modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
lucasresck/distilbert-base-uncased-finetuned-squad
cbcfe98089900b349e5a8fba21ce80661adcdb68
2021-11-15T17:04:05.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
lucasresck
null
lucasresck/distilbert-base-uncased-finetuned-squad
0
null
transformers
35,600
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
lucio/wav2vec2-large-xlsr-luganda
cd3b7faf94ab64bb71e6f6a9cd3edf64b5859edd
2021-07-06T10:20:26.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lg", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lucio
null
lucio/wav2vec2-large-xlsr-luganda
0
null
transformers
35,601
--- language: lg datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large Luganda by Lucio results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lg type: common_voice args: lg metrics: - name: Test WER type: wer value: 29.52 --- # Wav2Vec2-Large-XLSR-53-lg Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, using train, validation and other (excluding voices that are in the test set), and taking the test data for validation as well as test. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. (Available in Colab [here](https://colab.research.google.com/drive/1XxZ3mJOEXwIn-QH3C23jD_Qpom9aA1vH?usp=sharing).) ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import unidecode test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") model.to("cuda") chars_to_ignore_regex = '[\[\],?.!;:%"“”(){}‟ˮʺ″«»/…‽�–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch def remove_special_characters(batch): # word-internal apostrophes are marking contractions batch["norm_text"] = re.sub(r'[‘’´`]', r"'", batch["sentence"]) # most other punctuation is ignored batch["norm_text"] = re.sub(chars_to_ignore_regex, "", batch["norm_text"]).lower().strip() batch["norm_text"] = re.sub(r"(-|' | '| +)", " ", batch["norm_text"]) # remove accents from a few characters (from loanwords, not tones) batch["norm_text"] = unidecode.unidecode(batch["norm_text"]) return batch test_dataset = test_dataset.map(speech_file_to_array_fn) test_dataset = test_dataset.map(remove_special_characters) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["norm_text"]))) ``` **Test Result**: 29.52 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training, excluding voices that are in both the `other` and `test` datasets. The data was augmented to twice the original size with added noise and manipulated pitch, phase and intensity. Training proceeded for 60 epochs, on 1 V100 GPU provided by OVHcloud. The `test` data was used for validation. The [script used for training](https://github.com/serapio/transformers/blob/feature/xlsr-finetune/examples/research_projects/wav2vec2/run_common_voice.py) is adapted from the [example script provided in the transformers repo](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py).
luffycodes/bb_narataka_roberta_base_nli_bsz_16_bb_bsz_16_nli_lr_3e6_bb_lr_3e6_wu_7k_grad_adam_mask
4e3271a2c49e85a16dbc4c5f6560947922e8c3f7
2021-11-03T17:25:56.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_base_nli_bsz_16_bb_bsz_16_nli_lr_3e6_bb_lr_3e6_wu_7k_grad_adam_mask
0
null
transformers
35,602
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_2e5_bb_lr_2e5
907d44627bc79364ec71e71c90ce258481909156
2021-10-25T16:59:58.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_2e5_bb_lr_2e5
0
null
transformers
35,603
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_2e5_bb_lr_2e5_norm_bb_mlm_loss
4f084c4744aef420f46ea4669830e8f96fdffcb6
2021-10-24T14:55:52.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_2e5_bb_lr_2e5_norm_bb_mlm_loss
0
null
transformers
35,604
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_2e6_bb_lr_2e6_wu_7k_grad_adam_mask
a1392fbe9a9bd05a37d28cb28ac3746612ae8b2f
2021-11-04T02:48:31.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_2e6_bb_lr_2e6_wu_7k_grad_adam_mask
0
null
transformers
35,605
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_7e6_bb_lr_7e6_wu_7k_grad_adam_mask
792f8a5e0af3e33a4d14b6d189e9fba9a1b06b20
2021-11-02T18:17:17.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_7e6_bb_lr_7e6_wu_7k_grad_adam_mask
0
null
transformers
35,606
Entry not found
luffycodes/mrpc_roberta_large_mnli_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_250_ep_10_clone
8adca56292164d7b7b3bd29408ef9291cf39ffc3
2021-11-08T06:29:17.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/mrpc_roberta_large_mnli_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_250_ep_10_clone
0
null
transformers
35,607
Entry not found
luoweijie/dummy-model
30c1a5bd6412743db1864193dffef3ab061634d4
2021-10-21T01:13:17.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
luoweijie
null
luoweijie/dummy-model
0
null
transformers
35,608
Entry not found
lysandre/dummy-test
1159f35738592b3acc22d40dc1e4325b0cc078aa
2021-04-20T22:23:28.000Z
[ "pytorch" ]
null
false
lysandre
null
lysandre/dummy-test
0
null
null
35,609
Entry not found
lysandre/my-cool-arxiv-model
a28ec738712afc973dbf9ba1c37b236898fd7525
2021-11-11T00:09:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lysandre
null
lysandre/my-cool-arxiv-model
0
null
transformers
35,610
Entry not found
m-lin20/satellite-instrument-bert-NER
3615ce471a73a103813e569357dfbb3a2ba489cd
2021-12-13T08:11:18.000Z
[ "pytorch", "bert", "token-classification", "pt", "transformers", "autotrain_compatible" ]
token-classification
false
m-lin20
null
m-lin20/satellite-instrument-bert-NER
0
1
transformers
35,611
--- language: "pt" widget: - text: "Poised for launch in mid-2021, the joint NASA-USGS Landsat 9 mission will continue this important data record. In many respects Landsat 9 is a clone of Landsat-8. The Operational Land Imager-2 (OLI-2) is largely identical to Landsat 8 OLI, providing calibrated imagery covering the solar reflected wavelengths. The Thermal Infrared Sensor-2 (TIRS-2) improves upon Landsat 8 TIRS, addressing known issues including stray light incursion and a malfunction of the instrument scene select mirror. In addition, Landsat 9 adds redundancy to TIRS-2, thus upgrading the instrument to a 5-year design life commensurate with other elements of the mission. Initial performance testing of OLI-2 and TIRS-2 indicate that the instruments are of excellent quality and expected to match or improve on Landsat 8 data quality. " example_title: "example 1" - text: "Compared to its predecessor, Jason-3, the two AMR-C radiometer instruments have an external calibration system which enables higher radiometric stability accomplished by moving the secondary mirror between well-defined targets. Sentinel-6 allows continuing the study of the ocean circulation, climate change, and sea-level rise for at least another decade. Besides the external calibration for the AMR heritage radiometer (18.7, 23.8, and 34 GHz channels), the AMR-C contains a high-resolution microwave radiometer (HRMR) with radiometer channels at 90, 130, and 168 GHz. This subsystem allows for a factor of 5× higher spatial resolution at coastal transitions. This article presents a brief description of the instrument and the measured performance of the completed AMR-C-A and AMR-C-B instruments." example_title: "example 2" - text: "Landsat 9 will continue the Landsat data record into its fifth decade with a near-copy build of Landsat 8 with launch scheduled for December 2020. The two instruments on Landsat 9 are Thermal Infrared Sensor-2 (TIRS-2) and Operational Land Imager-2 (OLI-2)." example_title: "example 3" inference: parameters: aggregation_strategy: "first" --- # satellite-instrument-bert-NER For details, please visit the [GitHub link](https://github.com/Tsinghua-mLin/satellite-instrument-NER).
m3hrdadfi/wav2vec2-large-xlsr-estonian
9da22e1c44ea2f82f9ad2fd81e244ab95c155bfb
2021-07-06T10:28:26.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "et", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
m3hrdadfi
null
m3hrdadfi/wav2vec2-large-xlsr-estonian
0
null
transformers
35,612
--- language: et datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 widget: - label: Common Voice sample 1123 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-estonian/resolve/main/sample1123.flac - label: Common Voice sample 910 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-estonian/resolve/main/sample910.flac model-index: - name: XLSR Wav2Vec2 Estonian by Mehrdad Farahani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice et type: common_voice args: et metrics: - name: Test WER type: wer value: 33.93 --- # Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Estonian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: **Requirements** ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa !pip install jiwer ``` **Prediction** ```python import librosa import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset import numpy as np import re import string import IPython.display as ipd chars_to_ignore = [ ",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"', "“", "%", "‘", "�", "–", "…", "_", "”", '“', '„' ] chars_to_mapping = { "\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ", } def multiple_replace(text, chars_to_mapping): pattern = "|".join(map(re.escape, chars_to_mapping.keys())) return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) def remove_special_characters(text, chars_to_ignore_regex): text = re.sub(chars_to_ignore_regex, '', text).lower() + " " return text def normalizer(batch, chars_to_ignore, chars_to_mapping): chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" text = batch["sentence"].lower().strip() text = text.replace("\u0307", " ").strip() text = multiple_replace(text, chars_to_mapping) text = remove_special_characters(text, chars_to_ignore_regex) batch["sentence"] = text return batch def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array = speech_array.squeeze().numpy() speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) batch["speech"] = speech_array return batch def predict(batch): features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids)[0] return batch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian") model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device) dataset = load_dataset("common_voice", "et", split="test[:1%]") dataset = dataset.map( normalizer, fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) ) dataset = dataset.map(speech_file_to_array_fn) result = dataset.map(predict) max_items = np.random.randint(0, len(result), 10).tolist() for i in max_items: reference, predicted = result["sentence"][i], result["predicted"][i] print("reference:", reference) print("predicted:", predicted) print('---') ``` **Output:** ```text reference: õhulossid lagunevad ning ees ootab maapind predicted: õhulassid lagunevad ning ees ootab maapind --- reference: milliseks kiievisse pääsemise nimel võistlev muusik soome muusikamaastiku hetkeseisu hindab ning kas ta ka ennast sellel tulevikus tegutsemas näeb kuuled videost predicted: milliseks gievisse pääsemise nimel võitlev muusiks soome muusikama aastiku hetke seisu hindab ning kas ta ennast selle tulevikus tegutsemast näeb kuulad videost --- reference: näiteks kui pool seina on tehtud tekib tunne et tahaks tegelikult natuke teistsugust ja hakkame otsast peale predicted: näiteks kui pool seine on tehtud tekib tunnetahaks tegelikult matuka teistsugust jahappanna otsast peane --- reference: neuroesteetilised katsed näitavad et just nägude vaatlemine aktiveerib inimese aju esteetilist keskust predicted: neuroaisteetiliselt katsed näitaval et just nägude vaatlemine aptiveerid inimese aju est eedilist keskust --- reference: paljud inimesed kindlasti kadestavad teid kuid ei julge samamoodi vabalt võtta predicted: paljud inimesed kindlasti kadestavadteid kuid ei julge sama moodi vabalt võtta --- reference: parem on otsida pileteid inkognito veebi kaudu predicted: parem on otsida pileteid ning kognitu veebikaudu --- reference: ja vot siin ma jäin vaikseks predicted: ja vat siisma ja invaikseks --- reference: mida sa iseendale juubeli puhul soovid predicted: mida saise endale jubeli puhul soovid --- reference: kuumuse ja kõrge temperatuuri tõttu kuivas tühjadel karjamaadel rohi mis muutus kergesti süttivaks predicted: kuumuse ja kõrge temperatuuri tõttu kuivast ühjadal karjamaadel rohi mis muutus kergesti süttivaks --- reference: ilmselt on inimesi kelle jaoks on see hea lahendus predicted: ilmselt on inimesi kelle jaoks on see hea lahendus --- ``` ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. ```python import librosa import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset, load_metric import numpy as np import re import string chars_to_ignore = [ ",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"', "“", "%", "‘", "�", "–", "…", "_", "”", '“', '„' ] chars_to_mapping = { "\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ", } def multiple_replace(text, chars_to_mapping): pattern = "|".join(map(re.escape, chars_to_mapping.keys())) return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) def remove_special_characters(text, chars_to_ignore_regex): text = re.sub(chars_to_ignore_regex, '', text).lower() + " " return text def normalizer(batch, chars_to_ignore, chars_to_mapping): chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" text = batch["sentence"].lower().strip() text = text.replace("\u0307", " ").strip() text = multiple_replace(text, chars_to_mapping) text = remove_special_characters(text, chars_to_ignore_regex) batch["sentence"] = text return batch def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array = speech_array.squeeze().numpy() speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) batch["speech"] = speech_array return batch def predict(batch): features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids)[0] return batch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian") model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device) dataset = load_dataset("common_voice", "et", split="test") dataset = dataset.map( normalizer, fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) ) dataset = dataset.map(speech_file_to_array_fn) result = dataset.map(predict) wer = load_metric("wer") print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) ``` **Test Result**: - WER: 33.93% ## Training & Report The Common Voice `train`, `validation` datasets were used for training. You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_estonian/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Estonian--Vmlldzo1NjA1MTI?accessToken=k2b2g3a2i12m1sdwf13q8b226pplmmyw12joxo6vk38eb4djellfzmn9fp2725fw) The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Estonian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
m3hrdadfi/wav2vec2-large-xlsr-georgian
a36185cbc4f4cdea7625ceab52bdeaa8d754079f
2021-11-04T15:22:05.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ka", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
m3hrdadfi
null
m3hrdadfi/wav2vec2-large-xlsr-georgian
0
null
transformers
35,613
--- language: ka datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 widget: - example_title: Common Voice sample 566 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample566.flac - example_title: Common Voice sample 95 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample95.flac model-index: - name: XLSR Wav2Vec2 Georgian by Mehrdad Farahani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ka type: common_voice args: ka metrics: - name: Test WER type: wer value: 43.86 --- # Wav2Vec2-Large-XLSR-53-Georgian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: **Requirements** ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa !pip install jiwer ``` **Normalizer** ```bash !wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py ``` **Prediction** ```python import librosa import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset import numpy as np import re import string import IPython.display as ipd from normalizer import normalizer def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array = speech_array.squeeze().numpy() speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) batch["speech"] = speech_array return batch def predict(batch): features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids)[0] return batch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian") model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device) dataset = load_dataset("common_voice", "ka", split="test[:1%]") dataset = dataset.map( normalizer, fn_kwargs={"remove_extra_space": True}, remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) ) dataset = dataset.map(speech_file_to_array_fn) result = dataset.map(predict) max_items = np.random.randint(0, len(result), 20).tolist() for i in max_items: reference, predicted = result["sentence"][i], result["predicted"][i] print("reference:", reference) print("predicted:", predicted) print('---') ``` **Output:** ```text reference: პრეზიდენტობისას ბუში საქართველოს და უკრაინის დემოკრატიულ მოძრაობების და ნატოში გაწევრიანების აქტიური მხარდამჭერი იყო predicted: პრეზიდენტო ვისას ბუში საქართველოს და უკრაინის დემოკრატიულ მოძრაობების და ნატიში დაწევრიანების აქტიური მხარდამჭერი იყო --- reference: შესაძლებელია მისი დამონება და მსახურ დემონად გადაქცევა predicted: შესაძლებელია მისი დამონებათ და მსახურდემანად გადაქცევა --- reference: ეს გამოსახულებები აღბეჭდილი იყო მოსკოვის დიდი მთავრებისა და მეფეების ბეჭდებზე predicted: ეს გამოსახულებები აღბეჭდილი იყო მოსკოვის დიდი მთავრებისა და მეფეების ბეჭდებზე --- reference: ჯოლიმ ოქროს გლობუსისა და კინომსახიობთა გილდიის ნომინაციები მიიღო predicted: ჯოლი მოქროს გლობუსისა და კინამსახიობთა გილდიის ნომინაციები მიიღო --- reference: შემდგომში საქალაქო ბიბლიოთეკა სარაიონო ბიბლიოთეკად გადაკეთდა გაიზარდა წიგნადი ფონდი predicted: შემდღომში საქალაქო ბიბლიოთეკა სარაიონო ბიბლიოთეკად გადაკეთა გაიზარდა წიგნადი ფოვდი --- reference: აბრამსი დაუკავშირდა მირანდას და ორი თვის განმავლობაში ისინი მუშაობდნენ აღნიშნული სცენის თანმხლებ მელოდიაზე predicted: აბრამში და უკავშირდა მირანდეს და ორითვის განმავლობაში ისინი მუშაობდნენა აღნიშნულის ჩენის მთამხლევით მელოდიაში --- reference: ამჟამად თემთა პალატის ოპოზიციის ლიდერია ლეიბორისტული პარტიის ლიდერი ჯერემი კორბინი predicted: ამჟამად თემთა პალატის ოპოზიციის ლიდერია ლეიბურისტული პარტიის ლიდერი ჯერემი კორვინი --- reference: ორი predicted: ორი --- reference: მას შემდეგ იგი კოლექტივის მუდმივი წევრია predicted: მას შემდეგ იგი კოლექტივის ფუდ მივი წევრია --- reference: აზერბაიჯანულ ფილოსოფიას შეიძლება მივაკუთვნოთ რუსეთის საზოგადო მოღვაწე ჰეიდარ ჯემალი predicted: აზერგვოიჯანალ ფილოსოფიას შეიძლება მივაკუთვნოთ რუსეთის საზოგადო მოღვაწე ჰეიდარ ჯემალი --- reference: ბრონქსში ჯერომის ავენიუ ჰყოფს გამჭოლ ქუჩებს აღმოსავლეთ და დასავლეთ ნაწილებად predicted: რონგში დერომიწ ავენილ პოფს გამ დოლფურქებს აღმოსავლეთ და დასავლეთ ნაწილებად --- reference: ჰაერი არის ჟანგბადის ის ძირითადი წყარო რომელსაც საჭიროებს ყველა ცოცხალი ორგანიზმი predicted: არი არის ჯამუბადესის ძირითადი წყარო რომელსაც საჭიროოებს ყველა ცოცხალი ორგანიზმი --- reference: ჯგუფი უმეტესწილად ასრულებს პოპმუსიკის ჟანრის სიმღერებს predicted: ჯგუფიუმეტესწევად ასრულებს პოპნუსიკის ჟანრის სიმრერებს --- reference: ბაბილინა მუდმივად ცდილობდა შესაძლებლობების ფარგლებში მიეღო ცოდნა და ახალი ინფორმაცია predicted: ბაბილინა მუდმივა ცდილობდა შესაძლებლობების ფარგლებში მიიღო ცოტნა და ახალი ინფორმაცია --- reference: მრევლის რწმენით რომელი ჯგუფიც გაიმარჯვებდა მთელი წლის მანძილზე სიუხვე და ბარაქა არ მოაკლდებოდა predicted: მრევრის რწმენით რომელიჯგუფის გაიმარჯვებდა მთელიჭლის მანძილზა სიუყვეტაბარაქა არ მოაკლდებოდა --- reference: ნინო ჩხეიძეს განსაკუთრებული ღვაწლი მიუძღვის ქუთაისისა და რუსთაველის თეატრების შემოქმედებით ცხოვრებაში predicted: მინო ჩხეიძეს განსაკუთრებული ღოვაწლი მიოცხვის ქუთაისისა და რუსთაველის თეატრების შემოქმედებით ცხოვრებაში --- reference: იგი სამი დიალექტისგან შედგება predicted: იგი სამი დიალეთის გან შედგება --- reference: ფორმით სირაქლემებს წააგვანან predicted: ომიცი რაქლემებს ააგვანამ --- reference: დანი დაიბადა კოლუმბუსში ოჰაიოში predicted: დონი დაიბაოდა კოლუმბუსში ოხვაიოში --- reference: მშენებლობისათვის გამოიყო ადგილი ყოფილი აეროპორტის რაიონში predicted: შენებლობისათვის გამოიყო ადგილი ყოფილი აეროპორტის რაიონში --- ``` ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. ```python import librosa import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset, load_metric import numpy as np import re import string from normalizer import normalizer def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array = speech_array.squeeze().numpy() speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) batch["speech"] = speech_array return batch def predict(batch): features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids)[0] return batch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian") model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device) dataset = load_dataset("common_voice", "ka", split="test") dataset = dataset.map( normalizer, fn_kwargs={"remove_extra_space": True}, remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) ) dataset = dataset.map(speech_file_to_array_fn) result = dataset.map(predict) wer = load_metric("wer") print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) ``` **Test Result**: - WER: 43.86% ## Training & Report The Common Voice `train`, `validation` datasets were used for training. You can see the training states [here](https://wandb.ai/m3hrdadfi/wav2vec2_large_xlsr_ka/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Georgian--Vmlldzo1OTQyMzk?accessToken=ytf7jseje66a3byuheh68o6a7215thjviscv5k2ewl5hgq9yqr50yxbko0bnf1d3) The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Georgian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb) ## Questions? Post a Github issue on the [Wav2Vec](https://github.com/m3hrdadfi/wav2vec) repo.
machine2049/bert-base-uncased-finetuned-duorc_bert
bcf888f76b5283f9b7d7834d48d5f35f7f0cb231
2021-12-10T01:35:56.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
machine2049
null
machine2049/bert-base-uncased-finetuned-duorc_bert
0
null
transformers
35,614
Entry not found
machine2049/distilbert-base-uncased-finetuned-duorc_distilbert
dafc2bc5d556cf4f9a81537377ec13bafdfb767c
2021-12-15T11:28:23.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
machine2049
null
machine2049/distilbert-base-uncased-finetuned-duorc_distilbert
0
null
transformers
35,615
Entry not found
machine2049/distilbert-base-uncased-finetuned-squad
95538030d1e556a24d7e0e7de72910c7a5287037
2021-12-09T02:02:44.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
machine2049
null
machine2049/distilbert-base-uncased-finetuned-squad
0
null
transformers
35,616
Entry not found
machine2049/distilbert-base-uncased-finetuned-squad_distilbert
afe851c9ac95c88f64e7ab8c34ff587e55ff03f4
2021-12-09T21:34:25.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
machine2049
null
machine2049/distilbert-base-uncased-finetuned-squad_distilbert
0
null
transformers
35,617
Entry not found
mackei/ai12
e1ee76e7e8db7c24df770cdadf7313c33ba8aed5
2022-02-10T12:31:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mackei
null
mackei/ai12
0
null
transformers
35,618
Entry not found
macleginn/bert-multilingual-paws
9bb81812143a0832c99457b5f56701634b35cfd9
2021-11-11T17:20:55.000Z
[ "pytorch" ]
null
false
macleginn
null
macleginn/bert-multilingual-paws
0
null
null
35,619
Entry not found
madbuda/DialoGPT-medium-skippy
b5f4a12243b2fda2bb147b6f3c9d553b5e39e166
2021-11-25T02:45:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
madbuda
null
madbuda/DialoGPT-medium-skippy
0
null
transformers
35,620
--- tags: - conversational --- # My Awesome Model
madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2
ead15fce67e3003ae1ea873316afbfe2f057fc0e
2021-05-19T22:45:40.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2
0
null
transformers
35,621
Used [run.sh](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2/blob/main/run.sh) used to train using transformers/example/question_answering code. Evaluation results : F1= 85.85 , a much better result than the original 81.9 from the BERT paper, due to the use of the "whole-word-masking" variation. ``` { "HasAns_exact": 80.58367071524967, "HasAns_f1": 86.64594807945029, "HasAns_total": 5928, "NoAns_exact": 85.06307821698907, "NoAns_f1": 85.06307821698907, "NoAns_total": 5945, "best_exact": 82.82658131895899, "best_exact_thresh": 0.0, "best_f1": 85.85337995578023, "best_f1_thresh": 0.0, "epoch": 2.0, "eval_samples": 12134, "exact": 82.82658131895899, "f1": 85.85337995578037, "total": 11873 } ```
maelfabien/marcel_customer_service_medium_masked
62fc91f340d0023d578f276e2110c956ec36d3d8
2021-04-14T13:27:45.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maelfabien
null
maelfabien/marcel_customer_service_medium_masked
0
null
transformers
35,622
Entry not found
maelfabien/marcel_customer_service_xlarge
c695bafef3b7956b9b68688e0a522f09ed7e7b67
2021-04-14T12:42:05.000Z
[ "pytorch", "camembert", "text-generation", "transformers" ]
text-generation
false
maelfabien
null
maelfabien/marcel_customer_service_xlarge
0
null
transformers
35,623
Entry not found
maelfabien/marcel_customer_service_xlarge_masked
7b51181c07fad816229aaf6eacaf667b3327b19c
2021-04-14T13:21:49.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maelfabien
null
maelfabien/marcel_customer_service_xlarge_masked
0
null
transformers
35,624
Entry not found
magnusgray/mlm_imdb_model
dd26b472d4aebb7bd23dab7e2613df27ff2d3d42
2021-09-10T15:25:13.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
magnusgray
null
magnusgray/mlm_imdb_model
0
null
transformers
35,625
Entry not found
majonez57/JoeBot
d3d5905b087c4c1fd70851428ac173d4aa33ff06
2021-08-28T20:54:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
majonez57
null
majonez57/JoeBot
0
null
transformers
35,626
--- tags: - conversational --- # DialoGPT Joe Bot
malloc/OpenNMT-py-English-German-Transformer
1510d9c7b581db9d3a69310184dc4f6646611ec7
2022-01-18T20:18:11.000Z
[ "de", "en", "dataset:WMT", "translation", "pytorch", "license:mit" ]
translation
false
malloc
null
malloc/OpenNMT-py-English-German-Transformer
0
1
null
35,627
--- language: - de - en tags: - translation - pytorch license: mit datasets: - WMT metrics: - bleu --- # OpenNMT-py-English-German-Transformer [OpenNMT-py](https://github.com/OpenNMT/OpenNMT-py) is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine translation framework. OpenNMT has several [pretrained models](https://opennmt.net/Models-py/). This one is trained particularly for English to German translation. - Configuration: Base Transformer configuration with [standard training options](http://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model-do-you-support-multi-gpu) - Data: WMT with shared SentencePiece model - BLEU: - newstest2014 = 26.89 - newstest2017 = 28.09
malloc/OpenNMT-py-German-English-2-layer-BiLSTM
a8c3eeb52928bb9b1c27142dd542b5436e4029c4
2022-01-18T20:22:23.000Z
[ "de", "en", "dataset:IWSLT ‘14 DE-EN", "translation", "pytorch", "license:mit" ]
translation
false
malloc
null
malloc/OpenNMT-py-German-English-2-layer-BiLSTM
0
null
null
35,628
--- language: - de - en tags: - translation - pytorch license: mit datasets: - IWSLT ‘14 DE-EN metrics: - bleu --- # OpenNMT-py-English-German-Transformer [OpenNMT-py](https://github.com/OpenNMT/OpenNMT-py) is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine translation framework. OpenNMT has several [pretrained models](https://opennmt.net/Models-py/). This one is trained particularly for German to English translation. - Configuration: 2-layer BiLSTM with hidden size 500 trained for 20 epochs - Data: IWSLT ‘14 DE-EN - BLEU: 30.33
manandey/wav2vec2-large-xlsr-assamese
420e13fd515a7965deb8cd331615c5f9b2b39644
2021-07-06T11:22:54.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "as", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
manandey
null
manandey/wav2vec2-large-xlsr-assamese
0
null
transformers
35,629
--- language: as datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Assamese by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice as type: common_voice args: as metrics: - name: Test WER type: wer value: 74.25 --- # Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "as", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-assamese") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-assamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "as", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-assamese") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-assamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\।]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 74.25% ## Training The Common Voice `train`, `validation` datasets were used for training.
manandey/wav2vec2-large-xlsr-breton
3ada51d2d5601b1a8e17d6de4892fa47e5ef137a
2021-07-06T11:29:55.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "br", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
manandey
null
manandey/wav2vec2-large-xlsr-breton
0
null
transformers
35,630
--- language: br datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Breton by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 54.04 --- # Wav2Vec2-Large-XLSR-53-Breton Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Breton using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "br", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-breton") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-breton") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "br", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-breton") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-breton") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)\/\«\»\½\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 54.04% ## Training The Common Voice `train`, `validation` datasets were used for training.
manandey/wav2vec2-large-xlsr-tamil
37d6f1b8798addda2d6ed3db8beb1605f0ed9525
2022-03-25T16:52:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ta", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
manandey
null
manandey/wav2vec2-large-xlsr-tamil
0
null
transformers
35,631
--- language: ta datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Tamil by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ta type: common_voice args: ta metrics: - name: Test WER type: wer value: 56.44 --- # Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 56.44% ## Training The Common Voice `train`, `validation` datasets were used for training.
manav/dialogpt-medium-berkeley-reddit
82f7042a320b0184b2e44e123bb83996aa9dc166
2021-05-23T08:52:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
manav
null
manav/dialogpt-medium-berkeley-reddit
0
null
transformers
35,632
--- tags: - conversational --- ## Model description Finetuned version of DialogPT-medium released. Finetuned on data scraped from the r/Berkeley subreddit. The data wasn't thoroughly vetted so the model may display biases that I am unaware of, so tread with caution when this model until further analysis of its biases can be performed.
manraf/DialoGPT-smmall-harrypotter
4564dc206513a615d4e5177b0edc97c1ee73e2f7
2021-09-01T13:00:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
manraf
null
manraf/DialoGPT-smmall-harrypotter
0
null
transformers
35,633
--- tags: - conversational --- # Harry Potter DialoGPT Model
manudotc/transformers_distilbert-base-uncased_finetuneQA_squad
d18b5315e565c30f5242035d18e39e7ecd27fc76
2021-04-12T07:45:36.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manudotc
null
manudotc/transformers_distilbert-base-uncased_finetuneQA_squad
0
null
transformers
35,634
Entry not found
manueltonneau/clinicalcovid-bert-nli
9a0bad1bfc8238d32bc4f08784b303adb165180c
2021-05-19T22:59:04.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
manueltonneau
null
manueltonneau/clinicalcovid-bert-nli
0
null
transformers
35,635
Entry not found
marcopost-it/biobert-it
d07a9c181d80bcc111d99e39feb6558be1848975
2022-02-16T14:15:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
marcopost-it
null
marcopost-it/biobert-it
0
null
transformers
35,636
Hi! This model has been trained on Italian biomedical data. For further information, do not hesitate to send me a message! ;) [email protected] (Marco Postiglione)
markverschuren/bert-base-dutch-cased-finetuned-mark
e7d44e4b60332b2f0b874f4ba4dadcd91eca1464
2021-08-05T16:15:50.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
markverschuren
null
markverschuren/bert-base-dutch-cased-finetuned-mark
0
null
transformers
35,637
--- tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-dutch-cased-finetuned-mark results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-mark This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9739 | 1.0 | 844 | 1.6029 | | 1.7437 | 2.0 | 1688 | 1.5662 | | 1.6901 | 3.0 | 2532 | 1.5520 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
marma/wav2vec2-large-xlsr-swedish
9d83a19efb8341e768c321b3a356227a01f93022
2021-07-06T12:28:48.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
marma
null
marma/wav2vec2-large-xlsr-swedish
0
null
transformers
35,638
--- language: sv datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Swedish by Marma results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sv-SE type: common_voice args: sv metrics: - name: Test WER type: wer value: 23.33 --- # Wav2Vec2-Large-XLSR-53-Swedish This model has moved [here](https://huggingface.co/KBLab/wav2vec2-large-xlsr-53-swedish)
masa0711/sentence-bert-base-ja-mean-tokens-v2
bc62f78a510d7f6cdf7dc33cf8942c568545ea05
2021-12-16T07:31:40.000Z
[ "pytorch" ]
null
false
masa0711
null
masa0711/sentence-bert-base-ja-mean-tokens-v2
0
null
null
35,639
Entry not found
masakhane/m2m100_418M_fon_fr_rel_news
5d91fd517c9f56ac64c53be53735ddab211e8f81
2022-04-16T18:55:19.000Z
[ "pytorch", "m2m_100", "text2text-generation", "fr", "fon", "dataset:JW300 + [LAFAND](https://github.com/masakhane-io/lafand-mt)", "transformers", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fon_fr_rel_news
0
null
transformers
35,640
Hugging Face's logo --- language: - fr - fon datasets: - JW300 + [LAFAND](https://github.com/masakhane-io/lafand-mt) --- # m2m100_418M-fon-fr-mt ## Model description **m2m100_418M-fon-fr-mt** is a **machine translation** model from Fon to French based on a fine-tuned facebook/m2m100_418M model. It establishes a **baseline** for automatically translating texts from Fon to French. #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data Specifically, this model is a *m2m100_418M* model that was fine-tuned on JW300 Fon corpus and [LAFAND](https://github.com/masakhane-io/lafand-mt). ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning m2m100_418M achieves **7.81 BLEU** on [LAFAND test set](https://github.com/masakhane-io/lafand-mt) ### BibTeX entry and citation info By David Adelani ``` ```
masapasa/xls-r-300m-it-cv8
7b5dfc83ead625ed69ebdbbc2845326ef267526c
2022-02-02T13:29:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
masapasa
null
masapasa/xls-r-300m-it-cv8
0
1
transformers
35,641
language: - it license: apache-2.0 tags: - robust-speech-event - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 1.0278 - Wer: 1.0286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.7838 | 0.01 | 5 | 14.5035 | 1.0 | | 13.0582 | 0.03 | 10 | 13.6658 | 1.0 | | 7.3034 | 0.04 | 15 | 9.7898 | 1.0 | | 6.1847 | 0.05 | 20 | 6.9148 | 1.0 | | 5.3371 | 0.07 | 25 | 5.3661 | 1.0 | | 4.4274 | 0.08 | 30 | 4.6945 | 1.0 | | 4.0918 | 0.1 | 35 | 4.3172 | 1.0 | | 4.1734 | 0.11 | 40 | 4.0759 | 1.0 | | 3.7332 | 0.12 | 45 | 3.9039 | 1.0 | | 3.6871 | 0.14 | 50 | 3.7777 | 1.0 | | 3.4428 | 0.15 | 55 | 3.6718 | 1.0 | | 3.5514 | 0.16 | 60 | 3.5947 | 1.0 | | 3.4307 | 0.18 | 65 | 3.5144 | 1.0 | | 3.4102 | 0.19 | 70 | 3.4432 | 1.0 | | 3.4964 | 0.21 | 75 | 3.3890 | 1.0 | | 3.3936 | 0.22 | 80 | 3.3467 | 1.0 | | 3.3051 | 0.23 | 85 | 3.3102 | 1.0 | | 3.278 | 0.25 | 90 | 3.2801 | 1.0 | | 3.2223 | 0.26 | 95 | 3.2440 | 1.0 | | 3.1888 | 0.27 | 100 | 3.2900 | 1.0 | | 3.218 | 0.29 | 105 | 3.2627 | 1.0 | | 3.1308 | 0.3 | 110 | 3.2152 | 1.0 | | 3.109 | 0.31 | 115 | 3.1686 | 1.0 | | 3.1188 | 0.33 | 120 | 3.1734 | 1.0 | | 3.1132 | 0.34 | 125 | 3.1431 | 1.0 | | 3.0667 | 0.36 | 130 | 3.1686 | 1.0 | | 3.1167 | 0.37 | 135 | 3.1885 | 1.0 | | 3.0592 | 0.38 | 140 | 3.1100 | 1.0 | | 3.0531 | 0.4 | 145 | 3.1149 | 1.0 | | 3.1224 | 0.41 | 150 | 3.1205 | 1.0 | | 3.0651 | 0.42 | 155 | 3.1101 | 1.0 | | 3.0077 | 0.44 | 160 | 3.0980 | 1.0 | | 3.0027 | 0.45 | 165 | 3.1132 | 1.0 | | 3.0423 | 0.47 | 170 | 3.0886 | 1.0 | | 3.0462 | 0.48 | 175 | 3.0865 | 1.0 | | 3.0701 | 0.49 | 180 | 3.0863 | 1.0 | | 3.0871 | 0.51 | 185 | 3.0825 | 1.0 | | 3.0585 | 0.52 | 190 | 3.0720 | 1.0 | | 3.0274 | 0.53 | 195 | 3.0736 | 1.0 | | 3.0983 | 0.55 | 200 | 3.0658 | 1.0 | | 3.0538 | 0.56 | 205 | 3.1241 | 1.0 | | 3.0862 | 0.57 | 210 | 3.0573 | 1.0 | | 3.0041 | 0.59 | 215 | 3.0608 | 1.0 | | 3.027 | 0.6 | 220 | 3.0614 | 1.0 | | 2.9916 | 0.62 | 225 | 3.0527 | 1.0 | | 3.0157 | 0.63 | 230 | 3.0514 | 1.0 | | 3.0429 | 0.64 | 235 | 3.0391 | 1.0 | | 2.999 | 0.66 | 240 | 3.0462 | 1.0 | | 3.0053 | 0.67 | 245 | 3.0438 | 1.0 | | 2.9812 | 0.68 | 250 | 3.0447 | 1.0 | | 3.0062 | 0.7 | 255 | 3.0660 | 1.0 | | 3.0045 | 0.71 | 260 | 3.0103 | 1.0 | | 2.9684 | 0.73 | 265 | 3.0106 | 1.0 | | 2.9885 | 0.74 | 270 | 3.0014 | 1.0 | | 3.0062 | 0.75 | 275 | 2.9885 | 1.0 | | 2.9736 | 0.77 | 280 | 3.0330 | 1.0 | | 2.9766 | 0.78 | 285 | 2.9910 | 1.0 | | 2.9545 | 0.79 | 290 | 2.9972 | 1.0 | | 2.9936 | 0.81 | 295 | 2.9872 | 1.0 | | 3.0832 | 0.82 | 300 | 2.9978 | 1.0 | | 2.974 | 0.83 | 305 | 2.9978 | 1.0 | | 2.9846 | 0.85 | 310 | 2.9849 | 1.0 | | 2.9554 | 0.86 | 315 | 2.9810 | 1.0 | | 2.9524 | 0.88 | 320 | 2.9731 | 1.0 | | 2.9426 | 0.89 | 325 | 2.9824 | 1.0 | | 2.9416 | 0.9 | 330 | 2.9731 | 1.0 | | 2.9705 | 0.92 | 335 | 2.9830 | 1.0 | | 2.9502 | 0.93 | 340 | 2.9713 | 1.0 | | 2.9393 | 0.94 | 345 | 2.9790 | 1.0 | | 2.9336 | 0.96 | 350 | 2.9684 | 1.0 | | 2.9542 | 0.97 | 355 | 2.9689 | 1.0 | | 2.9408 | 0.98 | 360 | 2.9556 | 1.0 | | 2.9544 | 1.0 | 365 | 2.9563 | 1.0 | | 2.9187 | 1.01 | 370 | 2.9624 | 1.0 | | 2.9935 | 1.03 | 375 | 2.9500 | 1.0 | | 2.9803 | 1.04 | 380 | 2.9558 | 1.0 | | 2.9867 | 1.05 | 385 | 2.9473 | 1.0 | | 2.8925 | 1.07 | 390 | 2.9444 | 1.0 | | 2.9633 | 1.08 | 395 | 2.9490 | 1.0 | | 2.9191 | 1.1 | 400 | 2.9362 | 1.0 | | 2.9081 | 1.11 | 405 | 2.9394 | 1.0 | | 2.9381 | 1.12 | 410 | 2.9846 | 1.0 | | 2.9271 | 1.14 | 415 | 2.9638 | 1.0 | | 2.959 | 1.15 | 420 | 2.9835 | 1.0 | | 2.9486 | 1.16 | 425 | 2.9361 | 1.0 | | 2.9246 | 1.18 | 430 | 2.9615 | 1.0 | | 2.923 | 1.19 | 435 | 2.9313 | 1.0 | | 2.8908 | 1.21 | 440 | 2.9362 | 1.0 | | 2.8976 | 1.22 | 445 | 2.9224 | 1.0 | | 2.9278 | 1.23 | 450 | 2.9276 | 1.0 | | 2.8429 | 1.25 | 455 | 2.9299 | 1.0 | | 2.867 | 1.26 | 460 | 2.9258 | 1.0 | | 2.9734 | 1.27 | 465 | 2.9281 | 1.0000 | | 2.934 | 1.29 | 470 | 2.9229 | 1.0 | | 2.9521 | 1.3 | 475 | 2.9134 | 1.0 | | 2.9098 | 1.31 | 480 | 2.9051 | 0.9993 | | 2.9112 | 1.33 | 485 | 2.9028 | 0.9999 | | 2.8799 | 1.34 | 490 | 2.9101 | 0.9986 | | 2.857 | 1.36 | 495 | 2.9005 | 0.9992 | | 2.8525 | 1.37 | 500 | 2.8937 | 1.0 | | 2.8682 | 1.38 | 505 | 2.8904 | 1.0000 | | 2.8899 | 1.4 | 510 | 2.8914 | 0.9964 | | 2.7475 | 1.41 | 515 | 2.8842 | 0.9950 | | 2.9263 | 1.42 | 520 | 2.8852 | 0.9972 | | 2.8603 | 1.44 | 525 | 2.8762 | 0.9966 | | 2.864 | 1.45 | 530 | 2.8680 | 0.9978 | | 2.8632 | 1.47 | 535 | 2.8602 | 0.9964 | | 2.9289 | 1.48 | 540 | 2.8584 | 0.9952 | | 2.8689 | 1.49 | 545 | 2.8587 | 0.9956 | | 2.8304 | 1.51 | 550 | 2.8511 | 0.9993 | | 2.8024 | 1.52 | 555 | 2.8460 | 1.0 | | 2.7649 | 1.53 | 560 | 2.8460 | 1.0000 | | 2.8756 | 1.55 | 565 | 2.8348 | 0.9987 | | 2.8808 | 1.56 | 570 | 2.8539 | 0.9993 | | 2.9027 | 1.57 | 575 | 2.8282 | 0.9975 | | 2.8586 | 1.59 | 580 | 2.8288 | 0.9976 | | 2.8193 | 1.6 | 585 | 2.8101 | 1.0051 | | 2.811 | 1.62 | 590 | 2.7965 | 1.0014 | | 2.7332 | 1.63 | 595 | 2.7884 | 1.0026 | | 2.7717 | 1.64 | 600 | 2.7883 | 1.0060 | | 2.6901 | 1.66 | 605 | 2.7801 | 0.9974 | | 2.6905 | 1.67 | 610 | 2.8113 | 0.9968 | | 2.7442 | 1.68 | 615 | 2.8113 | 1.0007 | | 2.8431 | 1.7 | 620 | 2.8152 | 1.0343 | | 2.8028 | 1.71 | 625 | 2.7790 | 1.0250 | | 2.7151 | 1.73 | 630 | 2.7653 | 1.0287 | | 2.7405 | 1.74 | 635 | 2.7714 | 1.1303 | | 2.7566 | 1.75 | 640 | 2.7488 | 1.0312 | | 2.7337 | 1.77 | 645 | 2.7498 | 1.0176 | | 2.7486 | 1.78 | 650 | 2.7496 | 1.0760 | | 2.6918 | 1.79 | 655 | 2.7391 | 1.0353 | | 2.7142 | 1.81 | 660 | 2.7500 | 1.0283 | | 2.7057 | 1.82 | 665 | 2.7612 | 1.0127 | | 2.8348 | 1.83 | 670 | 2.7441 | 1.0056 | | 2.705 | 1.85 | 675 | 2.7473 | 1.0519 | | 2.7547 | 1.86 | 680 | 2.7216 | 1.0218 | | 2.7045 | 1.88 | 685 | 2.7261 | 1.1414 | | 2.7121 | 1.89 | 690 | 2.7223 | 1.0287 | | 2.6877 | 1.9 | 695 | 2.7283 | 1.0274 | | 2.6879 | 1.92 | 700 | 2.7451 | 1.1322 | | 2.6958 | 1.93 | 705 | 2.7166 | 1.0364 | | 2.6692 | 1.94 | 710 | 2.7148 | 1.0074 | | 2.5786 | 1.96 | 715 | 2.7101 | 1.0504 | | 2.6919 | 1.97 | 720 | 2.6963 | 1.0454 | | 2.7256 | 1.98 | 725 | 2.7201 | 1.0349 | | 2.6507 | 2.0 | 730 | 2.7099 | 1.1339 | | 2.7833 | 2.01 | 735 | 2.7111 | 1.0124 | | 2.7521 | 2.03 | 740 | 2.7024 | 1.0275 | | 2.6732 | 2.04 | 745 | 2.7058 | 1.0647 | | 2.719 | 2.05 | 750 | 2.7200 | 1.0211 | | 2.701 | 2.07 | 755 | 2.7024 | 1.0808 | | 2.6444 | 2.08 | 760 | 2.6813 | 1.0582 | | 2.5592 | 2.1 | 765 | 2.6783 | 1.1010 | | 2.6444 | 2.11 | 770 | 2.6707 | 1.0946 | | 2.6944 | 2.12 | 775 | 2.7012 | 1.1315 | | 2.6733 | 2.14 | 780 | 2.7072 | 1.1144 | | 2.6998 | 2.15 | 785 | 2.7132 | 1.0206 | | 2.796 | 2.16 | 790 | 2.7076 | 1.1262 | | 2.6881 | 2.18 | 795 | 2.6953 | 1.0841 | | 2.7382 | 2.19 | 800 | 2.6605 | 1.1234 | | 2.5814 | 2.21 | 805 | 2.6814 | 1.1865 | | 2.6695 | 2.22 | 810 | 2.6531 | 1.0985 | | 2.6415 | 2.23 | 815 | 2.6590 | 1.0804 | | 2.646 | 2.25 | 820 | 2.6514 | 1.0853 | | 2.6028 | 2.26 | 825 | 2.6723 | 1.1411 | | 2.6429 | 2.27 | 830 | 2.6729 | 1.0395 | | 2.6736 | 2.29 | 835 | 2.7039 | 1.0355 | | 2.6959 | 2.3 | 840 | 2.6510 | 1.0414 | | 2.6426 | 2.31 | 845 | 2.6660 | 1.1591 | | 2.7152 | 2.33 | 850 | 2.6361 | 1.0276 | | 2.7148 | 2.34 | 855 | 2.6723 | 1.2461 | | 2.6336 | 2.36 | 860 | 2.6332 | 1.0310 | | 2.665 | 2.37 | 865 | 2.6365 | 1.1312 | | 2.5607 | 2.38 | 870 | 2.6344 | 1.1301 | | 2.5614 | 2.4 | 875 | 2.6437 | 1.1513 | | 2.4899 | 2.41 | 880 | 2.6418 | 1.1532 | | 2.6794 | 2.42 | 885 | 2.6403 | 1.0272 | | 2.6814 | 2.44 | 890 | 2.6420 | 1.1323 | | 2.6614 | 2.45 | 895 | 2.6183 | 1.0525 | | 2.6629 | 2.47 | 900 | 2.6414 | 1.1569 | | 2.6166 | 2.48 | 905 | 2.6167 | 1.0265 | | 2.6374 | 2.49 | 910 | 2.6299 | 1.1720 | | 2.6035 | 2.51 | 915 | 2.6139 | 1.1565 | | 2.595 | 2.52 | 920 | 2.6126 | 1.0557 | | 2.6416 | 2.53 | 925 | 2.6190 | 1.0414 | | 2.6785 | 2.55 | 930 | 2.6352 | 1.0289 | | 2.6986 | 2.56 | 935 | 2.6268 | 1.0077 | | 2.6145 | 2.57 | 940 | 2.6166 | 1.0445 | | 2.6961 | 2.59 | 945 | 2.6142 | 1.0185 | | 2.6852 | 2.6 | 950 | 2.6072 | 1.0122 | | 2.5792 | 2.62 | 955 | 2.6078 | 1.1165 | | 2.6118 | 2.63 | 960 | 2.6177 | 1.1210 | | 2.5472 | 2.64 | 965 | 2.6126 | 1.0044 | | 2.577 | 2.66 | 970 | 2.6051 | 1.0881 | | 2.5602 | 2.67 | 975 | 2.5992 | 1.0178 | | 2.695 | 2.68 | 980 | 2.6023 | 1.0248 | | 2.7017 | 2.7 | 985 | 2.6190 | 1.0041 | | 2.6327 | 2.71 | 990 | 2.6024 | 1.0142 | | 2.6193 | 2.73 | 995 | 2.5897 | 1.0148 | | 2.5939 | 2.74 | 1000 | 2.5900 | 1.0329 | | 2.5477 | 2.75 | 1005 | 2.5971 | 1.0338 | | 2.6089 | 2.77 | 1010 | 2.5969 | 1.0064 | | 2.5625 | 2.78 | 1015 | 2.5899 | 1.0648 | | 2.5745 | 2.79 | 1020 | 2.5861 | 1.0627 | | 2.5702 | 2.81 | 1025 | 2.5923 | 1.0526 | | 2.645 | 2.82 | 1030 | 2.6053 | 1.0199 | | 2.6869 | 2.83 | 1035 | 2.6227 | 1.0011 | | 2.6678 | 2.85 | 1040 | 2.6094 | 1.0179 | | 2.6787 | 2.86 | 1045 | 2.5978 | 1.0028 | | 2.6246 | 2.88 | 1050 | 2.5965 | 1.0093 | | 2.5676 | 2.89 | 1055 | 2.5927 | 1.0627 | | 2.6773 | 2.9 | 1060 | 2.5907 | 1.0817 | | 2.6114 | 2.92 | 1065 | 2.5932 | 1.1013 | | 2.6227 | 2.93 | 1070 | 2.5840 | 1.0402 | | 2.594 | 2.94 | 1075 | 2.5997 | 1.1371 | | 2.751 | 2.96 | 1080 | 2.5909 | 1.0972 | | 2.6366 | 2.97 | 1085 | 2.6081 | 1.0598 | | 2.577 | 2.98 | 1090 | 2.5915 | 1.0410 | | 2.579 | 3.0 | 1095 | 2.5953 | 1.1433 | | 2.6706 | 3.01 | 1100 | 2.5913 | 1.0456 | | 2.6161 | 3.03 | 1105 | 2.6079 | 1.1009 | | 2.6397 | 3.04 | 1110 | 2.5951 | 1.1771 | | 2.6246 | 3.05 | 1115 | 2.5730 | 1.0299 | | 2.5637 | 3.07 | 1120 | 2.5622 | 1.0848 | | 2.5692 | 3.08 | 1125 | 2.5561 | 1.1472 | | 2.5948 | 3.1 | 1130 | 2.5568 | 1.0802 | | 2.5372 | 3.11 | 1135 | 2.5638 | 1.1261 | | 2.4995 | 3.12 | 1140 | 2.5727 | 1.1395 | | 2.6304 | 3.14 | 1145 | 2.5671 | 1.0259 | | 2.6395 | 3.15 | 1150 | 2.5778 | 1.0212 | | 2.6127 | 3.16 | 1155 | 2.5609 | 1.0457 | | 2.5919 | 3.18 | 1160 | 2.5604 | 1.0902 | | 2.6111 | 3.19 | 1165 | 2.5463 | 1.0014 | | 2.5971 | 3.21 | 1170 | 2.5429 | 1.0022 | | 2.5887 | 3.22 | 1175 | 2.5394 | 1.0412 | | 2.5644 | 3.23 | 1180 | 2.5342 | 1.0469 | | 2.4805 | 3.25 | 1185 | 2.6066 | 1.2668 | | 2.5324 | 3.26 | 1190 | 2.5395 | 1.0234 | | 2.5491 | 3.27 | 1195 | 2.5431 | 1.0644 | | 2.6302 | 3.29 | 1200 | 2.5558 | 1.0680 | | 2.6139 | 3.3 | 1205 | 2.5711 | 1.0565 | | 2.5607 | 3.31 | 1210 | 2.5635 | 1.0415 | | 2.6535 | 3.33 | 1215 | 2.5505 | 1.0613 | | 2.6129 | 3.34 | 1220 | 2.5403 | 1.0724 | | 2.5157 | 3.36 | 1225 | 2.5294 | 1.0585 | | 2.551 | 3.37 | 1230 | 2.5242 | 1.1599 | | 2.5527 | 3.38 | 1235 | 2.5474 | 1.2327 | | 2.4964 | 3.4 | 1240 | 2.5244 | 1.0857 | | 2.5781 | 3.41 | 1245 | 2.5299 | 1.0470 | | 2.6143 | 3.42 | 1250 | 2.5313 | 1.0019 | | 2.6566 | 3.44 | 1255 | 2.5431 | 1.0488 | | 2.5373 | 3.45 | 1260 | 2.5281 | 1.0901 | | 2.6597 | 3.47 | 1265 | 2.5300 | 1.0610 | | 2.5457 | 3.48 | 1270 | 2.5130 | 1.0420 | | 2.5632 | 3.49 | 1275 | 2.5306 | 1.1418 | | 2.5267 | 3.51 | 1280 | 2.5021 | 1.0293 | | 2.507 | 3.52 | 1285 | 2.5013 | 1.0196 | | 2.5713 | 3.53 | 1290 | 2.4978 | 1.0664 | | 2.4783 | 3.55 | 1295 | 2.4958 | 1.0530 | | 2.5874 | 3.56 | 1300 | 2.4968 | 1.0059 | | 2.5744 | 3.57 | 1305 | 2.5078 | 1.0287 | | 2.5701 | 3.59 | 1310 | 2.4971 | 1.0366 | | 2.5366 | 3.6 | 1315 | 2.4897 | 1.0191 | | 2.5679 | 3.62 | 1320 | 2.4830 | 1.0223 | | 2.5239 | 3.63 | 1325 | 2.4833 | 1.0784 | | 2.5411 | 3.64 | 1330 | 2.4851 | 1.1522 | | 2.5037 | 3.66 | 1335 | 2.4792 | 1.0928 | | 2.5907 | 3.67 | 1340 | 2.4750 | 1.0187 | | 2.5107 | 3.68 | 1345 | 2.4805 | 1.0873 | | 2.5908 | 3.7 | 1350 | 2.4753 | 1.0098 | | 2.6274 | 3.71 | 1355 | 2.4765 | 1.0045 | | 2.5708 | 3.73 | 1360 | 2.4597 | 1.0456 | | 2.6039 | 3.74 | 1365 | 2.4503 | 1.0485 | | 2.5305 | 3.75 | 1370 | 2.4439 | 1.0126 | | 2.4878 | 3.77 | 1375 | 2.4407 | 1.0162 | | 2.5055 | 3.78 | 1380 | 2.4421 | 1.0605 | | 2.5249 | 3.79 | 1385 | 2.4499 | 1.1163 | | 2.5508 | 3.81 | 1390 | 2.4654 | 1.1472 | | 2.5827 | 3.82 | 1395 | 2.4510 | 1.0561 | | 2.6148 | 3.83 | 1400 | 2.4496 | 0.9998 | | 2.5763 | 3.85 | 1405 | 2.4417 | 1.0067 | | 2.6077 | 3.86 | 1410 | 2.4458 | 1.0682 | | 2.5388 | 3.88 | 1415 | 2.4352 | 1.0820 | | 2.5235 | 3.89 | 1420 | 2.4277 | 1.0784 | | 2.4996 | 3.9 | 1425 | 2.4245 | 1.0671 | | 2.5601 | 3.92 | 1430 | 2.4202 | 1.0650 | | 2.5805 | 3.93 | 1435 | 2.4199 | 1.0530 | | 2.5841 | 3.94 | 1440 | 2.4228 | 1.0797 | | 2.4877 | 3.96 | 1445 | 2.4284 | 1.1159 | | 2.5542 | 3.97 | 1450 | 2.4190 | 1.0575 | | 2.5961 | 3.98 | 1455 | 2.4162 | 1.0676 | | 2.495 | 4.0 | 1460 | 2.4165 | 1.0821 | | 2.6157 | 4.01 | 1465 | 2.4119 | 1.0117 | | 2.5415 | 4.03 | 1470 | 2.4089 | 1.0110 | | 2.4916 | 4.04 | 1475 | 2.4032 | 1.0498 | | 2.5445 | 4.05 | 1480 | 2.3997 | 1.0429 | | 2.4941 | 4.07 | 1485 | 2.4008 | 1.0141 | | 2.5113 | 4.08 | 1490 | 2.3975 | 1.0357 | | 2.4707 | 4.1 | 1495 | 2.3938 | 1.0288 | | 2.4952 | 4.11 | 1500 | 2.3910 | 1.0300 | | 2.5017 | 4.12 | 1505 | 2.3861 | 1.0813 | | 2.5566 | 4.14 | 1510 | 2.3919 | 1.1082 | | 2.5754 | 4.15 | 1515 | 2.3947 | 1.0074 | | 2.6138 | 4.16 | 1520 | 2.4040 | 0.9989 | | 2.5024 | 4.18 | 1525 | 2.3949 | 1.0039 | | 2.5136 | 4.19 | 1530 | 2.3993 | 1.0496 | | 2.5646 | 4.21 | 1535 | 2.3981 | 1.0729 | | 2.4556 | 4.22 | 1540 | 2.3952 | 1.0494 | | 2.5774 | 4.23 | 1545 | 2.3924 | 1.0345 | | 2.5126 | 4.25 | 1550 | 2.3888 | 1.0306 | | 2.4596 | 4.26 | 1555 | 2.3960 | 1.0775 | | 2.521 | 4.27 | 1560 | 2.3978 | 1.1025 | | 2.6304 | 4.29 | 1565 | 2.3885 | 1.0433 | | 2.543 | 4.3 | 1570 | 2.3849 | 1.0072 | | 2.5601 | 4.31 | 1575 | 2.3855 | 1.0110 | | 2.6304 | 4.33 | 1580 | 2.3878 | 1.0369 | | 2.4121 | 4.34 | 1585 | 2.3783 | 1.0366 | | 2.4261 | 4.36 | 1590 | 2.3746 | 1.0307 | | 2.5038 | 4.37 | 1595 | 2.3789 | 1.0611 | | 2.5391 | 4.38 | 1600 | 2.3849 | 1.0738 | | 2.4341 | 4.4 | 1605 | 2.3779 | 1.0573 | | 2.5306 | 4.41 | 1610 | 2.3751 | 1.0460 | | 2.5818 | 4.42 | 1615 | 2.3743 | 1.0251 | | 2.5531 | 4.44 | 1620 | 2.3723 | 1.0209 | | 2.51 | 4.45 | 1625 | 2.3755 | 1.0316 | | 2.5788 | 4.47 | 1630 | 2.3725 | 1.0396 | | 2.5701 | 4.48 | 1635 | 2.3663 | 1.0292 | | 2.4194 | 4.49 | 1640 | 2.3641 | 1.0261 | | 2.5439 | 4.51 | 1645 | 2.3629 | 1.0376 | | 2.4527 | 4.52 | 1650 | 2.3629 | 1.0563 | | 2.5705 | 4.53 | 1655 | 2.3654 | 1.0766 | | 2.4552 | 4.55 | 1660 | 2.3708 | 1.0802 | | 2.5657 | 4.56 | 1665 | 2.3638 | 1.0248 | | 2.5371 | 4.57 | 1670 | 2.3639 | 1.0053 | | 2.5365 | 4.59 | 1675 | 2.3626 | 1.0072 | | 2.5383 | 4.6 | 1680 | 2.3584 | 1.0170 | | 2.546 | 4.62 | 1685 | 2.3574 | 1.0469 | | 2.6006 | 4.63 | 1690 | 2.3517 | 1.0509 | | 2.4894 | 4.64 | 1695 | 2.3489 | 1.0452 | | 2.4732 | 4.66 | 1700 | 2.3489 | 1.0586 | | 2.4933 | 4.67 | 1705 | 2.3501 | 1.0694 | | 2.4784 | 4.68 | 1710 | 2.3472 | 1.0647 | | 2.5349 | 4.7 | 1715 | 2.3419 | 1.0299 | | 2.553 | 4.71 | 1720 | 2.3420 | 1.0115 | | 2.5035 | 4.73 | 1725 | 2.3415 | 1.0117 | | 2.561 | 4.74 | 1730 | 2.3418 | 1.0242 | | 2.4773 | 4.75 | 1735 | 2.3420 | 1.0325 | | 2.4691 | 4.77 | 1740 | 2.3422 | 1.0394 | | 2.4959 | 4.78 | 1745 | 2.3405 | 1.0418 | | 2.4928 | 4.79 | 1750 | 2.3394 | 1.0449 | | 2.5058 | 4.81 | 1755 | 2.3392 | 1.0489 | | 2.5193 | 4.82 | 1760 | 2.3390 | 1.0506 | | 2.5369 | 4.83 | 1765 | 2.3392 | 1.0384 | | 2.4843 | 4.85 | 1770 | 2.3398 | 1.0236 | | 2.5074 | 4.86 | 1775 | 2.3400 | 1.0150 | | 2.4941 | 4.88 | 1780 | 2.3386 | 1.0150 | | 2.4352 | 4.89 | 1785 | 2.3370 | 1.0172 | | 2.4372 | 4.9 | 1790 | 2.3362 | 1.0208 | | 2.4855 | 4.92 | 1795 | 2.3358 | 1.0238 | | 2.4516 | 4.93 | 1800 | 2.3355 | 1.0276 | | 2.5281 | 4.94 | 1805 | 2.3356 | 1.0312 | | 2.5519 | 4.96 | 1810 | 2.3352 | 1.0318 | | 2.4641 | 4.97 | 1815 | 2.3349 | 1.0294 | | 2.4515 | 4.98 | 1820 | 2.3348 | 1.0284 | | 2.553 | 5.0 | 1825 | 2.3347 | 1.0286 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
masapasa/xls-r-ab-test
4e02879f5d02d18b606e94b221baddc2850461d6
2022-01-31T17:22:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
masapasa
null
masapasa/xls-r-ab-test
0
1
transformers
35,642
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 140.0674 - Wer: 1.1193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
maximedb/mfaq-mbert
12aa5285df0a7549edab156844d7779aea283072
2021-10-10T20:28:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
maximedb
null
maximedb/mfaq-mbert
0
null
transformers
35,643
Entry not found
mbateman/distilbert-base-uncased-finetuned-imdb-accelerate
a6541566266173ec5ee0d02aa8e916ba371ae0cf
2022-01-21T09:44:13.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mbateman
null
mbateman/distilbert-base-uncased-finetuned-imdb-accelerate
0
null
transformers
35,644
Entry not found
mbateman/distilbert-base-uncased-finetuned-squad-d5716d28
9a8119ec3269e3fa36abfab42f77826b061f81a9
2022-02-11T09:26:12.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
mbateman
null
mbateman/distilbert-base-uncased-finetuned-squad-d5716d28
0
null
transformers
35,645
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mbateman/dummy-model
0afca9c916aaea6d1a6746c35ddd54a6ab4b2c85
2021-11-26T07:56:14.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mbateman
null
mbateman/dummy-model
0
null
transformers
35,646
Entry not found
mbateman/marian-finetuned-kde4-en-to-fr
c5b443d58bbbb8fd22cec2cfaa092c7afa0970db
2022-01-27T17:33:02.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
mbateman
null
mbateman/marian-finetuned-kde4-en-to-fr
0
null
transformers
35,647
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
mboth/sentence-eng
ade70eda561e50f36c2aa944c98394989fcdfd58
2021-06-25T11:41:14.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
mboth
null
mboth/sentence-eng
0
1
transformers
35,648
Entry not found
mechanicalsea/efficient-tdnn
049a0c766f3004f2076e5ee93f68c22501ec2615
2021-11-25T02:11:25.000Z
[ "en", "dataset:voxceleb1", "dataset:voxceleb2", "arxiv:2103.13581", "embeddings", "Speaker", "Verification", "Identification", "NAS", "TDNN", "pytorch", "license:mit" ]
null
false
mechanicalsea
null
mechanicalsea/efficient-tdnn
0
2
null
35,649
--- language: - en license: mit tags: - embeddings - Speaker - Verification - Identification - NAS - TDNN - pytorch datasets: - voxceleb1 - voxceleb2 metrics: - EER - minDCF: - p_target: 0.01 --- # EfficientTDNN This repository provides all the necessary tools to perform speaker verification with a NAS alternative, named as EfficientTDNN. The system can be used to extract speaker embeddings with different model size. It is trained on Voxceleb2 training data using data augmentation. The model performance on Voxceleb1-test set(Cleaned)/Vox1-O are reported as follows. | Supernet Stage | Subnet | MACs (3s) | Params | EER(%) | minDCF | |:-------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:| | depth | Base | 1.45G | 5.79M | 0.94 | 0.089 | | width 1 | Mobile | 570.98M | 2.42M | 1.41 | 0.124 | | width 2 | Small | 204.07M | 899.20K | 2.20 | 0.219 | The details of three subnets are: - Base: (3, [512, 512, 512, 512], [5, 3, 3, 3], 1536) - Mobile: (3, [384, 256, 256, 256], [5, 3, 3, 3], 768) - Small: (2, [256, 256, 256], [3, 3, 3], 400) ## Compute your speaker embeddings ```python import torchaudio from sugar.models import WrappedModel wav_file = f"{vox1_root}/id10270/x6uYqmx31kE/00001.wav" signal, fs =torchaudio.load(wav_file) repo_id = "mechanicalsea/efficient-tdnn" supernet_filename = "depth/depth.torchparams" subnet_filename = "depth/depth.ecapa-tdnn.3.512.512.512.512.5.3.3.3.1536.bn.tar" subnet, info = WrappedModel.from_pretrained( repo_id=repo_id, supernet_filename=supernet_filename, subnet_filename=subnet_filename) embedding = subnet(signal) ``` ## Inference on GPU To perform inference on the GPU, add `subnet = subnet.to(device)` after calling the `from_pretrained` method. ## Model Description Models are listed as follows. - **Dynamic Kernel**: The model enables various kernel sizes in {1,3,5}, `kernel/kernel.torchparams`. - **Dynamic Depth**: The model enables additional various depth in {2,3,4} based on **Dynamic Kernel** version, `depth/depth.torchparams`. - **Dynamic Width 1**: The model enable additional various width in [0.5, 1.0] based on **Dynamic Depth** version, `width1/width1.torchparams`. - **Dynamic Width 2**: The model enable additional various width in [0.25, 0.5] based on **Dynamic Width 1** version, `width2/width2.torchparams`. Furthermore, some subnets are given in the form of the weights of batchnorm corresponding to their trained supernets as follows. - **Dynamic Kernel** 1. `kernel/kernel.max.bn.tar` 2. `kernel/kernel.Kmin.bn.tar` - **Dynamic Depth** 1. `depth/depth.max.bn.tar` 2. `depth/depth.Kmin.bn.tar` 3. `depth/depth.Dmin.bn.tar` 4. `depth/depth.3.512.5.5.3.3.1536.bn.tar` 5. `depth/depth.ecapa-tdnn.3.512.512.512.512.5.3.3.3.1536.bn.tar` - **Dynamic Width 1** 1. `width1/width1.torchparams` 2. `width1/width1.max.bn.tar` 3. `width1/width1.Kmin.bn.tar` 4. `width1/width1.Dmin.bn.tar` 5. `width1/width1.C1min.bn.tar` 6. `width1/width1.3.383.256.256.256.5.3.3.3.768.bn.tar` - **Dynamic Width 2** 1. `width2/width2.max.bn.tar` 2. `width2/width2.Kmin.bn.tar` 3. `width2/width2.Dmin.bn.tar` 4. `width2/width2.C1min.bn.tar` 5. `width2/width2.C2min.bn.tar` 6. `width2/width2.3.384.3.1152.bn.tar` 7. `width2/width2.3.256.256.384.384.1.3.5.3.1152.bn.tar` 8. `width2/width2.2.256.256.256.3.3.3.400.bn.tar` The tag is described as follows. - max: (4, [512, 512, 512, 512, 512], [5, 5, 5, 5, 5], 1536) - Kmin: (4, [512, 512, 512, 512, 512], [1, 1, 1, 1, 1], 1536) - Dmin: (2, [512, 512, 512], [1, 1, 1], 1536) - C1min: (2, [256, 256, 256], [1, 1, 1], 768) - C2min: (2, [128, 128, 128], [1, 1, 1], 384) More details about EfficentTDNN can be found in the paper [EfficientTDNN](https://arxiv.org/abs/2103.13581). ## **Citing EfficientTDNN** Please, cite EfficientTDNN if you use it for your research or business. ```bibtex @article{rwang-efficienttdnn-2021, title={{EfficientTDNN}: Efficient Architecture Search for Speaker Recognition}, author={Rui Wang and Zhihua Wei and Haoran Duan and Shouling Ji and Yang Long and Zhen Hong}, journal={arXiv preprint arXiv:2103.13581}, year={2021}, eprint={2103.13581}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2103.13581} } ```
meghana/hitalmqa-finetuned-squad
fa4e0177730c508062f20ba540f927504dc4bee3
2021-10-19T17:34:53.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
meghana
null
meghana/hitalmqa-finetuned-squad
0
null
transformers
35,650
--- license: mit tags: - generated_from_trainer model-index: - name: hitalmqa-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hitalmqa-finetuned-squad This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
mehari/mdl
5ec0907dec8407221673c29ea767977e91966790
2022-05-24T07:59:48.000Z
[ "pytorch" ]
null
false
mehari
null
mehari/mdl
0
null
null
35,651
Entry not found
mehari/troberta
4a63649cd4fc581c916a7585a8d3d4d10a867639
2022-05-24T16:46:32.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mehari
null
mehari/troberta
0
null
transformers
35,652
Entry not found
melon422/DialoGPT-medium-MelonBot
a8e52014f7caf56084c9169c21e8510a97192fc3
2022-01-13T05:08:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
melon422
null
melon422/DialoGPT-medium-MelonBot
0
null
transformers
35,653
--- tags: - conversational --- # Melon Bot DialoGPT Model
mengsay/t5-small-finetuned-gigaword
89bfd5d4fe8105ff4ca4366bf01c8d52fcf8c24b
2021-09-21T06:47:07.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mengsay
null
mengsay/t5-small-finetuned-gigaword
0
null
transformers
35,654
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-gigaword results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-gigaword This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.10.2 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
mengsay/t5-small-t5small-gigaword
3f8de6bb6461910242ca8b2ba7d4a5f9529df8d2
2021-09-23T04:37:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mengsay
null
mengsay/t5-small-t5small-gigaword
0
null
transformers
35,655
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-t5small-gigaword results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-t5small-gigaword This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Rouge1: 50.1555 - Rouge2: 25.5096 - Rougel: 46.5771 - Rougelsum: 46.5827 - Gen Len: 14.246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9066 | 1.0 | 118874 | 1.4971 | 49.2994 | 24.75 | 45.8251 | 45.8162 | 14.3197 | | 1.8339 | 2.0 | 237748 | 1.4449 | 49.6767 | 25.1673 | 46.1631 | 46.156 | 14.2557 | | 1.8067 | 3.0 | 356622 | 1.4220 | 50.043 | 25.4886 | 46.4577 | 46.437 | 14.2857 | | 1.8141 | 4.0 | 475496 | 1.4097 | 50.11 | 25.4327 | 46.502 | 46.5001 | 14.2653 | | 1.7985 | 5.0 | 594370 | 1.4052 | 50.1555 | 25.5096 | 46.5771 | 46.5827 | 14.246 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
metamong1/bigbart_full_tapt_ep3_bs16_pre_noam_LB
4b2e73317d7ccc42471dd001cd17dd90d50b1a94
2021-12-23T13:11:38.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
metamong1
null
metamong1/bigbart_full_tapt_ep3_bs16_pre_noam_LB
0
null
transformers
35,656
Entry not found
metamong1/bigbart_tapt_ep3_bs16_pre_RD
7b4e4a30f44380b0adcc0229aede561627534023
2021-12-23T13:42:42.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
metamong1
null
metamong1/bigbart_tapt_ep3_bs16_pre_RD
0
null
transformers
35,657
Entry not found
metamong1/bigbart_tapt_ep3_bs16_pre_noam
fd0009fbcd419b10a554eb1abd5ad5c8d37175e5
2021-12-22T16:34:23.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
metamong1
null
metamong1/bigbart_tapt_ep3_bs16_pre_noam
0
null
transformers
35,658
Entry not found
mhd-mst/pure-finetuning-final
0ff6cd2f06e0a415e22cc0cc1c241ffefa8e586e
2022-01-18T02:55:30.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mhd-mst
null
mhd-mst/pure-finetuning-final
0
null
transformers
35,659
Entry not found
mhd-mst/pure-finetuning5
68e2295a61a49dccc7f8193d1e488f7e5da8f170
2022-01-17T21:43:51.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mhd-mst
null
mhd-mst/pure-finetuning5
0
null
transformers
35,660
Entry not found
michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-trex
402c812eef15e64c8a1f5b5752cfcf31a1310b64
2021-04-20T18:28:13.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
michaelrglass
null
michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-trex
0
1
transformers
35,661
Entry not found
michalwilk123/distilbert-imdb-positive
7ace22fafbea92d7e87682d7e65995712967e8e8
2021-05-25T19:59:11.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
michalwilk123
null
michalwilk123/distilbert-imdb-positive
0
null
transformers
35,662
distilbert model trained on positive imdb reviews
mictiong85/wav2vec2-base-timit-demo-colab
2c7b6753714f803af639cfbfabae64aebf26452a
2021-11-11T11:48:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mictiong85
null
mictiong85/wav2vec2-base-timit-demo-colab
0
null
transformers
35,663
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4635 - Wer: 0.3357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6808 | 4.0 | 500 | 1.5478 | 1.0481 | | 0.835 | 8.0 | 1000 | 0.4611 | 0.4703 | | 0.3013 | 12.0 | 1500 | 0.4327 | 0.3887 | | 0.1741 | 16.0 | 2000 | 0.4073 | 0.3677 | | 0.1309 | 20.0 | 2500 | 0.4306 | 0.3595 | | 0.1097 | 24.0 | 3000 | 0.4318 | 0.3475 | | 0.0825 | 28.0 | 3500 | 0.4635 | 0.3357 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
mimi/Waynehills-NLP-doogie-AIHub-paper-summary
1039e161a057c4e383a93314dacedc4bdb8e01ee
2022-01-06T08:05:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
mimi
null
mimi/Waynehills-NLP-doogie-AIHub-paper-summary
0
null
transformers
35,664
--- tags: - generated_from_trainer model-index: - name: Waynehills-NLP-doogie-AIHub-paper-summary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-NLP-doogie-AIHub-paper-summary This model is a fine-tuned version of [mimi/Waynehills-NLP-doogie](https://huggingface.co/mimi/Waynehills-NLP-doogie) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.6206 - eval_runtime: 309.223 - eval_samples_per_second: 38.167 - eval_steps_per_second: 4.773 - epoch: 3.75 - step: 60000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.12.2 - Pytorch 1.10.0+cu111 - Datasets 1.5.0 - Tokenizers 0.10.3
mimi/Waynehills-NLP-mimi
4a42d1d35386d0f65277d6c23ad3df32d3d3df9d
2022-01-05T06:25:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mimi
null
mimi/Waynehills-NLP-mimi
0
null
transformers
35,665
Entry not found
minhdang241/TAPT_distillBERT
54a60b55d32e0869bdee932386dcdc3c3a92e8c9
2021-04-25T23:07:02.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
minhdang241
null
minhdang241/TAPT_distillBERT
0
null
transformers
35,666
Entry not found
minhdang241/robustqa-baseline-01
762db47f1a7ed3c5b3e360eb31ba1d0faaa3ba55
2021-04-27T02:04:01.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
minhdang241
null
minhdang241/robustqa-baseline-01
0
null
transformers
35,667
Entry not found
minimaxir/ai-generated-pokemon-rudalle
d8e77e518fe802646a5d2c2541e56641a08d1cec
2022-01-15T01:41:47.000Z
[ "pytorch", "en", "rudalle", "pokemon", "image-generation", "license:mit" ]
null
false
minimaxir
null
minimaxir/ai-generated-pokemon-rudalle
0
9
null
35,668
--- language: - en tags: - rudalle - pokemon - image-generation license: mit --- # ai-generated-pokemon-rudalle ![](example.png) A finetuned [ruDALL-E](https://github.com/sberbank-ai/ru-dalle) on Pokémon using the finetuning example Colab Notebook [linked in that repo](https://colab.research.google.com/drive/1Tb7J4PvvegWOybPfUubl5O7m5I24CBg5?usp=sharing). This model was used to create Pokémon that resulted in AI-Generated Pokémon that went viral ([10k+ retweets](https://twitter.com/minimaxir/status/1470913487085785089) on Twitter + [30k+ upvotes](https://www.reddit.com/r/pokemon/comments/rgmyxp/i_trained_an_ai_on_all_the_official_pokemon/) on Reddit) The model used above was trained for 12 epochs (4.5 hours on a P100), at a max learning rate of `1e-5`. ## Demo You can play with this model using [this Colab Notebook](https://colab.research.google.com/drive/1A3t2gQofQGeXo5z1BAr1zqYaqVg3czKd?usp=sharing). ## License MIT
minn/my-bert-mlm
e581e4193549b938c97c7d4d6398de631f29c3e6
2021-10-28T15:31:19.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
minn
null
minn/my-bert-mlm
0
null
transformers
35,669
Entry not found
minsiam/DialoGPT-medium-harrypotterbot
41ae2953704a338964317cfaa588d5d7fb75157a
2021-09-20T07:52:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
minsiam
null
minsiam/DialoGPT-medium-harrypotterbot
0
null
transformers
35,670
--- tags: - conversational --- #Harry Potter DialoGPT-medium Model
minwoo/myelectra-small-discriminator
344b2a12b96c3d1517f274c15238b147b7c4fcb6
2020-07-25T10:29:44.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
minwoo
null
minwoo/myelectra-small-discriminator
0
null
transformers
35,671
Entry not found
mishig/tiny-layoutlmv2-tokenclassification
5c340f7e0716d226a8de96de4ca87ba037543a22
2021-09-23T14:46:34.000Z
[ "pytorch" ]
null
false
mishig
null
mishig/tiny-layoutlmv2-tokenclassification
0
null
null
35,672
Entry not found
mittalnishit/DialoGPT-medium-rickman2
9652b97680269861d03f5dc1991a58d290ad85c3
2021-06-23T08:34:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mittalnishit
null
mittalnishit/DialoGPT-medium-rickman2
0
null
transformers
35,673
--- tags: - conversational --- # DialoGPT-medium-rickman2
mjstamper/DialoGPT-small-samwise
648820ab6d4e74ed4328d92af04ec73bbd487838
2021-08-27T21:54:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mjstamper
null
mjstamper/DialoGPT-small-samwise
0
null
transformers
35,674
--- tags: - conversational --- # Samwise Gamgee DialoGPT Model
mk3smo/dialogpt-med-duckfinal
6e1592fadd0bf72207ea7641e73bbde7c8d68a14
2021-12-31T18:22:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mk3smo
null
mk3smo/dialogpt-med-duckfinal
0
null
transformers
35,675
--- tags: - conversational --- # yeah
mklucifer/DialoGPT-small-DEADPOOL
fc917f6679cf77e3ba695606f5394a155783888a
2021-10-27T14:25:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mklucifer
null
mklucifer/DialoGPT-small-DEADPOOL
0
null
transformers
35,676
--- tags: - conversational --- # DEADPOOL DialoGPT Model
mm/roberta-base-mld
7734edaf3598d0dc382d32a442b005c6ac35147e
2021-05-20T17:54:53.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
mm
null
mm/roberta-base-mld
0
null
transformers
35,677
# roberta-base-mld This is a pretrained roberta-base model for machine learning domain documents.
mohamed-illiyas/wav2vec2-300m-lj-demo-colab
b9b49299c2b31a9d46251956581d065abe504e00
2022-02-22T03:59:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mohamed-illiyas
null
mohamed-illiyas/wav2vec2-300m-lj-demo-colab
0
null
transformers
35,678
Entry not found
mohammedks713/DialoGPT-small-harrypotter
fbe4e285da643defaa69b402433533419a06dfed
2021-09-06T04:57:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mohammedks713
null
mohammedks713/DialoGPT-small-harrypotter
0
null
transformers
35,679
--- tags: - conversational --- # Harry Potter DialoGPT Model
mohammedks713/DialoGPT-small-jonsnow
71de5f4cab87a7a711b42090efca0a80a66dc36f
2021-09-06T05:57:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mohammedks713
null
mohammedks713/DialoGPT-small-jonsnow
0
null
transformers
35,680
--- tags: - conversational --- # Jon Snow DialoGPT Model
mohsenfayyaz/BERT_Warmup
1f68cdd0bb7e2369caa2924b0f628c46ad3f0460
2021-03-15T10:54:28.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mohsenfayyaz
null
mohsenfayyaz/BERT_Warmup
0
null
transformers
35,681
Entry not found
molly-hayward/bioelectra-base-discriminator
adbb2ada0be242bc9d817a8e8c6511465ef196cf
2021-04-17T16:59:46.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
molly-hayward
null
molly-hayward/bioelectra-base-discriminator
0
null
transformers
35,682
To produce BioELECTRA, we pretrain ELECTRA on a corpus of over 20 million abstracts from PubMed. How to use the discriminator in transformers: from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("molly-hayward/bioelectra-base-discriminator") tokenizer = ElectraTokenizerFast.from_pretrained("molly-hayward/bioelectra-base-discriminator")
molly-hayward/bioelectra-base-generator
4838743f1ab9f08911435159aff13585e82676d5
2021-04-17T16:59:28.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
molly-hayward
null
molly-hayward/bioelectra-base-generator
0
null
transformers
35,683
To produce BioELECTRA, we pretrain ELECTRA on a corpus of over 20 million abstracts from PubMed. How to use the generator in transformers: from transformers import ElectraForMaskedLM, ElectraTokenizerFast import torch generator = ElectraForMaskedLM.from_pretrained("molly-hayward/bioelectra-base-generator") tokenizer = ElectraTokenizerFast.from_pretrained("molly-hayward/bioelectra-base-generator")
molly-hayward/bioelectra-small-discriminator
32a125d83287a7e2d90f889363b00e1accb886e4
2021-04-17T16:58:44.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
molly-hayward
null
molly-hayward/bioelectra-small-discriminator
0
null
transformers
35,684
To produce BioELECTRA, we pretrain ELECTRA on a corpus of over 20 million abstracts from PubMed. How to use the discriminator in transformers: from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("molly-hayward/bioelectra-small-discriminator") tokenizer = ElectraTokenizerFast.from_pretrained("molly-hayward/bioelectra-small-discriminator")
molly-hayward/bioelectra-small-generator
336833d84d466c3afacb3e143d7aa9e59d757089
2021-04-17T16:58:15.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
molly-hayward
null
molly-hayward/bioelectra-small-generator
0
null
transformers
35,685
To produce BioELECTRA, we pretrain ELECTRA on a corpus of over 20 million abstracts from PubMed. How to use the generator in transformers: from transformers import ElectraForMaskedLM, ElectraTokenizerFast import torch generator = ElectraForMaskedLM.from_pretrained("molly-hayward/bioelectra-small-generator") tokenizer = ElectraTokenizerFast.from_pretrained("molly-hayward/bioelectra-small-generator")
momo/gpt2-kiosk
366824c536e14445c65968f5b60017bf937ccc9f
2021-11-19T07:42:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
momo
null
momo/gpt2-kiosk
0
null
transformers
35,686
# kiosk_bot KoGPT2를 이용한 간단한 kiosk chatbot 입니다. 데이터는 AiHub의 [한국어대화 데이터](https://aihub.or.kr/aidata/85)를 사용했습니다. 데이터는 학습만 진행하였고 공개는 하지 않습니다. ## Architecture Hugging face의 예제들을 보며 구현하였습니다. <img width="549" alt="gpt" src="https://user-images.githubusercontent.com/60643542/142431681-85db3d74-172d-45f0-9433-de43a8aeae17.png"> ```input``` 은 ```User + <BOS> + System + <EOS>```로 구현하였다. ```output``` 은 ```P(system|user)```를 최대화 시키기위해 모델을 학습하였다. ## Install ``` git clone https://github.com/momozzing/kiosk_bot.git pip install requirements.txt ``` ## How to train? 기존 학습된 데이터로 대화를 하고 싶으시면 ```install``` 후 ```How to chat``` 으로 넘어가셔도 됩니다. ``` cd kiosk_bot/data ## 안에 원하시는 데이터를 넣으시면 됩니다. kiosk_bot/GPT-2_fine_tune.py ## 안에 데이터 loader들의 파일이름을 변경해주시면 됩니다. deepspeed --num_gpus=1 GPT-2_fine_tune.py ## 변경후 이것으로 실행하시면 됩니다. 그후 생성된 skt-kogpt2-base-v2.pt 를 사용하시면 됩니다. ``` ## How to chat? ``` python interactive.py ##기존 데이터로 채팅하기 python new_data_interactive.py ##새로운 데이터로 파인튜닝한것 pt파일 불러와서 채팅하기. --기존 데이터 채팅-- User: 아메리카노 주세요 System: 따뜻한 거 드릴까요? User: 아이스로 주세요 System: 사이즈는 톨 괜찮으세요? User: 그란데 사이즈로 주세요 System: 죄송한데 저희 가게에는 레귤러랑 라지 사이즈 밖에 없어요 User: 그럼 라지사이즈로 주세요 System: 네 고객님 테이크아웃 하시나요? User: 먹고갈게요 System: 네 그럼 머그잔으로 준비해드리겠습니다 User: 감사합니다 System: 좋은 하루 보내세요 ``` ## Reference [HuggingFace](https://huggingface.co/transformers/index.html) [KoGPT2](https://github.com/SKT-AI/KoGPT2) [AIHUB](https://aihub.or.kr/)
monologg/kocharelectra-base-modu-ner-sx
067e1489571903d85152b2676516aeef083b66f4
2020-12-02T23:49:27.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
monologg
null
monologg/kocharelectra-base-modu-ner-sx
0
null
transformers
35,687
Entry not found
monologg/koelectra-small-v3-goemotions
b70df691bc610b31dacd6189a370d35b2b58d8df
2021-02-09T14:41:12.000Z
[ "pytorch", "electra", "transformers" ]
null
false
monologg
null
monologg/koelectra-small-v3-goemotions
0
null
transformers
35,688
Entry not found
morganchen1007/layoutlmv2-finetuned-ORIfunsd-1216
25d80a3c099ace231d68d18efdfb658f9a439b4b
2021-12-16T09:30:29.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
morganchen1007
null
morganchen1007/layoutlmv2-finetuned-ORIfunsd-1216
0
null
transformers
35,689
Entry not found
morganchen1007/layoutlmv2-finetuned-funsd-test
eca83981b12969d80f4b68b60417d2b93522c222
2021-12-09T07:58:31.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
morganchen1007
null
morganchen1007/layoutlmv2-finetuned-funsd-test
0
null
transformers
35,690
Entry not found
motiondew/bert-finetuned-lr2-e5-b16-ep2
82bf4d3184ddf6bae4c7a66626aa4f681c58f768
2021-06-22T17:55:12.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
motiondew
null
motiondew/bert-finetuned-lr2-e5-b16-ep2
0
null
transformers
35,691
Entry not found
motiondew/bert-sd1-small
2900c27e5fe592bf36cf57df4da1851efe44995a
2021-07-01T09:20:36.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
motiondew
null
motiondew/bert-sd1-small
0
null
transformers
35,692
Entry not found
mra1ster/DialoGPT_scully_small
733233b6d892bd406e3f51d0af762e812b4e3bc3
2021-10-09T06:38:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mra1ster
null
mra1ster/DialoGPT_scully_small
0
null
transformers
35,693
--- tags: - conversational --- #Scully from XFiles DialoGPT model
mrm8488/GuaPeTe-2-tiny-finetuned-TED
0831fe9190a5b770a21938ca5e615f7f0251ee70
2021-05-23T10:14:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "es", "transformers", "spanish", "gpt-2", "spanish gpt2" ]
text-generation
false
mrm8488
null
mrm8488/GuaPeTe-2-tiny-finetuned-TED
0
null
transformers
35,694
--- language: es tags: - spanish - gpt-2 - spanish gpt2 widget: - text: "Ustedes tienen la oportunidad de" --- # GuaPeTe-2-tiny fine-tuned on TED dataset for CLM
mrm8488/albert-base-v2-finetuned-mnli-pabee
b78ead58cf2cd49272b7afeab3bc1507137f9348
2020-07-10T22:51:35.000Z
[ "pytorch", "albert", "transformers" ]
null
false
mrm8488
null
mrm8488/albert-base-v2-finetuned-mnli-pabee
0
null
transformers
35,695
Entry not found
mrm8488/bert2bert-small_shared-question-generation
9e5b50f3ac94da170c4fb75ec6efc81409c84fff
2020-12-26T12:28:08.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/bert2bert-small_shared-question-generation
0
null
transformers
35,696
Entry not found
mrm8488/bert2bert_shared-portuguese-question-generation
5362cd0cdb479a5927e50a7304bda2b77afb9d78
2020-12-12T18:30:18.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/bert2bert_shared-portuguese-question-generation
0
null
transformers
35,697
Entry not found
mrm8488/codebert-finetuned-clone-detection
80a21cef60d7680225b31398f0305e6e53aa8d0f
2021-05-20T18:22:42.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
mrm8488
null
mrm8488/codebert-finetuned-clone-detection
0
1
transformers
35,698
Entry not found
mrm8488/electra-large-finetuned-squadv1
cc57d67e664a3116b3a8498f4a9a72744c71c1ca
2020-07-01T10:16:16.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/electra-large-finetuned-squadv1
0
null
transformers
35,699
Entry not found