modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
uclanlp/plbart-multi_task-static
bb0218751170a541477bc83531916a8be2db651b
2022-03-02T07:40:03.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-static
0
null
transformers
36,200
Entry not found
uclanlp/plbart-refine-java-small
3806d817c9b07550770b91b260ced92979b8313d
2021-11-09T17:09:52.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-refine-java-small
0
null
transformers
36,201
Entry not found
uclanlp/plbart-single_task-en_java
fc01f16a888897fed6d7d82f670133d60c62f9b7
2022-03-02T07:05:00.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-en_java
0
null
transformers
36,202
Entry not found
uclanlp/plbart-single_task-en_ruby
8907b197998a22b4b07f0edd1eb094baba140fa6
2022-03-02T07:06:19.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-en_ruby
0
null
transformers
36,203
Entry not found
uclanlp/plbart-single_task-interpreted-generation
286e091ef6f6873e510b57d95bd2399dc81c26be
2022-03-02T07:19:36.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-interpreted-generation
0
null
transformers
36,204
Entry not found
uclanlp/plbart-single_task-js_en
e756d919dff5bb87746bf2078f69b107a3cda9fd
2022-03-02T07:02:26.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-js_en
0
null
transformers
36,205
Entry not found
uclanlp/visualbert-nlvr2-pre
09a7ebd71066465e9d909de1e1c6c0aecdbf7645
2021-05-31T11:12:02.000Z
[ "pytorch", "visual_bert", "pretraining", "transformers" ]
null
false
uclanlp
null
uclanlp/visualbert-nlvr2-pre
0
null
transformers
36,206
Entry not found
uclanlp/visualbert-vcr-coco-pre
d83463c00c8ae5d7b1b4c8ffdccf1698172f1390
2021-05-31T11:27:41.000Z
[ "pytorch", "visual_bert", "pretraining", "transformers" ]
null
false
uclanlp
null
uclanlp/visualbert-vcr-coco-pre
0
null
transformers
36,207
Entry not found
ueb1/IceBERT-finetuned-ner
23ec9afdcab6a37b42b0e1a0b1b315a321b7eac3
2021-10-05T21:28:47.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
ueb1
null
ueb1/IceBERT-finetuned-ner
0
null
transformers
36,208
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8926985693142575 - name: Recall type: recall value: 0.8648584060222249 - name: F1 type: f1 value: 0.8785579899253504 - name: Accuracy type: accuracy value: 0.985303647287535 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0799 - Precision: 0.8927 - Recall: 0.8649 - F1: 0.8786 - Accuracy: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0528 | 1.0 | 2904 | 0.0774 | 0.8784 | 0.8529 | 0.8655 | 0.9829 | | 0.0258 | 2.0 | 5808 | 0.0742 | 0.8769 | 0.8705 | 0.8737 | 0.9843 | | 0.0166 | 3.0 | 8712 | 0.0799 | 0.8927 | 0.8649 | 0.8786 | 0.9853 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
ueb1/XLMR-ENIS-finetuned-ner
266212dd5b06e3cbb0da4da23898632db2fff7a5
2021-10-05T23:19:15.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
ueb1
null
ueb1/XLMR-ENIS-finetuned-ner
0
null
transformers
36,209
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8685291700903862 - name: Recall type: recall value: 0.841273450824332 - name: F1 type: f1 value: 0.8546840706942359 - name: Accuracy type: accuracy value: 0.9824748714976435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0940 - Precision: 0.8685 - Recall: 0.8413 - F1: 0.8547 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0564 | 1.0 | 2904 | 0.0943 | 0.8505 | 0.8118 | 0.8307 | 0.9798 | | 0.0321 | 2.0 | 5808 | 0.0907 | 0.8610 | 0.8235 | 0.8419 | 0.9814 | | 0.0198 | 3.0 | 8712 | 0.0940 | 0.8685 | 0.8413 | 0.8547 | 0.9825 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
ufal/byt5-small-multilexnorm2021-da
84554f95d050988a09516c0aaf76e50d85ca7d32
2021-10-15T20:41:10.000Z
[ "pytorch", "t5", "text2text-generation", "da", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-da
0
1
transformers
36,210
--- language: da datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Danish version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ufal/byt5-small-multilexnorm2021-iden
bba2b1a6439cd3fbfd85a581100685500012d5f4
2021-10-20T12:31:18.000Z
[ "pytorch", "t5", "text2text-generation", "id", "en", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-iden
0
null
transformers
36,211
--- language: - id - en datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Indonesian-English version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ufal/byt5-small-multilexnorm2021-it
0383500e1e59ce6cea155d59de8225228cbc6ef6
2021-10-20T12:38:22.000Z
[ "pytorch", "t5", "text2text-generation", "it", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-it
0
null
transformers
36,212
--- language: it datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Italian version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ufal/byt5-small-multilexnorm2021-nl
8dbe3a718cad034e3463c8cdee483ab88382aa9f
2021-10-20T12:42:44.000Z
[ "pytorch", "t5", "text2text-generation", "nl", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-nl
0
null
transformers
36,213
--- language: nl datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Dutch version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ufal/byt5-small-multilexnorm2021-tr
0ff1dc175218b32053eb226923126779415229a9
2021-10-20T12:56:48.000Z
[ "pytorch", "t5", "text2text-generation", "tr", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-tr
0
null
transformers
36,214
--- language: tr datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Turkish version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
unicamp-dl/mt5-base-mmarco-v1
0dc8b8dd0eb9e3fa45389a6dc34c872b07292654
2022-01-05T21:30:24.000Z
[ "pytorch", "mt5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "t5", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/mt5-base-mmarco-v1
0
null
transformers
36,215
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mt5-base-mmarco-v1 is a mT5-based model fine-tuned on a multilingual translated version of MS MARCO passage dataset. This dataset, named Multi MS MARCO, is formed by 9 complete MS MARCO passages collection in 9 different languages. In the version v1, the datasets were translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT models. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-mmarco-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-mmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unknownTransformer/wav2vec2-large-xlsr-german
937e7487d86c7fc963d05fbe42efd0e31e23ae47
2021-05-11T08:43:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
unknownTransformer
null
unknownTransformer/wav2vec2-large-xlsr-german
0
null
transformers
36,216
Bad Modell for Research Purposes!
upskyy/kobart-summarization-v2
79ff33e1a4d8c5bc35684f8ff031194fb68eee82
2021-10-03T14:46:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
upskyy
null
upskyy/kobart-summarization-v2
0
1
transformers
36,217
Entry not found
usami/t5-small-finetuned-xsum
d94209374b8c500723fdf48da5a67b43729af779
2022-01-31T11:28:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
usami
null
usami/t5-small-finetuned-xsum
0
null
transformers
36,218
Entry not found
uva-irlab/quretec
1ea91bdff782f22e94439d736677d44f3d8153ff
2021-08-26T14:06:47.000Z
[ "pytorch", "bert", "en", "dataset:uva-irlab/canard_quretec", "arxiv:2005.11723", "transformers", "conversational-search", "model-index" ]
null
false
uva-irlab
null
uva-irlab/quretec
0
null
transformers
36,219
--- language: - en tags: - conversational-search # Example: audio metrics: - f1 datasets: - uva-irlab/canard_quretec model-index: - name: QuReTec results: - task: name: Conversational search # Example: Speech Recognition type: conversational # Example: automatic-speech-recognition dataset: name: CANARD # Example: Common Voice zh-CN type: canard # Example: common_voice metrics: - name: Micro F1 # Example: Test WER type: f1 # Example: wer value: 68.7 # Example: 20.90 - name: Micro Recall type: recall value: 66.1 - name: Micro Precision type: precision value: 71.5 --- # QuReTec: query resolution model QuReTeC is a query resolution model. It finds the relevant terms in a question history. It is based on **bert-large-uncased** with a max sequence length of 300. # Config details Training and evaluation was done using the following BertConfig: ```json BertConfig { "_name_or_path": "uva-irlab/quretec", "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.1, "finetuning_task": "ner", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.4, "hidden_size": 1024, "id2label": { "0": "[PAD]", "1": "O", "2": "REL", "3": "[CLS]", "4": "[SEP]" }, "initializer_range": 0.02, "intermediate_size": 4096, "label2id": { "O": 1, "REL": 2, "[CLS]": 3, "[PAD]": 0, "[SEP]": 4 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.6.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } ``` # Original authors QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723). # Contributions Uploaded by G. Scheuer ([website](https://giguruscheuer.com))
uyeongjae/distilgpt2-finetuned-wikitext2
88f0ba1a40ec5f90080628b22d249b3c0348351f
2021-09-17T05:34:07.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
uyeongjae
null
uyeongjae/distilgpt2-finetuned-wikitext2
0
null
transformers
36,220
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5974 | 1.0 | 2334 | 3.6426 | | 3.5891 | 2.0 | 4668 | 3.6426 | | 3.572 | 3.0 | 7002 | 3.6426 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.11.0 - Tokenizers 0.10.3
vachevkd/qna-t5sm-squad-v01
9e10cfa8524fb1a811b16059f70e208eacd1119a
2021-12-19T15:56:04.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vachevkd
null
vachevkd/qna-t5sm-squad-v01
0
null
transformers
36,221
Entry not found
vachonni/wav2vec2-large-xls-r-300m-da-colab
72000fcd3dd1135626794fb8393b1df6b8ce3181
2022-01-14T12:14:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vachonni
null
vachonni/wav2vec2-large-xls-r-300m-da-colab
0
null
transformers
36,222
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-da-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-da-colab This model is a fine-tuned version of [Alvenir/wav2vec2-base-da](https://huggingface.co/Alvenir/wav2vec2-base-da) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
valarikv/DialoGPT-small-bateman
b63220afe67ac1d60122612fa7fd0a3c14a4c23c
2022-01-02T17:39:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
valarikv
null
valarikv/DialoGPT-small-bateman
0
null
transformers
36,223
--- tags: - conversational --- # Patrick Bateman DialoGPT Model
valurank/paraphrase-mpnet-base-v2-offensive
bf4e92804d69c64d880b1341616ceac053100185
2022-06-08T20:33:14.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "license:other" ]
sentence-similarity
false
valurank
null
valurank/paraphrase-mpnet-base-v2-offensive
0
null
sentence-transformers
36,224
--- pipeline_tag: sentence-similarity license: other tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # valurank/paraphrase-mpnet-base-v2-offensive This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('valurank/paraphrase-mpnet-base-v2-offensive') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('valurank/paraphrase-mpnet-base-v2-offensive') model = AutoModel.from_pretrained('valurank/paraphrase-mpnet-base-v2-offensive') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=valurank/paraphrase-mpnet-base-v2-offensive) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1280 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vanadhi/bert-base-uncased-fiqa-flm-sq-flit
4198977ffd736e54399f7e331c7560b0a8c02333
2021-12-25T18:44:16.000Z
[ "pytorch", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
vanadhi
null
vanadhi/bert-base-uncased-fiqa-flm-sq-flit
0
null
transformers
36,225
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-fiqa-flm-sq-flit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-fiqa-flm-sq-flit This model is a fine-tuned version of bert-base-uncased on a custom dataset created for question answering in financial domain. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. The model was further processed as below for the specific downstream QA task. 1. Pretrained for domain adaptation with Masked language modeling (MLM) objective with the FIQA challenge Opinion-based QA task is available here - https://drive.google.com/file/d/1BlWaV-qVPfpGyJoWQJU9bXQgWCATgxEP/view 2. Pretrained with MLM objective with custom generated dataset for Banking and Finance. 3. Fine Tuned with SQuAD V2 dataset for QA task adaptation. 4. Fine Tuned with custom labeled dataset in SQuAD format for domain and task adaptation. ## Intended uses & limitations The model is intended to be used for a custom Questions Answering system in the BFSI domain. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
vanessahahn/bert-fr-de-en-ar-twitter
d69b1c2b7ab774664dc454acf8a8a92eaa521e3c
2021-06-08T19:17:23.000Z
[ "pytorch" ]
null
false
vanessahahn
null
vanessahahn/bert-fr-de-en-ar-twitter
0
null
null
36,226
Entry not found
vasilis/wav2vec2-large-xlsr-53-estonian
6009cf85eefc3b2d44cff706b15542f481c3d10a
2021-04-15T09:21:31.000Z
[ "pytorch", "wav2vec2", "et", "dataset:common_voice", "dataset:NST Estonian ASR Database", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vasilis
null
vasilis/wav2vec2-large-xlsr-53-estonian
0
null
transformers
36,227
--- language: et datasets: - common_voice - NST Estonian ASR Database metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 - Estonian by Vasilis results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice et type: common_voice args: et metrics: - name: Test WER type: wer value: 30.658320 - name: Test CER type: cer value: 5.261490 --- # Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Estonian using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "et", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") model.to("cuda") chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 30.658320 % ## Training Common voice `train` and `validation` sets were used for finetuning for 20000 steps (approx. 116 epochs). Both the `feature extractor` (`Wav2Vec2FeatureExtractor`) and `feature projection` (`Wav2Vec2FeatureProjection`) layer were frozen. Only the `encoder` layer (`Wav2Vec2EncoderStableLayerNorm`) was finetuned.
vasilis/wav2vec2-large-xlsr-53-swedish
d73c028f85b72430cb191016b519af9fa3a7f8ca
2021-04-09T12:23:23.000Z
[ "pytorch", "wav2vec2", "sv-SE", "dataset:common_voice", "dataset:NST Swedish ASR Database", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vasilis
null
vasilis/wav2vec2-large-xlsr-53-swedish
0
1
transformers
36,228
--- language: sv-SE datasets: - common_voice - NST Swedish ASR Database metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: V XLSR Wav2Vec2 Large 53 - Swedish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sv-SE type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 14.695793 - name: Test CER type: cer value: 5.264666 --- # Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) and parts for the [NST Swedish ASR Database](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-16/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") model.to("cuda") chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 14.695793 % ## Training As first step used Common Voice train dataset and parts from NST as can be found [here](https://github.com/se-asr/nst/tree/master). Part of NST where removed using this mask ```python mask = [(5 < len(x.split()) < 20) and np.average([len(entry) for entry in x.split()]) > 5 for x in dataset['transcript'].tolist()] ``` After training like this for 20000 steps the model was finetuned on all of nst data using the mask ```python mask = [(1 < len(x.split()) < 25) and np.average([len(entry) for entry in x.split()]) > 3 for x in dataset['transcript'].tolist()] ``` and all of common voice for 100000 more steps approximately 16 epochs.
vasilis/xls-r-et-V-3
c9ef0cfd07761dd95511799fbd88916d4689ae97
2022-03-24T11:54:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vasilis
null
vasilis/xls-r-et-V-3
0
null
transformers
36,229
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - et - robust-speech-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - Estonian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 52.47 - name: Test CER type: cer value: 12.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 61.02 - name: Test CER type: cer value: 21.08 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 59.23 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 69.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.8824 - Wer: 0.5246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.0296 | 2.79 | 500 | 0.8106 | 0.8029 | | 0.9339 | 5.59 | 1000 | 0.7419 | 0.7932 | | 0.8925 | 8.38 | 1500 | 0.7137 | 0.7706 | | 0.8484 | 11.17 | 2000 | 0.7020 | 0.7677 | | 0.7521 | 13.97 | 2500 | 0.7043 | 0.7375 | | 0.719 | 16.76 | 3000 | 0.6617 | 0.7428 | | 0.656 | 19.55 | 3500 | 0.6388 | 0.7202 | | 0.6085 | 22.35 | 4000 | 0.6211 | 0.6960 | | 0.5598 | 25.14 | 4500 | 0.6132 | 0.6644 | | 0.4969 | 27.93 | 5000 | 0.6065 | 0.6521 | | 0.4638 | 30.73 | 5500 | 0.6978 | 0.6577 | | 0.4385 | 33.52 | 6000 | 0.5994 | 0.6565 | | 0.396 | 36.31 | 6500 | 0.6170 | 0.6258 | | 0.3861 | 39.11 | 7000 | 0.6486 | 0.6217 | | 0.3602 | 41.9 | 7500 | 0.6508 | 0.6115 | | 0.3251 | 44.69 | 8000 | 0.7022 | 0.6253 | | 0.3197 | 47.49 | 8500 | 0.7706 | 0.6215 | | 0.3013 | 50.28 | 9000 | 0.6419 | 0.5999 | | 0.2813 | 53.07 | 9500 | 0.6908 | 0.5959 | | 0.286 | 55.87 | 10000 | 0.7151 | 0.5916 | | 0.2645 | 58.66 | 10500 | 0.7181 | 0.5860 | | 0.2535 | 61.45 | 11000 | 0.7877 | 0.5979 | | 0.247 | 64.25 | 11500 | 0.8199 | 0.6129 | | 0.2412 | 67.04 | 12000 | 0.7679 | 0.5884 | | 0.2404 | 69.83 | 12500 | 0.7266 | 0.5816 | | 0.2293 | 72.63 | 13000 | 0.7928 | 0.5795 | | 0.2176 | 75.42 | 13500 | 0.7916 | 0.5846 | | 0.2143 | 78.21 | 14000 | 0.7954 | 0.5765 | | 0.2185 | 81.01 | 14500 | 0.8317 | 0.5907 | | 0.2057 | 83.8 | 15000 | 0.8016 | 0.5851 | | 0.1895 | 86.59 | 15500 | 0.8080 | 0.5679 | | 0.1883 | 89.39 | 16000 | 0.8103 | 0.5712 | | 0.1802 | 92.18 | 16500 | 0.8383 | 0.5644 | | 0.1826 | 94.97 | 17000 | 0.8799 | 0.5657 | | 0.1717 | 97.77 | 17500 | 0.8620 | 0.5709 | | 0.1701 | 100.56 | 18000 | 0.8717 | 0.5662 | | 0.1623 | 103.35 | 18500 | 0.8534 | 0.5594 | | 0.158 | 106.15 | 19000 | 0.8595 | 0.5546 | | 0.1508 | 108.94 | 19500 | 0.8574 | 0.5545 | | 0.142 | 111.73 | 20000 | 0.8671 | 0.5537 | | 0.1395 | 114.53 | 20500 | 0.8436 | 0.5525 | | 0.1373 | 117.32 | 21000 | 0.8808 | 0.5482 | | 0.1338 | 120.11 | 21500 | 0.9024 | 0.5418 | | 0.1278 | 122.91 | 22000 | 0.9143 | 0.5409 | | 0.1207 | 125.7 | 22500 | 0.8917 | 0.5358 | | 0.1203 | 128.49 | 23000 | 0.9041 | 0.5341 | | 0.1083 | 131.28 | 23500 | 0.8884 | 0.5341 | | 0.1147 | 134.08 | 24000 | 0.8910 | 0.5255 | | 0.1129 | 136.87 | 24500 | 0.8826 | 0.5241 | | 0.1029 | 139.66 | 25000 | 0.8824 | 0.5246 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
vasudevgupta/abnet-iwslt14-de-en
1e179e7b78c093e9df7fdedc2cc5185d8be2495b
2021-02-03T07:18:19.000Z
[ "pytorch", "transformers" ]
null
false
vasudevgupta
null
vasudevgupta/abnet-iwslt14-de-en
0
null
transformers
36,230
Entry not found
verissimomanoel/RobertaTwitterBR
acd7f90b385f70226df04e13ff12eb8838cd9316
2021-05-20T22:53:32.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
verissimomanoel
null
verissimomanoel/RobertaTwitterBR
0
null
transformers
36,231
### Twitter RoBERTa BR This is a RoBERTa Twitter in Portuguese model trained on ~7M tweets. The results will be posted in the future. ### Example of using ``` tokenizer = AutoTokenizer.from_pretrained("verissimomanoel/RobertaTwitterBR") model = AutoModel.from_pretrained("verissimomanoel/RobertaTwitterBR") ```
vesteinn/IceBERT-finetuned-ner
2ce6b46533b4fc7b526ea1bf5220ef08a714a502
2021-09-29T16:17:30.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
vesteinn
null
vesteinn/IceBERT-finetuned-ner
0
null
transformers
36,232
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8870349771350884 - name: Recall type: recall value: 0.8575696021029992 - name: F1 type: f1 value: 0.8720534629404617 - name: Accuracy type: accuracy value: 0.9848236357672584 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0815 - Precision: 0.8870 - Recall: 0.8576 - F1: 0.8721 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0536 | 1.0 | 2904 | 0.0749 | 0.8749 | 0.8426 | 0.8585 | 0.9831 | | 0.0269 | 2.0 | 5808 | 0.0754 | 0.8734 | 0.8471 | 0.8600 | 0.9840 | | 0.0173 | 3.0 | 8712 | 0.0815 | 0.8870 | 0.8576 | 0.8721 | 0.9848 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
vesteinn/IceBERT-ner
2e2adcc9c0ce8a16ad2a675206962396140fdda2
2021-09-29T09:35:31.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
vesteinn
null
vesteinn/IceBERT-ner
0
null
transformers
36,233
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy widget: - text: Systurnar Guðrún og Monique átu einar á McDonalds og horfðu á Stöð 2, þar glitti í Bruce Willis leika í Die Hard 2. model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.9351994710160899 - name: Recall type: recall value: 0.9440427188786294 - name: F1 type: f1 value: 0.9396002878813043 - name: Accuracy type: accuracy value: 0.9920330921021648 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0347 - Precision: 0.9352 - Recall: 0.9440 - F1: 0.9396 - Accuracy: 0.9920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0568 | 1.0 | 2929 | 0.0386 | 0.9114 | 0.9162 | 0.9138 | 0.9897 | | 0.0325 | 2.0 | 5858 | 0.0325 | 0.9300 | 0.9363 | 0.9331 | 0.9912 | | 0.0184 | 3.0 | 8787 | 0.0347 | 0.9352 | 0.9440 | 0.9396 | 0.9920 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
victen/xlm-roberta-base-finetuned-panx-de
e648ee12e05661e9a38a8886504d3758d9f3e7a5
2022-02-09T10:49:12.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
victen
null
victen/xlm-roberta-base-finetuned-panx-de
0
null
transformers
36,234
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8591260810195721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.257 | 1.0 | 525 | 0.1512 | 0.8302 | | 0.1305 | 2.0 | 1050 | 0.1401 | 0.8447 | | 0.0817 | 3.0 | 1575 | 0.1352 | 0.8591 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
vijote/DialoGPT-small-Morty
368986d7b4fcedfa61349367c4d0bd68985ae3e5
2022-01-09T15:09:05.000Z
[ "pytorch", "conversational" ]
conversational
false
vijote
null
vijote/DialoGPT-small-Morty
0
null
null
36,235
--- tags: - conversational --- # Morty DialoGPT Model test
vincentlu073/legal-zh-multi-span-bio
9fd22d974cf7f68e2d89b013102cea28ae8658a1
2021-05-20T09:00:04.000Z
[ "pytorch", "bert", "transformers" ]
null
false
vincentlu073
null
vincentlu073/legal-zh-multi-span-bio
0
null
transformers
36,236
Entry not found
visualjoyce/transformers4vl-vilbert-mt
abbc7f5c86c7f54be82af98af7a1eb178b568b0e
2021-06-22T13:08:27.000Z
[ "pytorch", "vilbert", "transformers" ]
null
false
visualjoyce
null
visualjoyce/transformers4vl-vilbert-mt
0
2
transformers
36,237
Entry not found
visualjoyce/transformers4vl-vilbert
8be5d1a7bfed1c31736ca767c5acda9b53979c25
2021-06-22T12:56:49.000Z
[ "pytorch", "vilbert", "transformers" ]
null
false
visualjoyce
null
visualjoyce/transformers4vl-vilbert
0
1
transformers
36,238
Entry not found
vitusya/distilbert-base-uncased-finetuned-squad
4853079eae9296e857898071ce98d077f1cdb7b9
2021-11-23T21:15:03.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
vitusya
null
vitusya/distilbert-base-uncased-finetuned-squad
0
null
transformers
36,239
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2137 | 1.0 | 5533 | 1.1625 | | 0.9496 | 2.0 | 11066 | 1.1263 | | 0.7591 | 3.0 | 16599 | 1.1610 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
vivek-g-2009/DialoGPT-medium-harrypotter
bea55e2fd901385b1bb7794767e593ca924e2981
2021-08-27T08:16:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
vivek-g-2009
null
vivek-g-2009/DialoGPT-medium-harrypotter
0
null
transformers
36,240
--- tags: - conversational --- # Harry Potter DialoGPT Model
vkorennoy/gpt2_first
62dcd17adf4b96129fa85cdd57383ee0bc699cda
2021-11-21T20:38:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
vkorennoy
null
vkorennoy/gpt2_first
0
null
transformers
36,241
Entry not found
vkrishnamoorthy/distilbert-base-uncased-finetuned-squad
9ce50e66c3a3ed067e99de500fbde2e76b6a6449
2022-02-28T19:27:07.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
vkrishnamoorthy
null
vkrishnamoorthy/distilbert-base-uncased-finetuned-squad
0
null
transformers
36,242
Entry not found
vlco-o/NLboto_o-aki-dialogpt
a72a8d1dc8abf973c6720a9b0aa54a26254dfdf7
2021-12-14T17:08:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
vlco-o
null
vlco-o/NLboto_o-aki-dialogpt
0
null
transformers
36,243
--- tags: - conversational --- # NLboto_o aki
vlco-o/NLboto_o-small-dialogpt
6f28022ec0f456334edf06cd17d824685e9bfd89
2021-12-10T23:29:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
vlco-o
null
vlco-o/NLboto_o-small-dialogpt
0
null
transformers
36,244
--- tags: - conversational --- # NLboto_o model
vneralla/xlrs-53-finnish
cdac12fbcbee86ac8a447793db62db9016818e53
2022-03-08T08:59:34.000Z
[ "pytorch", "jax", "wav2vec2", "pretraining", "multilingual", "dataset:common_voice", "arxiv:2006.13979", "transformers", "speech", "automatic-speech-recognition", "license:apache-2.0" ]
automatic-speech-recognition
false
vneralla
null
vneralla/xlrs-53-finnish
0
null
transformers
36,245
--- language: multilingual datasets: - common_voice tags: - speech - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-XLSR-53 [Facebook's XLSR-Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.13979) Authors: Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli **Abstract** This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb) for more information on how to fine-tune the model. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xlsr_wav2vec2.png)
vocab-transformers/dense_encoder-msmarco-bert-base-word2vec256k_emb_updated
1474220b3b21ae781efeb3398e74455eb4409446
2022-02-21T20:13:25.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
vocab-transformers
null
vocab-transformers/dense_encoder-msmarco-bert-base-word2vec256k_emb_updated
0
null
sentence-transformers
36,246
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # dense_encoder-msmarco-bert-base-word2vec256k **Note: Token embeddings where updated!** This model is based on [msmarco-word2vec256000-bert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-bert-base-uncased) with a 256k sized vocabulary initialized with word2vec. It has been trained on MS MARCO using [MarginMSELoss](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_margin-mse.py). See the train_script.py in this repository. Performance: - MS MARCO dev: (evaluating) (MRR@10) - TREC-DL 2019: 67.56 (nDCG@10) - TREC-DL 2020: 71.26 (nDCG@10) ## Usage (Sentence-Transformers) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15716 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_230k
77b49f5e2fd91fdd9f4e849a8823260dcda4c9fc
2022-02-22T08:25:00.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_230k
0
null
transformers
36,247
# Model This model is based on [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. This model has been trained with MLM on the MS MARCO corpus collection for 230k steps. See train_mlm.py for the train script. It was run on 2x V100 GPUs. The word embedding matrix was frozen.
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
9b4adde48c4980358bd462ffc7e51597b5c7095f
2022-02-21T20:12:43.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
0
null
transformers
36,248
# Model This model is based on [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. This model has been trained with MLM on the MS MARCO corpus collection for 785k steps. See train_mlm.py for the train script. It was run on 2x V100 GPUs. **Note: Token embeddings where updated!**
voidful/part-10000
3ff430ce7244991b0ab9696273d9efe5caa68a0d
2022-01-22T16:59:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/part-10000
0
null
transformers
36,249
Entry not found
voidful/part-1100000
0019b95784fc1d048db441b1d3d5982336cd91f3
2022-03-04T15:59:29.000Z
[ "pytorch", "bart", "feature-extraction", "transformers", "license:afl-3.0" ]
feature-extraction
false
voidful
null
voidful/part-1100000
0
null
transformers
36,250
--- license: afl-3.0 ---
vppvgit/Finetuned
39be53d68647763f27403bada83e9443f8553350
2021-11-18T15:17:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
vppvgit
null
vppvgit/Finetuned
0
null
transformers
36,251
--- tags: - generated_from_trainer datasets: - null model-index: - name: BibliBERT results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BibliBERT This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.5764 | 1.0 | 16528 | 1.5214 | | 1.4572 | 2.0 | 33056 | 1.4201 | | 1.3787 | 3.0 | 49584 | 1.3728 | | 1.3451 | 4.0 | 66112 | 1.3245 | | 1.3066 | 5.0 | 82640 | 1.2614 | | 1.2447 | 6.0 | 99168 | 1.2333 | | 1.2172 | 7.0 | 115696 | 1.2149 | | 1.2079 | 8.0 | 132224 | 1.1853 | | 1.2167 | 9.0 | 148752 | 1.1586 | | 1.2056 | 10.0 | 165280 | 1.1503 | | 1.1307 | 11.0 | 181808 | 1.1224 | | 1.1689 | 12.0 | 198336 | 1.1074 | | 1.1007 | 13.0 | 214864 | 1.0924 | | 1.0901 | 14.0 | 231392 | 1.0659 | | 1.0667 | 15.0 | 247920 | 1.0650 | | 1.0434 | 16.0 | 264448 | 1.0362 | | 1.0333 | 17.0 | 280976 | 1.0250 | | 1.0342 | 18.0 | 297504 | 1.0198 | | 1.0059 | 19.0 | 314032 | 0.9950 | | 0.9719 | 20.0 | 330560 | 0.9836 | | 0.9863 | 21.0 | 347088 | 0.9873 | | 0.9781 | 22.0 | 363616 | 0.9724 | | 0.9369 | 23.0 | 380144 | 0.9599 | | 0.9578 | 24.0 | 396672 | 0.9557 | | 0.9253 | 25.0 | 413200 | 0.9400 | | 0.9441 | 26.0 | 429728 | 0.9222 | | 0.9138 | 27.0 | 446256 | 0.9140 | | 0.882 | 28.0 | 462784 | 0.9045 | | 0.864 | 29.0 | 479312 | 0.8880 | | 0.8632 | 30.0 | 495840 | 0.9023 | | 0.8342 | 32.0 | 528896 | 0.8740 | | 0.8037 | 34.0 | 561952 | 0.8647 | | 0.8119 | 37.0 | 611536 | 0.8358 | | 0.8011 | 38.0 | 628064 | 0.8252 | | 0.786 | 39.0 | 644592 | 0.8228 | | 0.7697 | 41.0 | 677648 | 0.8138 | | 0.7485 | 42.0 | 694176 | 0.8104 | | 0.7689 | 43.0 | 710704 | 0.8018 | | 0.7401 | 45.0 | 743760 | 0.7957 | | 0.7031 | 47.0 | 776816 | 0.7726 | | 0.7578 | 48.0 | 793344 | 0.7864 | | 0.7298 | 49.0 | 809872 | 0.7775 | | 0.707 | 50.0 | 826400 | 0.7784 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
vr25/fin_RoBERTa-v1
4218aaa689c120e8f20bfaaa0f818d84f4e3a751
2021-05-20T23:06:21.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vr25
null
vr25/fin_RoBERTa-v1
0
null
transformers
36,252
Entry not found
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt
41d4286f142fef9dc5d5ffad1711ea963e22b525
2022-01-18T17:45:15.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt
0
null
transformers
36,253
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 57.92% upon initialization so that sparsity over all linear layers of bert-base is at 90%. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.4447 eval_f1 = 87.7678 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-20000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt
c29e0005529372bdd374205eeff551dbf01956c9
2022-02-08T22:58:30.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt
0
null
transformers
36,254
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 2. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.7001 eval_f1 = 87.9777 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt/raw/main/nncf_bert_squad_qat.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-26750 \ --nncf_config $MODELROOT/nncf_bert_squad_qat.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` ### tile-alignment to evaluate tile-alignment checkpoint, add ```--tile_alignment``` and point ```--qat_checkpoint``` to checkpoint with 'tilealigned' postfix. Use branch ```tld-poc``` with commit id ```c525c52cq```
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt
37ca5f0ad8a7c8000512aa5e7e3776b68803debd
2022-01-09T03:11:21.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2109.04838", "transformers", "autotrain_compatible" ]
question-answering
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt
0
null
transformers
36,255
This model is a downstream fine-tuning of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid). "filled" means unstructured fine-grained sparsified parameters are allowed to learn during fine-tuning. "lt" means distillation of larger model as teacher, i.e. ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.3311 eval_f1 = 87.69 eval_samples = 10784 ``` This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified). To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 3. # Eval The model cannot be evaluated with HF QA example out-of-the-box as the final dimension of the model architecture has been realized. Follow the custom setup below. ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} ``` This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt ``` Add ```--optimize_model_before_eval``` and ```--optimized_checkpoint /path/to/clone``` during evaluation. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-cropped WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --optimized_checkpoint /path/to/clone/bert-base-squadv1-block-pruning-hybrid-filled-lt \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-block-pruning-hybrid
346f622a12af43f4b8ad86a56ef209fc9e4788c4
2022-01-09T03:12:11.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2109.04838", "transformers", "autotrain_compatible" ]
question-answering
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid
0
null
transformers
36,256
BERT-base tuned for Squadv1.1 is pruned with movement pruning algorithm in hybrid fashion, i.e. 32x32 block for self-attention layers, per-dimension grain size for ffn layers. ``` eval_exact_match = 78.5241 eval_f1 = 86.4138 eval_samples = 10784 ``` This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified). To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 2. # Eval The model can be evaluated out-of-the-box with HF QA example. Note that only pruned self-attention heads are discarded where pruned ffn dimension are sparsified instead of removal. Verified in v4.13.0, v4.9.1. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` If the intent is to observe inference acceleration, the pruned structure in the model must be "cropped"/discarded. Follow the custom setup below. ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} ``` Add ```--optimize_model_before_eval``` during evaluation. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-cropped WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-uncased-squadv1-85.4-sparse
6b75846ad406107255044e5b4ed78290d215c506
2021-11-11T18:13:01.000Z
[ "pytorch", "tf", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-uncased-squadv1-85.4-sparse
0
null
transformers
36,257
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
vvn/en-to-it-marianmt
7eca316f445ea1fd14ab7a5bdc05c20b97a6a68c
2021-07-27T16:50:28.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vvn
null
vvn/en-to-it-marianmt
0
null
transformers
36,258
Fine-Tuned MarianMT translation model for translating text from English to Italian. Checkpoint of pre-trained model = Helsinki-NLP/opus-mt-en-it. Trained using custom training loop with PyTorch on Colab for 2 epochs. Link to the GitHub repo containing Google Colab notebook: https://github.com/vanadnarayane26/Maverick_2.0_Translation_layer/blob/main/En_to_it_marianmt.ipynb
w11wo/lao-roberta-base-pos-tagger
65f510328cf3faf09034dc417ad5257492ba03c4
2021-12-07T05:14:57.000Z
[ "pytorch", "roberta", "token-classification", "lo", "arxiv:1907.11692", "transformers", "lao-roberta-base-pos-tagger", "license:mit", "autotrain_compatible" ]
token-classification
false
w11wo
null
w11wo/lao-roberta-base-pos-tagger
0
null
transformers
36,259
--- language: lo tags: - lao-roberta-base-pos-tagger license: mit widget: - text: "ຮ້ອງ ມ່ວນ ແທ້ ສຽງດີ ອິຫຼີ" --- ## Lao RoBERTa Base POS Tagger Lao RoBERTa Base POS Tagger is a part-of-speech token-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Lao RoBERTa Base](https://huggingface.co/w11wo/lao-roberta-base) model, which is then fine-tuned on the [`Yunshan Cup 2020`](https://github.com/GKLMIP/Yunshan-Cup-2020) dataset consisting of tag-labelled Lao corpus. After training, the model achieved an evaluation accuracy of 83.14%. On the benchmark test set, the model achieved an accuracy of 83.30%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ----------------------------- | ------- | ------------ | ------------------------------- | | `lao-roberta-base-pos-tagger` | 124M | RoBERTa Base | `Yunshan Cup 2020` | ## Evaluation Results The model was trained for 15 epochs, with a batch size of 8, a learning rate of 5e-5, with cosine annealing to 0. The best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | | ----- | ------------- | --------------- | -------- | | 1 | 1.026100 | 0.733780 | 0.746021 | | 2 | 0.646900 | 0.659625 | 0.775688 | | 3 | 0.500400 | 0.576214 | 0.798523 | | 4 | 0.385400 | 0.606503 | 0.805269 | | 5 | 0.288000 | 0.652493 | 0.809092 | | 6 | 0.204600 | 0.671678 | 0.815216 | | 7 | 0.145200 | 0.704693 | 0.818209 | | 8 | 0.098700 | 0.830561 | 0.816998 | | 9 | 0.066100 | 0.883329 | 0.825232 | | 10 | 0.043900 | 0.933347 | 0.825664 | | 11 | 0.027200 | 0.992055 | 0.828449 | | 12 | 0.017300 | 1.054874 | 0.830819 | | 13 | 0.011500 | 1.081638 | 0.830940 | | 14 | 0.008500 | 1.094252 | 0.831304 | | 15 | 0.007400 | 1.097428 | 0.831442 | ## How to Use ### As Token Classifier ```python from transformers import pipeline pretrained_name = "w11wo/lao-roberta-base-pos-tagger" nlp = pipeline( "token-classification", model=pretrained_name, tokenizer=pretrained_name ) nlp("ຮ້ອງ ມ່ວນ ແທ້ ສຽງດີ ອິຫຼີ") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `Yunshan Cup 2020` dataset that may be carried over into the results of this model. ## Author Lao RoBERTa Base POS Tagger was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
wadeed/DialogGPT-small-chandlerbingg
b5182c72f0273c99e1f7b20fb71420c4d5d548bc
2021-12-10T12:25:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
wadeed
null
wadeed/DialogGPT-small-chandlerbingg
0
null
transformers
36,260
--- tags: - conversational --- #Chandler Bing DialoGPT Model
wbmitcast/mymode03
aaf3ad3feabb8c2a5681d045ba4b8b7879853760
2021-10-06T09:04:11.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wbmitcast
null
wbmitcast/mymode03
0
null
transformers
36,261
Entry not found
wbmitcast/mymodel04
598d680943405e4b28625b74fb921a8fb05ca91a
2021-10-06T11:24:48.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wbmitcast
null
wbmitcast/mymodel04
0
null
transformers
36,262
Entry not found
we-are-groot/narrative_gen
f217239cf6bae7e38159d1d2f0fe089e57e5b8cb
2022-02-16T16:18:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
we-are-groot
null
we-are-groot/narrative_gen
0
null
transformers
36,263
Entry not found
webshell/wav2vec2-base-fine-tune-timit
10c2d7c65c293fb248f34bb8db0ce5b1f84ee8d2
2021-12-10T09:58:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
webshell
null
webshell/wav2vec2-base-fine-tune-timit
0
null
transformers
36,264
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-fine-tune-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-fine-tune-timit This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4451 - Wer: 0.3422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6487 | 4.0 | 500 | 1.9065 | 1.0411 | | 0.8742 | 8.0 | 1000 | 0.4658 | 0.4720 | | 0.3084 | 12.0 | 1500 | 0.4367 | 0.4010 | | 0.1825 | 16.0 | 2000 | 0.4403 | 0.3817 | | 0.1334 | 20.0 | 2500 | 0.4577 | 0.3625 | | 0.1114 | 24.0 | 3000 | 0.4456 | 0.3537 | | 0.0835 | 28.0 | 3500 | 0.4451 | 0.3422 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
wenrenbutong/model_name1
cd0b3a11795e665b87a28fbabc8bb4d9bbee7e08
2021-07-18T09:41:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wenrenbutong
null
wenrenbutong/model_name1
0
null
transformers
36,265
Entry not found
wesam266/wav2vec2-large-xlsr-53_english
738cc7d6c99790623a74148847ebbc1c7ca1482c
2022-01-23T02:40:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
wesam266
null
wesam266/wav2vec2-large-xlsr-53_english
0
null
transformers
36,266
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_english This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2620 - Wer: 0.1916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0506 | 0.12 | 250 | 3.0206 | 0.9999 | | 1.4381 | 0.25 | 500 | 1.0267 | 0.6323 | | 1.0903 | 0.37 | 750 | 0.5841 | 0.3704 | | 1.0384 | 0.5 | 1000 | 0.5156 | 0.3348 | | 0.9658 | 0.62 | 1250 | 0.4721 | 0.3221 | | 0.9184 | 0.74 | 1500 | 0.4301 | 0.3213 | | 0.8939 | 0.87 | 1750 | 0.4188 | 0.2884 | | 0.9051 | 0.99 | 2000 | 0.3852 | 0.2807 | | 0.563 | 1.12 | 2250 | 0.3752 | 0.2804 | | 0.6122 | 1.24 | 2500 | 0.3745 | 0.2732 | | 0.6213 | 1.36 | 2750 | 0.3671 | 0.2575 | | 0.5839 | 1.49 | 3000 | 0.3560 | 0.2578 | | 0.615 | 1.61 | 3250 | 0.3555 | 0.2536 | | 0.5557 | 1.74 | 3500 | 0.3511 | 0.2485 | | 0.5497 | 1.86 | 3750 | 0.3364 | 0.2425 | | 0.5412 | 1.98 | 4000 | 0.3253 | 0.2418 | | 0.2834 | 2.11 | 4250 | 0.3293 | 0.2322 | | 0.2723 | 2.23 | 4500 | 0.3157 | 0.2322 | | 0.2713 | 2.35 | 4750 | 0.3148 | 0.2304 | | 0.2878 | 2.48 | 5000 | 0.3143 | 0.2286 | | 0.2776 | 2.6 | 5250 | 0.3122 | 0.2250 | | 0.2553 | 2.73 | 5500 | 0.3003 | 0.2234 | | 0.278 | 2.85 | 5750 | 0.2973 | 0.2198 | | 0.2445 | 2.97 | 6000 | 0.2938 | 0.2180 | | 0.4361 | 3.1 | 6250 | 0.2914 | 0.2132 | | 0.3979 | 3.22 | 6500 | 0.2916 | 0.2125 | | 0.4221 | 3.35 | 6750 | 0.2879 | 0.2113 | | 0.4051 | 3.47 | 7000 | 0.2819 | 0.2100 | | 0.4218 | 3.59 | 7250 | 0.2812 | 0.2072 | | 0.4201 | 3.72 | 7500 | 0.2772 | 0.2055 | | 0.3515 | 3.84 | 7750 | 0.2747 | 0.2031 | | 0.4021 | 3.97 | 8000 | 0.2702 | 0.2018 | | 0.4304 | 4.09 | 8250 | 0.2721 | 0.2007 | | 0.3923 | 4.21 | 8500 | 0.2689 | 0.1991 | | 0.3824 | 4.34 | 8750 | 0.2692 | 0.1980 | | 0.3743 | 4.46 | 9000 | 0.2718 | 0.1950 | | 0.3771 | 4.59 | 9250 | 0.2653 | 0.1950 | | 0.4048 | 4.71 | 9500 | 0.2649 | 0.1934 | | 0.3539 | 4.83 | 9750 | 0.2638 | 0.1919 | | 0.3498 | 4.96 | 10000 | 0.2620 | 0.1916 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
widyanto/IndoT5-small-qg-hl
60f5639a9f45b70fb350c45e3210a70f5803be7a
2021-08-23T13:11:34.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
widyanto
null
widyanto/IndoT5-small-qg-hl
0
null
transformers
36,267
Entry not found
wiktor7245/finetuning_m2m_de_pl
ac8fed1f13f8cf04d617154764124bc93d388779
2021-10-03T15:15:24.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
wiktor7245
null
wiktor7245/finetuning_m2m_de_pl
0
null
transformers
36,268
Entry not found
willemjan/indo1
90d31d516e910064681b47a5b8739efbe9f36fc5
2022-02-07T09:14:26.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-nc-3.0", "autotrain_compatible" ]
fill-mask
false
willemjan
null
willemjan/indo1
0
null
transformers
36,269
--- license: cc-by-nc-3.0 ---
willemjan/indo2
8ed69bbbdeee9c29de3cbac0c3671c84cd5ee90d
2022-02-07T09:17:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-nc-3.0", "autotrain_compatible" ]
fill-mask
false
willemjan
null
willemjan/indo2
0
null
transformers
36,270
--- license: cc-by-nc-3.0 ---
willemjan/nl1
42a023aa1153bcfca58eea52da16348d65337e2b
2022-02-07T08:44:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-nc-3.0", "autotrain_compatible" ]
fill-mask
false
willemjan
null
willemjan/nl1
0
null
transformers
36,271
--- license: cc-by-nc-3.0 ---
willemjan/spa
6707db380d441eb99d1911f99316515f406a0167
2022-02-07T09:21:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-nc-sa-3.0", "autotrain_compatible" ]
fill-mask
false
willemjan
null
willemjan/spa
0
null
transformers
36,272
--- license: cc-by-nc-sa-3.0 ---
wjc123/qa_finetuned
19f64440ea49491e85416d203c371fed6bc346d0
2021-12-12T08:21:12.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
wjc123
null
wjc123/qa_finetuned
0
null
transformers
36,273
Entry not found
wjching/DialoGPT-small-ricksanchez
5bae126e91ee1688d0f702c94acba7ec64978103
2021-08-28T07:41:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
wjching
null
wjching/DialoGPT-small-ricksanchez
0
null
transformers
36,274
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
wolfrage89/annual_report_translation_id_en
a059bd9165b64b2cbaf050d73d17817021f0c17c
2022-01-27T13:01:46.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
wolfrage89
null
wolfrage89/annual_report_translation_id_en
0
3
transformers
36,275
### Finetuned on annual report sentence pair This marianMT has been further finetuned on annual report sentence pairs ## Test out at huggingface spaces! https://huggingface.co/spaces/wolfrage89/finance_domain_translation_marianMT ## Sample colab notebook https://colab.research.google.com/drive/1H57vwiah7n1JXvXYMqJ8dklrIuU6Cljb?usp=sharing ## How to use ```python !pip install transformers !pip install sentencepiece from transformers import MarianMTModel, MarianTokenizer tokenizer = MarianTokenizer.from_pretrained("wolfrage89/annual_report_translation_id_en") model = MarianMTModel.from_pretrained("wolfrage89/annual_report_translation_id_en") #tokenizing bahasa sentence bahasa_sentence = "Interpretasi ini merupakan interpretasi atas PSAK 46: Pajak Penghasilan yang bertujuan untuk mengklarifikasi dan memberikan panduan dalam merefleksikan ketidakpastian perlakuan pajak penghasilan dalam laporan keuangan." tokenized_bahasa_sentence = tokenizer([bahasa_sentence], return_tensors='pt', max_length=104, truncation=True) #feeding tokenized sentence into model, the max_legnth have been set to 104 as the model was trained mostly on sentences with this length translated_tokens = model.generate(**tokenized_bahasa_sentence, max_length=104)[0] ## decoding the tokens to get english sentence english_sentence = tokenizer.decode(translated_tokens, skip_special_tokens=True) print(english_sentence) # This interpretation is an interpretation of PSAK 46: Income Tax that aims to clarify and provide guidance in reflecting the uncertainty of income tax treatments in the financial statements. ``` ### opus-mt-id-en (original model) * source languages: id * target languages: en * OPUS readme: [id-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-en/README.md)
wudi7758521521/bert_cn
e6a081099ccf15f3e18b21462db8bda9c4ef4937
2021-07-30T05:21:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wudi7758521521
null
wudi7758521521/bert_cn
0
null
transformers
36,276
Entry not found
wudi7758521521/model_name
96ded66eec7cc695ecaa61225906806abde397a4
2021-07-18T08:50:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wudi7758521521
null
wudi7758521521/model_name
0
null
transformers
36,277
Entry not found
xhyi/distilLED1_08_31_2021_v1
e16a98892e18fdde855271d2c6e12cd52d215fc6
2021-08-31T09:05:37.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
xhyi
null
xhyi/distilLED1_08_31_2021_v1
0
null
transformers
36,278
Entry not found
xhyi/distilLED2_08_31_2021_v4
1acdcb6ed0062a119d1165e30cc7d38b1c60d06e
2021-09-01T01:36:13.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
xhyi
null
xhyi/distilLED2_08_31_2021_v4
0
null
transformers
36,279
Entry not found
xhyi/distilLED4_09_01_2021_v6_2
04a969ebc405e0d9be14ffc84427e41c92731185
2021-09-02T06:28:25.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
xhyi
null
xhyi/distilLED4_09_01_2021_v6_2
0
null
transformers
36,280
Step Training Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 100 3.049500 2.605496 0.172300 0.186900 0.151200 200 3.019400 2.567277 0.165100 0.189400 0.145000 300 3.014400 2.538830 0.157000 0.179200 0.134200 400 2.867200 2.490068 0.163600 0.177100 0.136200 500 2.723700 2.465870 0.168400 0.195700 0.152300 600 2.925400 2.452575 0.169500 0.210100 0.159400 700 2.878900 2.440204 0.173400 0.198000 0.155800 800 3.156500 2.423908 0.172900 0.196300 0.152800 + 440 steps before total = 1240 steps
xiaoheiqaq/DialoGPT-smallharrypotter
5e7e95b6e0a7a20e71bf51a8c294fe90a5510aee
2021-09-23T02:23:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
xiaoheiqaq
null
xiaoheiqaq/DialoGPT-smallharrypotter
0
null
transformers
36,281
--- tags: - conversational --- # Harry Potter DialoGPT Model
xinyang47/ai12
12f1adc77867a921be4458919a5d00ad7e3dfb24
2022-02-11T08:30:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
xinyang47
null
xinyang47/ai12
0
null
transformers
36,282
Entry not found
xinyang47/ai12_cn
5cf7b28f80e31361408244bd4468ead54188c821
2022-02-11T09:44:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
xinyang47
null
xinyang47/ai12_cn
0
null
transformers
36,283
Entry not found
xkang/distilbert-base-uncased-finetuned-imdb-accelerate
5e3a80349786a144d8d039614a79bed94a885ac3
2021-12-27T07:41:02.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
xkang
null
xkang/distilbert-base-uncased-finetuned-imdb-accelerate
0
null
transformers
36,284
Entry not found
xsway/wav2vec2-large-xlsr-georgian
b29b81945f5fa2e35fbb05da5256815d8cc71e20
2021-03-29T21:07:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ka", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
xsway
null
xsway/wav2vec2-large-xlsr-georgian
0
null
transformers
36,285
--- language: ka datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec finetuned for Georgian results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ka type: common_voice args: ka metrics: - name: Test WER type: wer value: 45.28 --- # Wav2Vec2-Large-XLSR-53-Georgian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ka", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\tbatch["speech"] = resampler(sampling_rate, speech_array).squeeze() \\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import librosa test_dataset = load_dataset("common_voice", "ka", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]' resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 45.28 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](...)
xujiacheng127/anchi-bert
791927047feb2b8c2d9cca15f669f4514f094a8b
2022-02-15T12:01:06.000Z
[ "pytorch" ]
null
false
xujiacheng127
null
xujiacheng127/anchi-bert
0
null
null
36,286
import json import requests headers = {"Authorization": f"Bearer {API_TOKEN}"} API_URL = "https://api-inference.huggingface.co/models/bert-base-uncased" def query(payload): data = json.dumps(payload) response = requests.request("POST", API_URL, headers=headers, data=data) return json.loads(response.content.decode("utf-8")) data = query({"inputs": "The answer to the universe is [MASK]."})
yahya1994/DialoGPT-small-DN-L
9e3cc45576ef0ef381926a8909e3ef65df642e9b
2021-09-11T02:02:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
yahya1994
null
yahya1994/DialoGPT-small-DN-L
0
null
transformers
36,287
--- tags: - conversational --- # L dialog
yahya1994/DialoGPT-small-DN-Light
6a1adccef77241b31d69e57993b7577b3c6cafd7
2021-09-09T20:59:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
yahya1994
null
yahya1994/DialoGPT-small-DN-Light
0
null
transformers
36,288
--- tags: - conversational --- # Light dialog
yahya1994/DialoGPT-small-DN-Ryuk
0279b7e3b1fec99bc1042721e093f652e001d705
2021-09-07T18:20:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
yahya1994
null
yahya1994/DialoGPT-small-DN-Ryuk
0
null
transformers
36,289
--- tags: - conversational --- # Ryuk dialog
yahya1994/DialoGPT-small-ReZero-Subaru
177f49117acb3e3ff25a89fa2ff4874b6a5bd5e3
2021-09-17T23:04:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
yahya1994
null
yahya1994/DialoGPT-small-ReZero-Subaru
0
null
transformers
36,290
--- tags: - conversational --- # Subaru dialog
yair/HeadlineGeneration-sagemaker
aaaec00599b2fe7f830a9c9a2ba890ec2814443d
2021-05-17T05:39:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yair
null
yair/HeadlineGeneration-sagemaker
0
null
transformers
36,291
--- language: en tags: - sagemaker - bart - summarization license: apache-2.0
yair/HeadlineGeneration-sagemaker2
219eb6b792a3096c20b39ee2ddce15b1af34825e
2021-05-18T08:45:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yair
null
yair/HeadlineGeneration-sagemaker2
0
null
transformers
36,292
--- language: en tags: - sagemaker - bart - summarization license: apache-2.0 - Training 3000 examples
yamako/dummy-model
5544bb242919cd4ddf14bc4f66003b644d25e54b
2021-09-07T11:32:36.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yamako
null
yamako/dummy-model
0
null
transformers
36,293
Entry not found
yancong/distilbert-base-uncased-finetuned-existence
e8526ad32154696a132c0bf6b3f740e0a3af132e
2022-02-22T20:56:03.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
yancong
null
yancong/distilbert-base-uncased-finetuned-existence
0
null
transformers
36,294
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-existence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-existence This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9532 | 1.0 | 221 | 2.1697 | | 2.0959 | 2.0 | 442 | 1.9725 | | 1.9277 | 3.0 | 663 | 1.7944 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.11.0
yancong/distilbert-base-uncased-finetuned-mi
e9520ca46d230e064c871fb1c9348b5648a0d740
2022-02-22T21:47:23.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
yancong
null
yancong/distilbert-base-uncased-finetuned-mi
0
null
transformers
36,295
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-mi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1069 | 1.0 | 97 | 2.3524 | | 2.1677 | 2.0 | 194 | 1.9426 | | 1.9197 | 3.0 | 291 | 2.0536 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.11.0
yancong/distilbert-base-uncased-finetuned-quantifier
de950ec0b19429f07f74fd7952b8445b8a9f42d2
2022-02-22T02:57:28.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
yancong
null
yancong/distilbert-base-uncased-finetuned-quantifier
0
null
transformers
36,296
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-quantifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-quantifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2007 | 1.0 | 94 | 2.3496 | | 2.2332 | 2.0 | 188 | 1.8656 | | 2.0141 | 3.0 | 282 | 1.8479 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.11.0
yarik921/Teflon_0.1
44d5c39ec9f1a15d0007693284ee35324ff2fed2
2021-12-14T09:19:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
yarik921
null
yarik921/Teflon_0.1
0
null
transformers
36,297
Entry not found
yazdipour/text-to-sparql-t5-small-2021-10-17_18-47
f0309db6e13def837a3d09766ef290707a6cc43a
2021-10-17T19:48:35.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
yazdipour
null
yazdipour/text-to-sparql-t5-small-2021-10-17_18-47
0
null
transformers
36,298
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-17_18-47 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2345714420080185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-17_18-47 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5258 - Gen Len: 19.0 - P: 0.4582 - R: 0.0278 - F1: 0.2346 - Score: 3.5848 - Bleu-precisions: [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] - Bleu-bp: 0.0631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7575 | 1.0 | 4807 | 0.5258 | 19.0 | 0.4582 | 0.0278 | 0.2346 | 3.5848 | [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] | 0.0631 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-small-2021-10-18_09-32
5b97314b671c8a525c081e77785ab8374f874e52
2021-10-18T10:33:05.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
yazdipour
null
yazdipour/text-to-sparql-t5-small-2021-10-18_09-32
0
null
transformers
36,299
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-18_09-32 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.26458749175071716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_09-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5119 - Gen Len: 19.0 - P: 0.4884 - R: 0.0583 - F1: 0.2646 - Score: 3.5425 - Bleu-precisions: [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] - Bleu-bp: 0.0609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7088 | 1.0 | 4772 | 0.5119 | 19.0 | 0.4884 | 0.0583 | 0.2646 | 3.5425 | [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] | 0.0609 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3