 - Rouge1: 5.2053 - Rouge2: 1.8535 - RougeL: 5.2419 - RougeLsum: 5.228 - Gen Len: 18.3677 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/vabadeh213/autotrain-wikihow-737822494 ```
melnikoff-oleg/bart-end-to-end
55ab6562174cca944643de6a1e86875068b41031
2022-04-13T11:59:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
melnikoff-oleg
null
melnikoff-oleg/bart-end-to-end
0
null
transformers
36,839
Entry not found
huggingtweets/elonmusk-jeffbezos-sweatystartup
94780eada23add9a26e08095981a5bb9fea2170a
2022-04-13T13:47:00.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-jeffbezos-sweatystartup
0
null
transformers
36,840
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/669103856106668033/UF3cgUk4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504792567031992320/7EflpzpQ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Jeff Bezos & Nick Huber</div> <div style="text-align: center; font-size: 14px;">@elonmusk-jeffbezos-sweatystartup</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Jeff Bezos & Nick Huber. | Data | Elon Musk | Jeff Bezos | Nick Huber | | --- | --- | --- | --- | | Tweets downloaded | 221 | 294 | 3250 | | Retweets | 15 | 22 | 44 | | Short tweets | 67 | 14 | 339 | | Tweets kept | 139 | 258 | 2867 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hd9nbhx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-jeffbezos-sweatystartup's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f15ydkr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f15ydkr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-jeffbezos-sweatystartup') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
frozenwalker/SciFive_pubmedqa_question_generation
ea678c0cf37b4426457a003fcf0f1de018f991a6
2022-04-19T11:42:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frozenwalker
null
frozenwalker/SciFive_pubmedqa_question_generation
0
null
transformers
36,841
Entry not found
masakhane/afrimt5_bbj_fr_news
e924d50eb15911e45941520dcf7066ece7782f16
2022-04-13T18:28:32.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_bbj_fr_news
0
null
transformers
36,842
--- license: afl-3.0 ---
masakhane/afrimbart_bbj_fr_news
d5ec07e79eeb4b46749070963f446a55fad66aef
2022-04-13T18:28:39.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_bbj_fr_news
0
null
transformers
36,843
--- license: afl-3.0 ---
masakhane/afribyt5_bbj_fr_news
1ed1883a4e0e479b3e7a7b70b08c802a23f7b4ea
2022-04-13T19:29:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_bbj_fr_news
0
null
transformers
36,844
--- license: afl-3.0 ---
masakhane/byt5_fr_bbj_news
5ba81fa10eeeb493e04df914bf6434e0858df3a2
2022-04-13T19:29:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_fr_bbj_news
0
null
transformers
36,845
--- license: afl-3.0 ---
masakhane/byt5_bbj_fr_news
dc62009e7fd9f773157e06571fe054f931fda04d
2022-04-13T19:30:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_bbj_fr_news
0
null
transformers
36,846
--- license: afl-3.0 ---
masakhane/mt5_bbj_fr_news
2abaff5c158f0feacdd135f8e747e747a3e5c522
2022-04-13T20:41:14.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_bbj_fr_news
0
null
transformers
36,847
--- license: afl-3.0 ---
masakhane/mt5_fr_bbj_news
547173268338375fca6258a3200692b87225ee9e
2022-04-13T20:41:07.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_fr_bbj_news
0
null
transformers
36,848
--- license: afl-3.0 ---
masakhane/mbart50_bbj_fr_news
e07fdf1eb0cc81155de359bc23c376512ebd9cc0
2022-04-13T20:41:18.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_bbj_fr_news
0
null
transformers
36,849
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bbj_news
46570681958c9b8e59ee1b8e0bc7f8842598decf
2022-04-13T21:40:15.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bbj_news
0
null
transformers
36,850
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bbj_rel_news
579c9a135b62a74aad340cf55af9caf01507c151
2022-04-13T21:40:19.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bbj_rel_news
0
null
transformers
36,851
--- license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_rel_news
40949ff2d525d1a3985c783f637e1b836094b526
2022-04-13T21:40:24.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bbj_fr_rel_news
0
null
transformers
36,852
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bbj_rel_news_ft
0b00157684120bdf5d7a5ce07897443df73b0a42
2022-04-14T08:42:45.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bbj_rel_news_ft
0
null
transformers
36,853
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bbj_rel
8635f78e4017ff014116d6f0b031a0b14c62109d
2022-04-14T08:42:48.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bbj_rel
0
null
transformers
36,854
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bbj_rel_ft
144e9b6b42351bb0ce3735abc4b7cdd1b3252b7d
2022-04-14T10:00:19.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bbj_rel_ft
0
null
transformers
36,855
--- license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_rel_ft
1f99875257572a5a807d696773a8e775d5bab245
2022-04-14T10:00:22.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bbj_fr_rel_ft
0
null
transformers
36,856
--- license: afl-3.0 ---
ntoldalagi/nick_asr_fresh
136346b60c1781725fa77427cc32c17b1ee7d2f7
2022-04-15T01:04:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ntoldalagi
null
ntoldalagi/nick_asr_fresh
0
null
transformers
36,857
Entry not found
lilitket/20220413-210552
bdac66b4f511f417c2380db3409241edf37a6baa
2022-04-14T05:44:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220413-210552
0
null
transformers
36,858
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 20220413-210552 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20220413-210552 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.0348 - Wer: 1.0006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:------:|:---------------:|:------:| | 17.1111 | 1.5 | 200 | 16.6792 | 1.0 | | 16.0992 | 3.01 | 400 | 15.3947 | 1.0 | | 10.7668 | 4.51 | 600 | 10.3625 | 1.0 | | 6.2652 | 6.02 | 800 | 7.6849 | 1.0 | | 5.1417 | 7.52 | 1000 | 6.0307 | 1.0 | | 4.6159 | 9.02 | 1200 | 5.0891 | 1.0 | | 4.2444 | 10.53 | 1400 | 4.4120 | 1.0 | | 3.8935 | 12.03 | 1600 | 3.9570 | 1.0 | | 3.6292 | 13.53 | 1800 | 3.6405 | 1.0 | | 3.4535 | 15.04 | 2000 | 3.4523 | 1.0 | | 3.3175 | 16.54 | 2200 | 3.3589 | 1.0 | | 3.2266 | 18.05 | 2400 | 3.2966 | 1.0 | | 3.1825 | 19.55 | 2600 | 3.2658 | 1.0 | | 3.1604 | 21.05 | 2800 | 3.2534 | 1.0 | | 3.1438 | 22.56 | 3000 | 3.2437 | 1.0 | | 3.1176 | 24.06 | 3200 | 3.2169 | 1.0 | | 3.1088 | 25.56 | 3400 | 3.2102 | 1.0 | | 3.0955 | 27.07 | 3600 | 3.1983 | 1.0 | | 3.0763 | 28.57 | 3800 | 3.2092 | 1.0 | | 3.0599 | 30.08 | 4000 | 3.2092 | 1.0 | | 3.0385 | 31.58 | 4200 | 3.2154 | 1.0 | | 2.9996 | 33.08 | 4400 | 3.2120 | 1.0 | | 2.9207 | 34.59 | 4600 | 3.2146 | 1.0 | | 2.8071 | 36.09 | 4800 | 3.2093 | 1.0 | | 2.6412 | 37.59 | 5000 | 3.2282 | 1.0 | | 2.4594 | 39.1 | 5200 | 3.2442 | 1.0 | | 2.2708 | 40.6 | 5400 | 3.2944 | 1.0 | | 2.1279 | 42.11 | 5600 | 3.3260 | 1.0 | | 1.9985 | 43.61 | 5800 | 3.3586 | 1.0 | | 1.8979 | 45.11 | 6000 | 3.3945 | 1.0 | | 1.7838 | 46.62 | 6200 | 3.4761 | 1.0 | | 1.6774 | 48.12 | 6400 | 3.4886 | 1.0 | | 1.5958 | 49.62 | 6600 | 3.6208 | 1.0 | | 1.4957 | 51.13 | 6800 | 3.6501 | 1.0 | | 1.4202 | 52.63 | 7000 | 3.6492 | 1.0 | | 1.3377 | 54.14 | 7200 | 3.7392 | 1.0 | | 1.2872 | 55.64 | 7400 | 3.8624 | 1.0 | | 1.1992 | 57.14 | 7600 | 3.8511 | 1.0 | | 1.1238 | 58.65 | 7800 | 3.9662 | 1.0 | | 1.0775 | 60.15 | 8000 | 3.9267 | 1.0 | | 1.011 | 61.65 | 8200 | 4.0933 | 1.0 | | 0.962 | 63.16 | 8400 | 4.0941 | 1.0 | | 0.9041 | 64.66 | 8600 | 4.1163 | 1.0 | | 0.8552 | 66.17 | 8800 | 4.1937 | 1.0 | | 0.8054 | 67.67 | 9000 | 4.2277 | 1.0 | | 0.7457 | 69.17 | 9200 | 4.3899 | 1.0 | | 0.7292 | 70.68 | 9400 | 4.3621 | 1.0 | | 0.6635 | 72.18 | 9600 | 4.4706 | 1.0 | | 0.6333 | 73.68 | 9800 | 4.4571 | 1.0 | | 0.6109 | 75.19 | 10000 | 4.4594 | 1.0 | | 0.5611 | 76.69 | 10200 | 4.5672 | 1.0 | | 0.5286 | 78.2 | 10400 | 4.4957 | 1.0 | | 0.4894 | 79.7 | 10600 | 4.5278 | 1.0 | | 0.4831 | 81.2 | 10800 | 4.4604 | 1.0 | | 0.4575 | 82.71 | 11000 | 4.7439 | 1.0 | | 0.4418 | 84.21 | 11200 | 4.6511 | 1.0 | | 0.4085 | 85.71 | 11400 | 4.5008 | 1.0 | | 0.4011 | 87.22 | 11600 | 4.7690 | 1.0 | | 0.3791 | 88.72 | 11800 | 4.8675 | 1.0 | | 0.3487 | 90.23 | 12000 | 5.0327 | 1.0 | | 0.3661 | 91.73 | 12200 | 4.8084 | 1.0 | | 0.3306 | 93.23 | 12400 | 4.9095 | 1.0 | | 0.3449 | 94.74 | 12600 | 4.8223 | 1.0 | | 0.2949 | 96.24 | 12800 | 4.8245 | 1.0 | | 0.2987 | 97.74 | 13000 | 5.0803 | 1.0 | | 0.2896 | 99.25 | 13200 | 5.2074 | 1.0 | | 0.2731 | 100.75 | 13400 | 5.1951 | 1.0 | | 0.2749 | 102.26 | 13600 | 5.2071 | 1.0 | | 0.2554 | 103.76 | 13800 | 5.0861 | 1.0 | | 0.2436 | 105.26 | 14000 | 5.0851 | 1.0 | | 0.2494 | 106.77 | 14200 | 4.8623 | 1.0 | | 0.23 | 108.27 | 14400 | 5.0466 | 1.0 | | 0.2345 | 109.77 | 14600 | 5.2474 | 1.0 | | 0.2233 | 111.28 | 14800 | 4.9394 | 1.0 | | 0.2231 | 112.78 | 15000 | 4.9572 | 1.0 | | 0.213 | 114.29 | 15200 | 5.3215 | 1.0 | | 0.2002 | 115.79 | 15400 | 5.3042 | 1.0 | | 0.2023 | 117.29 | 15600 | 5.0279 | 1.0 | | 0.2074 | 118.8 | 15800 | 4.9727 | 1.0 | | 0.2071 | 120.3 | 16000 | 4.6775 | 1.0 | | 0.1915 | 121.8 | 16200 | 4.8386 | 1.0 | | 0.1899 | 123.31 | 16400 | 4.7898 | 1.0 | | 0.1821 | 124.81 | 16600 | 5.3147 | 1.0 | | 0.1908 | 126.32 | 16800 | 5.6218 | 1.0 | | 0.1712 | 127.82 | 17000 | 4.6083 | 1.0 | | 0.1705 | 129.32 | 17200 | 5.2468 | 1.0 | | 0.1664 | 130.83 | 17400 | 5.0412 | 1.0 | | 0.167 | 132.33 | 17600 | 5.0116 | 1.0 | | 0.162 | 133.83 | 17800 | 5.2799 | 1.0 | | 0.1561 | 135.34 | 18000 | 5.2485 | 1.0 | | 0.1501 | 136.84 | 18200 | 5.1109 | 1.0 | | 0.14 | 138.35 | 18400 | 5.2310 | 1.0 | | 0.1576 | 139.85 | 18600 | 5.1631 | 1.0 | | 0.1433 | 141.35 | 18800 | 5.3497 | 1.0 | | 0.148 | 142.86 | 19000 | 4.8892 | 1.0 | | 0.1525 | 144.36 | 19200 | 4.8522 | 1.0 | | 0.1517 | 145.86 | 19400 | 4.7830 | 1.0 | | 0.139 | 147.37 | 19600 | 5.2041 | 1.0 | | 0.1392 | 148.87 | 19800 | 4.7968 | 1.0 | | 0.1351 | 150.38 | 20000 | 5.0326 | 1.0 | | 0.1355 | 151.88 | 20200 | 5.0474 | 1.0 | | 0.138 | 153.38 | 20400 | 4.7491 | 1.0006 | | 0.1332 | 154.89 | 20600 | 5.3905 | 1.0 | | 0.1252 | 156.39 | 20800 | 4.9815 | 1.0 | | 0.1179 | 157.89 | 21000 | 5.3281 | 1.0 | | 0.1228 | 159.4 | 21200 | 5.1108 | 1.0006 | | 0.1311 | 160.9 | 21400 | 4.8016 | 1.0 | | 0.1278 | 162.41 | 21600 | 4.8306 | 1.0 | | 0.1209 | 163.91 | 21800 | 4.6413 | 1.0 | | 0.1199 | 165.41 | 22000 | 4.6375 | 1.0 | | 0.1172 | 166.92 | 22200 | 4.9108 | 1.0 | | 0.1247 | 168.42 | 22400 | 4.6139 | 1.0006 | | 0.1121 | 169.92 | 22600 | 4.4765 | 1.0006 | | 0.125 | 171.43 | 22800 | 4.6819 | 1.0006 | | 0.1259 | 172.93 | 23000 | 4.9577 | 1.0 | | 0.1044 | 174.44 | 23200 | 5.2993 | 1.0006 | | 0.1107 | 175.94 | 23400 | 4.3140 | 1.0 | | 0.1142 | 177.44 | 23600 | 4.5850 | 1.0 | | 0.0971 | 178.95 | 23800 | 4.8177 | 1.0006 | | 0.1186 | 180.45 | 24000 | 4.9972 | 1.0 | | 0.1164 | 181.95 | 24200 | 4.5840 | 1.0 | | 0.1014 | 183.46 | 24400 | 4.9117 | 0.9994 | | 0.1087 | 184.96 | 24600 | 4.5646 | 1.0006 | | 0.1075 | 186.47 | 24800 | 4.6995 | 1.0 | | 0.1111 | 187.97 | 25000 | 4.7877 | 1.0 | | 0.1079 | 189.47 | 25200 | 4.8420 | 1.0 | | 0.1053 | 190.98 | 25400 | 5.1083 | 1.0 | | 0.1048 | 192.48 | 25600 | 4.2876 | 1.0 | | 0.0974 | 193.98 | 25800 | 4.6699 | 1.0006 | | 0.0983 | 195.49 | 26000 | 4.6522 | 1.0 | | 0.0935 | 196.99 | 26200 | 4.9879 | 1.0 | | 0.0948 | 198.5 | 26400 | 4.4146 | 1.0 | | 0.0867 | 200.0 | 26600 | 5.1909 | 1.0 | | 0.0932 | 201.5 | 26800 | 5.2019 | 1.0 | | 0.0951 | 203.01 | 27000 | 3.6893 | 1.0 | | 0.085 | 204.51 | 27200 | 4.3071 | 1.0006 | | 0.0912 | 206.02 | 27400 | 4.4651 | 1.0 | | 0.092 | 207.52 | 27600 | 4.4218 | 1.0 | | 0.0936 | 209.02 | 27800 | 5.1391 | 1.0 | | 0.0989 | 210.53 | 28000 | 4.8787 | 1.0006 | | 0.0898 | 212.03 | 28200 | 4.1418 | 1.0013 | | 0.0943 | 213.53 | 28400 | 4.1857 | 1.0 | | 0.0834 | 215.04 | 28600 | 4.3519 | 1.0 | | 0.0851 | 216.54 | 28800 | 4.3612 | 1.0006 | | 0.0932 | 218.05 | 29000 | 4.2200 | 1.0006 | | 0.0848 | 219.55 | 29200 | 4.2054 | 1.0 | | 0.0873 | 221.05 | 29400 | 4.4815 | 1.0 | | 0.0949 | 222.56 | 29600 | 3.9426 | 1.0 | | 0.0856 | 224.06 | 29800 | 3.7650 | 1.0 | | 0.0768 | 225.56 | 30000 | 3.9774 | 1.0 | | 0.0823 | 227.07 | 30200 | 4.3728 | 1.0 | | 0.0913 | 228.57 | 30400 | 3.7813 | 1.0 | | 0.0951 | 230.08 | 30600 | 4.1581 | 1.0 | | 0.0843 | 231.58 | 30800 | 4.6891 | 1.0 | | 0.0879 | 233.08 | 31000 | 4.2984 | 1.0 | | 0.0807 | 234.59 | 31200 | 3.9511 | 1.0 | | 0.0765 | 236.09 | 31400 | 3.8094 | 1.0 | | 0.0861 | 237.59 | 31600 | 4.3118 | 1.0 | | 0.0596 | 239.1 | 31800 | 4.0774 | 1.0006 | | 0.0752 | 240.6 | 32000 | 3.6005 | 1.0 | | 0.0729 | 242.11 | 32200 | 4.8616 | 1.0 | | 0.0783 | 243.61 | 32400 | 3.9858 | 1.0 | | 0.0759 | 245.11 | 32600 | 4.1231 | 1.0 | | 0.08 | 246.62 | 32800 | 4.5182 | 1.0 | | 0.0782 | 248.12 | 33000 | 3.7721 | 1.0 | | 0.0914 | 249.62 | 33200 | 3.5902 | 1.0 | | 0.0668 | 251.13 | 33400 | 3.9673 | 1.0 | | 0.0798 | 252.63 | 33600 | 3.8693 | 1.0 | | 0.0814 | 254.14 | 33800 | 3.9804 | 1.0006 | | 0.0775 | 255.64 | 34000 | 3.9483 | 1.0 | | 0.0721 | 257.14 | 34200 | 4.6892 | 1.0 | | 0.0722 | 258.65 | 34400 | 4.1972 | 1.0 | | 0.0755 | 260.15 | 34600 | 4.4523 | 1.0 | | 0.0683 | 261.65 | 34800 | 4.1090 | 1.0 | | 0.0698 | 263.16 | 35000 | 4.0634 | 1.0 | | 0.0712 | 264.66 | 35200 | 4.0469 | 1.0006 | | 0.0754 | 266.17 | 35400 | 4.0113 | 1.0006 | | 0.0709 | 267.67 | 35600 | 4.0592 | 1.0 | | 0.0637 | 269.17 | 35800 | 3.7540 | 1.0 | | 0.0688 | 270.68 | 36000 | 3.9645 | 1.0 | | 0.0592 | 272.18 | 36200 | 3.7443 | 1.0 | | 0.0585 | 273.68 | 36400 | 3.8287 | 1.0 | | 0.0734 | 275.19 | 36600 | 3.6780 | 1.0 | | 0.058 | 276.69 | 36800 | 4.0194 | 1.0 | | 0.0707 | 278.2 | 37000 | 3.6663 | 1.0006 | | 0.0728 | 279.7 | 37200 | 3.8640 | 1.0 | | 0.064 | 281.2 | 37400 | 4.5473 | 1.0 | | 0.0583 | 282.71 | 37600 | 4.1813 | 1.0 | | 0.0634 | 284.21 | 37800 | 3.8821 | 1.0 | | 0.0565 | 285.71 | 38000 | 3.9566 | 1.0006 | | 0.0735 | 287.22 | 38200 | 4.5317 | 1.0 | | 0.0797 | 288.72 | 38400 | 3.8040 | 1.0 | | 0.0601 | 290.23 | 38600 | 4.0956 | 1.0 | | 0.0599 | 291.73 | 38800 | 4.0592 | 1.0 | | 0.0517 | 293.23 | 39000 | 3.5204 | 1.0006 | | 0.0622 | 294.74 | 39200 | 4.1739 | 1.0 | | 0.0705 | 296.24 | 39400 | 4.0262 | 1.0 | | 0.0589 | 297.74 | 39600 | 4.2476 | 1.0 | | 0.0606 | 299.25 | 39800 | 3.7931 | 1.0 | | 0.0603 | 300.75 | 40000 | 4.0540 | 0.9994 | | 0.0568 | 302.26 | 40200 | 3.5900 | 1.0 | | 0.0583 | 303.76 | 40400 | 3.8095 | 1.0 | | 0.0513 | 305.26 | 40600 | 3.8949 | 1.0 | | 0.0637 | 306.77 | 40800 | 3.8085 | 1.0 | | 0.0659 | 308.27 | 41000 | 4.2311 | 1.0 | | 0.068 | 309.77 | 41200 | 3.4876 | 1.0006 | | 0.0616 | 311.28 | 41400 | 3.7634 | 1.0 | | 0.0515 | 312.78 | 41600 | 3.8762 | 1.0 | | 0.0584 | 314.29 | 41800 | 4.2070 | 1.0 | | 0.054 | 315.79 | 42000 | 3.9088 | 1.0 | | 0.0571 | 317.29 | 42200 | 3.9679 | 1.0006 | | 0.0497 | 318.8 | 42400 | 3.8443 | 1.0 | | 0.0507 | 320.3 | 42600 | 4.2397 | 1.0 | | 0.0612 | 321.8 | 42800 | 4.2228 | 1.0 | | 0.0467 | 323.31 | 43000 | 3.6684 | 1.0 | | 0.0586 | 324.81 | 43200 | 3.8685 | 1.0013 | | 0.0557 | 326.32 | 43400 | 4.3341 | 1.0006 | | 0.0584 | 327.82 | 43600 | 3.6683 | 1.0 | | 0.0575 | 329.32 | 43800 | 3.9005 | 1.0 | | 0.0571 | 330.83 | 44000 | 3.8594 | 1.0 | | 0.0471 | 332.33 | 44200 | 3.6871 | 1.0 | | 0.055 | 333.83 | 44400 | 4.0402 | 1.0 | | 0.0422 | 335.34 | 44600 | 4.0226 | 1.0 | | 0.0422 | 336.84 | 44800 | 3.5907 | 1.0 | | 0.0513 | 338.35 | 45000 | 3.7380 | 1.0 | | 0.0593 | 339.85 | 45200 | 3.8530 | 1.0 | | 0.0446 | 341.35 | 45400 | 4.0879 | 1.0 | | 0.0492 | 342.86 | 45600 | 3.8984 | 1.0 | | 0.0422 | 344.36 | 45800 | 4.2423 | 1.0 | | 0.0478 | 345.86 | 46000 | 3.6391 | 1.0 | | 0.0425 | 347.37 | 46200 | 4.2352 | 1.0 | | 0.0426 | 348.87 | 46400 | 4.0004 | 1.0 | | 0.0566 | 350.38 | 46600 | 4.0957 | 1.0006 | | 0.0522 | 351.88 | 46800 | 3.9436 | 0.9994 | | 0.0503 | 353.38 | 47000 | 4.3325 | 1.0 | | 0.0513 | 354.89 | 47200 | 3.5738 | 0.9994 | | 0.0428 | 356.39 | 47400 | 3.8233 | 0.9994 | | 0.0402 | 357.89 | 47600 | 3.6210 | 1.0006 | | 0.0575 | 359.4 | 47800 | 3.6991 | 1.0 | | 0.0459 | 360.9 | 48000 | 3.8384 | 1.0 | | 0.0423 | 362.41 | 48200 | 4.2164 | 1.0 | | 0.0401 | 363.91 | 48400 | 4.0001 | 1.0 | | 0.0612 | 365.41 | 48600 | 4.1363 | 0.9994 | | 0.0492 | 366.92 | 48800 | 4.0748 | 0.9994 | | 0.0467 | 368.42 | 49000 | 3.6856 | 0.9994 | | 0.0565 | 369.92 | 49200 | 4.1829 | 1.0 | | 0.0351 | 371.43 | 49400 | 3.9579 | 1.0006 | | 0.0499 | 372.93 | 49600 | 3.8893 | 1.0 | | 0.0477 | 374.44 | 49800 | 3.5199 | 1.0 | | 0.0471 | 375.94 | 50000 | 4.0405 | 1.0013 | | 0.037 | 377.44 | 50200 | 3.8785 | 1.0006 | | 0.0382 | 378.95 | 50400 | 4.2958 | 1.0013 | | 0.0553 | 380.45 | 50600 | 4.3845 | 1.0006 | | 0.0389 | 381.95 | 50800 | 3.7282 | 1.0013 | | 0.0373 | 383.46 | 51000 | 4.0840 | 1.0006 | | 0.0597 | 384.96 | 51200 | 4.0250 | 1.0006 | | 0.0404 | 386.47 | 51400 | 3.6077 | 0.9994 | | 0.0501 | 387.97 | 51600 | 3.5198 | 0.9994 | | 0.0432 | 389.47 | 51800 | 3.7678 | 1.0 | | 0.0462 | 390.98 | 52000 | 3.6467 | 1.0 | | 0.0444 | 392.48 | 52200 | 3.8941 | 1.0006 | | 0.0494 | 393.98 | 52400 | 3.6969 | 1.0 | | 0.0402 | 395.49 | 52600 | 3.5324 | 1.0006 | | 0.0402 | 396.99 | 52800 | 3.8874 | 1.0006 | | 0.0395 | 398.5 | 53000 | 3.3793 | 1.0006 | | 0.0367 | 400.0 | 53200 | 3.6539 | 1.0013 | | 0.0374 | 401.5 | 53400 | 3.4230 | 1.0 | | 0.0407 | 403.01 | 53600 | 3.6068 | 1.0 | | 0.0378 | 404.51 | 53800 | 3.5291 | 1.0013 | | 0.0471 | 406.02 | 54000 | 3.3563 | 1.0006 | | 0.0336 | 407.52 | 54200 | 2.9932 | 1.0044 | | 0.032 | 409.02 | 54400 | 3.3549 | 1.0006 | | 0.0474 | 410.53 | 54600 | 3.1140 | 1.0013 | | 0.0402 | 412.03 | 54800 | 2.8515 | 1.0075 | | 0.0366 | 413.53 | 55000 | 3.1142 | 1.0050 | | 0.041 | 415.04 | 55200 | 3.0917 | 1.0056 | | 0.0358 | 416.54 | 55400 | 3.3401 | 1.0006 | | 0.0299 | 418.05 | 55600 | 3.5304 | 1.0 | | 0.0512 | 419.55 | 55800 | 3.4768 | 1.0 | | 0.0374 | 421.05 | 56000 | 3.2792 | 0.9994 | | 0.037 | 422.56 | 56200 | 3.0088 | 1.0013 | | 0.0395 | 424.06 | 56400 | 3.0185 | 0.9994 | | 0.039 | 425.56 | 56600 | 3.0249 | 1.0 | | 0.0345 | 427.07 | 56800 | 3.3437 | 1.0 | | 0.0438 | 428.57 | 57000 | 3.0905 | 1.0 | | 0.0373 | 430.08 | 57200 | 3.4256 | 1.0019 | | 0.0362 | 431.58 | 57400 | 3.4747 | 1.0006 | | 0.0353 | 433.08 | 57600 | 3.3952 | 1.0019 | | 0.0363 | 434.59 | 57800 | 3.3967 | 1.0006 | | 0.0234 | 436.09 | 58000 | 3.5076 | 0.9994 | | 0.0347 | 437.59 | 58200 | 3.4128 | 0.9987 | | 0.039 | 439.1 | 58400 | 3.5784 | 1.0013 | | 0.041 | 440.6 | 58600 | 3.6292 | 1.0013 | | 0.0348 | 442.11 | 58800 | 3.3197 | 0.9981 | | 0.0285 | 443.61 | 59000 | 3.0545 | 0.9981 | | 0.0293 | 445.11 | 59200 | 3.1784 | 1.0013 | | 0.0394 | 446.62 | 59400 | 2.8197 | 0.9975 | | 0.0282 | 448.12 | 59600 | 3.1450 | 1.0 | | 0.0387 | 449.62 | 59800 | 2.8260 | 0.9987 | | 0.0348 | 451.13 | 60000 | 3.0389 | 0.9987 | | 0.03 | 452.63 | 60200 | 3.1857 | 0.9981 | | 0.029 | 454.14 | 60400 | 3.1893 | 1.0013 | | 0.0333 | 455.64 | 60600 | 3.1428 | 0.9981 | | 0.027 | 457.14 | 60800 | 3.5792 | 0.9994 | | 0.037 | 458.65 | 61000 | 3.4338 | 1.0 | | 0.0327 | 460.15 | 61200 | 2.9592 | 1.0056 | | 0.0283 | 461.65 | 61400 | 3.3657 | 1.0031 | | 0.0337 | 463.16 | 61600 | 3.1392 | 1.0025 | | 0.0275 | 464.66 | 61800 | 3.2706 | 1.0019 | | 0.0304 | 466.17 | 62000 | 3.5289 | 1.0019 | | 0.042 | 467.67 | 62200 | 3.2222 | 1.0019 | | 0.035 | 469.17 | 62400 | 3.3533 | 1.0038 | | 0.038 | 470.68 | 62600 | 3.7162 | 1.0006 | | 0.0297 | 472.18 | 62800 | 3.2382 | 1.0025 | | 0.0314 | 473.68 | 63000 | 3.2555 | 1.0006 | | 0.0288 | 475.19 | 63200 | 3.8791 | 1.0013 | | 0.0336 | 476.69 | 63400 | 3.1988 | 1.0006 | | 0.0371 | 478.2 | 63600 | 3.1025 | 1.0006 | | 0.0288 | 479.7 | 63800 | 3.2712 | 1.0006 | | 0.0374 | 481.2 | 64000 | 3.4452 | 0.9987 | | 0.0329 | 482.71 | 64200 | 3.3956 | 1.0 | | 0.036 | 484.21 | 64400 | 3.4541 | 1.0006 | | 0.03 | 485.71 | 64600 | 3.2153 | 1.0 | | 0.0319 | 487.22 | 64800 | 2.9109 | 0.9962 | | 0.0276 | 488.72 | 65000 | 3.0832 | 0.9975 | | 0.0315 | 490.23 | 65200 | 3.4669 | 1.0 | | 0.0244 | 491.73 | 65400 | 3.4678 | 0.9994 | | 0.0306 | 493.23 | 65600 | 3.6775 | 0.9987 | | 0.0266 | 494.74 | 65800 | 3.3509 | 1.0 | | 0.0247 | 496.24 | 66000 | 3.8882 | 1.0006 | | 0.0322 | 497.74 | 66200 | 3.5801 | 0.9994 | | 0.04 | 499.25 | 66400 | 3.6454 | 1.0006 | | 0.0313 | 500.75 | 66600 | 3.9949 | 1.0013 | | 0.0222 | 502.26 | 66800 | 3.5645 | 0.9987 | | 0.0257 | 503.76 | 67000 | 3.7539 | 0.9994 | | 0.028 | 505.26 | 67200 | 3.6815 | 1.0006 | | 0.0256 | 506.77 | 67400 | 3.3799 | 1.0013 | | 0.0257 | 508.27 | 67600 | 3.6969 | 1.0013 | | 0.0271 | 509.77 | 67800 | 3.7083 | 0.9994 | | 0.0265 | 511.28 | 68000 | 3.3015 | 0.9994 | | 0.0289 | 512.78 | 68200 | 3.7103 | 1.0006 | | 0.0337 | 514.29 | 68400 | 3.1877 | 1.0006 | | 0.0396 | 515.79 | 68600 | 3.7914 | 1.0 | | 0.0316 | 517.29 | 68800 | 3.4757 | 0.9981 | | 0.0303 | 518.8 | 69000 | 3.4129 | 0.9987 | | 0.0298 | 520.3 | 69200 | 3.1453 | 1.0 | | 0.0257 | 521.8 | 69400 | 3.4649 | 1.0 | | 0.0252 | 523.31 | 69600 | 3.2707 | 0.9994 | | 0.0254 | 524.81 | 69800 | 3.0304 | 1.0056 | | 0.0199 | 526.32 | 70000 | 3.4323 | 1.0019 | | 0.0333 | 527.82 | 70200 | 3.4081 | 1.0006 | | 0.0205 | 529.32 | 70400 | 2.9900 | 1.0188 | | 0.0223 | 530.83 | 70600 | 3.3499 | 1.0031 | | 0.0261 | 532.33 | 70800 | 3.2094 | 0.9975 | | 0.0198 | 533.83 | 71000 | 3.2793 | 1.0063 | | 0.021 | 535.34 | 71200 | 3.2266 | 0.9975 | | 0.022 | 536.84 | 71400 | 3.1391 | 0.9994 | | 0.0215 | 538.35 | 71600 | 3.4587 | 0.9994 | | 0.0269 | 539.85 | 71800 | 3.2814 | 0.9994 | | 0.0226 | 541.35 | 72000 | 3.2583 | 0.9981 | | 0.0257 | 542.86 | 72200 | 3.7259 | 0.9987 | | 0.0259 | 544.36 | 72400 | 3.5004 | 0.9994 | | 0.0223 | 545.86 | 72600 | 3.3689 | 0.9975 | | 0.0307 | 547.37 | 72800 | 3.0706 | 0.9950 | | 0.0234 | 548.87 | 73000 | 3.0892 | 0.9969 | | 0.0243 | 550.38 | 73200 | 3.4028 | 0.9987 | | 0.0215 | 551.88 | 73400 | 2.9474 | 0.9981 | | 0.0224 | 553.38 | 73600 | 3.3028 | 0.9981 | | 0.0282 | 554.89 | 73800 | 3.5360 | 0.9994 | | 0.0282 | 556.39 | 74000 | 3.3730 | 0.9981 | | 0.0278 | 557.89 | 74200 | 3.2750 | 1.0 | | 0.0198 | 559.4 | 74400 | 3.0983 | 1.0025 | | 0.0229 | 560.9 | 74600 | 3.2628 | 1.0006 | | 0.0234 | 562.41 | 74800 | 2.9351 | 0.9987 | | 0.0255 | 563.91 | 75000 | 2.9952 | 0.9962 | | 0.0267 | 565.41 | 75200 | 3.1814 | 0.9969 | | 0.0217 | 566.92 | 75400 | 3.1355 | 1.0006 | | 0.0236 | 568.42 | 75600 | 3.5030 | 1.0019 | | 0.0249 | 569.92 | 75800 | 2.8262 | 1.0006 | | 0.0192 | 571.43 | 76000 | 3.0427 | 1.0006 | | 0.0194 | 572.93 | 76200 | 3.0055 | 0.9981 | | 0.0257 | 574.44 | 76400 | 3.2506 | 0.9987 | | 0.0214 | 575.94 | 76600 | 3.2980 | 0.9981 | | 0.0314 | 577.44 | 76800 | 3.4304 | 0.9981 | | 0.0186 | 578.95 | 77000 | 3.2306 | 0.9987 | | 0.0219 | 580.45 | 77200 | 3.4410 | 0.9994 | | 0.0244 | 581.95 | 77400 | 3.3982 | 0.9994 | | 0.0232 | 583.46 | 77600 | 3.0487 | 0.9962 | | 0.026 | 584.96 | 77800 | 2.9061 | 1.0 | | 0.0206 | 586.47 | 78000 | 2.8331 | 1.0006 | | 0.0202 | 587.97 | 78200 | 2.8493 | 0.9956 | | 0.0251 | 589.47 | 78400 | 3.0203 | 0.9956 | | 0.0231 | 590.98 | 78600 | 3.0142 | 0.9969 | | 0.0183 | 592.48 | 78800 | 3.1480 | 0.9969 | | 0.022 | 593.98 | 79000 | 3.0777 | 0.9975 | | 0.0225 | 595.49 | 79200 | 3.3248 | 0.9975 | | 0.0186 | 596.99 | 79400 | 3.3309 | 0.9994 | | 0.0184 | 598.5 | 79600 | 3.4888 | 0.9981 | | 0.0181 | 600.0 | 79800 | 3.2628 | 0.9962 | | 0.0158 | 601.5 | 80000 | 3.4862 | 0.9975 | | 0.0197 | 603.01 | 80200 | 3.2335 | 0.9962 | | 0.0259 | 604.51 | 80400 | 3.1643 | 0.9987 | | 0.0218 | 606.02 | 80600 | 3.6256 | 0.9969 | | 0.0196 | 607.52 | 80800 | 3.3183 | 1.0 | | 0.0127 | 609.02 | 81000 | 3.7223 | 0.9987 | | 0.0182 | 610.53 | 81200 | 3.2768 | 0.9994 | | 0.0234 | 612.03 | 81400 | 3.3749 | 1.0 | | 0.0195 | 613.53 | 81600 | 3.2097 | 0.9987 | | 0.0259 | 615.04 | 81800 | 3.2090 | 0.9987 | | 0.0217 | 616.54 | 82000 | 3.3893 | 0.9981 | | 0.0181 | 618.05 | 82200 | 3.2223 | 0.9994 | | 0.0155 | 619.55 | 82400 | 3.1307 | 0.9969 | | 0.0192 | 621.05 | 82600 | 3.0695 | 0.9975 | | 0.0155 | 622.56 | 82800 | 3.3623 | 0.9975 | | 0.0266 | 624.06 | 83000 | 3.0329 | 0.9937 | | 0.017 | 625.56 | 83200 | 2.8108 | 0.9956 | | 0.0224 | 627.07 | 83400 | 3.2747 | 0.9981 | | 0.0202 | 628.57 | 83600 | 3.1392 | 0.9981 | | 0.0157 | 630.08 | 83800 | 2.9493 | 0.9975 | | 0.0187 | 631.58 | 84000 | 2.9518 | 0.9969 | | 0.0234 | 633.08 | 84200 | 3.3938 | 0.9981 | | 0.0205 | 634.59 | 84400 | 2.9594 | 0.9937 | | 0.0161 | 636.09 | 84600 | 2.7611 | 0.9944 | | 0.0187 | 637.59 | 84800 | 2.8704 | 0.9969 | | 0.0285 | 639.1 | 85000 | 3.1030 | 0.9987 | | 0.0163 | 640.6 | 85200 | 3.2914 | 0.9975 | | 0.0216 | 642.11 | 85400 | 2.9154 | 0.9969 | | 0.0233 | 643.61 | 85600 | 2.7749 | 0.9975 | | 0.0218 | 645.11 | 85800 | 2.8473 | 1.0 | | 0.0196 | 646.62 | 86000 | 2.5928 | 1.0038 | | 0.0158 | 648.12 | 86200 | 2.8972 | 0.9962 | | 0.0156 | 649.62 | 86400 | 2.9890 | 0.9981 | | 0.0131 | 651.13 | 86600 | 2.7676 | 0.9987 | | 0.0206 | 652.63 | 86800 | 2.8754 | 0.9944 | | 0.0197 | 654.14 | 87000 | 3.0768 | 0.9962 | | 0.0139 | 655.64 | 87200 | 2.6567 | 0.9975 | | 0.0139 | 657.14 | 87400 | 3.1492 | 0.9987 | | 0.0226 | 658.65 | 87600 | 2.7989 | 0.9975 | | 0.0182 | 660.15 | 87800 | 3.0076 | 1.0013 | | 0.0164 | 661.65 | 88000 | 2.9625 | 0.9975 | | 0.0221 | 663.16 | 88200 | 2.9768 | 0.9987 | | 0.0144 | 664.66 | 88400 | 3.0221 | 0.9962 | | 0.0178 | 666.17 | 88600 | 2.9881 | 0.9981 | | 0.0214 | 667.67 | 88800 | 3.3127 | 0.9994 | | 0.0193 | 669.17 | 89000 | 3.0776 | 0.9969 | | 0.0211 | 670.68 | 89200 | 2.8097 | 0.9975 | | 0.0223 | 672.18 | 89400 | 3.1911 | 0.9975 | | 0.0222 | 673.68 | 89600 | 3.0041 | 0.9969 | | 0.0209 | 675.19 | 89800 | 2.9853 | 0.9975 | | 0.0116 | 676.69 | 90000 | 2.9112 | 0.9994 | | 0.0159 | 678.2 | 90200 | 2.8274 | 0.9969 | | 0.0185 | 679.7 | 90400 | 2.7524 | 0.9975 | | 0.0123 | 681.2 | 90600 | 2.9673 | 0.9981 | | 0.0152 | 682.71 | 90800 | 3.0797 | 1.0 | | 0.0117 | 684.21 | 91000 | 3.0703 | 0.9994 | | 0.0154 | 685.71 | 91200 | 2.7031 | 0.9987 | | 0.0148 | 687.22 | 91400 | 2.9449 | 0.9994 | | 0.0196 | 688.72 | 91600 | 2.7991 | 0.9981 | | 0.0168 | 690.23 | 91800 | 2.8938 | 0.9969 | | 0.0155 | 691.73 | 92000 | 2.9104 | 0.9975 | | 0.0167 | 693.23 | 92200 | 2.7905 | 0.9975 | | 0.0175 | 694.74 | 92400 | 3.0061 | 0.9962 | | 0.0134 | 696.24 | 92600 | 3.1880 | 0.9975 | | 0.0145 | 697.74 | 92800 | 3.1567 | 0.9975 | | 0.0191 | 699.25 | 93000 | 3.2099 | 0.9981 | | 0.0192 | 700.75 | 93200 | 3.0210 | 0.9962 | | 0.0143 | 702.26 | 93400 | 3.0640 | 0.9962 | | 0.0145 | 703.76 | 93600 | 2.9882 | 0.9956 | | 0.0151 | 705.26 | 93800 | 2.9178 | 0.9969 | | 0.0192 | 706.77 | 94000 | 2.9631 | 0.9962 | | 0.016 | 708.27 | 94200 | 2.8724 | 0.9950 | | 0.0185 | 709.77 | 94400 | 2.8253 | 1.0013 | | 0.0186 | 711.28 | 94600 | 2.8386 | 0.9950 | | 0.015 | 712.78 | 94800 | 2.8134 | 0.9987 | | 0.0137 | 714.29 | 95000 | 3.1884 | 0.9969 | | 0.0168 | 715.79 | 95200 | 2.9308 | 0.9969 | | 0.0092 | 717.29 | 95400 | 3.4363 | 0.9981 | | 0.0167 | 718.8 | 95600 | 3.2090 | 0.9981 | | 0.0095 | 720.3 | 95800 | 3.1477 | 0.9981 | | 0.0166 | 721.8 | 96000 | 2.9676 | 0.9981 | | 0.0162 | 723.31 | 96200 | 3.0809 | 0.9969 | | 0.0214 | 724.81 | 96400 | 3.3432 | 0.9987 | | 0.0153 | 726.32 | 96600 | 3.0991 | 0.9981 | | 0.0126 | 727.82 | 96800 | 3.0080 | 0.9975 | | 0.009 | 729.32 | 97000 | 2.7920 | 0.9981 | | 0.0194 | 730.83 | 97200 | 2.9781 | 0.9950 | | 0.0159 | 732.33 | 97400 | 3.0364 | 0.9969 | | 0.0175 | 733.83 | 97600 | 2.8637 | 0.9975 | | 0.0131 | 735.34 | 97800 | 3.0862 | 0.9956 | | 0.0222 | 736.84 | 98000 | 2.7875 | 0.9987 | | 0.0107 | 738.35 | 98200 | 2.9837 | 0.9962 | | 0.0171 | 739.85 | 98400 | 2.9214 | 0.9981 | | 0.0162 | 741.35 | 98600 | 2.9194 | 0.9956 | | 0.0133 | 742.86 | 98800 | 2.7002 | 1.0069 | | 0.0201 | 744.36 | 99000 | 2.9725 | 0.9962 | | 0.0137 | 745.86 | 99200 | 2.8473 | 0.9975 | | 0.0081 | 747.37 | 99400 | 2.9228 | 0.9981 | | 0.0155 | 748.87 | 99600 | 2.7624 | 0.9981 | | 0.0127 | 750.38 | 99800 | 2.8617 | 1.0019 | | 0.0158 | 751.88 | 100000 | 2.6715 | 1.0044 | | 0.0146 | 753.38 | 100200 | 2.7292 | 1.0019 | | 0.0136 | 754.89 | 100400 | 2.7341 | 0.9987 | | 0.0177 | 756.39 | 100600 | 2.8756 | 1.0 | | 0.0166 | 757.89 | 100800 | 2.7004 | 0.9981 | | 0.0125 | 759.4 | 101000 | 2.6595 | 1.0013 | | 0.012 | 760.9 | 101200 | 2.9655 | 1.0031 | | 0.0075 | 762.41 | 101400 | 2.8493 | 0.9969 | | 0.0161 | 763.91 | 101600 | 3.0451 | 0.9931 | | 0.0159 | 765.41 | 101800 | 2.8029 | 0.9956 | | 0.0179 | 766.92 | 102000 | 2.7643 | 0.9975 | | 0.0123 | 768.42 | 102200 | 2.7163 | 0.9962 | | 0.0131 | 769.92 | 102400 | 2.7235 | 1.0 | | 0.0134 | 771.43 | 102600 | 2.7199 | 0.9944 | | 0.0148 | 772.93 | 102800 | 3.0776 | 0.9962 | | 0.0132 | 774.44 | 103000 | 2.8314 | 0.9987 | | 0.0104 | 775.94 | 103200 | 2.8094 | 0.9969 | | 0.0166 | 777.44 | 103400 | 2.8420 | 0.9956 | | 0.0104 | 778.95 | 103600 | 2.7902 | 0.9944 | | 0.0065 | 780.45 | 103800 | 3.0951 | 0.9962 | | 0.0138 | 781.95 | 104000 | 2.9704 | 0.9956 | | 0.0113 | 783.46 | 104200 | 2.7171 | 0.9994 | | 0.0111 | 784.96 | 104400 | 3.2024 | 0.9975 | | 0.0123 | 786.47 | 104600 | 3.1505 | 0.9956 | | 0.0111 | 787.97 | 104800 | 3.1629 | 0.9969 | | 0.0105 | 789.47 | 105000 | 3.4622 | 0.9975 | | 0.0083 | 790.98 | 105200 | 3.0705 | 0.9987 | | 0.0123 | 792.48 | 105400 | 3.1194 | 1.0 | | 0.0156 | 793.98 | 105600 | 2.9915 | 0.9969 | | 0.0171 | 795.49 | 105800 | 2.9393 | 0.9969 | | 0.0144 | 796.99 | 106000 | 3.1108 | 0.9981 | | 0.0126 | 798.5 | 106200 | 3.1683 | 0.9994 | | 0.0101 | 800.0 | 106400 | 2.8538 | 1.0019 | | 0.0166 | 801.5 | 106600 | 2.8343 | 0.9987 | | 0.014 | 803.01 | 106800 | 3.2088 | 0.9969 | | 0.0121 | 804.51 | 107000 | 2.9219 | 0.9987 | | 0.012 | 806.02 | 107200 | 3.1733 | 0.9994 | | 0.0116 | 807.52 | 107400 | 3.1237 | 1.0 | | 0.0088 | 809.02 | 107600 | 2.9925 | 1.0 | | 0.0119 | 810.53 | 107800 | 2.8498 | 1.0019 | | 0.0128 | 812.03 | 108000 | 2.7667 | 0.9950 | | 0.0099 | 813.53 | 108200 | 2.8768 | 0.9975 | | 0.0135 | 815.04 | 108400 | 3.0824 | 0.9994 | | 0.01 | 816.54 | 108600 | 3.0932 | 1.0006 | | 0.0106 | 818.05 | 108800 | 3.1329 | 0.9975 | | 0.0127 | 819.55 | 109000 | 3.0865 | 0.9962 | | 0.01 | 821.05 | 109200 | 2.8887 | 0.9975 | | 0.0156 | 822.56 | 109400 | 3.1740 | 0.9962 | | 0.0131 | 824.06 | 109600 | 3.2385 | 0.9981 | | 0.0081 | 825.56 | 109800 | 3.3594 | 0.9981 | | 0.0138 | 827.07 | 110000 | 3.4093 | 0.9981 | | 0.0103 | 828.57 | 110200 | 3.2142 | 0.9987 | | 0.009 | 830.08 | 110400 | 3.1570 | 0.9981 | | 0.0065 | 831.58 | 110600 | 3.0934 | 0.9987 | | 0.0101 | 833.08 | 110800 | 2.7369 | 0.9975 | | 0.0084 | 834.59 | 111000 | 2.9523 | 0.9994 | | 0.0123 | 836.09 | 111200 | 2.9521 | 0.9987 | | 0.0061 | 837.59 | 111400 | 2.9804 | 0.9962 | | 0.0098 | 839.1 | 111600 | 3.0332 | 0.9969 | | 0.0086 | 840.6 | 111800 | 2.9643 | 0.9956 | | 0.008 | 842.11 | 112000 | 2.9080 | 0.9956 | | 0.0074 | 843.61 | 112200 | 2.9878 | 0.9962 | | 0.0125 | 845.11 | 112400 | 3.1683 | 0.9956 | | 0.0112 | 846.62 | 112600 | 3.1810 | 1.0019 | | 0.0093 | 848.12 | 112800 | 3.1701 | 0.9994 | | 0.0133 | 849.62 | 113000 | 3.1736 | 1.0019 | | 0.0093 | 851.13 | 113200 | 3.0622 | 0.9950 | | 0.0085 | 852.63 | 113400 | 3.0084 | 0.9994 | | 0.0119 | 854.14 | 113600 | 3.0510 | 1.0038 | | 0.0132 | 855.64 | 113800 | 3.0081 | 0.9975 | | 0.0068 | 857.14 | 114000 | 3.1519 | 0.9975 | | 0.0103 | 858.65 | 114200 | 3.0568 | 0.9950 | | 0.0116 | 860.15 | 114400 | 2.9386 | 0.9969 | | 0.0098 | 861.65 | 114600 | 2.9005 | 0.9975 | | 0.0102 | 863.16 | 114800 | 2.8415 | 0.9981 | | 0.0061 | 864.66 | 115000 | 3.0904 | 0.9969 | | 0.0111 | 866.17 | 115200 | 2.7751 | 1.0 | | 0.011 | 867.67 | 115400 | 2.9156 | 1.0006 | | 0.0159 | 869.17 | 115600 | 2.7727 | 1.0019 | | 0.0093 | 870.68 | 115800 | 2.9028 | 1.0013 | | 0.009 | 872.18 | 116000 | 2.9202 | 1.0 | | 0.012 | 873.68 | 116200 | 3.0764 | 1.0006 | | 0.0126 | 875.19 | 116400 | 3.0276 | 1.0031 | | 0.0091 | 876.69 | 116600 | 3.1787 | 0.9987 | | 0.0105 | 878.2 | 116800 | 3.0780 | 1.0 | | 0.0088 | 879.7 | 117000 | 3.1704 | 1.0056 | | 0.0075 | 881.2 | 117200 | 2.9814 | 1.0 | | 0.0111 | 882.71 | 117400 | 2.9560 | 0.9987 | | 0.0086 | 884.21 | 117600 | 2.9376 | 0.9994 | | 0.0137 | 885.71 | 117800 | 3.1393 | 0.9981 | | 0.0093 | 887.22 | 118000 | 3.0911 | 0.9994 | | 0.0087 | 888.72 | 118200 | 3.1769 | 0.9987 | | 0.0103 | 890.23 | 118400 | 3.2035 | 0.9969 | | 0.0093 | 891.73 | 118600 | 3.0411 | 0.9981 | | 0.0099 | 893.23 | 118800 | 3.1438 | 0.9975 | | 0.0082 | 894.74 | 119000 | 3.0581 | 0.9975 | | 0.0079 | 896.24 | 119200 | 3.2609 | 0.9981 | | 0.0134 | 897.74 | 119400 | 3.0753 | 0.9975 | | 0.012 | 899.25 | 119600 | 3.0611 | 0.9981 | | 0.0127 | 900.75 | 119800 | 3.0978 | 0.9987 | | 0.0092 | 902.26 | 120000 | 3.0483 | 0.9981 | | 0.0107 | 903.76 | 120200 | 3.1183 | 0.9969 | | 0.0104 | 905.26 | 120400 | 3.0339 | 1.0006 | | 0.0066 | 906.77 | 120600 | 3.0664 | 1.0 | | 0.0136 | 908.27 | 120800 | 3.2616 | 0.9987 | | 0.0075 | 909.77 | 121000 | 3.2563 | 0.9994 | | 0.0096 | 911.28 | 121200 | 3.2538 | 1.0019 | | 0.0094 | 912.78 | 121400 | 3.4125 | 0.9994 | | 0.0059 | 914.29 | 121600 | 3.2795 | 0.9981 | | 0.011 | 915.79 | 121800 | 3.0787 | 0.9981 | | 0.01 | 917.29 | 122000 | 3.0978 | 0.9962 | | 0.0105 | 918.8 | 122200 | 3.3389 | 1.0006 | | 0.0116 | 920.3 | 122400 | 3.3616 | 1.0006 | | 0.0098 | 921.8 | 122600 | 3.3360 | 1.0 | | 0.0091 | 923.31 | 122800 | 3.0145 | 1.0006 | | 0.0134 | 924.81 | 123000 | 3.2691 | 0.9987 | | 0.0124 | 926.32 | 123200 | 2.9881 | 1.0038 | | 0.0093 | 927.82 | 123400 | 3.2461 | 0.9981 | | 0.0077 | 929.32 | 123600 | 3.2159 | 0.9975 | | 0.0088 | 930.83 | 123800 | 2.9951 | 1.0 | | 0.0047 | 932.33 | 124000 | 3.1991 | 1.0 | | 0.0078 | 933.83 | 124200 | 3.1098 | 0.9975 | | 0.0066 | 935.34 | 124400 | 3.0344 | 0.9969 | | 0.0108 | 936.84 | 124600 | 3.1163 | 0.9981 | | 0.0086 | 938.35 | 124800 | 3.0668 | 0.9981 | | 0.0071 | 939.85 | 125000 | 2.9860 | 0.9981 | | 0.0096 | 941.35 | 125200 | 3.0639 | 0.9981 | | 0.0066 | 942.86 | 125400 | 3.0273 | 0.9987 | | 0.0071 | 944.36 | 125600 | 2.9351 | 0.9981 | | 0.0084 | 945.86 | 125800 | 3.2054 | 0.9981 | | 0.0099 | 947.37 | 126000 | 3.0305 | 1.0006 | | 0.0084 | 948.87 | 126200 | 3.0412 | 1.0 | | 0.0085 | 950.38 | 126400 | 2.9697 | 0.9994 | | 0.0072 | 951.88 | 126600 | 2.9454 | 0.9956 | | 0.007 | 953.38 | 126800 | 2.9225 | 0.9981 | | 0.0068 | 954.89 | 127000 | 2.9063 | 0.9962 | | 0.0121 | 956.39 | 127200 | 2.7681 | 0.9975 | | 0.0063 | 957.89 | 127400 | 3.0608 | 0.9975 | | 0.0155 | 959.4 | 127600 | 2.9355 | 0.9994 | | 0.0098 | 960.9 | 127800 | 3.0073 | 0.9987 | | 0.0083 | 962.41 | 128000 | 3.0921 | 0.9987 | | 0.0042 | 963.91 | 128200 | 3.2363 | 0.9981 | | 0.0083 | 965.41 | 128400 | 3.0678 | 0.9987 | | 0.0097 | 966.92 | 128600 | 2.8499 | 1.0019 | | 0.0095 | 968.42 | 128800 | 2.9329 | 1.0038 | | 0.0058 | 969.92 | 129000 | 2.7835 | 1.0038 | | 0.0052 | 971.43 | 129200 | 2.9134 | 1.0019 | | 0.0081 | 972.93 | 129400 | 2.9436 | 1.0031 | | 0.0084 | 974.44 | 129600 | 2.8237 | 0.9994 | | 0.0069 | 975.94 | 129800 | 2.9216 | 0.9994 | | 0.0089 | 977.44 | 130000 | 2.8717 | 0.9994 | | 0.0074 | 978.95 | 130200 | 3.0350 | 0.9994 | | 0.0072 | 980.45 | 130400 | 2.8856 | 1.0013 | | 0.0103 | 981.95 | 130600 | 2.9572 | 1.0 | | 0.01 | 983.46 | 130800 | 2.9522 | 1.0031 | | 0.0071 | 984.96 | 131000 | 2.9940 | 1.0031 | | 0.0042 | 986.47 | 131200 | 3.0343 | 1.0019 | | 0.0048 | 987.97 | 131400 | 2.9638 | 1.0069 | | 0.0038 | 989.47 | 131600 | 2.9672 | 1.0063 | | 0.0043 | 990.98 | 131800 | 2.9115 | 1.0063 | | 0.0129 | 992.48 | 132000 | 2.7689 | 1.0006 | | 0.0059 | 993.98 | 132200 | 2.9322 | 1.0038 | | 0.0098 | 995.49 | 132400 | 2.8063 | 1.0013 | | 0.0083 | 996.99 | 132600 | 3.0642 | 0.9981 | | 0.0055 | 998.5 | 132800 | 2.7167 | 1.0056 | | 0.0073 | 1000.0 | 133000 | 2.7715 | 1.0075 | | 0.0048 | 1001.5 | 133200 | 2.9235 | 1.0019 | | 0.0148 | 1003.01 | 133400 | 3.0357 | 1.0031 | | 0.0059 | 1004.51 | 133600 | 2.9261 | 1.0044 | | 0.008 | 1006.02 | 133800 | 2.9927 | 0.9994 | | 0.0093 | 1007.52 | 134000 | 2.9374 | 1.0019 | | 0.0102 | 1009.02 | 134200 | 2.9598 | 0.9987 | | 0.0045 | 1010.53 | 134400 | 3.0381 | 1.0 | | 0.0058 | 1012.03 | 134600 | 3.0556 | 1.0 | | 0.0089 | 1013.53 | 134800 | 3.1323 | 1.0006 | | 0.0058 | 1015.04 | 135000 | 3.0611 | 1.0013 | | 0.0043 | 1016.54 | 135200 | 3.0465 | 0.9981 | | 0.004 | 1018.05 | 135400 | 3.1712 | 0.9962 | | 0.0056 | 1019.55 | 135600 | 2.8690 | 0.9956 | | 0.0098 | 1021.05 | 135800 | 3.0515 | 0.9987 | | 0.0055 | 1022.56 | 136000 | 3.1504 | 0.9987 | | 0.0054 | 1024.06 | 136200 | 3.0969 | 0.9969 | | 0.005 | 1025.56 | 136400 | 3.0669 | 0.9969 | | 0.0073 | 1027.07 | 136600 | 3.0097 | 0.9975 | | 0.005 | 1028.57 | 136800 | 3.0517 | 0.9994 | | 0.0076 | 1030.08 | 137000 | 3.0154 | 1.0 | | 0.0084 | 1031.58 | 137200 | 2.9610 | 1.0025 | | 0.0044 | 1033.08 | 137400 | 2.9468 | 0.9994 | | 0.0063 | 1034.59 | 137600 | 3.0337 | 1.0006 | | 0.0031 | 1036.09 | 137800 | 3.1654 | 1.0006 | | 0.0066 | 1037.59 | 138000 | 3.0546 | 0.9987 | | 0.0053 | 1039.1 | 138200 | 3.0273 | 1.0006 | | 0.0086 | 1040.6 | 138400 | 3.0024 | 0.9962 | | 0.0061 | 1042.11 | 138600 | 2.9791 | 0.9994 | | 0.0057 | 1043.61 | 138800 | 3.1378 | 0.9994 | | 0.0052 | 1045.11 | 139000 | 3.0045 | 0.9987 | | 0.0094 | 1046.62 | 139200 | 2.9606 | 0.9994 | | 0.0027 | 1048.12 | 139400 | 3.1745 | 0.9981 | | 0.0024 | 1049.62 | 139600 | 3.1448 | 0.9981 | | 0.0045 | 1051.13 | 139800 | 3.0968 | 1.0 | | 0.0048 | 1052.63 | 140000 | 3.1278 | 0.9975 | | 0.0079 | 1054.14 | 140200 | 3.2618 | 0.9969 | | 0.0078 | 1055.64 | 140400 | 3.1333 | 0.9969 | | 0.0077 | 1057.14 | 140600 | 3.0945 | 0.9987 | | 0.0029 | 1058.65 | 140800 | 3.1253 | 0.9969 | | 0.0022 | 1060.15 | 141000 | 3.0270 | 0.9969 | | 0.0054 | 1061.65 | 141200 | 3.1937 | 0.9975 | | 0.0097 | 1063.16 | 141400 | 2.9620 | 0.9987 | | 0.006 | 1064.66 | 141600 | 2.9298 | 0.9994 | | 0.0041 | 1066.17 | 141800 | 2.9171 | 1.0013 | | 0.006 | 1067.67 | 142000 | 3.0870 | 0.9994 | | 0.0059 | 1069.17 | 142200 | 2.9893 | 0.9987 | | 0.0054 | 1070.68 | 142400 | 3.0031 | 0.9975 | | 0.0076 | 1072.18 | 142600 | 2.9808 | 0.9969 | | 0.0091 | 1073.68 | 142800 | 3.0710 | 0.9975 | | 0.0081 | 1075.19 | 143000 | 3.2000 | 0.9956 | | 0.0037 | 1076.69 | 143200 | 3.1321 | 0.9956 | | 0.0042 | 1078.2 | 143400 | 3.0672 | 0.9950 | | 0.0031 | 1079.7 | 143600 | 3.0094 | 0.9969 | | 0.003 | 1081.2 | 143800 | 3.0956 | 0.9956 | | 0.0087 | 1082.71 | 144000 | 3.0842 | 0.9969 | | 0.0039 | 1084.21 | 144200 | 2.9722 | 0.9962 | | 0.0059 | 1085.71 | 144400 | 3.0395 | 0.9962 | | 0.0088 | 1087.22 | 144600 | 2.9895 | 0.9950 | | 0.0056 | 1088.72 | 144800 | 2.9265 | 0.9956 | | 0.0031 | 1090.23 | 145000 | 2.9205 | 0.9969 | | 0.0089 | 1091.73 | 145200 | 2.9462 | 0.9969 | | 0.0037 | 1093.23 | 145400 | 2.9021 | 0.9975 | | 0.0047 | 1094.74 | 145600 | 2.9209 | 0.9987 | | 0.0058 | 1096.24 | 145800 | 2.9616 | 0.9975 | | 0.0068 | 1097.74 | 146000 | 2.9260 | 0.9981 | | 0.0051 | 1099.25 | 146200 | 2.9815 | 0.9969 | | 0.003 | 1100.75 | 146400 | 3.0032 | 0.9969 | | 0.0055 | 1102.26 | 146600 | 2.9972 | 0.9975 | | 0.0064 | 1103.76 | 146800 | 3.0282 | 0.9969 | | 0.0045 | 1105.26 | 147000 | 3.0201 | 0.9969 | | 0.0075 | 1106.77 | 147200 | 3.1340 | 0.9956 | | 0.0052 | 1108.27 | 147400 | 3.1120 | 0.9956 | | 0.0075 | 1109.77 | 147600 | 3.1448 | 0.9969 | | 0.0053 | 1111.28 | 147800 | 3.1039 | 0.9981 | | 0.0061 | 1112.78 | 148000 | 3.2061 | 1.0006 | | 0.0105 | 1114.29 | 148200 | 3.1274 | 0.9994 | | 0.0071 | 1115.79 | 148400 | 3.0449 | 1.0013 | | 0.0042 | 1117.29 | 148600 | 3.1285 | 0.9994 | | 0.0017 | 1118.8 | 148800 | 3.0261 | 0.9975 | | 0.0083 | 1120.3 | 149000 | 3.0042 | 0.9944 | | 0.0026 | 1121.8 | 149200 | 2.9851 | 0.9950 | | 0.003 | 1123.31 | 149400 | 2.9439 | 0.9956 | | 0.005 | 1124.81 | 149600 | 2.9231 | 0.9944 | | 0.0039 | 1126.32 | 149800 | 2.9187 | 0.9944 | | 0.0031 | 1127.82 | 150000 | 2.9250 | 0.9950 | | 0.002 | 1129.32 | 150200 | 2.9452 | 0.9969 | | 0.0057 | 1130.83 | 150400 | 2.9566 | 0.9944 | | 0.0046 | 1132.33 | 150600 | 3.0111 | 0.9975 | | 0.0076 | 1133.83 | 150800 | 2.9526 | 0.9962 | | 0.0048 | 1135.34 | 151000 | 2.9313 | 0.9969 | | 0.0052 | 1136.84 | 151200 | 2.9782 | 0.9975 | | 0.0086 | 1138.35 | 151400 | 3.0282 | 0.9975 | | 0.0018 | 1139.85 | 151600 | 3.0765 | 0.9962 | | 0.0046 | 1141.35 | 151800 | 3.0391 | 0.9969 | | 0.0043 | 1142.86 | 152000 | 3.0364 | 0.9962 | | 0.006 | 1144.36 | 152200 | 3.0741 | 0.9975 | | 0.0059 | 1145.86 | 152400 | 3.0201 | 0.9975 | | 0.0038 | 1147.37 | 152600 | 3.0556 | 0.9969 | | 0.007 | 1148.87 | 152800 | 2.9943 | 0.9962 | | 0.0042 | 1150.38 | 153000 | 2.9979 | 0.9981 | | 0.006 | 1151.88 | 153200 | 3.0304 | 0.9981 | | 0.0063 | 1153.38 | 153400 | 2.9844 | 0.9981 | | 0.0067 | 1154.89 | 153600 | 2.9773 | 0.9994 | | 0.0037 | 1156.39 | 153800 | 2.9956 | 0.9994 | | 0.0029 | 1157.89 | 154000 | 2.9977 | 1.0 | | 0.0056 | 1159.4 | 154200 | 2.9639 | 0.9987 | | 0.0063 | 1160.9 | 154400 | 2.9705 | 0.9994 | | 0.0063 | 1162.41 | 154600 | 3.0182 | 0.9994 | | 0.0045 | 1163.91 | 154800 | 3.0294 | 0.9994 | | 0.0107 | 1165.41 | 155000 | 2.9982 | 1.0 | | 0.0047 | 1166.92 | 155200 | 3.0119 | 1.0 | | 0.0043 | 1168.42 | 155400 | 3.0040 | 1.0006 | | 0.0025 | 1169.92 | 155600 | 3.0062 | 1.0 | | 0.0044 | 1171.43 | 155800 | 2.9886 | 1.0006 | | 0.0032 | 1172.93 | 156000 | 3.0112 | 1.0006 | | 0.0056 | 1174.44 | 156200 | 3.0036 | 1.0006 | | 0.0074 | 1175.94 | 156400 | 3.0185 | 1.0 | | 0.0056 | 1177.44 | 156600 | 3.0197 | 1.0 | | 0.0051 | 1178.95 | 156800 | 3.0232 | 0.9994 | | 0.0034 | 1180.45 | 157000 | 3.0373 | 1.0 | | 0.0038 | 1181.95 | 157200 | 3.0297 | 1.0 | | 0.0058 | 1183.46 | 157400 | 3.0453 | 0.9994 | | 0.0052 | 1184.96 | 157600 | 3.0235 | 1.0006 | | 0.0023 | 1186.47 | 157800 | 3.0338 | 1.0006 | | 0.0035 | 1187.97 | 158000 | 3.0402 | 1.0 | | 0.0035 | 1189.47 | 158200 | 3.0333 | 1.0 | | 0.0042 | 1190.98 | 158400 | 3.0572 | 0.9994 | | 0.0049 | 1192.48 | 158600 | 3.0431 | 1.0 | | 0.0017 | 1193.98 | 158800 | 3.0432 | 1.0 | | 0.0089 | 1195.49 | 159000 | 3.0372 | 1.0 | | 0.0089 | 1196.99 | 159200 | 3.0366 | 1.0006 | | 0.0053 | 1198.5 | 159400 | 3.0345 | 1.0006 | | 0.0054 | 1200.0 | 159600 | 3.0348 | 1.0006 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.6
huggingtweets/kc_lyricbot
3506e514498e9bea6a8f66e7e959e481f57f8278
2022-04-13T21:14:37.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kc_lyricbot
0
null
transformers
36,859
--- language: en thumbnail: http://www.huggingtweets.com/kc_lyricbot/1649884470723/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448393533921112064/q3fCXTyu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">King Crimson Lyric Bot</div> <div style="text-align: center; font-size: 14px;">@kc_lyricbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from King Crimson Lyric Bot. | Data | King Crimson Lyric Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 231 | | Tweets kept | 3019 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yn81k4o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kc_lyricbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15ndpk6d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15ndpk6d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kc_lyricbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kangela/Metaphor-FineTuned-BERT
a8be63c2a11e22afc7a455d43fa556bb9835da39
2022-05-19T17:44:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kangela
null
kangela/Metaphor-FineTuned-BERT
0
null
transformers
36,860
Entry not found
huggan/projected_gan_color_field
8d2331fc46c18dcd0b043f5ef20d049f1c8b61af
2022-04-25T11:16:28.000Z
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation" ]
unconditional-image-generation
false
huggan
null
huggan/projected_gan_color_field
0
null
pytorch
36,861
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_popart
fc975cd4031baccc2d6fb37f8a9fe74438fc5f9d
2022-04-25T11:16:48.000Z
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation" ]
unconditional-image-generation
false
huggan
null
huggan/projected_gan_popart
0
null
pytorch
36,862
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_abstract_expressionism
477e0e9cac181ed43f328397c60f0e94c40109c8
2022-04-25T11:16:38.000Z
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation" ]
unconditional-image-generation
false
huggan
null
huggan/projected_gan_abstract_expressionism
0
null
pytorch
36,863
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
obokkkk/bert-base-multilingual-cased-finetuned-klue
cd6c21273c9d61dcbbcc5882631a6796394f5358
2022-04-14T12:57:25.000Z
[ "pytorch", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
obokkkk
null
obokkkk/bert-base-multilingual-cased-finetuned-klue
0
null
transformers
36,864
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-klue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-klue This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 36 - total_train_batch_size: 288 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6323 | 5.0 | 500 | 1.6799 | | 1.3765 | 10.0 | 1000 | 1.3027 | | 0.8433 | 15.0 | 1500 | 1.2946 | | 0.5224 | 20.0 | 2000 | 1.4197 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
lisdarr/fuck_shanghai_covid19
3dae4b2416f259632eb5d0ce2242b91defc50287
2022-04-14T04:27:57.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
lisdarr
null
lisdarr/fuck_shanghai_covid19
0
0
transformers
36,865
--- license: apache-2.0 ---
pitiwat/argument_wangchanberta
06248b420a1bb15c048dd0a1b1a204d88a678e54
2022-04-14T11:35:08.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
pitiwat
null
pitiwat/argument_wangchanberta
0
null
transformers
36,866
Used for extracting arguments from Thai text.
TalTechNLP/voxlingua107-xls-r-300m-wav2vec
a96a1c36191f8b7a5676fec8228279318b9057a3
2022-04-19T11:08:36.000Z
[ "wav2vec2", "multilingual", "dataset:voxlingua107", "speechbrain", "language-identification", "pytorch", "embeddings", "Language", "Identification", "audio-classification", "wav2vec2.0", "XLS-R-300M", "VoxLingua107", "license:cc-by-4.0" ]
audio-classification
false
TalTechNLP
null
TalTechNLP/voxlingua107-xls-r-300m-wav2vec
0
null
speechbrain
36,867
--- language: multilingual license: cc-by-4.0 tags: - language-identification - speechbrain - wav2vec2 - pytorch - embeddings - Language - Identification - audio-classification - wav2vec2.0 - XLS-R-300M - VoxLingua107 datasets: - voxlingua107 metrics: - Accuracy --- # VoxLingua107 Wav2Vec Spoken Language Identification Model ## Model description This is a spoken language identification model trained on the VoxLingua107 dataset using SpeechBrain. The model is trained using weights of pretrained [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model, Wav2Vec2.0 architecture and negative log likelihood loss. The model can classify a speech utterance according to the language spoken. It covers 107 different languages ( Abkhazian, Afrikaans, Amharic, Arabic, Assamese, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Tibetan, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greek, English, Esperanto, Spanish, Estonian, Basque, Persian, Finnish, Faroese, French, Galician, Guarani, Gujarati, Manx, Hausa, Hawaiian, Hindi, Croatian, Haitian, Hungarian, Armenian, Interlingua, Indonesian, Icelandic, Italian, Hebrew, Japanese, Javanese, Georgian, Kazakh, Central Khmer, Kannada, Korean, Latin, Luxembourgish, Lingala, Lao, Lithuanian, Latvian, Malagasy, Maori, Macedonian, Malayalam, Mongolian, Marathi, Malay, Maltese, Burmese, Nepali, Dutch, Norwegian Nynorsk, Norwegian, Occitan, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sanskrit, Scots, Sindhi, Sinhala, Slovak, Slovenian, Shona, Somali, Albanian, Serbian, Sundanese, Swedish, Swahili, Tamil, Telugu, Tajik, Thai, Turkmen, Tagalog, Turkish, Tatar, Ukrainian, Urdu, Uzbek, Vietnamese, Waray, Yiddish, Yoruba, Mandarin Chinese). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained.interfaces import foreign_class language_id = foreign_class(source="TalTechNLP/voxlingua107-xls-r-300m-wav2vec", pymodule_file="encoder_wav2vec_classifier.py", classname="EncoderWav2vecClassifier", hparams_file='inference_wav2vec.yaml', savedir="tmp") # Download Thai language sample from Omniglot and convert to suitable form wav_file = "https://omniglot.com/soundfiles/udhr/udhr_th.mp3" out_prob, score, index, text_lab = language_id.classify_file(wav_file) print("probability:", out_prob) print("label:", text_lab) print("score:", score) print("index:", index) probability: tensor([[[-2.2849e+01, -2.4349e+01, -2.3686e+01, -2.3632e+01, -2.0218e+01, -2.7241e+01, -2.6715e+01, -2.2301e+01, -2.6076e+01, -2.1716e+01, -1.9923e+01, -2.7303e+01, -2.1211e+01, -2.2998e+01, -2.4436e+01, -2.6437e+01, -2.2686e+01, -2.4244e+01, -2.0416e+01, -2.8329e+01, -1.7788e+01, -2.4829e+01, -2.4186e+01, -2.7036e+01, -2.5993e+01, -1.9677e+01, -2.2746e+01, -2.9192e+01, -2.4941e+01, -2.7135e+01, -2.6653e+01, -2.2791e+01, -2.4599e+01, -2.1066e+01, -2.4855e+01, -2.1874e+01, -2.2914e+01, -2.4174e+01, -2.0902e+01, -2.3197e+01, -2.6108e+01, -2.3941e+01, -2.3103e+01, -2.2363e+01, -2.8969e+01, -2.5302e+01, -2.4862e+01, -2.2392e+01, -2.4042e+01, -2.1221e+01, -2.3656e+01, -2.1286e+01, -1.9209e+01, -2.3254e+01, -2.8291e+01, -5.9105e+00, -2.4525e+01, -2.4937e+01, -2.8349e+01, -2.4420e+01, -2.7439e+01, -2.6329e+01, -2.3317e+01, -2.3842e+01, -2.2114e+01, -2.3637e+01, -1.7217e+01, -1.8342e+01, -2.4332e+01, -2.6090e+01, -2.5452e+01, -2.3854e+01, -2.6082e+01, -2.4992e+01, -2.0618e+01, -2.9351e+01, -2.4153e+01, -2.3156e+01, -2.6893e+01, -2.5314e+01, -2.8374e+01, -2.4009e+01, -2.3604e+01, -2.4063e+01, -2.3538e+01, -2.4953e+01, -2.5607e+01, -2.3960e+01, -2.6471e+01, -2.3348e+01, -2.1681e+01, -2.7610e+01, -2.5023e+01, -2.3585e+01, -2.7146e-03, -2.0338e+01, -1.8737e+01, -2.5158e+01, -2.7491e+01, -2.3623e+01, -2.5718e+01, -2.3465e+01, -1.8305e+01, -2.1064e+01, -2.9880e+01, -2.2809e+01, -1.9856e+01]]]) # The identified language ISO code is given in score[0][0] label: [['th']] score: tensor([[-0.0027]]) index: tensor([[94]]) # The scores in the out_prob tensor can be interpreted as log-likelihoods that # the given utterance belongs to the given language (i.e., the larger the better) # The linear-scale likelihood can be retrieved using the following: print(score.exp()) tensor([0.9973]) # Alternatively, use the utterance embedding extractor: signal, fs = torchaudio.load(wav_file) embeddings = language_id.encode_batch(signal) print(embeddings.shape) torch.Size([2, 1, 2048]) ``` #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on experiments, it performs satisfactory on accented speech - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model. Training recipe will be published soon. ## Evaluation results | Version | Error Rate (%) | |-----------------------|:------:| | 2022-04-14 | 5.6 | Error rate is calculated on VoxLingua107 development dataset. ### BibTeX entry and citation info ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ```
huggingtweets/elonmusk-joebiden
67e9ad350fbad49e9485da977f5b374eb8218c6c
2022-04-14T12:38:39.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-joebiden
0
null
transformers
36,868
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Joe Biden</div> <div style="text-align: center; font-size: 14px;">@elonmusk-joebiden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Joe Biden. | Data | Elon Musk | Joe Biden | | --- | --- | --- | | Tweets downloaded | 200 | 3249 | | Retweets | 15 | 571 | | Short tweets | 60 | 34 | | Tweets kept | 125 | 2644 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ne2s3c4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-joebiden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ka86kb6l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ka86kb6l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-joebiden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggan/pix2pix-night2day
150e94d5ccdecfb61a98bceee3962c981d175d2e
2022-04-15T04:27:40.000Z
[ "pytorch", "dataset:huggan/night2day", "arxiv:1611.07004", "huggan", "gan", "license:mit" ]
null
false
huggan
null
huggan/pix2pix-night2day
0
null
null
36,869
--- tags: - huggan - gan datasets: - huggan/night2day # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description [Pix2pix Model](https://arxiv.org/abs/1611.07004) is a conditional adversarial networks, a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. ## Intended uses & limitations: Used for reconstruction of images from edges #### How to use ```python from torchvision.transforms import Compose, Resize, ToTensor, Normalize from PIL import Image from torchvision.utils import save_image import cv2 from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) model = GeneratorUNet.from_pretrained('huggan/pix2pix-night2day') def predict_fn(img): inp = transform(img).unsqueeze(0) out = model(inp) save_image(out, 'out.png', normalize=True) return 'out.png' predict_fn(img) ``` #### Limitations and bias * Gives unrealistic colors in the image * Gives Blurry image sometimes ## Training data * [night2day](https://huggingface.co/datasets/huggan/night2day) ## Training procedure ``` # clone the repository git clone https://github.com/huggingface/community-events.git pip install . # change directory cd community-events/huggan/pytorch/pix2pix/ # define config accelerate config # launch training with required parameters accelerate launch train.py --checkpoint_interval 5 --dataset huggan/night2day --push_to_hub --model_name pix2pix-night2day --batch_size 128 --n_epochs 50 ``` ## Generated Images Here, * First Image Row: Input Image * Second Image Row: Generated Image * Third Image Row: Target Image ![image1](7000.png) ![image2](6500.png) ### BibTeX entry and citation info ```bibtex @article{pix2pix2017, title={Image-to-Image Translation with Conditional Adversarial Networks}, author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A}, journal={CVPR}, year={2017} } ```
lilitket/20220414-201056
5eff65cdccdf7e273cd2184df8cc210a9800439d
2022-04-14T21:41:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220414-201056
0
null
transformers
36,870
Entry not found
lilitket/20220414-210228
5a8fff0ed7110a8cbb35c22d8bfb5bda86df4e08
2022-04-15T10:40:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220414-210228
0
null
transformers
36,871
Entry not found
huggan/projected_gan_impressionism
87948de0e87971987fa5a0244884d6ae32f03ec4
2022-04-18T21:29:45.000Z
[ "pytorch" ]
null
false
huggan
null
huggan/projected_gan_impressionism
0
null
null
36,872
dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_Hana_Hanak
df86ca72afc7bbd8956769fe14ac105d5dfbb076
2022-04-25T11:17:23.000Z
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation" ]
unconditional-image-generation
false
huggan
null
huggan/projected_gan_Hana_Hanak
0
null
pytorch
36,873
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_color_field_hana
7f952f515856c2dfd298cceeffd4f908c434aa10
2022-04-25T11:16:59.000Z
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation" ]
unconditional-image-generation
false
huggan
null
huggan/projected_gan_color_field_hana
0
null
pytorch
36,874
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_abstract_expressionism_hana
e43eb18a4185a4ea0e084e100c97466528b53fb6
2022-04-25T11:17:09.000Z
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation" ]
unconditional-image-generation
false
huggan
null
huggan/projected_gan_abstract_expressionism_hana
0
null
pytorch
36,875
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
mT0/mt0_11B_t0_train_ckpt_1012500
91af79ba953686b099e9df3c4de7fc109984dcd8
2022-04-16T03:40:02.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mT0
null
mT0/mt0_11B_t0_train_ckpt_1012500
0
null
transformers
36,876
Entry not found
ntoldalagi/nick_asr_LID
061feb844ed87dd44535a706e1a809bc480c6c22
2022-04-21T10:47:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
ntoldalagi
null
ntoldalagi/nick_asr_LID
0
null
transformers
36,877
--- tags: - generated_from_trainer model-index: - name: nick_asr_LID results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nick_asr_LID This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 50.7955 | 1.0 | 458 | 54.9678 | 1.0 | 1.0 | | 29.3958 | 2.0 | 916 | 37.1618 | 0.9928 | 0.9887 | | 27.1413 | 3.0 | 1374 | 32.5933 | 0.9856 | 0.9854 | | 24.0847 | 4.0 | 1832 | 34.2804 | 0.9784 | 0.9447 | | 492.7757 | 5.0 | 2290 | nan | 0.9736 | 0.9428 | | 0.0 | 6.0 | 2748 | nan | 1.0 | 1.0 | | 0.0 | 7.0 | 3206 | nan | 1.0 | 1.0 | | 0.0 | 8.0 | 3664 | nan | 1.0 | 1.0 | | 0.0 | 9.0 | 4122 | nan | 1.0 | 1.0 | | 0.0 | 10.0 | 4580 | nan | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
mimicheng/codeparrot-ds-sample-2ep-14apr
a68a7876fa2c3a8e046a85485293025dff44b9ec
2022-04-15T18:40:03.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mimicheng
null
mimicheng/codeparrot-ds-sample-2ep-14apr
0
null
transformers
36,878
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-2ep-14apr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-2ep-14apr This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.1367 | 0.37 | 1000 | 2.5592 | | 2.2049 | 0.74 | 2000 | 2.0419 | | 1.8302 | 1.11 | 3000 | 1.8245 | | 1.6214 | 1.49 | 4000 | 1.6913 | | 1.5125 | 1.86 | 5000 | 1.6319 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
ntoldalagi/nick_asr_COMBO
9af031677926de377eda1c7af586fc88f26b1794
2022-04-24T01:24:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "model-index" ]
null
false
ntoldalagi
null
ntoldalagi/nick_asr_COMBO
0
null
transformers
36,879
--- tags: - generated_from_trainer model-index: - name: nick_asr_COMBO results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nick_asr_COMBO This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4313 - Wer: 0.6723 - Cer: 0.2408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0857 | 1.0 | 687 | 1.3883 | 0.7082 | 0.2576 | | 0.0627 | 2.0 | 1374 | 1.4099 | 0.7076 | 0.2561 | | 0.0697 | 3.0 | 2061 | 1.3864 | 0.6906 | 0.2486 | | 0.0575 | 4.0 | 2748 | 1.4356 | 0.6906 | 0.2455 | | 0.0552 | 5.0 | 3435 | 1.4061 | 0.6778 | 0.2440 | | 0.0631 | 6.0 | 4122 | 1.4541 | 0.6839 | 0.2444 | | 0.0418 | 7.0 | 4809 | 1.4258 | 0.6930 | 0.2465 | | 0.0407 | 8.0 | 5496 | 1.4193 | 0.6809 | 0.2451 | | 0.0487 | 9.0 | 6183 | 1.4261 | 0.6778 | 0.2424 | | 0.0371 | 10.0 | 6870 | 1.4313 | 0.6723 | 0.2408 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Cristianoo/nezha-large-zh
3dd8e95e7311ad9b8cbdb83f4ea04de1f63aa9c2
2022-04-15T07:22:08.000Z
[ "pytorch" ]
null
false
Cristianoo
null
Cristianoo/nezha-large-zh
0
null
null
36,880
Entry not found
tau/false_large_t5_single_mask_5_1024_0.3_epoch1
9287fecd54a3f903ebe1c89ff33d20a10dde3b13
2022-04-15T07:47:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_t5_single_mask_5_1024_0.3_epoch1
0
null
transformers
36,881
Entry not found
tau/false_large_random_paraNone_sentNone_span0_multi_masks_5_1024_0.3_epoch1
48b4581e39f8d6672827e3c54a0a70cbea16b1fa
2022-04-15T08:21:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_random_paraNone_sentNone_span0_multi_masks_5_1024_0.3_epoch1
0
null
transformers
36,882
Entry not found
masakhane/afrimt5_fr_ewe_news
cc8f256e3e6ca0aadc5f756993888350e6d9734c
2022-04-15T09:01:20.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_fr_ewe_news
0
null
transformers
36,883
--- license: afl-3.0 ---
masakhane/afrimt5_ewe_fr_news
e684c873016b389e702c7eb6649111e74bd7f5a3
2022-04-15T09:01:24.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_ewe_fr_news
0
null
transformers
36,884
--- license: afl-3.0 ---
masakhane/afrimbart_fr_ewe_news
bd4f6a98462ff632ffe131c86239ebff041ce6aa
2022-04-15T09:01:37.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_fr_ewe_news
0
null
transformers
36,885
--- license: afl-3.0 ---
masakhane/afribyt5_ewe_fr_news
b4cb039988fab88d399b322c0c9175001ea4af76
2022-04-15T10:06:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_ewe_fr_news
0
null
transformers
36,886
--- license: afl-3.0 ---
masakhane/afribyt5_fr_ewe_news
b156c367f02e69be1ecf61df61cca4d3564d622c
2022-04-15T10:06:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_fr_ewe_news
0
null
transformers
36,887
--- license: afl-3.0 ---
masakhane/byt5_fr_ewe_news
0fa6efaa879d2a909e5f850a7335ee435877f15d
2022-04-15T10:06:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_fr_ewe_news
0
null
transformers
36,888
--- license: afl-3.0 ---
masakhane/byt5_ewe_fr_news
e9bb988159362cdcab353a392a4177d52a98c611
2022-04-15T10:06:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_ewe_fr_news
0
null
transformers
36,889
--- license: afl-3.0 ---
masakhane/mt5_fr_ewe_news
666d3974bddc414c547a345fbae0f768520fa35c
2022-04-15T11:19:46.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_fr_ewe_news
0
null
transformers
36,890
--- license: afl-3.0 ---
masakhane/mt5_ewe_fr_news
1996364930ac66520871602c9640fb8ddfe21f8e
2022-04-15T11:19:38.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_ewe_fr_news
0
null
transformers
36,891
--- license: afl-3.0 ---
masakhane/mbart50_fr_ewe_news
6e559e03c4f762b5189b77c1c99847ec4c91a622
2022-04-15T11:19:26.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_fr_ewe_news
0
null
transformers
36,892
--- license: afl-3.0 ---
masakhane/mbart50_ewe_fr_news
535139d1b9482217748159aeb1242b58d018e976
2022-04-15T11:19:33.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_ewe_fr_news
0
null
transformers
36,893
--- license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_news
404bb64c3207a0a5377c1a08c484180aa94e10ab
2022-04-15T13:28:00.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ewe_fr_news
0
null
transformers
36,894
--- license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel_news
cbaeff3d677296bad068633176cabfba44c61a80
2022-04-15T13:28:09.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ewe_fr_rel_news
0
null
transformers
36,895
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_rel_news_ft
43c7d60c1276258d5184f899d5dd6f5bbb5d251a
2022-04-15T16:28:07.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_ewe_rel_news_ft
0
null
transformers
36,896
--- license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel_news_ft
25080abbe934676a34fe86a0efd01408ca6c53ec
2022-04-15T16:27:42.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ewe_fr_rel_news_ft
0
null
transformers
36,897
--- license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel_ft
a08335a51e2e84fa37eae59410fd80d31a27bbf8
2022-04-15T16:28:00.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ewe_fr_rel_ft
0
null
transformers
36,898
--- license: afl-3.0 ---
masakhane/m2m100_418M_ewe_fr_rel
36fc61609692fa8fd4a60502a12fdb7d8acfad90
2022-04-15T17:39:03.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ewe_fr_rel
0
null
transformers
36,899
--- license: afl-3.0 ---