modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ydl233/t5_small_model
6aa550cd537ea06366ddabc0baa95e3c8d5c3cfc
2021-12-03T04:47:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ydl233
null
ydl233/t5_small_model
0
null
transformers
36,300
Entry not found
ying-tina/temp
d2a1b707767ccdf35d16c911c07009a574cc1eb0
2022-01-22T03:43:36.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ying-tina
null
ying-tina/temp
0
null
transformers
36,301
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: temp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4645 - Wer: 0.3527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4324 | 0.4 | 50 | 0.5800 | 0.4458 | | 0.4027 | 0.8 | 100 | 0.5374 | 0.4109 | | 0.3163 | 1.2 | 150 | 0.5285 | 0.3881 | | 0.3064 | 1.6 | 200 | 0.5161 | 0.3815 | | 0.3235 | 2.0 | 250 | 0.4645 | 0.3527 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ying-tina/wav2vec2-base-timit-demo-colab-32-epochs30
9913ce3470d5619481f2b662558f65dbea94ff4b
2022-01-09T09:21:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ying-tina
null
ying-tina/wav2vec2-base-timit-demo-colab-32-epochs30
0
null
transformers
36,302
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-32-epochs30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-32-epochs30 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4615 - Wer: 0.3434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5243 | 4.0 | 500 | 1.4532 | 0.9540 | | 0.6178 | 8.0 | 1000 | 0.5490 | 0.4627 | | 0.223 | 12.0 | 1500 | 0.4513 | 0.3881 | | 0.1299 | 16.0 | 2000 | 0.4573 | 0.3698 | | 0.0875 | 20.0 | 2500 | 0.4950 | 0.3637 | | 0.0613 | 24.0 | 3000 | 0.4327 | 0.3479 | | 0.0478 | 28.0 | 3500 | 0.4615 | 0.3434 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ying-tina/wav2vec2-base-timit-demo-colab-32-epochs50-earlystop
cb6080ea36f69319bfbd2aecfe537e1cc29ae49d
2022-01-09T12:13:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ying-tina
null
ying-tina/wav2vec2-base-timit-demo-colab-32-epochs50-earlystop
0
null
transformers
36,303
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-32-epochs50-earlystop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-32-epochs50-earlystop This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5208 - Wer: 0.3561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4294 | 4.0 | 500 | 1.3397 | 0.8966 | | 0.5848 | 8.0 | 1000 | 0.4931 | 0.4585 | | 0.2323 | 12.0 | 1500 | 0.4781 | 0.4008 | | 0.14 | 16.0 | 2000 | 0.4294 | 0.3806 | | 0.1026 | 20.0 | 2500 | 0.5098 | 0.3663 | | 0.0725 | 24.0 | 3000 | 0.4527 | 0.3568 | | 0.058 | 28.0 | 3500 | 0.5208 | 0.3561 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ying-tina/wav2vec2-base-timit-demo-colab-test
b690d97b77bf02b1c482d314e44602dcb62d696c
2021-12-05T14:55:36.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ying-tina
null
ying-tina/wav2vec2-base-timit-demo-colab-test
0
null
transformers
36,304
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-test This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4283 - Wer: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7386 | 4.0 | 500 | 2.2419 | 1.0 | | 0.9366 | 8.0 | 1000 | 0.4789 | 0.4807 | | 0.3118 | 12.0 | 1500 | 0.4197 | 0.3973 | | 0.1784 | 16.0 | 2000 | 0.4216 | 0.3614 | | 0.1297 | 20.0 | 2500 | 0.4298 | 0.3507 | | 0.1091 | 24.0 | 3000 | 0.4365 | 0.3437 | | 0.0819 | 28.0 | 3500 | 0.4283 | 0.3356 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ykliu1892/opus-mt-zh-de-tuned-Tatoeba-small
a9a3017a8ba23bda34f6f62279377bee17542ef5
2022-01-02T04:09:53.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ykliu1892
null
ykliu1892/opus-mt-zh-de-tuned-Tatoeba-small
0
null
transformers
36,305
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-zh-de-tuned-Tatoeba-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-zh-de-tuned-Tatoeba-small This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-de](https://huggingface.co/Helsinki-NLP/opus-mt-zh-de) on a refined dataset of Tatoeba German - Chinese corpus https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/README.md. It achieves the following results on the evaluation set: - Loss: 2.2703 - Bleu: 16.504 - Gen Len: 16.6531 ## Model description More information needed ## Intended uses & limitations Prefix used during fine-tuning: "将中文翻译成德语". This prefix is also recommended in prediction. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 2.7229 | 0.24 | 16000 | 2.5605 | 14.1956 | 16.2206 | | 2.5988 | 0.49 | 32000 | 2.4447 | 14.8619 | 16.2726 | | 2.515 | 0.73 | 48000 | 2.3817 | 15.3212 | 16.2823 | | 2.4683 | 0.97 | 64000 | 2.3367 | 15.9043 | 16.7138 | | 2.3873 | 1.22 | 80000 | 2.3115 | 16.1037 | 16.6369 | | 2.3792 | 1.46 | 96000 | 2.2919 | 16.2957 | 16.6304 | | 2.3626 | 1.7 | 112000 | 2.2790 | 16.2995 | 16.6235 | | 2.3353 | 1.95 | 128000 | 2.2703 | 16.504 | 16.6531 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ykliu1892/translation-en-pt-t5-finetuned-Duolingo-Subtitles-finetuned-Duolingo-Subtitles
56b97d94a094e8128c72c5abe93264ce2966dfb2
2021-11-30T13:22:24.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ykliu1892
null
ykliu1892/translation-en-pt-t5-finetuned-Duolingo-Subtitles-finetuned-Duolingo-Subtitles
0
null
transformers
36,306
--- tags: - generated_from_trainer model-index: - name: translation-en-pt-t5-finetuned-Duolingo-Subtitles-finetuned-Duolingo-Subtitles results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation-en-pt-t5-finetuned-Duolingo-Subtitles-finetuned-Duolingo-Subtitles This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ykliu1892/translation-en-pt-t5-finetuned-Duolingo-Subtitles
e07a2cb8d52d60da480e037770f9a4290fe3f653
2021-12-13T17:37:09.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ykliu1892
null
ykliu1892/translation-en-pt-t5-finetuned-Duolingo-Subtitles
0
1
transformers
36,307
--- tags: - generated_from_trainer model-index: - name: translation-en-pt-t5-finetuned-Duolingo-Subtitles results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation-en-pt-t5-finetuned-Duolingo-Subtitles This model is a fine-tuned version of [ykliu1892/translation-en-pt-t5-finetuned-Duolingo-Subtitles](https://huggingface.co/ykliu1892/translation-en-pt-t5-finetuned-Duolingo-Subtitles) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0932 - eval_bleu: 28.4269 - eval_gen_len: 8.816 - eval_runtime: 1404.5946 - eval_samples_per_second: 106.792 - eval_steps_per_second: 3.338 - epoch: 0.52 - step: 28000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ykliu1892/translation-en-pt-t5-finetuned-Duolingo
a97e566ab8248b8571308e19e176102c4d02a0a6
2021-12-01T04:58:54.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ykliu1892
null
ykliu1892/translation-en-pt-t5-finetuned-Duolingo
0
null
transformers
36,308
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: translation-en-pt-t5-finetuned-Duolingo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation-en-pt-t5-finetuned-Duolingo This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7362 - Bleu: 39.4725 - Gen Len: 9.002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.5429 | 0.24 | 9000 | 0.7461 | 39.4744 | 9.0 | | 0.5302 | 0.48 | 18000 | 0.7431 | 39.7559 | 8.97 | | 0.5309 | 0.72 | 27000 | 0.7388 | 39.6751 | 8.998 | | 0.5336 | 0.96 | 36000 | 0.7362 | 39.4725 | 9.002 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ylh1013/ja_chatbot
8e19ffd505c79f8576618e27b3aeecdeb8997db6
2022-01-23T02:24:03.000Z
[ "pytorch", "gpt2", "text-generation", "finetuned_from", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
ylh1013
null
ylh1013/ja_chatbot
0
null
transformers
36,309
--- language: - finetuned_from license: mit tags: - generated_from_trainer model-index: - name: ja_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ja_chatbot This model is a fine-tuned version of [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Tokenizers 0.10.3
yliu337/t5_mask_cnn_dailymail
70be5e2acf7a0e2b95f3fd7fc20e188a3c19e7f0
2022-06-04T21:38:05.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yliu337
null
yliu337/t5_mask_cnn_dailymail
0
null
transformers
36,310
Entry not found
yliu337/t5_token_nonfilter_bothcontext
41feba322090a7451c4c7ec8e17f80d5717a53a0
2021-09-05T01:20:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yliu337
null
yliu337/t5_token_nonfilter_bothcontext
0
null
transformers
36,311
Entry not found
yliu337/t5_token_nonfilter_bothcontext_padded_ctx
6bcb300a8bf8f6e6378194909af1a5829510eb25
2021-09-15T01:14:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yliu337
null
yliu337/t5_token_nonfilter_bothcontext_padded_ctx
0
null
transformers
36,312
Entry not found
young/BertForFinance
c818d7abf7630585153f24ea946987f818ad1589
2021-03-17T05:13:04.000Z
[ "pytorch", "transformers" ]
null
false
young
null
young/BertForFinance
0
null
transformers
36,313
Entry not found
ytlin/1riatc43
f8c6535e20483763f2fc5d57cf6be48f14dd850b
2020-10-05T21:26:03.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ytlin
null
ytlin/1riatc43
0
null
transformers
36,314
Entry not found
ytlin/2jgyqp5g
e03e6637c42a8e88ac14155e4dd1b3feb94d7b64
2020-10-06T06:54:48.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ytlin
null
ytlin/2jgyqp5g
0
null
transformers
36,315
Entry not found
ytlin/46695u38_3
403eef05120ee96f0812eab7aa46363248aab25f
2021-05-23T13:51:39.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ytlin
null
ytlin/46695u38_3
0
null
transformers
36,316
Entry not found
yusufmorsi/georgebot
5ec19a640a9015980c3c5445f7e611e1df4ecb2c
2021-11-21T21:54:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
yusufmorsi
null
yusufmorsi/georgebot
0
null
transformers
36,317
--- tags: - conversational --- # George Costanza Model
yxchar/tlm-ag-large-scale
e85d8e664ab4dc59a7e288fd9e4fa6a8a983dfb8
2021-11-04T11:08:19.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-ag-large-scale
0
null
transformers
36,318
Entry not found
yxchar/tlm-ag-small-scale
d3aa55a8fe2f1e9c88777b89610eb2b58b4cec0f
2021-11-04T09:45:58.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-ag-small-scale
0
null
transformers
36,319
Entry not found
yxchar/tlm-amazon-large-scale
425213afb8e3cf6d980a4cc95796a650f14ad792
2021-11-04T13:45:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-amazon-large-scale
0
null
transformers
36,320
Entry not found
yxchar/tlm-amazon-small-scale
b5e9e950b40d0eeaf92715252d611f330d3fa921
2021-11-04T13:26:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-amazon-small-scale
0
null
transformers
36,321
Entry not found
yxchar/tlm-chemprot-large-scale
ec524900ada76dd3ce633bffc91d014cd64ca9b9
2021-11-04T14:25:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-chemprot-large-scale
0
null
transformers
36,322
Entry not found
yxchar/tlm-chemprot-small-scale
7f9915f7a0e3123bc99fd0202aa4ec9117dae60f
2021-11-04T14:09:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-chemprot-small-scale
0
null
transformers
36,323
Entry not found
yxchar/tlm-citation_intent-large-scale
63ec60d4b24f09930ec8ba0aceab23ef2666b349
2021-11-04T15:03:41.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-citation_intent-large-scale
0
null
transformers
36,324
Entry not found
yxchar/tlm-citation_intent-medium-scale
6502485b23dbc3f3fae9cd93afd8bbce46654bc6
2021-11-04T14:55:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-citation_intent-medium-scale
0
null
transformers
36,325
Entry not found
yxchar/tlm-citation_intent-small-scale
d3b9059002e08af3dc63ac9cbd72825b31cc5b49
2021-11-04T14:47:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-citation_intent-small-scale
0
null
transformers
36,326
Entry not found
yxchar/tlm-hyp-large-scale
5aed89ef25dc4b1034e4292ff553855d96973ea4
2021-11-04T15:42:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-hyp-large-scale
0
null
transformers
36,327
Entry not found
yxchar/tlm-imdb-medium-scale
87b82975e34b61010160008500b19731f073ef82
2021-11-04T09:43:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-imdb-medium-scale
0
null
transformers
36,328
Entry not found
yxchar/tlm-rct-20k-large-scale
22c465caf13bb019b7f347debae40385ef27b231
2021-11-04T16:02:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-rct-20k-large-scale
0
null
transformers
36,329
Entry not found
yxchar/tlm-rct-20k-medium-scale
baf67c6765879c4c324e56fbf4a5ab0a8f775050
2021-11-04T17:20:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-rct-20k-medium-scale
0
null
transformers
36,330
Entry not found
yysung53/dpr
d33c2c0b18ed241147daa8561f8f80f84d244fc9
2021-10-30T22:18:04.000Z
[ "pytorch", "text_similarity", "transformers" ]
null
false
yysung53
null
yysung53/dpr
0
null
transformers
36,331
Entry not found
yzhou992/NetMind-20211103-448
a78f2d6e0bacac3cc17a466744e2fce9b45282c9
2021-11-03T05:47:20.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yzhou992
null
yzhou992/NetMind-20211103-448
0
null
transformers
36,332
Entry not found
yzhou992/test_model2
66febcd1d6734a22b868915c1d0bfce3c08c7d64
2021-11-03T05:50:54.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yzhou992
null
yzhou992/test_model2
0
null
transformers
36,333
Entry not found
zachzhang/t5_hcm
1947584a85313c86463339539c45717a706b7470
2021-10-08T22:50:26.000Z
[ "pytorch" ]
null
false
zachzhang
null
zachzhang/t5_hcm
0
null
null
36,334
Entry not found
zari/my-awesome-model
c019cff5a02bc0a02780d74e0052a2d36ce17226
2021-06-22T21:29:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
zari
null
zari/my-awesome-model
0
null
transformers
36,335
--- license: apache-2.0 datasets: - null model_index: - name: my-awesome-model results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 91 | 3.4934 | | No log | 2.0 | 182 | 3.4451 | | No log | 3.0 | 273 | 3.4356 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
zbmain/test
1ba8a708cacf37af6ac60a21a87986afe61bfa7f
2020-11-24T12:12:29.000Z
[ "pytorch" ]
null
false
zbmain
null
zbmain/test
0
null
null
36,336
123
zen-satvik/BotGPT-medium-HP
1a335d2e651151a6aebe745afac08dbf994adebc
2021-08-28T07:09:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
zen-satvik
null
zen-satvik/BotGPT-medium-HP
0
null
transformers
36,337
--- tags: conversational --- # Harry Potter Bot GPT Model
zeping/codeparrot
a094184fde7e3c78122fc8e16e31bd28436ec3fd
2022-01-19T10:03:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
zeping
null
zeping/codeparrot
0
null
transformers
36,338
Entry not found
zgotter/gpt2-test
60a92ccd47c1c10a57fbde99442fc8db3cab0d39
2021-10-11T07:13:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
zgotter
null
zgotter/gpt2-test
0
null
transformers
36,339
Entry not found
zhangxy-2019/cu_dstc9_dialoGPT
15b85cd201a34b6c52ac1cb1ed5a126cd84162a2
2021-05-23T14:05:15.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
zhangxy-2019
null
zhangxy-2019/cu_dstc9_dialoGPT
0
null
transformers
36,340
Entry not found
zharry29/intent_fb-th_id
60e747d83d8c2a79a527965b835648eed92300dd
2020-09-16T20:16:29.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_fb-th_id
0
null
transformers
36,341
Entry not found
zharry29/intent_fb-th_wh_id
55e35ceda0abe1a13031ccbe59f7a13a8b92c7fa
2020-09-16T20:17:00.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_fb-th_wh_id
0
null
transformers
36,342
Entry not found
zharry29/intent_snips_id
4cefcb746824eb1b5ddb997878d2308e9a6cf371
2021-05-20T23:47:11.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_snips_id
0
null
transformers
36,343
Entry not found
zhenghuabin/dummy_model
650ecd60a48463ff392cb24c61ba0f2c4d44d628
2021-11-06T09:59:44.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhenghuabin
null
zhenghuabin/dummy_model
0
null
transformers
36,344
Entry not found
zhuqing/bert-base-uncased-exp2-feminist
1f64c99dfb16602f3adbd32e97fe80ffe5d5879f
2021-08-28T13:07:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-exp2-feminist
0
null
transformers
36,345
Entry not found
zhuqing/bert-base-uncased-mumsnet-all-0
eefd92d01121b055c77d4b3c7a2ca22f63d07218
2021-08-08T09:08:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-mumsnet-all-0
0
null
transformers
36,346
Entry not found
zhuqing/bert-base-uncased-mumsnet-all-1
7a531cdfaa4f35f21e9891c3e728b7c745ad576c
2021-08-08T10:06:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-mumsnet-all-1
0
null
transformers
36,347
Entry not found
zhuqing/bert-base-uncased-netmums-feminist-v2
a9936660af357cc407d1046278da8b8b8e2200b8
2021-08-15T11:41:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-netmums-feminist-v2
0
null
transformers
36,348
Entry not found
zhuqing/bert-base-uncased-netmums-parent
5ff1779fe99f13bbd1593e7a929018756f5dbaf0
2021-08-14T07:43:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-netmums-parent
0
null
transformers
36,349
Entry not found
zhuqing/bert-base-uncased-reddit-lib
92db2000a5c86c298d27ee07535a3626dd2c93bb
2021-08-01T16:27:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-reddit-lib
0
null
transformers
36,350
Entry not found
zhuqing/bert-base-uncased-theme2
6a955641db575c9e832a497827b43c8e3361e641
2021-07-17T07:40:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-theme2
0
null
transformers
36,351
Entry not found
zhuqing/comparison-bert-base-uncased-netmums-feminist
ce633f7fa72a837541d078ddd3286c7a370a1552
2021-08-19T19:32:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/comparison-bert-base-uncased-netmums-feminist
0
null
transformers
36,352
Entry not found
zhuqing/comparison-distilbert-base-uncased-netmums-feminist
f39c7ee5bcc20fea038095bdd51d0c155845e04e
2021-08-20T07:21:29.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/comparison-distilbert-base-uncased-netmums-feminist
0
null
transformers
36,353
Entry not found
zhuqing/distilroberta-base-theme2-6000
a53ffa9bb3f4531e1d519a67f321a135f6fffb84
2021-07-31T16:27:51.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/distilroberta-base-theme2-6000
0
null
transformers
36,354
Entry not found
zhuqing/roberta-base-uncased-netmums-all
179ff25e0099f2b454ec31f8cef1657c05e57bda
2021-08-20T09:23:54.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/roberta-base-uncased-netmums-all
0
null
transformers
36,355
Entry not found
zinary/DialoGPT-small-rick-new
f40df2511796a5d7e90e82a990acf856e4a15e4b
2021-09-19T07:26:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
zinary
null
zinary/DialoGPT-small-rick-new
0
null
transformers
36,356
--- tags: - conversational --- #Rick and Morty DialoGPT
zmingshi/roberta_L-12_H-768_A-12
a6f51347b5f5ed7f931c9b00059abc6bfc7f20ef
2021-11-29T06:47:26.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zmingshi
null
zmingshi/roberta_L-12_H-768_A-12
0
null
transformers
36,357
Entry not found
zqf03118/bert_finetuning_test
88544fa69b07e75e6add24bb9c8d08a66b543448
2021-05-20T09:56:44.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zqf03118
null
zqf03118/bert_finetuning_test
0
null
transformers
36,358
Entry not found
zuto37/DialoGPT-small-sadao
0221f7e03c60cb1daa16913449d731be90850c57
2021-09-23T09:07:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
zuto37
null
zuto37/DialoGPT-small-sadao
0
null
transformers
36,359
--- tags: - conversational --- # DialoGPT Model
zyayoung/cv-full-paper
b652f46baea9282cf60cca75dbf27a0413686f29
2021-11-23T06:27:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
zyayoung
null
zyayoung/cv-full-paper
0
1
transformers
36,360
Entry not found
nielsr/enformer-preview-v2
03a454c666702bfdfbf37560bcbd9e4fca9deb9b
2022-02-24T07:09:45.000Z
[ "pytorch" ]
null
false
nielsr
null
nielsr/enformer-preview-v2
0
null
null
36,361
Entry not found
wietsedv/xlm-roberta-base-ft-udpos28-da
2c1c1ec9ac7b42bea7788a3896158d8a7b92d4cb
2022-02-25T09:58:14.000Z
[ "pytorch", "xlm-roberta", "token-classification", "da", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-da
0
null
transformers
36,362
--- language: - da license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-da results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 89.9 - type: accuracy name: Dutch Test accuracy value: 90.0 - type: accuracy name: German Test accuracy value: 88.8 - type: accuracy name: Italian Test accuracy value: 89.4 - type: accuracy name: French Test accuracy value: 89.0 - type: accuracy name: Spanish Test accuracy value: 91.6 - type: accuracy name: Russian Test accuracy value: 90.3 - type: accuracy name: Swedish Test accuracy value: 92.4 - type: accuracy name: Norwegian Test accuracy value: 87.3 - type: accuracy name: Danish Test accuracy value: 98.3 - type: accuracy name: Low Saxon Test accuracy value: 42.2 - type: accuracy name: Akkadian Test accuracy value: 24.0 - type: accuracy name: Armenian Test accuracy value: 89.1 - type: accuracy name: Welsh Test accuracy value: 69.2 - type: accuracy name: Old East Slavic Test accuracy value: 71.8 - type: accuracy name: Albanian Test accuracy value: 79.7 - type: accuracy name: Slovenian Test accuracy value: 78.9 - type: accuracy name: Guajajara Test accuracy value: 19.2 - type: accuracy name: Kurmanji Test accuracy value: 78.1 - type: accuracy name: Turkish Test accuracy value: 78.9 - type: accuracy name: Finnish Test accuracy value: 88.2 - type: accuracy name: Indonesian Test accuracy value: 84.8 - type: accuracy name: Ukrainian Test accuracy value: 88.6 - type: accuracy name: Polish Test accuracy value: 86.2 - type: accuracy name: Portuguese Test accuracy value: 91.0 - type: accuracy name: Kazakh Test accuracy value: 83.9 - type: accuracy name: Latin Test accuracy value: 79.8 - type: accuracy name: Old French Test accuracy value: 51.8 - type: accuracy name: Buryat Test accuracy value: 57.8 - type: accuracy name: Kaapor Test accuracy value: 12.5 - type: accuracy name: Korean Test accuracy value: 65.7 - type: accuracy name: Estonian Test accuracy value: 88.4 - type: accuracy name: Croatian Test accuracy value: 89.8 - type: accuracy name: Gothic Test accuracy value: 12.7 - type: accuracy name: Swiss German Test accuracy value: 44.8 - type: accuracy name: Assyrian Test accuracy value: 15.7 - type: accuracy name: North Sami Test accuracy value: 29.9 - type: accuracy name: Naija Test accuracy value: 38.0 - type: accuracy name: Latvian Test accuracy value: 88.4 - type: accuracy name: Chinese Test accuracy value: 43.2 - type: accuracy name: Tagalog Test accuracy value: 73.1 - type: accuracy name: Bambara Test accuracy value: 25.0 - type: accuracy name: Lithuanian Test accuracy value: 86.4 - type: accuracy name: Galician Test accuracy value: 88.1 - type: accuracy name: Vietnamese Test accuracy value: 65.2 - type: accuracy name: Greek Test accuracy value: 87.1 - type: accuracy name: Catalan Test accuracy value: 89.7 - type: accuracy name: Czech Test accuracy value: 89.0 - type: accuracy name: Erzya Test accuracy value: 40.8 - type: accuracy name: Bhojpuri Test accuracy value: 49.9 - type: accuracy name: Thai Test accuracy value: 59.9 - type: accuracy name: Marathi Test accuracy value: 85.9 - type: accuracy name: Basque Test accuracy value: 77.2 - type: accuracy name: Slovak Test accuracy value: 90.2 - type: accuracy name: Kiche Test accuracy value: 26.0 - type: accuracy name: Yoruba Test accuracy value: 18.1 - type: accuracy name: Warlpiri Test accuracy value: 38.5 - type: accuracy name: Tamil Test accuracy value: 84.0 - type: accuracy name: Maltese Test accuracy value: 17.5 - type: accuracy name: Ancient Greek Test accuracy value: 63.8 - type: accuracy name: Icelandic Test accuracy value: 85.0 - type: accuracy name: Mbya Guarani Test accuracy value: 23.4 - type: accuracy name: Urdu Test accuracy value: 70.1 - type: accuracy name: Romanian Test accuracy value: 85.4 - type: accuracy name: Persian Test accuracy value: 77.9 - type: accuracy name: Apurina Test accuracy value: 26.0 - type: accuracy name: Japanese Test accuracy value: 28.6 - type: accuracy name: Hungarian Test accuracy value: 85.1 - type: accuracy name: Hindi Test accuracy value: 74.6 - type: accuracy name: Classical Chinese Test accuracy value: 28.2 - type: accuracy name: Komi Permyak Test accuracy value: 39.0 - type: accuracy name: Faroese Test accuracy value: 79.3 - type: accuracy name: Sanskrit Test accuracy value: 26.8 - type: accuracy name: Livvi Test accuracy value: 62.8 - type: accuracy name: Arabic Test accuracy value: 80.8 - type: accuracy name: Wolof Test accuracy value: 24.3 - type: accuracy name: Bulgarian Test accuracy value: 91.0 - type: accuracy name: Akuntsu Test accuracy value: 18.5 - type: accuracy name: Makurap Test accuracy value: 10.3 - type: accuracy name: Kangri Test accuracy value: 44.7 - type: accuracy name: Breton Test accuracy value: 66.1 - type: accuracy name: Telugu Test accuracy value: 85.4 - type: accuracy name: Cantonese Test accuracy value: 45.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 43.0 - type: accuracy name: Karelian Test accuracy value: 69.1 - type: accuracy name: Upper Sorbian Test accuracy value: 71.1 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.5 - type: accuracy name: Komi Zyrian Test accuracy value: 33.2 - type: accuracy name: Irish Test accuracy value: 69.1 - type: accuracy name: Nayini Test accuracy value: 39.7 - type: accuracy name: Munduruku Test accuracy value: 11.6 - type: accuracy name: Manx Test accuracy value: 23.9 - type: accuracy name: Skolt Sami Test accuracy value: 27.0 - type: accuracy name: Afrikaans Test accuracy value: 90.0 - type: accuracy name: Old Turkish Test accuracy value: 38.5 - type: accuracy name: Tupinamba Test accuracy value: 24.0 - type: accuracy name: Belarusian Test accuracy value: 91.0 - type: accuracy name: Serbian Test accuracy value: 90.4 - type: accuracy name: Moksha Test accuracy value: 41.2 - type: accuracy name: Western Armenian Test accuracy value: 82.0 - type: accuracy name: Scottish Gaelic Test accuracy value: 60.3 - type: accuracy name: Khunsari Test accuracy value: 41.9 - type: accuracy name: Hebrew Test accuracy value: 94.8 - type: accuracy name: Uyghur Test accuracy value: 76.5 - type: accuracy name: Chukchi Test accuracy value: 33.2 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Danish This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-da") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-da") ```
wietsedv/xlm-roberta-base-ft-udpos28-el
7258c1aac060a6dfc235ddeec1b3e069a3a52461
2022-02-25T09:58:17.000Z
[ "pytorch", "xlm-roberta", "token-classification", "el", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-el
0
null
transformers
36,363
--- language: - el license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-el results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.6 - type: accuracy name: Dutch Test accuracy value: 82.2 - type: accuracy name: German Test accuracy value: 82.6 - type: accuracy name: Italian Test accuracy value: 82.0 - type: accuracy name: French Test accuracy value: 78.7 - type: accuracy name: Spanish Test accuracy value: 82.2 - type: accuracy name: Russian Test accuracy value: 88.4 - type: accuracy name: Swedish Test accuracy value: 87.4 - type: accuracy name: Norwegian Test accuracy value: 82.1 - type: accuracy name: Danish Test accuracy value: 85.9 - type: accuracy name: Low Saxon Test accuracy value: 49.8 - type: accuracy name: Akkadian Test accuracy value: 24.4 - type: accuracy name: Armenian Test accuracy value: 84.0 - type: accuracy name: Welsh Test accuracy value: 68.9 - type: accuracy name: Old East Slavic Test accuracy value: 75.0 - type: accuracy name: Albanian Test accuracy value: 87.7 - type: accuracy name: Slovenian Test accuracy value: 77.2 - type: accuracy name: Guajajara Test accuracy value: 25.8 - type: accuracy name: Kurmanji Test accuracy value: 74.3 - type: accuracy name: Turkish Test accuracy value: 75.3 - type: accuracy name: Finnish Test accuracy value: 83.4 - type: accuracy name: Indonesian Test accuracy value: 75.4 - type: accuracy name: Ukrainian Test accuracy value: 88.6 - type: accuracy name: Polish Test accuracy value: 84.0 - type: accuracy name: Portuguese Test accuracy value: 82.4 - type: accuracy name: Kazakh Test accuracy value: 80.5 - type: accuracy name: Latin Test accuracy value: 77.3 - type: accuracy name: Old French Test accuracy value: 52.5 - type: accuracy name: Buryat Test accuracy value: 56.0 - type: accuracy name: Kaapor Test accuracy value: 11.2 - type: accuracy name: Korean Test accuracy value: 59.9 - type: accuracy name: Estonian Test accuracy value: 83.6 - type: accuracy name: Croatian Test accuracy value: 84.9 - type: accuracy name: Gothic Test accuracy value: 20.2 - type: accuracy name: Swiss German Test accuracy value: 43.6 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 33.5 - type: accuracy name: Naija Test accuracy value: 42.7 - type: accuracy name: Latvian Test accuracy value: 84.9 - type: accuracy name: Chinese Test accuracy value: 42.1 - type: accuracy name: Tagalog Test accuracy value: 66.7 - type: accuracy name: Bambara Test accuracy value: 28.2 - type: accuracy name: Lithuanian Test accuracy value: 85.3 - type: accuracy name: Galician Test accuracy value: 82.1 - type: accuracy name: Vietnamese Test accuracy value: 62.8 - type: accuracy name: Greek Test accuracy value: 98.0 - type: accuracy name: Catalan Test accuracy value: 80.4 - type: accuracy name: Czech Test accuracy value: 85.0 - type: accuracy name: Erzya Test accuracy value: 43.9 - type: accuracy name: Bhojpuri Test accuracy value: 45.0 - type: accuracy name: Thai Test accuracy value: 58.6 - type: accuracy name: Marathi Test accuracy value: 85.3 - type: accuracy name: Basque Test accuracy value: 72.4 - type: accuracy name: Slovak Test accuracy value: 82.8 - type: accuracy name: Kiche Test accuracy value: 36.2 - type: accuracy name: Yoruba Test accuracy value: 28.9 - type: accuracy name: Warlpiri Test accuracy value: 38.9 - type: accuracy name: Tamil Test accuracy value: 83.0 - type: accuracy name: Maltese Test accuracy value: 22.3 - type: accuracy name: Ancient Greek Test accuracy value: 64.2 - type: accuracy name: Icelandic Test accuracy value: 80.7 - type: accuracy name: Mbya Guarani Test accuracy value: 32.4 - type: accuracy name: Urdu Test accuracy value: 53.0 - type: accuracy name: Romanian Test accuracy value: 83.7 - type: accuracy name: Persian Test accuracy value: 74.4 - type: accuracy name: Apurina Test accuracy value: 41.3 - type: accuracy name: Japanese Test accuracy value: 30.0 - type: accuracy name: Hungarian Test accuracy value: 80.2 - type: accuracy name: Hindi Test accuracy value: 60.0 - type: accuracy name: Classical Chinese Test accuracy value: 30.1 - type: accuracy name: Komi Permyak Test accuracy value: 44.2 - type: accuracy name: Faroese Test accuracy value: 72.9 - type: accuracy name: Sanskrit Test accuracy value: 40.4 - type: accuracy name: Livvi Test accuracy value: 65.2 - type: accuracy name: Arabic Test accuracy value: 76.6 - type: accuracy name: Wolof Test accuracy value: 28.0 - type: accuracy name: Bulgarian Test accuracy value: 89.6 - type: accuracy name: Akuntsu Test accuracy value: 26.7 - type: accuracy name: Makurap Test accuracy value: 18.5 - type: accuracy name: Kangri Test accuracy value: 43.1 - type: accuracy name: Breton Test accuracy value: 63.5 - type: accuracy name: Telugu Test accuracy value: 85.3 - type: accuracy name: Cantonese Test accuracy value: 48.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.6 - type: accuracy name: Karelian Test accuracy value: 71.0 - type: accuracy name: Upper Sorbian Test accuracy value: 69.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.2 - type: accuracy name: Komi Zyrian Test accuracy value: 36.5 - type: accuracy name: Irish Test accuracy value: 61.3 - type: accuracy name: Nayini Test accuracy value: 43.6 - type: accuracy name: Munduruku Test accuracy value: 29.4 - type: accuracy name: Manx Test accuracy value: 33.8 - type: accuracy name: Skolt Sami Test accuracy value: 31.5 - type: accuracy name: Afrikaans Test accuracy value: 85.0 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 29.2 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 85.2 - type: accuracy name: Moksha Test accuracy value: 43.8 - type: accuracy name: Western Armenian Test accuracy value: 76.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 54.8 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 88.5 - type: accuracy name: Uyghur Test accuracy value: 75.7 - type: accuracy name: Chukchi Test accuracy value: 34.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Greek This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-el") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-el") ```
wietsedv/xlm-roberta-base-ft-udpos28-et
dfc3d406501190ec0945726c67032a39e87fd0ed
2022-02-25T09:58:22.000Z
[ "pytorch", "xlm-roberta", "token-classification", "et", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-et
0
null
transformers
36,364
--- language: - et license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-et results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.3 - type: accuracy name: Dutch Test accuracy value: 80.9 - type: accuracy name: German Test accuracy value: 80.4 - type: accuracy name: Italian Test accuracy value: 78.0 - type: accuracy name: French Test accuracy value: 75.6 - type: accuracy name: Spanish Test accuracy value: 75.4 - type: accuracy name: Russian Test accuracy value: 88.2 - type: accuracy name: Swedish Test accuracy value: 89.1 - type: accuracy name: Norwegian Test accuracy value: 83.2 - type: accuracy name: Danish Test accuracy value: 87.0 - type: accuracy name: Low Saxon Test accuracy value: 52.2 - type: accuracy name: Akkadian Test accuracy value: 37.9 - type: accuracy name: Armenian Test accuracy value: 87.7 - type: accuracy name: Welsh Test accuracy value: 61.5 - type: accuracy name: Old East Slavic Test accuracy value: 74.6 - type: accuracy name: Albanian Test accuracy value: 74.0 - type: accuracy name: Slovenian Test accuracy value: 77.3 - type: accuracy name: Guajajara Test accuracy value: 30.7 - type: accuracy name: Kurmanji Test accuracy value: 76.7 - type: accuracy name: Turkish Test accuracy value: 79.3 - type: accuracy name: Finnish Test accuracy value: 90.5 - type: accuracy name: Indonesian Test accuracy value: 84.1 - type: accuracy name: Ukrainian Test accuracy value: 86.9 - type: accuracy name: Polish Test accuracy value: 84.4 - type: accuracy name: Portuguese Test accuracy value: 79.6 - type: accuracy name: Kazakh Test accuracy value: 83.0 - type: accuracy name: Latin Test accuracy value: 78.5 - type: accuracy name: Old French Test accuracy value: 50.0 - type: accuracy name: Buryat Test accuracy value: 64.6 - type: accuracy name: Kaapor Test accuracy value: 21.2 - type: accuracy name: Korean Test accuracy value: 62.9 - type: accuracy name: Estonian Test accuracy value: 96.8 - type: accuracy name: Croatian Test accuracy value: 87.0 - type: accuracy name: Gothic Test accuracy value: 24.7 - type: accuracy name: Swiss German Test accuracy value: 40.7 - type: accuracy name: Assyrian Test accuracy value: 20.1 - type: accuracy name: North Sami Test accuracy value: 46.7 - type: accuracy name: Naija Test accuracy value: 41.8 - type: accuracy name: Latvian Test accuracy value: 87.9 - type: accuracy name: Chinese Test accuracy value: 52.1 - type: accuracy name: Tagalog Test accuracy value: 65.9 - type: accuracy name: Bambara Test accuracy value: 27.9 - type: accuracy name: Lithuanian Test accuracy value: 86.0 - type: accuracy name: Galician Test accuracy value: 74.4 - type: accuracy name: Vietnamese Test accuracy value: 63.7 - type: accuracy name: Greek Test accuracy value: 77.4 - type: accuracy name: Catalan Test accuracy value: 73.4 - type: accuracy name: Czech Test accuracy value: 87.4 - type: accuracy name: Erzya Test accuracy value: 53.1 - type: accuracy name: Bhojpuri Test accuracy value: 52.4 - type: accuracy name: Thai Test accuracy value: 62.6 - type: accuracy name: Marathi Test accuracy value: 88.3 - type: accuracy name: Basque Test accuracy value: 77.1 - type: accuracy name: Slovak Test accuracy value: 87.0 - type: accuracy name: Kiche Test accuracy value: 37.8 - type: accuracy name: Yoruba Test accuracy value: 26.7 - type: accuracy name: Warlpiri Test accuracy value: 42.1 - type: accuracy name: Tamil Test accuracy value: 85.4 - type: accuracy name: Maltese Test accuracy value: 30.9 - type: accuracy name: Ancient Greek Test accuracy value: 65.9 - type: accuracy name: Icelandic Test accuracy value: 82.9 - type: accuracy name: Mbya Guarani Test accuracy value: 30.6 - type: accuracy name: Urdu Test accuracy value: 67.0 - type: accuracy name: Romanian Test accuracy value: 78.5 - type: accuracy name: Persian Test accuracy value: 73.9 - type: accuracy name: Apurina Test accuracy value: 47.9 - type: accuracy name: Japanese Test accuracy value: 38.9 - type: accuracy name: Hungarian Test accuracy value: 83.2 - type: accuracy name: Hindi Test accuracy value: 71.6 - type: accuracy name: Classical Chinese Test accuracy value: 35.4 - type: accuracy name: Komi Permyak Test accuracy value: 53.2 - type: accuracy name: Faroese Test accuracy value: 76.4 - type: accuracy name: Sanskrit Test accuracy value: 38.8 - type: accuracy name: Livvi Test accuracy value: 71.2 - type: accuracy name: Arabic Test accuracy value: 76.3 - type: accuracy name: Wolof Test accuracy value: 35.3 - type: accuracy name: Bulgarian Test accuracy value: 85.8 - type: accuracy name: Akuntsu Test accuracy value: 37.5 - type: accuracy name: Makurap Test accuracy value: 15.8 - type: accuracy name: Kangri Test accuracy value: 51.7 - type: accuracy name: Breton Test accuracy value: 60.1 - type: accuracy name: Telugu Test accuracy value: 84.2 - type: accuracy name: Cantonese Test accuracy value: 58.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.8 - type: accuracy name: Karelian Test accuracy value: 75.7 - type: accuracy name: Upper Sorbian Test accuracy value: 77.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.8 - type: accuracy name: Komi Zyrian Test accuracy value: 46.6 - type: accuracy name: Irish Test accuracy value: 60.5 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 27.1 - type: accuracy name: Manx Test accuracy value: 35.3 - type: accuracy name: Skolt Sami Test accuracy value: 40.7 - type: accuracy name: Afrikaans Test accuracy value: 77.5 - type: accuracy name: Old Turkish Test accuracy value: 46.6 - type: accuracy name: Tupinamba Test accuracy value: 46.5 - type: accuracy name: Belarusian Test accuracy value: 87.1 - type: accuracy name: Serbian Test accuracy value: 86.9 - type: accuracy name: Moksha Test accuracy value: 48.3 - type: accuracy name: Western Armenian Test accuracy value: 80.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 51.5 - type: accuracy name: Khunsari Test accuracy value: 40.5 - type: accuracy name: Hebrew Test accuracy value: 89.6 - type: accuracy name: Uyghur Test accuracy value: 77.1 - type: accuracy name: Chukchi Test accuracy value: 38.9 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Estonian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-et") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-et") ```
wietsedv/xlm-roberta-base-ft-udpos28-ga
b9d0c2a08fe20f325f8225321f0a39817a11c195
2022-02-25T09:58:33.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ga", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-ga
0
null
transformers
36,365
--- language: - ga license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ga results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 75.3 - type: accuracy name: Dutch Test accuracy value: 79.5 - type: accuracy name: German Test accuracy value: 76.2 - type: accuracy name: Italian Test accuracy value: 73.6 - type: accuracy name: French Test accuracy value: 76.4 - type: accuracy name: Spanish Test accuracy value: 82.4 - type: accuracy name: Russian Test accuracy value: 80.7 - type: accuracy name: Swedish Test accuracy value: 78.7 - type: accuracy name: Norwegian Test accuracy value: 74.5 - type: accuracy name: Danish Test accuracy value: 77.9 - type: accuracy name: Low Saxon Test accuracy value: 49.0 - type: accuracy name: Akkadian Test accuracy value: 46.2 - type: accuracy name: Armenian Test accuracy value: 71.8 - type: accuracy name: Welsh Test accuracy value: 77.9 - type: accuracy name: Old East Slavic Test accuracy value: 67.3 - type: accuracy name: Albanian Test accuracy value: 79.8 - type: accuracy name: Slovenian Test accuracy value: 65.3 - type: accuracy name: Guajajara Test accuracy value: 46.4 - type: accuracy name: Kurmanji Test accuracy value: 74.9 - type: accuracy name: Turkish Test accuracy value: 73.7 - type: accuracy name: Finnish Test accuracy value: 73.8 - type: accuracy name: Indonesian Test accuracy value: 78.6 - type: accuracy name: Ukrainian Test accuracy value: 79.9 - type: accuracy name: Polish Test accuracy value: 82.5 - type: accuracy name: Portuguese Test accuracy value: 80.6 - type: accuracy name: Kazakh Test accuracy value: 75.6 - type: accuracy name: Latin Test accuracy value: 70.0 - type: accuracy name: Old French Test accuracy value: 49.1 - type: accuracy name: Buryat Test accuracy value: 60.3 - type: accuracy name: Kaapor Test accuracy value: 21.2 - type: accuracy name: Korean Test accuracy value: 60.5 - type: accuracy name: Estonian Test accuracy value: 75.7 - type: accuracy name: Croatian Test accuracy value: 77.3 - type: accuracy name: Gothic Test accuracy value: 29.1 - type: accuracy name: Swiss German Test accuracy value: 44.3 - type: accuracy name: Assyrian Test accuracy value: 16.3 - type: accuracy name: North Sami Test accuracy value: 45.0 - type: accuracy name: Naija Test accuracy value: 32.0 - type: accuracy name: Latvian Test accuracy value: 77.7 - type: accuracy name: Chinese Test accuracy value: 49.6 - type: accuracy name: Tagalog Test accuracy value: 71.1 - type: accuracy name: Bambara Test accuracy value: 29.1 - type: accuracy name: Lithuanian Test accuracy value: 76.4 - type: accuracy name: Galician Test accuracy value: 80.9 - type: accuracy name: Vietnamese Test accuracy value: 58.6 - type: accuracy name: Greek Test accuracy value: 77.5 - type: accuracy name: Catalan Test accuracy value: 79.7 - type: accuracy name: Czech Test accuracy value: 78.1 - type: accuracy name: Erzya Test accuracy value: 52.5 - type: accuracy name: Bhojpuri Test accuracy value: 59.2 - type: accuracy name: Thai Test accuracy value: 58.7 - type: accuracy name: Marathi Test accuracy value: 79.1 - type: accuracy name: Basque Test accuracy value: 68.1 - type: accuracy name: Slovak Test accuracy value: 80.0 - type: accuracy name: Kiche Test accuracy value: 46.4 - type: accuracy name: Yoruba Test accuracy value: 33.1 - type: accuracy name: Warlpiri Test accuracy value: 40.5 - type: accuracy name: Tamil Test accuracy value: 78.1 - type: accuracy name: Maltese Test accuracy value: 36.7 - type: accuracy name: Ancient Greek Test accuracy value: 58.5 - type: accuracy name: Icelandic Test accuracy value: 71.2 - type: accuracy name: Mbya Guarani Test accuracy value: 34.0 - type: accuracy name: Urdu Test accuracy value: 65.5 - type: accuracy name: Romanian Test accuracy value: 76.8 - type: accuracy name: Persian Test accuracy value: 79.7 - type: accuracy name: Apurina Test accuracy value: 51.8 - type: accuracy name: Japanese Test accuracy value: 36.1 - type: accuracy name: Hungarian Test accuracy value: 77.1 - type: accuracy name: Hindi Test accuracy value: 69.7 - type: accuracy name: Classical Chinese Test accuracy value: 32.1 - type: accuracy name: Komi Permyak Test accuracy value: 51.1 - type: accuracy name: Faroese Test accuracy value: 70.6 - type: accuracy name: Sanskrit Test accuracy value: 35.7 - type: accuracy name: Livvi Test accuracy value: 60.6 - type: accuracy name: Arabic Test accuracy value: 83.7 - type: accuracy name: Wolof Test accuracy value: 40.8 - type: accuracy name: Bulgarian Test accuracy value: 78.7 - type: accuracy name: Akuntsu Test accuracy value: 43.2 - type: accuracy name: Makurap Test accuracy value: 19.9 - type: accuracy name: Kangri Test accuracy value: 46.3 - type: accuracy name: Breton Test accuracy value: 61.7 - type: accuracy name: Telugu Test accuracy value: 76.8 - type: accuracy name: Cantonese Test accuracy value: 49.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 43.9 - type: accuracy name: Karelian Test accuracy value: 64.1 - type: accuracy name: Upper Sorbian Test accuracy value: 69.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 70.0 - type: accuracy name: Komi Zyrian Test accuracy value: 44.9 - type: accuracy name: Irish Test accuracy value: 86.0 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 38.9 - type: accuracy name: Manx Test accuracy value: 57.2 - type: accuracy name: Skolt Sami Test accuracy value: 40.1 - type: accuracy name: Afrikaans Test accuracy value: 73.0 - type: accuracy name: Old Turkish Test accuracy value: 39.4 - type: accuracy name: Tupinamba Test accuracy value: 51.8 - type: accuracy name: Belarusian Test accuracy value: 79.1 - type: accuracy name: Serbian Test accuracy value: 78.5 - type: accuracy name: Moksha Test accuracy value: 49.9 - type: accuracy name: Western Armenian Test accuracy value: 68.2 - type: accuracy name: Scottish Gaelic Test accuracy value: 77.1 - type: accuracy name: Khunsari Test accuracy value: 50.0 - type: accuracy name: Hebrew Test accuracy value: 80.2 - type: accuracy name: Uyghur Test accuracy value: 70.2 - type: accuracy name: Chukchi Test accuracy value: 39.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Irish This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ga") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ga") ```
wietsedv/xlm-roberta-base-ft-udpos28-he
0b1c313b21ca58890f2e11837cee5fdfbabd39b2
2022-02-25T09:58:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "he", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-he
0
null
transformers
36,366
--- language: - he license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-he results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 76.6 - type: accuracy name: Dutch Test accuracy value: 73.7 - type: accuracy name: German Test accuracy value: 70.5 - type: accuracy name: Italian Test accuracy value: 75.1 - type: accuracy name: French Test accuracy value: 71.3 - type: accuracy name: Spanish Test accuracy value: 74.5 - type: accuracy name: Russian Test accuracy value: 80.3 - type: accuracy name: Swedish Test accuracy value: 79.3 - type: accuracy name: Norwegian Test accuracy value: 75.7 - type: accuracy name: Danish Test accuracy value: 80.4 - type: accuracy name: Low Saxon Test accuracy value: 42.6 - type: accuracy name: Akkadian Test accuracy value: 24.1 - type: accuracy name: Armenian Test accuracy value: 77.0 - type: accuracy name: Welsh Test accuracy value: 62.3 - type: accuracy name: Old East Slavic Test accuracy value: 66.2 - type: accuracy name: Albanian Test accuracy value: 73.9 - type: accuracy name: Slovenian Test accuracy value: 72.5 - type: accuracy name: Guajajara Test accuracy value: 21.4 - type: accuracy name: Kurmanji Test accuracy value: 74.2 - type: accuracy name: Turkish Test accuracy value: 71.8 - type: accuracy name: Finnish Test accuracy value: 80.5 - type: accuracy name: Indonesian Test accuracy value: 80.0 - type: accuracy name: Ukrainian Test accuracy value: 78.8 - type: accuracy name: Polish Test accuracy value: 78.9 - type: accuracy name: Portuguese Test accuracy value: 78.6 - type: accuracy name: Kazakh Test accuracy value: 77.2 - type: accuracy name: Latin Test accuracy value: 73.5 - type: accuracy name: Old French Test accuracy value: 50.6 - type: accuracy name: Buryat Test accuracy value: 45.0 - type: accuracy name: Kaapor Test accuracy value: 11.2 - type: accuracy name: Korean Test accuracy value: 60.2 - type: accuracy name: Estonian Test accuracy value: 81.4 - type: accuracy name: Croatian Test accuracy value: 77.9 - type: accuracy name: Gothic Test accuracy value: 13.7 - type: accuracy name: Swiss German Test accuracy value: 44.8 - type: accuracy name: Assyrian Test accuracy value: 17.0 - type: accuracy name: North Sami Test accuracy value: 24.8 - type: accuracy name: Naija Test accuracy value: 41.6 - type: accuracy name: Latvian Test accuracy value: 80.1 - type: accuracy name: Chinese Test accuracy value: 60.5 - type: accuracy name: Tagalog Test accuracy value: 79.2 - type: accuracy name: Bambara Test accuracy value: 21.1 - type: accuracy name: Lithuanian Test accuracy value: 81.0 - type: accuracy name: Galician Test accuracy value: 76.1 - type: accuracy name: Vietnamese Test accuracy value: 64.4 - type: accuracy name: Greek Test accuracy value: 67.4 - type: accuracy name: Catalan Test accuracy value: 71.5 - type: accuracy name: Czech Test accuracy value: 77.7 - type: accuracy name: Erzya Test accuracy value: 32.0 - type: accuracy name: Bhojpuri Test accuracy value: 50.7 - type: accuracy name: Thai Test accuracy value: 69.2 - type: accuracy name: Marathi Test accuracy value: 81.6 - type: accuracy name: Basque Test accuracy value: 76.2 - type: accuracy name: Slovak Test accuracy value: 78.0 - type: accuracy name: Kiche Test accuracy value: 23.6 - type: accuracy name: Yoruba Test accuracy value: 17.5 - type: accuracy name: Warlpiri Test accuracy value: 22.3 - type: accuracy name: Tamil Test accuracy value: 82.1 - type: accuracy name: Maltese Test accuracy value: 18.0 - type: accuracy name: Ancient Greek Test accuracy value: 45.4 - type: accuracy name: Icelandic Test accuracy value: 81.0 - type: accuracy name: Mbya Guarani Test accuracy value: 22.0 - type: accuracy name: Urdu Test accuracy value: 70.9 - type: accuracy name: Romanian Test accuracy value: 76.5 - type: accuracy name: Persian Test accuracy value: 75.4 - type: accuracy name: Apurina Test accuracy value: 22.2 - type: accuracy name: Japanese Test accuracy value: 39.4 - type: accuracy name: Hungarian Test accuracy value: 65.8 - type: accuracy name: Hindi Test accuracy value: 75.2 - type: accuracy name: Classical Chinese Test accuracy value: 44.3 - type: accuracy name: Komi Permyak Test accuracy value: 35.0 - type: accuracy name: Faroese Test accuracy value: 70.8 - type: accuracy name: Sanskrit Test accuracy value: 12.1 - type: accuracy name: Livvi Test accuracy value: 52.2 - type: accuracy name: Arabic Test accuracy value: 77.4 - type: accuracy name: Wolof Test accuracy value: 24.4 - type: accuracy name: Bulgarian Test accuracy value: 82.1 - type: accuracy name: Akuntsu Test accuracy value: 17.0 - type: accuracy name: Makurap Test accuracy value: 8.2 - type: accuracy name: Kangri Test accuracy value: 39.9 - type: accuracy name: Breton Test accuracy value: 56.7 - type: accuracy name: Telugu Test accuracy value: 81.4 - type: accuracy name: Cantonese Test accuracy value: 57.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 40.3 - type: accuracy name: Karelian Test accuracy value: 60.0 - type: accuracy name: Upper Sorbian Test accuracy value: 61.2 - type: accuracy name: South Levantine Arabic Test accuracy value: 64.5 - type: accuracy name: Komi Zyrian Test accuracy value: 29.0 - type: accuracy name: Irish Test accuracy value: 58.7 - type: accuracy name: Nayini Test accuracy value: 41.0 - type: accuracy name: Munduruku Test accuracy value: 9.5 - type: accuracy name: Manx Test accuracy value: 21.8 - type: accuracy name: Skolt Sami Test accuracy value: 27.2 - type: accuracy name: Afrikaans Test accuracy value: 73.3 - type: accuracy name: Old Turkish Test accuracy value: 43.4 - type: accuracy name: Tupinamba Test accuracy value: 21.9 - type: accuracy name: Belarusian Test accuracy value: 78.5 - type: accuracy name: Serbian Test accuracy value: 78.9 - type: accuracy name: Moksha Test accuracy value: 29.7 - type: accuracy name: Western Armenian Test accuracy value: 69.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 51.3 - type: accuracy name: Khunsari Test accuracy value: 36.5 - type: accuracy name: Hebrew Test accuracy value: 93.8 - type: accuracy name: Uyghur Test accuracy value: 70.2 - type: accuracy name: Chukchi Test accuracy value: 27.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Hebrew This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-he") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-he") ```
wietsedv/xlm-roberta-base-ft-udpos28-hr
8b72e6e02e4637a51fa8315b1c170d4c224457d8
2022-02-25T09:58:44.000Z
[ "pytorch", "xlm-roberta", "token-classification", "hr", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-hr
0
null
transformers
36,367
--- language: - hr license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hr results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.7 - type: accuracy name: Dutch Test accuracy value: 83.7 - type: accuracy name: German Test accuracy value: 83.2 - type: accuracy name: Italian Test accuracy value: 83.2 - type: accuracy name: French Test accuracy value: 84.2 - type: accuracy name: Spanish Test accuracy value: 87.8 - type: accuracy name: Russian Test accuracy value: 91.4 - type: accuracy name: Swedish Test accuracy value: 85.4 - type: accuracy name: Norwegian Test accuracy value: 79.0 - type: accuracy name: Danish Test accuracy value: 83.8 - type: accuracy name: Low Saxon Test accuracy value: 43.5 - type: accuracy name: Akkadian Test accuracy value: 32.5 - type: accuracy name: Armenian Test accuracy value: 84.7 - type: accuracy name: Welsh Test accuracy value: 67.9 - type: accuracy name: Old East Slavic Test accuracy value: 76.8 - type: accuracy name: Albanian Test accuracy value: 75.2 - type: accuracy name: Slovenian Test accuracy value: 87.0 - type: accuracy name: Guajajara Test accuracy value: 28.3 - type: accuracy name: Kurmanji Test accuracy value: 78.5 - type: accuracy name: Turkish Test accuracy value: 75.9 - type: accuracy name: Finnish Test accuracy value: 83.2 - type: accuracy name: Indonesian Test accuracy value: 81.3 - type: accuracy name: Ukrainian Test accuracy value: 93.2 - type: accuracy name: Polish Test accuracy value: 92.3 - type: accuracy name: Portuguese Test accuracy value: 84.6 - type: accuracy name: Kazakh Test accuracy value: 79.4 - type: accuracy name: Latin Test accuracy value: 77.4 - type: accuracy name: Old French Test accuracy value: 54.3 - type: accuracy name: Buryat Test accuracy value: 61.1 - type: accuracy name: Kaapor Test accuracy value: 20.0 - type: accuracy name: Korean Test accuracy value: 60.7 - type: accuracy name: Estonian Test accuracy value: 85.7 - type: accuracy name: Croatian Test accuracy value: 98.3 - type: accuracy name: Gothic Test accuracy value: 16.5 - type: accuracy name: Swiss German Test accuracy value: 44.8 - type: accuracy name: Assyrian Test accuracy value: 15.9 - type: accuracy name: North Sami Test accuracy value: 35.3 - type: accuracy name: Naija Test accuracy value: 39.6 - type: accuracy name: Latvian Test accuracy value: 86.5 - type: accuracy name: Chinese Test accuracy value: 41.2 - type: accuracy name: Tagalog Test accuracy value: 70.9 - type: accuracy name: Bambara Test accuracy value: 28.2 - type: accuracy name: Lithuanian Test accuracy value: 86.1 - type: accuracy name: Galician Test accuracy value: 86.0 - type: accuracy name: Vietnamese Test accuracy value: 66.5 - type: accuracy name: Greek Test accuracy value: 85.8 - type: accuracy name: Catalan Test accuracy value: 85.5 - type: accuracy name: Czech Test accuracy value: 94.8 - type: accuracy name: Erzya Test accuracy value: 47.2 - type: accuracy name: Bhojpuri Test accuracy value: 49.2 - type: accuracy name: Thai Test accuracy value: 63.4 - type: accuracy name: Marathi Test accuracy value: 87.1 - type: accuracy name: Basque Test accuracy value: 75.0 - type: accuracy name: Slovak Test accuracy value: 95.0 - type: accuracy name: Kiche Test accuracy value: 35.8 - type: accuracy name: Yoruba Test accuracy value: 28.5 - type: accuracy name: Warlpiri Test accuracy value: 41.3 - type: accuracy name: Tamil Test accuracy value: 84.8 - type: accuracy name: Maltese Test accuracy value: 23.7 - type: accuracy name: Ancient Greek Test accuracy value: 62.1 - type: accuracy name: Icelandic Test accuracy value: 79.9 - type: accuracy name: Mbya Guarani Test accuracy value: 31.9 - type: accuracy name: Urdu Test accuracy value: 65.0 - type: accuracy name: Romanian Test accuracy value: 82.5 - type: accuracy name: Persian Test accuracy value: 79.4 - type: accuracy name: Apurina Test accuracy value: 38.4 - type: accuracy name: Japanese Test accuracy value: 30.1 - type: accuracy name: Hungarian Test accuracy value: 83.8 - type: accuracy name: Hindi Test accuracy value: 67.8 - type: accuracy name: Classical Chinese Test accuracy value: 27.0 - type: accuracy name: Komi Permyak Test accuracy value: 44.9 - type: accuracy name: Faroese Test accuracy value: 77.3 - type: accuracy name: Sanskrit Test accuracy value: 35.6 - type: accuracy name: Livvi Test accuracy value: 65.5 - type: accuracy name: Arabic Test accuracy value: 82.3 - type: accuracy name: Wolof Test accuracy value: 32.2 - type: accuracy name: Bulgarian Test accuracy value: 92.6 - type: accuracy name: Akuntsu Test accuracy value: 37.0 - type: accuracy name: Makurap Test accuracy value: 17.8 - type: accuracy name: Kangri Test accuracy value: 47.9 - type: accuracy name: Breton Test accuracy value: 62.2 - type: accuracy name: Telugu Test accuracy value: 82.4 - type: accuracy name: Cantonese Test accuracy value: 45.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 48.9 - type: accuracy name: Karelian Test accuracy value: 71.7 - type: accuracy name: Upper Sorbian Test accuracy value: 79.4 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.9 - type: accuracy name: Komi Zyrian Test accuracy value: 39.6 - type: accuracy name: Irish Test accuracy value: 65.4 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 28.8 - type: accuracy name: Manx Test accuracy value: 35.7 - type: accuracy name: Skolt Sami Test accuracy value: 33.7 - type: accuracy name: Afrikaans Test accuracy value: 79.8 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 33.1 - type: accuracy name: Belarusian Test accuracy value: 91.6 - type: accuracy name: Serbian Test accuracy value: 97.5 - type: accuracy name: Moksha Test accuracy value: 45.7 - type: accuracy name: Western Armenian Test accuracy value: 77.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 57.7 - type: accuracy name: Khunsari Test accuracy value: 36.5 - type: accuracy name: Hebrew Test accuracy value: 85.4 - type: accuracy name: Uyghur Test accuracy value: 72.2 - type: accuracy name: Chukchi Test accuracy value: 35.4 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Croatian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hr") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hr") ```
wietsedv/xlm-roberta-base-ft-udpos28-hyw
2d1fe3d93a920f84fabe65fba2549e7af7122c44
2022-02-25T09:58:48.000Z
[ "pytorch", "xlm-roberta", "token-classification", "hyw", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-hyw
0
null
transformers
36,368
--- language: - hyw license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hyw results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.0 - type: accuracy name: Dutch Test accuracy value: 81.9 - type: accuracy name: German Test accuracy value: 83.9 - type: accuracy name: Italian Test accuracy value: 80.9 - type: accuracy name: French Test accuracy value: 79.2 - type: accuracy name: Spanish Test accuracy value: 80.9 - type: accuracy name: Russian Test accuracy value: 89.1 - type: accuracy name: Swedish Test accuracy value: 86.2 - type: accuracy name: Norwegian Test accuracy value: 80.6 - type: accuracy name: Danish Test accuracy value: 84.8 - type: accuracy name: Low Saxon Test accuracy value: 56.7 - type: accuracy name: Akkadian Test accuracy value: 29.3 - type: accuracy name: Armenian Test accuracy value: 90.2 - type: accuracy name: Welsh Test accuracy value: 63.8 - type: accuracy name: Old East Slavic Test accuracy value: 77.0 - type: accuracy name: Albanian Test accuracy value: 83.5 - type: accuracy name: Slovenian Test accuracy value: 78.0 - type: accuracy name: Guajajara Test accuracy value: 22.7 - type: accuracy name: Kurmanji Test accuracy value: 76.7 - type: accuracy name: Turkish Test accuracy value: 78.1 - type: accuracy name: Finnish Test accuracy value: 84.5 - type: accuracy name: Indonesian Test accuracy value: 80.7 - type: accuracy name: Ukrainian Test accuracy value: 88.4 - type: accuracy name: Polish Test accuracy value: 83.7 - type: accuracy name: Portuguese Test accuracy value: 83.1 - type: accuracy name: Kazakh Test accuracy value: 85.0 - type: accuracy name: Latin Test accuracy value: 79.0 - type: accuracy name: Old French Test accuracy value: 58.3 - type: accuracy name: Buryat Test accuracy value: 65.4 - type: accuracy name: Kaapor Test accuracy value: 16.2 - type: accuracy name: Korean Test accuracy value: 62.1 - type: accuracy name: Estonian Test accuracy value: 84.6 - type: accuracy name: Croatian Test accuracy value: 86.9 - type: accuracy name: Gothic Test accuracy value: 24.5 - type: accuracy name: Swiss German Test accuracy value: 57.3 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 35.0 - type: accuracy name: Naija Test accuracy value: 43.0 - type: accuracy name: Latvian Test accuracy value: 87.5 - type: accuracy name: Chinese Test accuracy value: 41.7 - type: accuracy name: Tagalog Test accuracy value: 68.9 - type: accuracy name: Bambara Test accuracy value: 30.7 - type: accuracy name: Lithuanian Test accuracy value: 87.2 - type: accuracy name: Galician Test accuracy value: 80.9 - type: accuracy name: Vietnamese Test accuracy value: 65.0 - type: accuracy name: Greek Test accuracy value: 87.6 - type: accuracy name: Catalan Test accuracy value: 80.0 - type: accuracy name: Czech Test accuracy value: 86.0 - type: accuracy name: Erzya Test accuracy value: 47.6 - type: accuracy name: Bhojpuri Test accuracy value: 57.8 - type: accuracy name: Thai Test accuracy value: 59.9 - type: accuracy name: Marathi Test accuracy value: 84.7 - type: accuracy name: Basque Test accuracy value: 80.7 - type: accuracy name: Slovak Test accuracy value: 86.2 - type: accuracy name: Kiche Test accuracy value: 26.5 - type: accuracy name: Yoruba Test accuracy value: 24.8 - type: accuracy name: Warlpiri Test accuracy value: 38.5 - type: accuracy name: Tamil Test accuracy value: 84.2 - type: accuracy name: Maltese Test accuracy value: 28.2 - type: accuracy name: Ancient Greek Test accuracy value: 68.4 - type: accuracy name: Icelandic Test accuracy value: 79.5 - type: accuracy name: Mbya Guarani Test accuracy value: 28.7 - type: accuracy name: Urdu Test accuracy value: 68.1 - type: accuracy name: Romanian Test accuracy value: 82.1 - type: accuracy name: Persian Test accuracy value: 74.9 - type: accuracy name: Apurina Test accuracy value: 31.9 - type: accuracy name: Japanese Test accuracy value: 35.2 - type: accuracy name: Hungarian Test accuracy value: 83.7 - type: accuracy name: Hindi Test accuracy value: 74.9 - type: accuracy name: Classical Chinese Test accuracy value: 26.8 - type: accuracy name: Komi Permyak Test accuracy value: 51.5 - type: accuracy name: Faroese Test accuracy value: 77.9 - type: accuracy name: Sanskrit Test accuracy value: 39.4 - type: accuracy name: Livvi Test accuracy value: 67.5 - type: accuracy name: Arabic Test accuracy value: 77.6 - type: accuracy name: Wolof Test accuracy value: 31.3 - type: accuracy name: Bulgarian Test accuracy value: 86.3 - type: accuracy name: Akuntsu Test accuracy value: 21.3 - type: accuracy name: Makurap Test accuracy value: 11.6 - type: accuracy name: Kangri Test accuracy value: 57.8 - type: accuracy name: Breton Test accuracy value: 65.4 - type: accuracy name: Telugu Test accuracy value: 80.2 - type: accuracy name: Cantonese Test accuracy value: 48.5 - type: accuracy name: Old Church Slavonic Test accuracy value: 52.5 - type: accuracy name: Karelian Test accuracy value: 72.2 - type: accuracy name: Upper Sorbian Test accuracy value: 76.4 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.8 - type: accuracy name: Komi Zyrian Test accuracy value: 44.2 - type: accuracy name: Irish Test accuracy value: 61.5 - type: accuracy name: Nayini Test accuracy value: 53.8 - type: accuracy name: Munduruku Test accuracy value: 12.5 - type: accuracy name: Manx Test accuracy value: 29.8 - type: accuracy name: Skolt Sami Test accuracy value: 34.2 - type: accuracy name: Afrikaans Test accuracy value: 81.7 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 30.8 - type: accuracy name: Belarusian Test accuracy value: 89.7 - type: accuracy name: Serbian Test accuracy value: 87.1 - type: accuracy name: Moksha Test accuracy value: 45.2 - type: accuracy name: Western Armenian Test accuracy value: 93.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.8 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 85.4 - type: accuracy name: Uyghur Test accuracy value: 76.1 - type: accuracy name: Chukchi Test accuracy value: 38.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Western Armenian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hyw") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hyw") ```
wietsedv/xlm-roberta-base-ft-udpos28-lt
d608a2b1745c2d2d64e8676fe2c1e53e53da82a7
2022-02-25T09:58:59.000Z
[ "pytorch", "xlm-roberta", "token-classification", "lt", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-lt
0
null
transformers
36,369
--- language: - lt license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-lt results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 80.7 - type: accuracy name: Dutch Test accuracy value: 80.6 - type: accuracy name: German Test accuracy value: 76.0 - type: accuracy name: Italian Test accuracy value: 77.8 - type: accuracy name: French Test accuracy value: 75.5 - type: accuracy name: Spanish Test accuracy value: 79.6 - type: accuracy name: Russian Test accuracy value: 88.9 - type: accuracy name: Swedish Test accuracy value: 81.6 - type: accuracy name: Norwegian Test accuracy value: 76.3 - type: accuracy name: Danish Test accuracy value: 78.9 - type: accuracy name: Low Saxon Test accuracy value: 52.0 - type: accuracy name: Akkadian Test accuracy value: 31.6 - type: accuracy name: Armenian Test accuracy value: 84.1 - type: accuracy name: Welsh Test accuracy value: 63.8 - type: accuracy name: Old East Slavic Test accuracy value: 75.6 - type: accuracy name: Albanian Test accuracy value: 76.8 - type: accuracy name: Slovenian Test accuracy value: 81.4 - type: accuracy name: Guajajara Test accuracy value: 26.7 - type: accuracy name: Kurmanji Test accuracy value: 77.1 - type: accuracy name: Turkish Test accuracy value: 74.9 - type: accuracy name: Finnish Test accuracy value: 83.2 - type: accuracy name: Indonesian Test accuracy value: 78.0 - type: accuracy name: Ukrainian Test accuracy value: 88.1 - type: accuracy name: Polish Test accuracy value: 86.3 - type: accuracy name: Portuguese Test accuracy value: 81.6 - type: accuracy name: Kazakh Test accuracy value: 83.1 - type: accuracy name: Latin Test accuracy value: 78.7 - type: accuracy name: Old French Test accuracy value: 56.1 - type: accuracy name: Buryat Test accuracy value: 64.3 - type: accuracy name: Kaapor Test accuracy value: 22.5 - type: accuracy name: Korean Test accuracy value: 64.6 - type: accuracy name: Estonian Test accuracy value: 81.5 - type: accuracy name: Croatian Test accuracy value: 86.6 - type: accuracy name: Gothic Test accuracy value: 22.6 - type: accuracy name: Swiss German Test accuracy value: 48.1 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 39.8 - type: accuracy name: Naija Test accuracy value: 41.4 - type: accuracy name: Latvian Test accuracy value: 89.0 - type: accuracy name: Chinese Test accuracy value: 34.4 - type: accuracy name: Tagalog Test accuracy value: 73.0 - type: accuracy name: Bambara Test accuracy value: 26.4 - type: accuracy name: Lithuanian Test accuracy value: 96.1 - type: accuracy name: Galician Test accuracy value: 81.1 - type: accuracy name: Vietnamese Test accuracy value: 65.3 - type: accuracy name: Greek Test accuracy value: 81.8 - type: accuracy name: Catalan Test accuracy value: 76.2 - type: accuracy name: Czech Test accuracy value: 86.5 - type: accuracy name: Erzya Test accuracy value: 48.7 - type: accuracy name: Bhojpuri Test accuracy value: 50.9 - type: accuracy name: Thai Test accuracy value: 54.5 - type: accuracy name: Marathi Test accuracy value: 82.8 - type: accuracy name: Basque Test accuracy value: 75.6 - type: accuracy name: Slovak Test accuracy value: 88.5 - type: accuracy name: Kiche Test accuracy value: 33.5 - type: accuracy name: Yoruba Test accuracy value: 24.6 - type: accuracy name: Warlpiri Test accuracy value: 44.1 - type: accuracy name: Tamil Test accuracy value: 79.1 - type: accuracy name: Maltese Test accuracy value: 25.5 - type: accuracy name: Ancient Greek Test accuracy value: 65.8 - type: accuracy name: Icelandic Test accuracy value: 80.7 - type: accuracy name: Mbya Guarani Test accuracy value: 32.2 - type: accuracy name: Urdu Test accuracy value: 59.1 - type: accuracy name: Romanian Test accuracy value: 78.6 - type: accuracy name: Persian Test accuracy value: 72.8 - type: accuracy name: Apurina Test accuracy value: 42.0 - type: accuracy name: Japanese Test accuracy value: 22.9 - type: accuracy name: Hungarian Test accuracy value: 76.9 - type: accuracy name: Hindi Test accuracy value: 62.2 - type: accuracy name: Classical Chinese Test accuracy value: 15.8 - type: accuracy name: Komi Permyak Test accuracy value: 48.3 - type: accuracy name: Faroese Test accuracy value: 77.3 - type: accuracy name: Sanskrit Test accuracy value: 41.0 - type: accuracy name: Livvi Test accuracy value: 67.2 - type: accuracy name: Arabic Test accuracy value: 73.9 - type: accuracy name: Wolof Test accuracy value: 28.0 - type: accuracy name: Bulgarian Test accuracy value: 85.9 - type: accuracy name: Akuntsu Test accuracy value: 26.0 - type: accuracy name: Makurap Test accuracy value: 17.8 - type: accuracy name: Kangri Test accuracy value: 50.6 - type: accuracy name: Breton Test accuracy value: 60.3 - type: accuracy name: Telugu Test accuracy value: 85.0 - type: accuracy name: Cantonese Test accuracy value: 39.1 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.6 - type: accuracy name: Karelian Test accuracy value: 71.3 - type: accuracy name: Upper Sorbian Test accuracy value: 75.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 67.0 - type: accuracy name: Komi Zyrian Test accuracy value: 43.0 - type: accuracy name: Irish Test accuracy value: 60.1 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 18.8 - type: accuracy name: Manx Test accuracy value: 33.3 - type: accuracy name: Skolt Sami Test accuracy value: 37.3 - type: accuracy name: Afrikaans Test accuracy value: 76.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 34.1 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 87.7 - type: accuracy name: Moksha Test accuracy value: 46.3 - type: accuracy name: Western Armenian Test accuracy value: 75.4 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.2 - type: accuracy name: Khunsari Test accuracy value: 39.2 - type: accuracy name: Hebrew Test accuracy value: 83.3 - type: accuracy name: Uyghur Test accuracy value: 76.6 - type: accuracy name: Chukchi Test accuracy value: 35.4 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Lithuanian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lt") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lt") ```
wietsedv/xlm-roberta-base-ft-udpos28-lv
5b08566f22c46a1ebeca9961489d1da64a1dc88f
2022-02-25T09:59:00.000Z
[ "pytorch", "xlm-roberta", "token-classification", "lv", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-lv
0
null
transformers
36,370
--- language: - lv license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-lv results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 84.7 - type: accuracy name: Dutch Test accuracy value: 85.6 - type: accuracy name: German Test accuracy value: 82.5 - type: accuracy name: Italian Test accuracy value: 84.3 - type: accuracy name: French Test accuracy value: 84.1 - type: accuracy name: Spanish Test accuracy value: 84.7 - type: accuracy name: Russian Test accuracy value: 92.1 - type: accuracy name: Swedish Test accuracy value: 86.8 - type: accuracy name: Norwegian Test accuracy value: 81.3 - type: accuracy name: Danish Test accuracy value: 86.0 - type: accuracy name: Low Saxon Test accuracy value: 51.6 - type: accuracy name: Akkadian Test accuracy value: 32.4 - type: accuracy name: Armenian Test accuracy value: 87.5 - type: accuracy name: Welsh Test accuracy value: 65.4 - type: accuracy name: Old East Slavic Test accuracy value: 76.5 - type: accuracy name: Albanian Test accuracy value: 75.9 - type: accuracy name: Slovenian Test accuracy value: 82.0 - type: accuracy name: Guajajara Test accuracy value: 31.1 - type: accuracy name: Kurmanji Test accuracy value: 76.5 - type: accuracy name: Turkish Test accuracy value: 77.2 - type: accuracy name: Finnish Test accuracy value: 85.9 - type: accuracy name: Indonesian Test accuracy value: 79.3 - type: accuracy name: Ukrainian Test accuracy value: 91.1 - type: accuracy name: Polish Test accuracy value: 88.5 - type: accuracy name: Portuguese Test accuracy value: 84.9 - type: accuracy name: Kazakh Test accuracy value: 83.8 - type: accuracy name: Latin Test accuracy value: 81.0 - type: accuracy name: Old French Test accuracy value: 56.7 - type: accuracy name: Buryat Test accuracy value: 64.8 - type: accuracy name: Kaapor Test accuracy value: 25.0 - type: accuracy name: Korean Test accuracy value: 65.1 - type: accuracy name: Estonian Test accuracy value: 84.7 - type: accuracy name: Croatian Test accuracy value: 89.1 - type: accuracy name: Gothic Test accuracy value: 23.5 - type: accuracy name: Swiss German Test accuracy value: 45.2 - type: accuracy name: Assyrian Test accuracy value: 12.8 - type: accuracy name: North Sami Test accuracy value: 43.5 - type: accuracy name: Naija Test accuracy value: 36.1 - type: accuracy name: Latvian Test accuracy value: 96.9 - type: accuracy name: Chinese Test accuracy value: 53.1 - type: accuracy name: Tagalog Test accuracy value: 72.7 - type: accuracy name: Bambara Test accuracy value: 28.6 - type: accuracy name: Lithuanian Test accuracy value: 91.0 - type: accuracy name: Galician Test accuracy value: 84.2 - type: accuracy name: Vietnamese Test accuracy value: 65.7 - type: accuracy name: Greek Test accuracy value: 84.5 - type: accuracy name: Catalan Test accuracy value: 83.2 - type: accuracy name: Czech Test accuracy value: 88.0 - type: accuracy name: Erzya Test accuracy value: 52.5 - type: accuracy name: Bhojpuri Test accuracy value: 49.2 - type: accuracy name: Thai Test accuracy value: 63.3 - type: accuracy name: Marathi Test accuracy value: 85.3 - type: accuracy name: Basque Test accuracy value: 77.4 - type: accuracy name: Slovak Test accuracy value: 87.8 - type: accuracy name: Kiche Test accuracy value: 40.3 - type: accuracy name: Yoruba Test accuracy value: 28.4 - type: accuracy name: Warlpiri Test accuracy value: 44.9 - type: accuracy name: Tamil Test accuracy value: 86.4 - type: accuracy name: Maltese Test accuracy value: 25.9 - type: accuracy name: Ancient Greek Test accuracy value: 62.2 - type: accuracy name: Icelandic Test accuracy value: 81.7 - type: accuracy name: Mbya Guarani Test accuracy value: 35.3 - type: accuracy name: Urdu Test accuracy value: 61.9 - type: accuracy name: Romanian Test accuracy value: 82.2 - type: accuracy name: Persian Test accuracy value: 74.8 - type: accuracy name: Apurina Test accuracy value: 49.0 - type: accuracy name: Japanese Test accuracy value: 39.4 - type: accuracy name: Hungarian Test accuracy value: 79.9 - type: accuracy name: Hindi Test accuracy value: 64.1 - type: accuracy name: Classical Chinese Test accuracy value: 30.0 - type: accuracy name: Komi Permyak Test accuracy value: 51.7 - type: accuracy name: Faroese Test accuracy value: 76.2 - type: accuracy name: Sanskrit Test accuracy value: 39.7 - type: accuracy name: Livvi Test accuracy value: 67.7 - type: accuracy name: Arabic Test accuracy value: 79.4 - type: accuracy name: Wolof Test accuracy value: 31.7 - type: accuracy name: Bulgarian Test accuracy value: 89.0 - type: accuracy name: Akuntsu Test accuracy value: 35.5 - type: accuracy name: Makurap Test accuracy value: 20.5 - type: accuracy name: Kangri Test accuracy value: 50.6 - type: accuracy name: Breton Test accuracy value: 62.7 - type: accuracy name: Telugu Test accuracy value: 87.8 - type: accuracy name: Cantonese Test accuracy value: 50.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 49.3 - type: accuracy name: Karelian Test accuracy value: 72.7 - type: accuracy name: Upper Sorbian Test accuracy value: 75.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.7 - type: accuracy name: Komi Zyrian Test accuracy value: 44.5 - type: accuracy name: Irish Test accuracy value: 64.7 - type: accuracy name: Nayini Test accuracy value: 39.7 - type: accuracy name: Munduruku Test accuracy value: 26.0 - type: accuracy name: Manx Test accuracy value: 37.9 - type: accuracy name: Skolt Sami Test accuracy value: 34.7 - type: accuracy name: Afrikaans Test accuracy value: 81.6 - type: accuracy name: Old Turkish Test accuracy value: 22.6 - type: accuracy name: Tupinamba Test accuracy value: 40.6 - type: accuracy name: Belarusian Test accuracy value: 91.8 - type: accuracy name: Serbian Test accuracy value: 89.7 - type: accuracy name: Moksha Test accuracy value: 48.7 - type: accuracy name: Western Armenian Test accuracy value: 77.5 - type: accuracy name: Scottish Gaelic Test accuracy value: 58.1 - type: accuracy name: Khunsari Test accuracy value: 40.5 - type: accuracy name: Hebrew Test accuracy value: 85.4 - type: accuracy name: Uyghur Test accuracy value: 79.7 - type: accuracy name: Chukchi Test accuracy value: 37.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Latvian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lv") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lv") ```
wietsedv/xlm-roberta-base-ft-udpos28-ta
b52577ee75a2250d4135204b9ef9b42ff2862ac0
2022-02-25T09:59:28.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ta", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-ta
0
null
transformers
36,371
--- language: - ta license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ta results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 68.1 - type: accuracy name: Dutch Test accuracy value: 64.0 - type: accuracy name: German Test accuracy value: 65.8 - type: accuracy name: Italian Test accuracy value: 61.2 - type: accuracy name: French Test accuracy value: 56.9 - type: accuracy name: Spanish Test accuracy value: 59.5 - type: accuracy name: Russian Test accuracy value: 74.3 - type: accuracy name: Swedish Test accuracy value: 69.1 - type: accuracy name: Norwegian Test accuracy value: 64.8 - type: accuracy name: Danish Test accuracy value: 70.0 - type: accuracy name: Low Saxon Test accuracy value: 46.9 - type: accuracy name: Akkadian Test accuracy value: 28.4 - type: accuracy name: Armenian Test accuracy value: 76.5 - type: accuracy name: Welsh Test accuracy value: 54.2 - type: accuracy name: Old East Slavic Test accuracy value: 61.8 - type: accuracy name: Albanian Test accuracy value: 61.0 - type: accuracy name: Slovenian Test accuracy value: 59.8 - type: accuracy name: Guajajara Test accuracy value: 22.7 - type: accuracy name: Kurmanji Test accuracy value: 64.1 - type: accuracy name: Turkish Test accuracy value: 72.0 - type: accuracy name: Finnish Test accuracy value: 76.2 - type: accuracy name: Indonesian Test accuracy value: 70.3 - type: accuracy name: Ukrainian Test accuracy value: 75.5 - type: accuracy name: Polish Test accuracy value: 72.0 - type: accuracy name: Portuguese Test accuracy value: 65.9 - type: accuracy name: Kazakh Test accuracy value: 77.2 - type: accuracy name: Latin Test accuracy value: 67.8 - type: accuracy name: Old French Test accuracy value: 45.0 - type: accuracy name: Buryat Test accuracy value: 58.8 - type: accuracy name: Kaapor Test accuracy value: 21.2 - type: accuracy name: Korean Test accuracy value: 58.6 - type: accuracy name: Estonian Test accuracy value: 78.5 - type: accuracy name: Croatian Test accuracy value: 71.3 - type: accuracy name: Gothic Test accuracy value: 18.2 - type: accuracy name: Swiss German Test accuracy value: 44.1 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 34.9 - type: accuracy name: Naija Test accuracy value: 37.5 - type: accuracy name: Latvian Test accuracy value: 79.2 - type: accuracy name: Chinese Test accuracy value: 47.9 - type: accuracy name: Tagalog Test accuracy value: 65.6 - type: accuracy name: Bambara Test accuracy value: 22.8 - type: accuracy name: Lithuanian Test accuracy value: 77.8 - type: accuracy name: Galician Test accuracy value: 61.9 - type: accuracy name: Vietnamese Test accuracy value: 56.1 - type: accuracy name: Greek Test accuracy value: 63.5 - type: accuracy name: Catalan Test accuracy value: 57.6 - type: accuracy name: Czech Test accuracy value: 71.7 - type: accuracy name: Erzya Test accuracy value: 43.5 - type: accuracy name: Bhojpuri Test accuracy value: 55.6 - type: accuracy name: Thai Test accuracy value: 56.7 - type: accuracy name: Marathi Test accuracy value: 79.1 - type: accuracy name: Basque Test accuracy value: 74.3 - type: accuracy name: Slovak Test accuracy value: 71.9 - type: accuracy name: Kiche Test accuracy value: 28.3 - type: accuracy name: Yoruba Test accuracy value: 22.3 - type: accuracy name: Warlpiri Test accuracy value: 32.4 - type: accuracy name: Tamil Test accuracy value: 85.6 - type: accuracy name: Maltese Test accuracy value: 23.1 - type: accuracy name: Ancient Greek Test accuracy value: 52.9 - type: accuracy name: Icelandic Test accuracy value: 67.9 - type: accuracy name: Mbya Guarani Test accuracy value: 28.5 - type: accuracy name: Urdu Test accuracy value: 69.0 - type: accuracy name: Romanian Test accuracy value: 65.5 - type: accuracy name: Persian Test accuracy value: 60.0 - type: accuracy name: Apurina Test accuracy value: 32.7 - type: accuracy name: Japanese Test accuracy value: 42.3 - type: accuracy name: Hungarian Test accuracy value: 69.8 - type: accuracy name: Hindi Test accuracy value: 73.6 - type: accuracy name: Classical Chinese Test accuracy value: 28.3 - type: accuracy name: Komi Permyak Test accuracy value: 40.2 - type: accuracy name: Faroese Test accuracy value: 59.9 - type: accuracy name: Sanskrit Test accuracy value: 36.9 - type: accuracy name: Livvi Test accuracy value: 61.4 - type: accuracy name: Arabic Test accuracy value: 62.9 - type: accuracy name: Wolof Test accuracy value: 28.3 - type: accuracy name: Bulgarian Test accuracy value: 71.6 - type: accuracy name: Akuntsu Test accuracy value: 19.3 - type: accuracy name: Makurap Test accuracy value: 12.3 - type: accuracy name: Kangri Test accuracy value: 51.6 - type: accuracy name: Breton Test accuracy value: 51.7 - type: accuracy name: Telugu Test accuracy value: 83.2 - type: accuracy name: Cantonese Test accuracy value: 50.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 45.7 - type: accuracy name: Karelian Test accuracy value: 63.7 - type: accuracy name: Upper Sorbian Test accuracy value: 62.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 57.5 - type: accuracy name: Komi Zyrian Test accuracy value: 35.3 - type: accuracy name: Irish Test accuracy value: 58.2 - type: accuracy name: Nayini Test accuracy value: 48.7 - type: accuracy name: Munduruku Test accuracy value: 15.9 - type: accuracy name: Manx Test accuracy value: 26.5 - type: accuracy name: Skolt Sami Test accuracy value: 32.7 - type: accuracy name: Afrikaans Test accuracy value: 66.5 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 27.8 - type: accuracy name: Belarusian Test accuracy value: 76.9 - type: accuracy name: Serbian Test accuracy value: 71.6 - type: accuracy name: Moksha Test accuracy value: 39.2 - type: accuracy name: Western Armenian Test accuracy value: 70.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 50.2 - type: accuracy name: Khunsari Test accuracy value: 39.2 - type: accuracy name: Hebrew Test accuracy value: 81.2 - type: accuracy name: Uyghur Test accuracy value: 67.3 - type: accuracy name: Chukchi Test accuracy value: 33.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Tamil This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ta") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ta") ```
mohamed-illiyas/wav2vec-malayalam
1dcc0f9033e7dde9ef935bf3f5c8f24c45c19956
2022-02-28T16:07:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mohamed-illiyas
null
mohamed-illiyas/wav2vec-malayalam
0
null
transformers
36,372
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-malayalam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-malayalam This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0a0+3fd9dcf - Datasets 1.18.3 - Tokenizers 0.10.3
zfchen/codeparrot
54737857ba1f8cc3b41c545642fa9f6f93694f44
2022-02-24T14:52:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
zfchen
null
zfchen/codeparrot
0
null
transformers
36,373
Entry not found
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k
153dc40a3ce127c6a0537940eda26d0dad5659f2
2022-02-24T19:08:20.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
vocab-transformers
null
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k
0
null
sentence-transformers
36,374
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # dense_encoder-msmarco-distilbert-word2vec256k This model is based on [msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. It has been trained on MS MARCO using [MarginMSELoss](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_margin-mse.py). See the train_script.py in this repository. Performance: - MS MARCO dev: - (MRR@10) - TREC-DL 2019: 65.53 (nDCG@10) - TREC-DL 2020: 67.42 (nDCG@10) - Avg. on 4 BEIR datasets: 38.97 The word embedding matrix has been frozen while training. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7858 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vesteinn/clip-nabirds
99805933b55c5ee1a384aefdfac664bc6a8ac150
2022-02-27T22:40:41.000Z
[ "pytorch", "clip", "feature-extraction", "transformers" ]
feature-extraction
false
vesteinn
null
vesteinn/clip-nabirds
0
null
transformers
36,375
Entry not found
huggingtweets/dril-nia_mp4
875388556d09a55ec7f566dc1a05afb713c356eb
2022-02-25T19:44:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dril-nia_mp4
0
null
transformers
36,376
--- language: en thumbnail: http://www.huggingtweets.com/dril-nia_mp4/1645818279249/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487740104340918272/7c9spp2E_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nia & wint</div> <div style="text-align: center; font-size: 14px;">@dril-nia_mp4</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nia & wint. | Data | Nia | wint | | --- | --- | --- | | Tweets downloaded | 278 | 3229 | | Retweets | 12 | 473 | | Short tweets | 13 | 300 | | Tweets kept | 253 | 2456 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ybk5oh0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-nia_mp4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ny6aucf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ny6aucf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-nia_mp4') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nadaAlnada/wav2vec2-base-timit-demo-colab
5f1daa05183ad42c85e378b91af603d602cbbd31
2022-02-27T13:55:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nadaAlnada
null
nadaAlnada/wav2vec2-base-timit-demo-colab
0
null
transformers
36,377
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [anas/wav2vec2-large-xlsr-arabic](https://huggingface.co/anas/wav2vec2-large-xlsr-arabic) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
hcy11/distilbert-base-uncased-finetuned-squad
21d2fd9c156841c916a2bfd0b7e5fd9deefdadff
2022-03-02T20:32:33.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
hcy11
null
hcy11/distilbert-base-uncased-finetuned-squad
0
null
transformers
36,378
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2672 | 1.0 | 5533 | 1.2131 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
zhoutong/best-t5
7debf4563bc6d9a9dff89ccf79bbe3510398bb97
2022-02-26T07:27:55.000Z
[ "pytorch" ]
null
false
zhoutong
null
zhoutong/best-t5
0
null
null
36,379
Entry not found
ianc89/hagrid
8589d4146189b95a75fb2c329cba312a492f21d6
2022-02-26T13:52:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ianc89
null
ianc89/hagrid
0
null
transformers
36,380
--- tags: - conversational --- # My Awesome Model
nimrah/wav2vec2-large-xls-r-300m-my_hindi_home-colab
a5b877c919ab676748bb54a993f93d1d2455f28b
2022-02-26T17:11:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nimrah
null
nimrah/wav2vec2-large-xls-r-300m-my_hindi_home-colab
0
null
transformers
36,381
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-my_hindi_home-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-my_hindi_home-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingtweets/claresiobhan
23b5676b74c9dcb7c46edf5e8e6f38cc8eea61a7
2022-02-26T22:19:14.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/claresiobhan
0
null
transformers
36,382
--- language: en thumbnail: http://www.huggingtweets.com/claresiobhan/1645913945953/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296785738978201600/J9LDndke_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">👰Clare Siobhán👰</div> <div style="text-align: center; font-size: 14px;">@claresiobhan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 👰Clare Siobhán👰. | Data | 👰Clare Siobhán👰 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 110 | | Short tweets | 504 | | Tweets kept | 2635 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vq9maap/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @claresiobhan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/375bmhre) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/375bmhre/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/claresiobhan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/zeebeecat01
150bdb14347a4bdbbbf8d1621cae6c5ed2d73260
2022-02-26T22:24:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/zeebeecat01
0
null
transformers
36,383
--- language: en thumbnail: http://www.huggingtweets.com/zeebeecat01/1645914254405/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1103665627183472642/OVXzwAk7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Shreya Mukherjee 💀🌻</div> <div style="text-align: center; font-size: 14px;">@zeebeecat01</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Shreya Mukherjee 💀🌻. | Data | Shreya Mukherjee 💀🌻 | | --- | --- | | Tweets downloaded | 731 | | Retweets | 552 | | Short tweets | 33 | | Tweets kept | 146 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kz1pvshu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zeebeecat01's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3btkttwk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3btkttwk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zeebeecat01') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jiobiala24/wav2vec2-base-checkpoint-13
5c89362023b8b279eca9db1fe7ce75fde2cdae64
2022-02-27T12:36:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-13
0
null
transformers
36,384
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-13 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-12](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-12) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1804 - Wer: 0.3809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2688 | 1.92 | 1000 | 0.6518 | 0.3692 | | 0.1944 | 3.85 | 2000 | 0.7188 | 0.3808 | | 0.1503 | 5.77 | 3000 | 0.7552 | 0.3853 | | 0.1218 | 7.69 | 4000 | 0.8155 | 0.3834 | | 0.1024 | 9.62 | 5000 | 0.8867 | 0.3779 | | 0.0874 | 11.54 | 6000 | 0.8917 | 0.3866 | | 0.0775 | 13.46 | 7000 | 1.0320 | 0.4019 | | 0.0712 | 15.38 | 8000 | 1.0110 | 0.3922 | | 0.0656 | 17.31 | 9000 | 1.0494 | 0.3885 | | 0.0578 | 19.23 | 10000 | 1.1054 | 0.3883 | | 0.053 | 21.15 | 11000 | 1.1285 | 0.3938 | | 0.0496 | 23.08 | 12000 | 1.1358 | 0.3884 | | 0.0459 | 25.0 | 13000 | 1.2062 | 0.3904 | | 0.0445 | 26.92 | 14000 | 1.1811 | 0.3830 | | 0.0414 | 28.85 | 15000 | 1.1804 | 0.3809 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jt360/mt5-small-finetuned-amazon-en-es-video-games
c616e485a6c72203248922966d17c75ba839fdd7
2022-02-27T18:43:57.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
jt360
null
jt360/mt5-small-finetuned-amazon-en-es-video-games
0
null
transformers
36,385
--- license: afl-3.0 ---
flairbook2/flairmodel
dba1512be5619b7a11812b492b1a7d37f6639188
2022-04-09T16:58:21.000Z
[ "pytorch", "flair", "token-classification" ]
token-classification
false
flairbook2
null
flairbook2/flairmodel
0
null
flair
36,386
--- tags: - flair - token-classification widget: - text: "does this work" --- ## Test model README Some test README description
mipatov/rugpt3_nb_descr
268609ceb23151c73dbf07578fc23bbc51988240
2022-02-27T23:44:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
mipatov
null
mipatov/rugpt3_nb_descr
0
null
transformers
36,387
based on `sberbank-ai/rugpt3medium_based_on_gpt2` finetuned for generate text description for notebook-devices
facebook/wav2vec2-base-sv-voxpopuli-v2
36445212b2499f538da33aba9a1475981c82ed69
2022-02-27T13:13:27.000Z
[ "pytorch", "wav2vec2", "pretraining", "sv", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-sv-voxpopuli-v2
0
null
transformers
36,388
--- language: sv tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **sv** on **16.3k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **sv**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-west_germanic-voxpopuli-v2
ba2575ca08f92658b827cb034da9ad4b5e3d56d9
2022-02-27T12:35:16.000Z
[ "pytorch", "wav2vec2", "pretraining", "west_germanic", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-west_germanic-voxpopuli-v2
0
null
transformers
36,389
--- language: west_germanic tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **west_germanic** on **66.3** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **west_germanic**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-north_germanic-voxpopuli-v2
2f451c30b28238d13b1c54bbca1f4e6c241a5304
2022-02-27T12:37:56.000Z
[ "pytorch", "wav2vec2", "pretraining", "north_germanic", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-north_germanic-voxpopuli-v2
0
null
transformers
36,390
--- language: north_germanic tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **north_germanic** on **29.9** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **north_germanic**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-slavic-voxpopuli-v2
fa95b126a53cb5b6803f6e7c3f77693525b97eff
2022-02-27T12:40:42.000Z
[ "pytorch", "wav2vec2", "pretraining", "slavic", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-slavic-voxpopuli-v2
0
null
transformers
36,391
--- language: slavic tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **slavic** on **88.99999999999999** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **slavic**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-sl-voxpopuli-v2
0411d3dd04058c9d1547ece5f29e9f107e907930
2022-02-27T13:14:49.000Z
[ "pytorch", "wav2vec2", "pretraining", "sl", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-sl-voxpopuli-v2
0
null
transformers
36,392
--- language: sl tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **sl** on **11.3k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **sl**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-mt-voxpopuli-v2
51ecaa56badc4d0aa1ad5d3d196e605e1369b31c
2022-02-27T12:51:06.000Z
[ "pytorch", "wav2vec2", "pretraining", "mt", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-mt-voxpopuli-v2
0
null
transformers
36,393
--- language: mt tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **mt** on **9.1** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **mt**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-el-voxpopuli-v2
362fc887d5d4854e0299be872e30015396a38a2c
2022-02-27T12:48:30.000Z
[ "pytorch", "wav2vec2", "pretraining", "el", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-el-voxpopuli-v2
0
null
transformers
36,394
--- language: el tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **el** on **17.7** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **el**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
spy24/autonlp-UK-to-US-600416931
eea0caf05b11c517c67f1ce46d7028cce22d3b17
2022-02-28T09:59:04.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-UK-to-US", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-UK-to-US-600416931
0
1
transformers
36,395
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-UK-to-US co2_eq_emissions: 1.113131499202784 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 600416931 - CO2 Emissions (in grams): 1.113131499202784 ## Validation Metrics - Loss: 1.8278849124908447 - Rouge1: 45.7945 - Rouge2: 8.5245 - RougeL: 45.8031 - RougeLsum: 45.9067 - Gen Len: 3.0622 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-UK-to-US-600416931 ```
spy24/autonlp-AUS-to-US-601516964
58c67b6f95797e1ba26bd30dcb6d02dd133b04ef
2022-02-28T11:21:11.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-AUS-to-US", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-AUS-to-US-601516964
0
null
transformers
36,396
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-AUS-to-US co2_eq_emissions: 3.3930796843275846 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 601516964 - CO2 Emissions (in grams): 3.3930796843275846 ## Validation Metrics - Loss: 1.9823806285858154 - Rouge1: 42.8783 - Rouge2: 7.4603 - RougeL: 42.8492 - RougeLsum: 43.0556 - Gen Len: 2.8952 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-AUS-to-US-601516964 ```
rockyend/distilbert-base-uncased-finetuned-ner
1a025a2170be4f9fd5e5cf7353729c0a1bb5b023
2022-02-28T15:45:56.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
rockyend
null
rockyend/distilbert-base-uncased-finetuned-ner
0
null
transformers
36,397
Entry not found
peterhsu/test-bert-finetuned-squad-accelerate
bd5b6de35c21408d3ca5aa77302d7a5eaa419721
2022-02-28T18:47:40.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
peterhsu
null
peterhsu/test-bert-finetuned-squad-accelerate
0
null
transformers
36,398
Entry not found
nateraw/cryptopunks-gan
1eb7a477ae62ddf76aa01598347797aa2f3a248f
2022-03-01T01:59:49.000Z
[ "tensorboard", "pytorch", "dcgan" ]
null
false
nateraw
null
nateraw/cryptopunks-gan
0
2
pytorch
36,399
--- library_name: pytorch tags: - dcgan --- # cryptopunks-gan A DCGAN trained to generate novel Cryptopunks. Check out the code by Teddy Koker [here](https://github.com/teddykoker/cryptopunks-gan). ## Generated Punks Here are some punks generated by this model: ![](fake_samples_epoch_999.png) ## Usage You can try it out yourself, or you can play with the [demo](https://huggingface.co/spaces/nateraw/cryptopunks-generator). To use it yourself - make sure you have `torch`, `torchvision`, and `huggingface_hub` installed. Then, run the following to generate a grid of 64 random punks: ```python import torch from huggingface_hub import hf_hub_download from torch import nn from torchvision.utils import save_image class Generator(nn.Module): def __init__(self, nc=4, nz=100, ngf=64): super(Generator, self).__init__() self.network = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh(), ) def forward(self, input): output = self.network(input) return output model = Generator() weights_path = hf_hub_download('nateraw/cryptopunks-gan', 'generator.pth') model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) out = model(torch.randn(64, 100, 1, 1)) save_image(out, "punks.png", normalize=True) ```