modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
sultan/BioM-ALBERT-xxlarge-PMC
047499f199be4e57c5dd131a355914131d9c9669
2021-10-12T21:24:20.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sultan
null
sultan/BioM-ALBERT-xxlarge-PMC
0
1
transformers
36,100
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description This model was pre-trained on PMC full article for further 64k steps with a batch size of 8192, where we initiate our weights from our model BioM-ALBERT-xxlarge. Thus, the total training steps for this model is 264k+64K=328K steps. The model is very large due to the number of hidden layer size (4096). In order to help researchers with limited resources to fine-tune larger models, we created an example with PyTorch XLA. PyTorch XLA (https://github.com/pytorch/xla) is a library that allows you to use PyTorch on TPU units, which is provided for free by Google Colab and Kaggle. Follow this example to work with PyTorch/XLA [Link](https://github.com/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb). In this example we achieve 80.74 micro F1 score on ChemProt task with BioM-ALBERTxxlarge . Fine-tuning takes 43 minutes for 5 epochs . Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. We also updated this repo with a couple of examples on how to fine-tune LMs on text classification and questions answering tasks such as ChemProt, SQuAD, and BioASQ. # Colab Notebook Examples BioM-ELECTRA-LARGE on NER and ChemProt Task [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_NER_and_ChemProt_Task_on_TPU.ipynb) BioM-ELECTRA-Large on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ELECTRA_Large_on_TPU.ipynb) BioM-ALBERT-xxlarge on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ALBERT_xxlarge_on_TPU.ipynb) Text Classification Task With HuggingFace Transformers and PyTorchXLA on Free TPU [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb) [COLAB]: https://colab.research.google.com/assets/colab-badge.svg # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
summaria/qa-qg-t5
6f728ef29967afed215928834452016a1d3205a7
2021-07-08T03:33:26.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
summaria
null
summaria/qa-qg-t5
0
null
transformers
36,101
Entry not found
summaria/qa-t5
d49e0508c1a9feb1e5c7d3cc182714d72398a97d
2021-07-08T05:27:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
summaria
null
summaria/qa-t5
0
null
transformers
36,102
Entry not found
sunhao666/chi-sina
616f37a556fef0821cbff3788c3d340c2842c759
2021-06-04T06:43:10.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
sunhao666
null
sunhao666/chi-sina
0
null
transformers
36,103
Entry not found
sunitha/Roberta_Custom_Squad_DS
214beb56a4bdc41df96f2721e7795a3026a128a4
2022-02-17T18:00:36.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/Roberta_Custom_Squad_DS
0
null
transformers
36,104
Entry not found
sunitha/Trial_3_Results
7c2b76614298a13fb97f964c7cbfee9d6b15b21c
2022-02-05T19:27:23.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/Trial_3_Results
0
null
transformers
36,105
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: Trial_3_Results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Trial_3_Results This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
sunitha/config_distilbert_model
b581e9479015875f7f498d74862461c4df792bb4
2022-02-16T05:56:14.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/config_distilbert_model
0
null
transformers
36,106
Entry not found
supah-hakah/distilgpt2-finetuned-wikitext2
df74e52f9e1092fbc170241c9f84810120df218c
2021-08-19T12:59:37.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-generation
false
supah-hakah
null
supah-hakah/distilgpt2-finetuned-wikitext2
0
null
transformers
36,107
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7598 | 1.0 | 2334 | 3.6654 | | 3.6321 | 2.0 | 4668 | 3.6453 | | 3.6076 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
superb-test-user/distilbert-base-uncased-finetuned-squad-d5716d28
58b7b06afd1d8d562b4ab12f3f10ff268d7c579a
2021-09-30T18:04:02.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:1910.01108", "question-answering", "license:apache-2.0" ]
question-answering
false
superb-test-user
null
superb-test-user/distilbert-base-uncased-finetuned-squad-d5716d28
0
null
null
36,108
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
suwani/distilbert-base-uncased-finetuned-ner
fc55273ae479a03be76a0e00edbe41ddce1b76b1
2021-09-29T08:22:37.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
suwani
null
suwani/distilbert-base-uncased-finetuned-ner
0
null
transformers
36,109
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2787 - Precision: 0.6403 - Recall: 0.6929 - F1: 0.6655 - Accuracy: 0.9100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3360 | 0.5596 | 0.5992 | 0.5788 | 0.8956 | | 0.4686 | 2.0 | 576 | 0.2901 | 0.6061 | 0.7231 | 0.6594 | 0.9063 | | 0.4686 | 3.0 | 864 | 0.2787 | 0.6403 | 0.6929 | 0.6655 | 0.9100 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
sv/gpt2-finetuned-nft-shakes
bd8bf83cea2742e6423364a5cf6279821fa51e69
2021-09-06T16:59:11.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
sv
null
sv/gpt2-finetuned-nft-shakes
0
null
transformers
36,110
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-finetuned-nft-shakes results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-nft-shakes This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 306 | 3.9679 | | 4.2957 | 2.0 | 612 | 3.7979 | | 4.2957 | 3.0 | 918 | 3.7566 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
svanhvit/XLMR-ENIS-finetuned-conll_ner
a6026b5240de8a1ad1b905b3b877151f62096642
2021-10-08T15:14:21.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
svanhvit
null
svanhvit/XLMR-ENIS-finetuned-conll_ner
0
null
transformers
36,111
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-conll_ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8754622097322882 - name: Recall type: recall value: 0.8425622775800712 - name: F1 type: f1 value: 0.8586972290729725 - name: Accuracy type: accuracy value: 0.9860744627305035 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-conll_ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0713 - Precision: 0.8755 - Recall: 0.8426 - F1: 0.8587 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0493 | 1.0 | 2904 | 0.0673 | 0.8588 | 0.8114 | 0.8344 | 0.9841 | | 0.0277 | 2.0 | 5808 | 0.0620 | 0.8735 | 0.8275 | 0.8499 | 0.9855 | | 0.0159 | 3.0 | 8712 | 0.0713 | 0.8755 | 0.8426 | 0.8587 | 0.9861 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
svanhvit/XLMR-ENIS-finetuned-ner-finetuned-conll_ner
c33f6f4678e06f2d0765b397cab676e6a7b73fdc
2021-10-08T13:38:38.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
svanhvit
null
svanhvit/XLMR-ENIS-finetuned-ner-finetuned-conll_ner
0
null
transformers
36,112
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner-finetuned-conll_ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8720365189221028 - name: Recall type: recall value: 0.8429893238434164 - name: F1 type: f1 value: 0.8572669368847712 - name: Accuracy type: accuracy value: 0.9857922913838598 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner-finetuned-conll_ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS-finetuned-ner](https://huggingface.co/vesteinn/XLMR-ENIS-finetuned-ner) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0770 - Precision: 0.8720 - Recall: 0.8430 - F1: 0.8573 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0461 | 1.0 | 2904 | 0.0647 | 0.8588 | 0.8107 | 0.8341 | 0.9842 | | 0.0244 | 2.0 | 5808 | 0.0704 | 0.8691 | 0.8296 | 0.8489 | 0.9849 | | 0.0132 | 3.0 | 8712 | 0.0770 | 0.8720 | 0.8430 | 0.8573 | 0.9858 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
sven-nm/roberta_classics_ner
5ad6c9015b146d1bbf281b1eb41c260ca739b945
2022-03-18T10:14:20.000Z
[ "pytorch", "roberta", "token-classification", "en", "transformers", "classics", "citation mining", "autotrain_compatible" ]
token-classification
false
sven-nm
null
sven-nm/roberta_classics_ner
0
null
transformers
36,113
--- language: - en tags: - classics - citation mining widget: - text: "Homer's Iliad opens with an invocation to the muse (1. 1)." --- ### Model and entities `roberta_classics_ner` is a domain-specific RoBERTa-based model for named entity recognition in Classical Studies. It recognises bibliographical entities, such as: | id | label | desciption | Example | | --- | ------------- | ------------------------------------------- | --------------------- | | 0 | 'O' | Out of entity | | | 1 | 'B-AAUTHOR' | Ancient authors | *Herodotus* | | 2 | 'I-AAUTHOR' | | | | 3 | 'B-AWORK' | The title of an ancient work | *Symposium*, *Aeneid* | | 4 | 'I-AWORK' | | | | 5 | 'B-REFAUWORK' | A structured reference to an ancient work | *Homer, Il.* | | 6 | 'I-REFAUWORK' | | | | 7 | 'B-REFSCOPE' | The scope of a reference | *II.1.993a30–b11* | | 8 | 'I-REFSCOPE' | | | | 9 | 'B-FRAGREF' | A reference to fragmentary texts or scholia | *Frag. 19. West* | | 10 | 'I-FRAGREF' | | | ### Example ``` B-AAUTHOR B-AWORK B-REFSCOPE Homer 's Iliad opens with an invocation to the muse ( 1. 1). ``` ### Dataset `roberta_classics_ner` was fine-tuned and evaluated on `EpiBau`, a dataset which has not been released publicly yet. It is composed of four volumes of [Structures of Epic Poetry](https://www.epische-bauformen.uni-rostock.de/), a compendium on the narrative patterns and structural elements in ancient epic. Entity counts of the `Epibau` dataset are the following: | | train-set | dev-set | test-set | | -------------- | --------- | ------- | -------- | | word count | 712462 | 125729 | 122324 | | AAUTHOR | 4436 | 1368 | 1511 | | AWORK | 3145 | 780 | 670 | | REFAUWORK | 5102 | 988 | 1209 | | REFSCOPE | 14768 | 3193 | 2847 | | FRAGREF | 266 | 29 | 33 | | total entities | 13822 | 1415 | 2419 | ### Results The model was developed in the context of experiments reported [here](http://infoscience.epfl.ch/record/291236?&ln=en).Trained and tested on `EpiBau` with a 85-15 split, the model yields a general F1 score of **.82** (micro-averages). Detailed scores are displayed below. Evaluation was performed with the [CLEF-HIPE-scorer](https://github.com/impresso/CLEF-HIPE-2020-scorer), in strict mode) | metric | AAUTHOR | AWORK | REFSCOPE | REFAUWORK | | --------- | ------- | ----- | -------- | --------- | | F1 | .819 | .796 | .863 | .756 | | Precision | .842 | .818 | .860 | .755 | | Recall | .797 | .766 | .756 | .866 | Questions, remarks, help or contribution ? Get in touch [here](https://github.com/AjaxMultiCommentary), we'll be happy to chat !
swapnil165/DialoGPT-small-Rick
a9af2357ee48f435019f9395daed3a5ec187b498
2021-10-12T02:33:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
swapnil165
null
swapnil165/DialoGPT-small-Rick
0
null
transformers
36,114
--- tags: - conversational --- # Rick DialoGPT Model
swcrazyfan/KingJamesify-T5-base-lm-adapt
9408ad17b96775c762a963a76fde26b43a712e1e
2022-02-21T04:33:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
swcrazyfan
null
swcrazyfan/KingJamesify-T5-base-lm-adapt
0
null
transformers
36,115
--- license: apache-2.0 ---
swcrazyfan/KingJamesify-T5-large
d2076e140acada81673e207666376436576d0f93
2022-03-02T10:53:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
swcrazyfan
null
swcrazyfan/KingJamesify-T5-large
0
null
transformers
36,116
--- license: apache-2.0 --- This model was fine-tuned to “translate” any English text into 17th-century style English. The name comes from the dataset used for fine-tuning. Namely, modern Bible text as input and and the famous King James Bible as the output. To test, use “kingify: “ at the beginning of anything you want to translate. Generally, it does a good job and phrases, concepts, and vocabulary that may appear in the Bible. If not, the will likely just modify the grammar and other words while leaving the word with an unknown 17th-century equivalent.
swcrazyfan/TB-125M
458bb8f18ac1f475c81e8c8e81203995dc845f98
2021-07-03T03:37:21.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TB-125M
0
null
transformers
36,117
Entry not found
swcrazyfan/TE-v3-3K
3675a9c478bf64d9046e2d3baf89558ef0d0e9e6
2021-05-28T06:38:28.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TE-v3-3K
0
null
transformers
36,118
Entry not found
swcrazyfan/TE-v3-8K
eaf75b2d5973501dce9f6ca38613d68617dfb09a
2021-05-28T12:26:43.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TE-v3-8K
0
null
transformers
36,119
Entry not found
swcrazyfan/TEFL-2.7B-10K
2067c796d6e9e7b7296c66c2a9c55647b5ea32cd
2021-06-10T03:25:02.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TEFL-2.7B-10K
0
null
transformers
36,120
Entry not found
swcrazyfan/TEFL-2.7B-15K
0a1ed9d8dbe4db525f27102833bb5ae687756f49
2021-06-10T09:20:21.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TEFL-2.7B-15K
0
null
transformers
36,121
Entry not found
swcrazyfan/TEFL-2.7B-4K
12c27deb7942c456789c80f1567e35a743329dc6
2021-06-04T15:58:19.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TEFL-2.7B-4K
0
null
transformers
36,122
Entry not found
swcrazyfan/gpt-neo-1.3B-TBL
1777406e4594978eb2b5807649002b4534bd58ea
2021-05-21T05:43:27.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/gpt-neo-1.3B-TBL
0
null
transformers
36,123
Entry not found
sybk/highkick-soonjae-v2
e40379c7be0cdbf13b63563bb7fc4c436b85628c
2021-05-31T04:23:02.000Z
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
sybk
null
sybk/highkick-soonjae-v2
0
null
transformers
36,124
Entry not found
sybk/highkick-soonjae
7a5e8be132f5c14f8ed0102a44abf7bcda9c0ae6
2021-05-23T14:38:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
sybk
null
sybk/highkick-soonjae
0
null
transformers
36,125
Entry not found
sybk/hk-backward
7c02e09ef972133e5b055f7c6a575563415d77d2
2021-05-23T14:41:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
sybk
null
sybk/hk-backward
0
null
transformers
36,126
Entry not found
sybk/hk_backward_v2
47d1a99334519c2223fd710c19d13ff60fa0e8e3
2021-05-31T04:17:16.000Z
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
sybk
null
sybk/hk_backward_v2
0
null
transformers
36,127
Entry not found
tabo/checkpoint-500-finetuned-squad
65a5245195d9ac4df0f8d21976ba6e37a0128d1d
2021-12-14T09:40:16.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
tabo
null
tabo/checkpoint-500-finetuned-squad
0
null
transformers
36,128
--- tags: - generated_from_trainer datasets: - squad model-index: - name: checkpoint-500-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint-500-finetuned-squad This model was trained from scratch on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
tadejmagajna/flair-sl-pos
ba815bf66da987b021803b26d4245c0012bfba8e
2022-01-05T15:07:06.000Z
[ "pytorch", "sl", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
tadejmagajna
null
tadejmagajna/flair-sl-pos
0
null
flair
36,129
--- tags: - flair - token-classification - sequence-tagger-model language: sl widget: - text: "Danes je lep dan." --- ## Slovene Part-of-speech (PoS) Tagging for Flair This is a Slovene part-of-speech (PoS) tagger trained on the [Slovenian UD Treebank](https://github.com/UniversalDependencies/UD_Slovenian-SSJ) using Flair NLP framework. The tagger is trained using a combination of forward Slovene contextual string embeddings, backward Slovene contextual string embeddings and classic Slovene FastText embeddings. F-score (micro): **94,96** The model is trained on a large (500+) number of different tags that described at [https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html](https://universaldependencies.org/tagset-conversion/sl-multext-uposf.html). Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("tadejmagajna/flair-sl-pos") # make example sentence sentence = Sentence("Danes je lep dan.") # predict PoS tags tagger.predict(sentence) # print sentence print(sentence) # print predicted PoS spans print('The following PoS tags are found:') # iterate over parts of speech and print for tag in sentence.get_spans('pos'): print(tag) ``` This prints out the following output: ``` Sentence: "Danes je lep dan ." [− Tokens: 5 − Token-Labels: "Danes <Rgp> je <Va-r3s-n> lep <Agpmsnn> dan <Ncmsn> . <Z>"] The following PoS tags are found: Span [1]: "Danes" [− Labels: Rgp (1.0)] Span [2]: "je" [− Labels: Va-r3s-n (1.0)] Span [3]: "lep" [− Labels: Agpmsnn (0.9999)] Span [4]: "dan" [− Labels: Ncmsn (1.0)] Span [5]: "." [− Labels: Z (1.0)] ``` --- ### Training: Script to train this model The following standard Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import UD_SLOVENIAN from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = UD_SLOVENIAN() # 2. what tag do we want to predict? tag_type = 'pos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize embeddings embedding_types = [ WordEmbeddings('sl'), FlairEmbeddings('sl-forward'), FlairEmbeddings('sl-backward'), ] embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) # 7. start training trainer.train('resources/taggers/pos-slovene', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
tal-yifat/injury-report-test
b4eb74dd2fb31972315092083fd96e3c73936d77
2022-01-18T16:24:00.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
tal-yifat
null
tal-yifat/injury-report-test
0
null
transformers
36,130
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: injury-report-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # injury-report-test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8158 | 1.0 | 6633 | 1.7368 | | 1.6984 | 2.0 | 13266 | 1.6198 | | 1.6209 | 3.0 | 19899 | 1.5800 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
tanmayplanet32/english-model
0c97244e7c9c9dcc99c1ae63773f15fb9621788b
2021-08-18T16:48:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
tanmayplanet32
null
tanmayplanet32/english-model
0
null
transformers
36,131
# Wav2vec2-Large-English Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
tareknaous/bart-daily-dialog
764f80cb4d63a591099aeda84cc0083324316341
2022-02-21T08:51:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/bart-daily-dialog
0
null
transformers
36,132
Entry not found
tau/splinter-large
3d409d83a89d3e4989743e450001275891ceb22c
2021-08-17T14:18:58.000Z
[ "pytorch", "splinter", "question-answering", "en", "arxiv:2108.05857", "transformers", "SplinterModel", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
tau
null
tau/splinter-large
0
null
transformers
36,133
--- language: en tags: - splinter - SplinterModel license: apache-2.0 --- # Splinter large model Splinter-large is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive. Note (1): This model **doesn't** contain the pretrained weights for the QASS layer (see paper for details), and therefore the QASS layer is randomly initialized upon loading it. For the model **with** those weights, see [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass). Note (2): Splinter-large was trained after the paper was released, so the results are not reported. However, this model outperforms the base model by large margins. For example, on SQuAD, the model is able to reach 80% F1 given only 128 examples, whereas the base model obtains only ~73%). See the results for Splinter-large in the Appendix of [this paper](https://arxiv.org/pdf/2108.05857.pdf). ## Model description Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions). ## Intended uses & limitations The prime use for this model is few-shot extractive QA. ## Pretraining The model was pretrained on a v3-32 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details. ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", } ```
teacookies/autonlp-more_fine_tune_24465520-26265897
bb032bc40272a9143a0edb970a50360c9223a6f1
2021-10-25T09:21:10.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265897
0
null
transformers
36,134
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 81.7509252560808 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265897 - CO2 Emissions (in grams): 81.7509252560808 ## Validation Metrics - Loss: 0.5754176378250122 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265897 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265897", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265897", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265898
32151360ca95c771a61d4fd9477ba2aa19a793f7
2021-10-25T09:22:22.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265898
0
null
transformers
36,135
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 82.78379967029494 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265898 - CO2 Emissions (in grams): 82.78379967029494 ## Validation Metrics - Loss: 0.5732079148292542 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265898 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265898", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265898", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265899
fe0b555762c07b69219b3549715004a36b78e6e6
2021-10-25T09:51:18.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265899
0
null
transformers
36,136
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 124.66009281731397 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265899 - CO2 Emissions (in grams): 124.66009281731397 ## Validation Metrics - Loss: 0.7011443972587585 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265899 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265899", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265899", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265900
3b4ddab0b5121464a518e434431a421f1a8806ac
2021-10-25T09:51:20.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265900
0
null
transformers
36,137
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 123.16270720220912 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265900 - CO2 Emissions (in grams): 123.16270720220912 ## Validation Metrics - Loss: 0.6387976408004761 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265900 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265900", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265900", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265901
3a12985355f7301a14a69160049b9d31cb631d66
2021-10-25T09:21:03.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265901
0
null
transformers
36,138
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 80.04360178242067 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265901 - CO2 Emissions (in grams): 80.04360178242067 ## Validation Metrics - Loss: 0.5551259517669678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265901 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265901", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265901", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265902
f638248b2085ae4122ffd68dc0e59cbd29b27e75
2021-10-25T09:22:00.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265902
0
null
transformers
36,139
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 83.78453848505326 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265902 - CO2 Emissions (in grams): 83.78453848505326 ## Validation Metrics - Loss: 0.5470030903816223 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265902 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265905
a54e425c9ccdfbda6bb5538c930afa79a40f7f95
2021-10-25T09:32:48.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265905
0
null
transformers
36,140
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 103.35758036182682 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265905 - CO2 Emissions (in grams): 103.35758036182682 ## Validation Metrics - Loss: 0.5223112106323242 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265905 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265905", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265905", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265906
bb232483ee29b78f2de8f5022bfece3173c3cd60
2021-10-25T09:22:17.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265906
0
null
transformers
36,141
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 83.00580438705762 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265906 - CO2 Emissions (in grams): 83.00580438705762 ## Validation Metrics - Loss: 0.5259918570518494 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265906 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265906", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265906", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265907
72cf012f02f4371b2bfb2cf479fedc2b0f7bc744
2021-10-25T09:35:36.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265907
0
null
transformers
36,142
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 103.5636883689371 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265907 - CO2 Emissions (in grams): 103.5636883689371 ## Validation Metrics - Loss: 0.6072460412979126 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265907 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265907", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265907", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265910
20b2e9f562f62d0737fc496bda40cdf69c1611c1
2021-10-25T09:21:45.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265910
0
null
transformers
36,143
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 77.64468929470678 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265910 - CO2 Emissions (in grams): 77.64468929470678 ## Validation Metrics - Loss: 5.950643062591553 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265910 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265910", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265910", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265911
a65ed505282e289f26dad288537b36fff15b83ba
2021-10-25T09:35:36.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265911
0
null
transformers
36,144
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 97.58591836686978 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265911 - CO2 Emissions (in grams): 97.58591836686978 ## Validation Metrics - Loss: 6.2383246421813965 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265911 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265911", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265911", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465514
d1619e096997b1f9d7e6f501ffc07289853c7931
2021-10-22T08:10:51.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465514
0
null
transformers
36,145
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 54.44076291568145 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465514 - CO2 Emissions (in grams): 54.44076291568145 ## Validation Metrics - Loss: 0.5786784887313843 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465514 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465514", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465514", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465515
695f210a49806aba360209a83d88c02c0546889c
2021-10-22T08:11:45.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465515
0
null
transformers
36,146
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 56.45146749922553 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465515 - CO2 Emissions (in grams): 56.45146749922553 ## Validation Metrics - Loss: 0.5932255387306213 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465515 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465517
023cd2eb233fae9a0f0d32d2fdd03b50d99152db
2021-10-22T08:13:41.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465517
0
null
transformers
36,147
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 54.75747617143382 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465517 - CO2 Emissions (in grams): 54.75747617143382 ## Validation Metrics - Loss: 0.6653227806091309 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465517 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465517", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465517", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465518
0461b9c8468eadc480518ed7f1cb4eb6d522c8bd
2021-10-22T08:04:33.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465518
0
null
transformers
36,148
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 45.268576304018616 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465518 - CO2 Emissions (in grams): 45.268576304018616 ## Validation Metrics - Loss: 0.5742421746253967 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465518 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465518", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465518", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465520
a309de3e4935a8eb401dd43c7e0534ff77120127
2021-10-22T08:13:49.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465520
0
null
transformers
36,149
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 57.56554511511173 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465520 - CO2 Emissions (in grams): 57.56554511511173 ## Validation Metrics - Loss: 0.6455457806587219 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465520 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465520", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465520", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465522
0f956f97426bf72a6fbf2d5f2cf7d93d39b62600
2021-10-22T08:05:40.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465522
0
null
transformers
36,150
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 44.450538076574766 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465522 - CO2 Emissions (in grams): 44.450538076574766 ## Validation Metrics - Loss: 0.5572742223739624 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465522 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465522", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465522", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465524
d28e4b6e2353ebcf3c5b3e77e61c70a4bfd94117
2021-10-22T08:14:00.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465524
0
null
transformers
36,151
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 58.51753681929935 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465524 - CO2 Emissions (in grams): 58.51753681929935 ## Validation Metrics - Loss: 0.5759999752044678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465524 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teleportHQ/predicto_tsx
6986d6fc1571598e64c3f37a4e16bc9df864db05
2021-05-23T13:05:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
teleportHQ
null
teleportHQ/predicto_tsx
0
null
transformers
36,152
predicto css model
tennessejoyce/titlewave-t5-small
2f07d369f98429e80bb53886855ec49a93819466
2021-03-09T04:03:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tennessejoyce
null
tennessejoyce/titlewave-t5-small
0
1
transformers
36,153
# Titlewave: t5-small This is one of two models used in the Titlewave project. See https://github.com/tennessejoyce/TitleWave for more information. This model was fine-tuned on a dataset of Stack Overflow posts, with a ConditionalGeneration head that summarizes the body of a question in order to suggest a title.
terri1102/wav2vec2-base-timit-demo-colab
63fb562fb3947297c466236feeaab4a47d9ac6cf
2021-10-29T20:57:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
terri1102
null
terri1102/wav2vec2-base-timit-demo-colab
0
null
transformers
36,154
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4275 - Wer: 0.3380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.707 | 4.0 | 500 | 2.1164 | 1.0081 | | 0.9098 | 8.0 | 1000 | 0.4767 | 0.4694 | | 0.304 | 12.0 | 1500 | 0.4063 | 0.4007 | | 0.1754 | 16.0 | 2000 | 0.4179 | 0.3640 | | 0.1355 | 20.0 | 2500 | 0.4223 | 0.3585 | | 0.1166 | 24.0 | 3000 | 0.4286 | 0.3457 | | 0.0835 | 28.0 | 3500 | 0.4275 | 0.3380 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
testorg2/larger_fork
e04d38a7d68c60a7a95390045400a555127ab033
2021-11-02T09:42:38.000Z
[ "pytorch", "bert", "feature-extraction", "multilingual", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
testorg2
null
testorg2/larger_fork
0
null
sentence-transformers
36,155
--- pipeline_tag: sentence-similarity language: multilingual license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
thesamuelpena/Dialog-medium-Sonic
07d41f5fc7bd2356b81cd5080f4a76b8f6943c23
2021-11-14T06:21:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
thesamuelpena
null
thesamuelpena/Dialog-medium-Sonic
0
null
transformers
36,156
--- tags: - conversational --- #Sonic DialoGPT Model
thingsu/koDPR_question
ae8cfb1aa3da47c61e607d404d622df3a4d8f8fa
2021-05-24T02:47:00.000Z
[ "pytorch", "bert", "transformers" ]
null
false
thingsu
null
thingsu/koDPR_question
0
3
transformers
36,157
fintuned the kykim/bert-kor-base model as a dense passage retrieval context encoder by KLUE dataset this link is experiment result. https://wandb.ai/thingsu/DenseRetrieval Corpus : Korean Wikipedia Corpus Trained Strategy : - Pretrained Model : kykim/bert-kor-base - Inverse Cloze Task : 16 Epoch, by korquad v 1.0, KLUE MRC dataset - In-batch Negatives : 12 Epoch, by KLUE MRC dataset, random sampling between Sparse Retrieval(TF-IDF) top 100 passage per each query You must need to use Korean wikipedia corpus <pre> <code> from Transformers import AutoTokenizer, BertPreTrainedModel, BertModel class BertEncoder(BertPreTrainedModel): def __init__(self, config): super(BertEncoder, self).__init__(config) self.bert = BertModel(config) self.init_weights() def forward(self, input_ids, attention_mask=None, token_type_ids=None): outputs = self.bert(input_ids, attention_mask, token_type_ids) pooled_output = outputs[1] return pooled_output model_name = 'kykim/bert-kor-base' tokenizer = AutoTokenizer.from_pretrained(model_name) q_encoder = BertEncoder.from_pretrained("thingsu/koDPR_question") p_encoder = BertEncoder.from_pretrained("thingsu/koDPR_context") </code> </pre>
thorduragust/IceBERT-finetuned-ner
2b5c72ce3fbd3dfbd9baf2aa00181373eed43e30
2021-10-05T16:36:22.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
thorduragust
null
thorduragust/IceBERT-finetuned-ner
0
null
transformers
36,158
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8948412698412699 - name: Recall type: recall value: 0.86222965706775 - name: F1 type: f1 value: 0.878232824195217 - name: Accuracy type: accuracy value: 0.9851596438314519 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0787 - Precision: 0.8948 - Recall: 0.8622 - F1: 0.8782 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0526 | 1.0 | 2904 | 0.0746 | 0.8802 | 0.8539 | 0.8668 | 0.9836 | | 0.0264 | 2.0 | 5808 | 0.0711 | 0.8777 | 0.8594 | 0.8684 | 0.9843 | | 0.0161 | 3.0 | 8712 | 0.0787 | 0.8948 | 0.8622 | 0.8782 | 0.9852 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
threem/mysquadv2_8Jan22-finetuned-squad
335fb8b9bb2da2f2c256c960bf5445ae5c79a224
2022-01-08T21:02:48.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
threem
null
threem/mysquadv2_8Jan22-finetuned-squad
0
null
transformers
36,159
Entry not found
tiennvcs/bert-base-uncased-finetuned-infovqa
cf6ab4e7f56e3b93a2a91b782f153faa2d49270a
2021-10-23T00:21:16.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/bert-base-uncased-finetuned-infovqa
0
null
transformers
36,160
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-infovqa results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-infovqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2765 | 0.23 | 1000 | 3.0678 | | 2.9987 | 0.46 | 2000 | 2.9525 | | 2.826 | 0.69 | 3000 | 2.7870 | | 2.7084 | 0.93 | 4000 | 2.7051 | | 2.1286 | 1.16 | 5000 | 2.9286 | | 2.0009 | 1.39 | 6000 | 3.1037 | | 2.0323 | 1.62 | 7000 | 2.8567 | | 1.9905 | 1.85 | 8000 | 2.8276 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.8.0+cu101 - Datasets 1.11.0 - Tokenizers 0.10.3
tiennvcs/distilbert-base-uncased-finetuned-infovqa
87d87c9534e45a152889f633979597abf2c14d89
2021-10-21T11:37:56.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/distilbert-base-uncased-finetuned-infovqa
0
null
transformers
36,161
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-infovqa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.02 | 100 | 4.7706 | | No log | 0.05 | 200 | 4.4399 | | No log | 0.07 | 300 | 3.8175 | | No log | 0.09 | 400 | 3.8306 | | 3.3071 | 0.12 | 500 | 3.6480 | | 3.3071 | 0.14 | 600 | 3.6451 | | 3.3071 | 0.16 | 700 | 3.4974 | | 3.3071 | 0.19 | 800 | 3.4686 | | 3.3071 | 0.21 | 900 | 3.4703 | | 3.5336 | 0.23 | 1000 | 3.3165 | | 3.5336 | 0.25 | 1100 | 3.3634 | | 3.5336 | 0.28 | 1200 | 3.3466 | | 3.5336 | 0.3 | 1300 | 3.3411 | | 3.5336 | 0.32 | 1400 | 3.2456 | | 3.3593 | 0.35 | 1500 | 3.3257 | | 3.3593 | 0.37 | 1600 | 3.2941 | | 3.3593 | 0.39 | 1700 | 3.2581 | | 3.3593 | 0.42 | 1800 | 3.1680 | | 3.3593 | 0.44 | 1900 | 3.2077 | | 3.2436 | 0.46 | 2000 | 3.2422 | | 3.2436 | 0.49 | 2100 | 3.2529 | | 3.2436 | 0.51 | 2200 | 3.2681 | | 3.2436 | 0.53 | 2300 | 3.1055 | | 3.2436 | 0.56 | 2400 | 3.0174 | | 3.093 | 0.58 | 2500 | 3.0608 | | 3.093 | 0.6 | 2600 | 3.0200 | | 3.093 | 0.63 | 2700 | 2.9884 | | 3.093 | 0.65 | 2800 | 3.0041 | | 3.093 | 0.67 | 2900 | 2.9700 | | 3.0087 | 0.69 | 3000 | 3.0993 | | 3.0087 | 0.72 | 3100 | 3.0499 | | 3.0087 | 0.74 | 3200 | 2.9317 | | 3.0087 | 0.76 | 3300 | 3.0817 | | 3.0087 | 0.79 | 3400 | 3.0035 | | 2.9694 | 0.81 | 3500 | 3.0850 | | 2.9694 | 0.83 | 3600 | 2.9948 | | 2.9694 | 0.86 | 3700 | 2.9874 | | 2.9694 | 0.88 | 3800 | 2.9202 | | 2.9694 | 0.9 | 3900 | 2.9322 | | 2.8277 | 0.93 | 4000 | 2.9195 | | 2.8277 | 0.95 | 4100 | 2.8638 | | 2.8277 | 0.97 | 4200 | 2.8809 | | 2.8277 | 1.0 | 4300 | 2.8872 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
timslams666/DialoGPT-small-rick
36fd2b23a143133cd7e5cab48ac420a80a2f2687
2021-10-07T14:33:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
timslams666
null
timslams666/DialoGPT-small-rick
0
null
transformers
36,162
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
tingtingyuli/wav2vec2-base-timit-demo-colab
c3f7ac2753409bbb66f10c33fc63e02f486c9a89
2021-12-21T22:26:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tingtingyuli
null
tingtingyuli/wav2vec2-base-timit-demo-colab
0
null
transformers
36,163
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 - Wer: 0.3402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6515 | 4.0 | 500 | 1.9481 | 0.9825 | | 0.8007 | 8.0 | 1000 | 0.4364 | 0.4424 | | 0.2559 | 12.0 | 1500 | 0.4188 | 0.3848 | | 0.1483 | 16.0 | 2000 | 0.4466 | 0.3524 | | 0.1151 | 20.0 | 2500 | 0.4492 | 0.3519 | | 0.0971 | 24.0 | 3000 | 0.4568 | 0.3453 | | 0.0765 | 28.0 | 3500 | 0.4371 | 0.3402 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
tknmsn/hiro
5e5fe8a1e31b1024d51b3e68cf0e63ae919b6014
2022-02-08T08:23:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
tknmsn
null
tknmsn/hiro
0
null
transformers
36,164
--- license: mit ---
tli8hf/robertabase-crf-conll2012
80bae49f499b8d3816e2d6b2703146ddb64cfc38
2021-05-20T22:31:59.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
tli8hf
null
tli8hf/robertabase-crf-conll2012
0
1
transformers
36,165
Entry not found
tli8hf/robertabase_snli
0028eca2f222b8bc7b8d61853ddb1db6e943dd7c
2020-11-04T05:42:29.000Z
[ "pytorch", "transformerfornli", "transformers" ]
null
false
tli8hf
null
tli8hf/robertabase_snli
0
null
transformers
36,166
Entry not found
tli8hf/unqover-bert-base-uncased-squad
cd14480340a8d9e2b097ffce060ad9a334dbc943
2021-05-20T07:54:17.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-bert-base-uncased-squad
0
null
transformers
36,167
Entry not found
tli8hf/unqover-bert-large-uncased-newsqa
cbfe03a219f6721e4eca85b23b67e0668e346024
2021-05-20T07:56:02.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-bert-large-uncased-newsqa
0
null
transformers
36,168
Entry not found
tli8hf/unqover-distilbert-base-uncased-newsqa
3aacdcb349218a7c63828e8ff7c65b56a2f52ed3
2020-10-19T22:41:55.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-distilbert-base-uncased-newsqa
0
null
transformers
36,169
Entry not found
tli8hf/unqover-roberta-base-newsqa
cdd1a598ff34e18e22ec252431056528430a7399
2021-05-20T22:33:16.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-roberta-base-newsqa
0
null
transformers
36,170
Entry not found
tli8hf/unqover-roberta-base-squad
6cd2c99694171feb4e5f4b730d8b7e99f2846dee
2021-05-20T22:34:19.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-roberta-base-squad
0
null
transformers
36,171
Entry not found
tlkh/code-byt5-large
dbf7ce17fc348f0b6f835a5816a2a59fa3485c5b
2021-12-01T14:00:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tlkh
null
tlkh/code-byt5-large
0
null
transformers
36,172
Entry not found
tlkh/program-synthesis-gpt-neo-1.3b
50026849cfe13d5c2544471f2f6748501b16cbb7
2021-09-28T06:55:47.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
tlkh
null
tlkh/program-synthesis-gpt-neo-1.3b
0
null
transformers
36,173
Entry not found
tlkh/t5_3B_fp16_untuned
95a914516f02292649a910e54297861c0a7dbc99
2021-11-04T17:26:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tlkh
null
tlkh/t5_3B_fp16_untuned
0
null
transformers
36,174
Entry not found
tlkh/t5_large_fp16_untuned
7ed1f270fd8424de205141d2dfdf036074c02130
2021-11-04T14:07:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tlkh
null
tlkh/t5_large_fp16_untuned
0
null
transformers
36,175
Entry not found
tmagajna/test
674999ce57135b76dd75591f8f6f8e10ae96d9b0
2022-01-07T11:57:41.000Z
[ "pytorch", "flair", "token-classification" ]
token-classification
false
tmagajna
null
tmagajna/test
0
null
flair
36,176
--- tags: - flair - token-classification widget: - text: "does this work" --- ## Test model
tmills/clinical_tempeval_roberta-base
2e194f49dc064fbabfc900590175090a7067e398
2022-03-24T03:34:16.000Z
[ "pytorch", "cnlpt", "transformers" ]
null
false
tmills
null
tmills/clinical_tempeval_roberta-base
0
null
transformers
36,177
Entry not found
tngo/DialoGPT-small-HankHill
9b0ab3a8cd5d3d0d17318c8e75c344e91ea99d25
2021-12-08T08:37:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
tngo
null
tngo/DialoGPT-small-HankHill
0
null
transformers
36,178
--- tags: - conversational --- # Hank Hill ChatBot This is an instance of microsoft/DialoGPT-small trained on a tv show character, Hank Hill from King of The Hill. The data comes from a csv file that contains character lines from the first 5 seasons of the show. Updated some portion of the data to accurately show Hank's famous pronunciation of the word "what" with "hwhat". Chat with the model: ## Issues Occasionally the chatbot just responds with just multiple '!' characters. The chatbot frequently responds with "I'm not your buddy, pal" to uncomfortable/strange prompts/messages. Still working on a fix for those known issues. ```Python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("tngo/DialoGPT-small-HankHill") model = AutoModelWithLMHead.from_pretrained("tngo/DialoGPT-small-HankHill") # Let's chat for 4 lines for step in range(4): new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) print("Hank Hill Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
tobiaslee/bert-6L-768H
930fca29dc47c73f493584ed4f2fc22fe5aa1953
2021-05-20T08:00:41.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
tobiaslee
null
tobiaslee/bert-6L-768H
0
null
transformers
36,179
Entry not found
tobiaslee/roberta-large-defteval-t6-st2
0af2060ce51896d14ae673562ffd7cef873b2c27
2021-06-27T08:16:59.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tobiaslee
null
tobiaslee/roberta-large-defteval-t6-st2
0
null
transformers
36,180
Entry not found
toiletwater/DialoGPT-medium-ironman
b1b2eca6f242dd97cf4eb812fb3a34fabbd04cf5
2021-11-27T03:00:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
toiletwater
null
toiletwater/DialoGPT-medium-ironman
0
null
transformers
36,181
--- tags: - conversational --- # Tony Stark DialoGPT Model
tom1804/hp_new
39ffc04c2c446387376d97b1957f73ec672d9ec8
2021-06-20T15:38:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
tom1804
null
tom1804/hp_new
0
null
transformers
36,182
--- tags: - conversational --- # My Awesome Model
tomascerejo12/DialoGPT-small-Rick
081837a655b533c6d67bdf4ff98ba039601c7d30
2021-08-26T22:08:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
tomascerejo12
null
tomascerejo12/DialoGPT-small-Rick
0
null
transformers
36,183
--- tags: - conversational --- # Rick DialogPT Model
tomato/electra-Question-answer
0f100ca54d1922611ec1ff50a1a371a23bcac9e5
2021-06-03T18:52:15.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tomato
null
tomato/electra-Question-answer
0
null
transformers
36,184
Entry not found
tonoadisorn/wangchanberta-ner
c2bdaf73fd3886f87b6fc7d58adb42d7ffc8aa82
2022-02-15T07:04:11.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tonoadisorn
null
tonoadisorn/wangchanberta-ner
0
null
transformers
36,185
Entry not found
tonyalves/wav2vec2-300m-teste4
d5b303e79c01d50f6778b3bd202b972155de1bbf
2022-01-09T22:57:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tonyalves
null
tonyalves/wav2vec2-300m-teste4
0
null
transformers
36,186
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-300m-teste4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300m-teste4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3276 - Wer: 0.3489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.0237 | 0.49 | 100 | 4.2075 | 0.9792 | | 3.313 | 0.98 | 200 | 3.0232 | 0.9792 | | 2.9469 | 1.47 | 300 | 2.7591 | 0.9792 | | 1.4217 | 1.96 | 400 | 0.8397 | 0.6219 | | 0.5598 | 2.45 | 500 | 0.6085 | 0.5087 | | 0.4507 | 2.94 | 600 | 0.4512 | 0.4317 | | 0.2775 | 3.43 | 700 | 0.3839 | 0.3751 | | 0.2047 | 3.92 | 800 | 0.3276 | 0.3489 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
tpri/DialoGPT-small-pa
93471bc777e03bc5312c8460bb5719fc04264ea6
2022-01-18T04:09:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
tpri
null
tpri/DialoGPT-small-pa
0
null
transformers
36,187
--- tags: - conversational --- #Parry Bot DialoGPT Model
trangdieu/roberta-large-retrained-2-epochs
1b8f99085c06be7f7d43fa0f91914055b7b14bc7
2021-06-12T19:45:22.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
trangdieu
null
trangdieu/roberta-large-retrained-2-epochs
0
null
transformers
36,188
Entry not found
trig/DialoGPT-small-harrypotter
a2bd94778a33984e9084e75bf76b829ca23386d4
2021-08-28T17:27:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trig
null
trig/DialoGPT-small-harrypotter
0
null
transformers
36,189
--- tags: - conversational --- # Harry Potter DialoGPT Model
trig/sokka-chatbot-test
f12e574232aec91178bafa5d614353b9acabb64b
2021-08-28T18:58:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trig
null
trig/sokka-chatbot-test
0
null
transformers
36,190
--- tags: - conversational --- # chatbot test with sokka from atla
trisongz/biobert_large_cased
153aeff7de5a41c0cf3ca597c5e3c3bb2f7d1280
2020-04-29T21:35:30.000Z
[ "pytorch", "transformers" ]
null
false
trisongz
null
trisongz/biobert_large_cased
0
null
transformers
36,191
Entry not found
trueto/medalbert-base-chinese
9469a48b321e6739193f347eb46a721bb426b1a0
2021-03-26T05:29:51.000Z
[ "pytorch", "albert", "transformers" ]
null
false
trueto
null
trueto/medalbert-base-chinese
0
1
transformers
36,192
# [medbert](https://github.com/trueto/medbert) 本项目开源硕士毕业论文“BERT模型在中文临床自然语言处理中的应用探索与研究”相关模型 ## 评估基准 构建了中文电子病历命名实体识别数据集(CEMRNER)、中文医学文本命名实体识别数据集(CMTNER)、 中文医学问句-问句识别数据集(CMedQQ)和中文临床文本分类数据集(CCTC)。 | **数据集** | **训练集** | **验证集** | **测试集** | **任务类型** | **语料来源** | | ---- | ---- | ---- |---- |---- |:----:| | CEMRNER | 965 | 138 | 276 | 命名实体识别 | 医渡云 | | CMTNER | 14000 | 2000 | 4000 | 命名实体识别 | CHIP2020 | | CMedQQ | 14000 | 2000 | 4000 | 句对识别 | 平安医疗 | | CCTC | 26837 | 3834 | 7669 | 句子分类 | CHIP2019 | ## 开源模型 在6.5亿字符中文临床自然语言文本语料上基于BERT模型和Albert模型预训练获得了MedBERT和MedAlbert模型。 ## 性能表现 在同等实验环境,相同训练参数和脚本下,各模型的性能表现 | **模型** | **CEMRNER** | **CMTNER** | **CMedQQ** | **CCTC** | | :---- | :----: | :----: | :----: | :----: | | [BERT](https://huggingface.co/bert-base-chinese) | 81.17% | 65.67% | 87.77% | 81.62% | | [MC-BERT](https://github.com/alibaba-research/ChineseBLUE) | 80.93% | 66.15% | 89.04% | 80.65% | | [PCL-BERT](https://code.ihub.org.cn/projects/1775) | 81.58% | 67.02% | 88.81% | 80.27% | | MedBERT | 82.29% | 66.49% | 88.32% | **81.77%** | |MedBERT-wwm| **82.60%** | 67.11% | 88.02% | 81.72% | |MedBERT-kd | 82.58% | **67.27%** | **89.34%** | 80.73% | |- | - | - | - | - | | [Albert](https://huggingface.co/voidful/albert_chinese_base) | 79.98% | 62.42% | 86.81% | 79.83% | | MedAlbert | 81.03% | 63.81% | 87.56% | 80.05% | |MedAlbert-wwm| **81.28%** | **64.12%** | **87.71%** | **80.46%** | ## 引用格式 ``` 杨飞洪,王序文,李姣.BERT模型在中文临床自然语言处理中的应用探索与研究[EB/OL].https://github.com/trueto/medbert, 2021-03. ```
ttntran/DialoGPT-small-human
88f7251ea8b30f007fd87e27fa2c806b78c50a7b
2022-02-12T16:21:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ttntran
null
ttntran/DialoGPT-small-human
0
null
transformers
36,193
--- tags: - conversational --- # Human GPT Model
tuhailong/SimCSE-RoBRTa-wwm-ext
74a3208c681cff0f8538c81258bca21abe89f202
2021-07-30T02:04:08.000Z
[ "pytorch", "bert", "transformers" ]
null
false
tuhailong
null
tuhailong/SimCSE-RoBRTa-wwm-ext
0
null
transformers
36,194
Entry not found
tuhailong/SimCSE-electra-180g-small-generator
ff394261c13af73ac65c90b27a7d48af75a29273
2021-07-30T02:08:04.000Z
[ "pytorch", "electra", "transformers" ]
null
false
tuhailong
null
tuhailong/SimCSE-electra-180g-small-generator
0
null
transformers
36,195
Entry not found
twdooley/breitbot
745b89f42de48009e0ca8f7ae302b9c13012f58d
2021-05-23T13:18:29.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
twdooley
null
twdooley/breitbot
0
null
transformers
36,196
<h1>BreitBot</h1><h2>Timothy W. Dooley</h2>___________________________________________________<h3>GitHub</h3>The GitHub for the project can be found [here](https://github.com/twdooley/election_news)<h3>Model</h3><br>This model was trained on about 16,000 headlines from Breitbart.com spannning March 2019- 11 November 2020. The purpose of this project was to better understand how strongly polarized news crafts a narrative through Natural Language Processing. The BreitBot model was specifically created to understand the 'clickbaity' nature of a Breitbart headline. Many of the results are 'reasonable' within the scope of Breitbart's production. I will leave it to the user to make further interpretation. The full project noted that over 70% of Breitbart's articles from month to month have a negative sentiment score. Subjectively, I believe this is shown through the headlines generated.<br><h3>Training</h3><br>BreitBot is a finetuned on GPT2 with about 16,000 headlines. The maximum length allowed in the tokenizer was the length of the longest headline (~50 tokens). A huge credit goes to Richard Bownes, PhD whose article ["Fine Tuning GPT-2 for Magic the Gathering Flavour Text Generation"](https://medium.com/swlh/fine-tuning-gpt-2-for-magic-the-gathering-flavour-text-generation-3bafd0f9bb93) provided incredible direction and help in training this model. It was trained using a GPU on Google Colab.
tyoc213/wav2vec2-large-xlsr-nahuatl
71c1843952f21227bc5d97d19e31a42dd8065a19
2021-04-07T02:59:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nah specifically ncj", "dataset:created a new dataset based on https://www.openslr.org/92/", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tyoc213
null
tyoc213/wav2vec2-large-xlsr-nahuatl
0
1
transformers
36,197
--- language: nah specifically ncj datasets: - created a new dataset based on https://www.openslr.org/92/ metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Nahuatl XLSR Wav2Vec 53 results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 69.11 --- # Wav2Vec2-Large-XLSR-53-ncj/nah Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Nahuatl specifically of the Nort of Puebla (ncj) using a derivate of [SLR92](https://www.openslr.org/92/), and some samples of `es` and `de` datasets from [Common Voice](https://huggingface.co/datasets/common_voice). ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") # TODO: publish nahuatl_slr92_by_sentence processor = Wav2Vec2Processor.from_pretrained("tyoc213/wav2vec2-large-xlsr-nahuatl") model = Wav2Vec2ForCTC.from_pretrained("tyoc213/wav2vec2-large-xlsr-nahuatl") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Nahuatl specifically of the Nort of Puebla (ncj) test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "{lang_id}", split="test") # TODO: publish nahuatl_slr92_by_sentence wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("tyoc213/wav2vec2-large-xlsr-nahuatl") model = Wav2Vec2ForCTC.from_pretrained("tyoc213/wav2vec2-large-xlsr-nahuatl") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\"\“\%\‘\”\�\(\)\-]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 50.95 % ## Training A derivate of [SLR92](https://www.openslr.org/92/) to be published soon.And some samples of `es` and `de` datasets from [Common Voice](https://huggingface.co/datasets/common_voice) The script used for training can be found [less60wer.ipynb](./less60wer.ipynb)
tyoyo/t5-base-TEDxJP-1body-1context
e1a95d19c7a3a5320518d5f5c085aab52050218d
2021-12-05T20:01:50.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:te_dx_jp", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-1context
0
null
transformers
36,198
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-1body-1context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-1body-1context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.5061 - Wer: 0.1990 - Mer: 0.1913 - Wil: 0.2823 - Wip: 0.7177 - Hits: 55830 - Substitutions: 6943 - Deletions: 3598 - Insertions: 2664 - Cer: 0.1763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.7277 | 1.0 | 746 | 0.5799 | 0.2384 | 0.2256 | 0.3188 | 0.6812 | 54323 | 7170 | 4878 | 3777 | 0.2371 | | 0.6278 | 2.0 | 1492 | 0.5254 | 0.2070 | 0.1997 | 0.2905 | 0.7095 | 55045 | 6885 | 4441 | 2412 | 0.1962 | | 0.5411 | 3.0 | 2238 | 0.5076 | 0.2022 | 0.1950 | 0.2858 | 0.7142 | 55413 | 6902 | 4056 | 2463 | 0.1805 | | 0.53 | 4.0 | 2984 | 0.5020 | 0.1979 | 0.1911 | 0.2814 | 0.7186 | 55599 | 6849 | 3923 | 2362 | 0.1761 | | 0.5094 | 5.0 | 3730 | 0.4999 | 0.1987 | 0.1915 | 0.2828 | 0.7172 | 55651 | 6944 | 3776 | 2465 | 0.1742 | | 0.4783 | 6.0 | 4476 | 0.5016 | 0.1985 | 0.1914 | 0.2826 | 0.7174 | 55684 | 6947 | 3740 | 2490 | 0.1753 | | 0.4479 | 7.0 | 5222 | 0.5035 | 0.1976 | 0.1905 | 0.2819 | 0.7181 | 55726 | 6961 | 3684 | 2468 | 0.1733 | | 0.4539 | 8.0 | 5968 | 0.5022 | 0.1967 | 0.1896 | 0.2807 | 0.7193 | 55795 | 6938 | 3638 | 2477 | 0.1729 | | 0.4632 | 9.0 | 6714 | 0.5034 | 0.1991 | 0.1913 | 0.2824 | 0.7176 | 55844 | 6942 | 3585 | 2687 | 0.1758 | | 0.4201 | 10.0 | 7460 | 0.5061 | 0.1990 | 0.1913 | 0.2823 | 0.7177 | 55830 | 6943 | 3598 | 2664 | 0.1763 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
tyqiangz/xlm-roberta-base-finetuned-chaii
1dc91eb2daaec34a85552996973fdade3dfac1db
2021-08-17T13:48:43.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
question-answering
false
tyqiangz
null
tyqiangz/xlm-roberta-base-finetuned-chaii
0
null
transformers
36,199
--- license: mit tags: - generated_from_trainer datasets: - null model_index: - name: xlm-roberta-base-finetuned-chaii results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-chaii This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.92 | 1.0 | 899 | 0.4482 | | 0.8055 | 2.0 | 1798 | 0.3225 | | 0.7485 | 3.0 | 2697 | 0.4651 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3