modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
jaeyoung/klue_mln_train_only_train
866e9704bd6b2624bae6e64efccc8af49cbdd7ab
2021-10-05T17:55:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jaeyoung
null
jaeyoung/klue_mln_train_only_train
0
null
transformers
35,400
Entry not found
jaeyoung/xlmroberta-klue_mln_train_only_train
82a2a676cf506a1d386b21fd2b0d853308291ef3
2021-10-06T01:35:36.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jaeyoung
null
jaeyoung/xlmroberta-klue_mln_train_only_train
0
null
transformers
35,401
Entry not found
jalensmh/DialoGPT-small-exophoria
c788527c91ee833c4ba6740a5a3a29db2707ab38
2021-09-02T22:05:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
jalensmh
null
jalensmh/DialoGPT-small-exophoria
0
null
transformers
35,402
--- tags: - conversational --- # exophoria DialoGPT Model
jamescalam/bert-base-dv
bc4c0034a666b947abbc2fbdf15ed23794afa0b7
2021-12-13T13:36:29.000Z
[ "pytorch", "bert", "fill-mask", "dv", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
jamescalam
null
jamescalam/bert-base-dv
0
2
transformers
35,403
--- language: - dv license: apache-2.0 --- # BERT base for Dhivehi Pretrained model on Dhivehi language using masked language modeling (MLM). ## Tokenizer The *WordPiece* tokenizer uses several components: * **Normalization**: lowercase and then NFKD unicode normalization. * **Pretokenization**: splits by whitespace and punctuation. * **Postprocessing**: single sentences are output in format `[CLS] sentence A [SEP]` and pair sentences in format `[CLS] sentence A [SEP] sentence B [SEP]`. ## Training Training was performed over 16M+ Dhivehi sentences/paragraphs put together by [@ashraq](https://huggingface.co/ashraq). An Adam optimizer with weighted decay was used with following parameters: * Learning rate: 1e-5 * Weight decay: 0.1 * Warmup steps: 10% of data
jamiewjm/CCGwGPT2extep3
3cda86b992857621884d03fafe2c68d7dd6b58c8
2021-11-26T02:41:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jamiewjm
null
jamiewjm/CCGwGPT2extep3
0
null
transformers
35,404
Entry not found
jamiewjm/CCGwGPT2extep3reduce
b5a66485b9c2c782d2766dd80b0923302593d15c
2021-11-26T02:29:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jamiewjm
null
jamiewjm/CCGwGPT2extep3reduce
0
null
transformers
35,405
Entry not found
jannesg/takalane_tsn_roberta
86add1af71ba1c8df91dda133a1c7f62a136d1a8
2021-09-22T08:52:11.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "tn", "transformers", "masked-lm", "license:mit", "autotrain_compatible" ]
fill-mask
false
jannesg
null
jannesg/takalane_tsn_roberta
0
null
transformers
35,406
--- language: - tn thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - tn - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Tswana 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_tsn_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_tsn_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 10000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jatinshah/bert-finetuned-squad
bafda7bcc325d27c9d520a921c49c9167a9aba44
2022-02-15T02:37:28.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
jatinshah
null
jatinshah/bert-finetuned-squad
0
null
transformers
35,407
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+0aef44c - Datasets 1.18.3 - Tokenizers 0.11.0
jatinshah/marian-finetuned-kde4-en-to-fr
3c8cdff0b4d7f51a7ef582a02398c08cd3ed2f49
2022-02-14T05:47:21.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
jatinshah
null
jatinshah/marian-finetuned-kde4-en-to-fr
0
null
transformers
35,408
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8815 - Score: 52.2204 - Counts: [166010, 120787, 91973, 70929] - Totals: [228361, 207343, 189354, 173335] - Precisions: [72.69630103213771, 58.254679444205976, 48.57198686058916, 40.92018345977443] - Bp: 0.9695 - Sys Len: 228361 - Ref Len: 235434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+0aef44c - Datasets 1.18.3 - Tokenizers 0.11.0
jawaharreddy247/wav2vec2-large-xlsr-hindhi-demo-colab
ecef9a734917c5553f5757db04a04c7c0322dc30
2021-10-28T12:30:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jawaharreddy247
null
jawaharreddy247/wav2vec2-large-xlsr-hindhi-demo-colab
0
null
transformers
35,409
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hindhi-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hindhi-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
jaynlp/t5-large-transferqa
a95e221dfc82b79bb6d8551f1d4e3ce9af600ae0
2022-02-17T11:08:17.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2109.04655", "transformers", "autotrain_compatible" ]
text2text-generation
false
jaynlp
null
jaynlp/t5-large-transferqa
0
1
transformers
35,410
Reproduced TransferQA paper pre-trained weights. https://arxiv.org/abs/2109.04655
jcmc/wav2vec2-xls-r-300m-jp
13d54e22929c5d8480b10cf950d6565769133aa5
2022-01-26T07:22:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
jcmc
null
jcmc/wav2vec2-xls-r-300m-jp
0
null
transformers
35,411
Entry not found
jcsilva/wav2vec2-base-timit-demo-colab
618d063f7ddf3d3322a0c8c9830ff4a46ea6202d
2021-12-18T13:45:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jcsilva
null
jcsilva/wav2vec2-base-timit-demo-colab
0
null
transformers
35,412
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7665 - Wer: 0.6956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.052 | 0.8 | 100 | 3.0167 | 1.0 | | 2.7436 | 1.6 | 200 | 1.9369 | 1.0006 | | 1.4182 | 2.4 | 300 | 0.7665 | 0.6956 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jeanlks/DialogGPT-small-pato
48396ddea5261f6927946d7765b9bece8453225d
2021-09-20T14:23:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
jeanlks
null
jeanlks/DialogGPT-small-pato
0
null
transformers
35,413
--- tags: - conversational --- #Chatbot pato
jenspt/byt5_ft_error_only
572e22ad98fd887918023b1ccddb1fdb6b9b6643
2021-11-26T14:26:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jenspt
null
jenspt/byt5_ft_error_only
0
null
transformers
35,414
Entry not found
jenspt/mln_ft
ba9c7030c9414c2cd733e027ddbbcf3ef0b82918
2021-12-05T15:52:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jenspt
null
jenspt/mln_ft
0
null
transformers
35,415
Entry not found
jfarray/Model_all-distilroberta-v1_100_Epochs
af9e35efaa95bcd64f9bb9f00b800117d827da9c
2022-02-13T20:50:24.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_all-distilroberta-v1_100_Epochs
0
null
sentence-transformers
35,416
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_30_Epochs
1e762b3309492c484394ea81ac17bd33ebf26d82
2022-02-13T20:00:26.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_all-distilroberta-v1_30_Epochs
0
null
sentence-transformers
35,417
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_50_Epochs
38848063ce504fb8246aeb3e20e800c0812db432
2022-02-13T20:18:37.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_all-distilroberta-v1_50_Epochs
0
null
sentence-transformers
35,418
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_bert-base-multilingual-uncased_10_Epochs
888e780a84f0919539431c7543048e4f385349ea
2022-02-13T23:21:43.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_bert-base-multilingual-uncased_10_Epochs
0
null
sentence-transformers
35,419
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_bert-base-multilingual-uncased_50_Epochs
4eaf53db5af1ee5d0732b39adc763ab21e060a3f
2022-02-14T19:44:38.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_bert-base-multilingual-uncased_50_Epochs
0
null
sentence-transformers
35,420
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_30_Epochs
65c592ac61fe265cc0310f7cbc1c2cb04341af17
2022-02-14T21:20:47.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_30_Epochs
0
null
sentence-transformers
35,421
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_distiluse-base-multilingual-cased-v1_10_Epochs
9efa42387c3fc9c17b59c6fc8b99bb4d23cd4aa5
2022-02-12T13:53:59.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_distiluse-base-multilingual-cased-v1_10_Epochs
0
null
sentence-transformers
35,422
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_distiluse-base-multilingual-cased-v1_5_Epochs
fef5291e81ae3fb22e77769323f35e52d610ca1d
2022-02-12T13:43:01.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_distiluse-base-multilingual-cased-v1_5_Epochs
0
null
sentence-transformers
35,423
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_10_Epochs
c36d6a25fff0e82b5ccf7856a3bc408a6cb15e98
2022-02-12T20:47:55.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jfarray
null
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_10_Epochs
0
null
sentence-transformers
35,424
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_30_Epochs
3a5d92f8db442fb79f21ac39e458a17b47efe136
2022-02-12T21:00:41.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jfarray
null
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_30_Epochs
0
null
sentence-transformers
35,425
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_10_Epochs
c7cb5f1856de0b01c8deb323e68f2019789fe9ee
2022-02-12T22:32:17.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jfarray
null
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_10_Epochs
0
null
sentence-transformers
35,426
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_50_Epochs
249e245da9bd2ee78711a33c7fc5d2561e68a8f7
2022-02-12T23:39:31.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jfarray
null
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_50_Epochs
0
null
sentence-transformers
35,427
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfhr1999/CharacterTest
34ec9fe5989b4c8280cf5ed88edbf1e1045055cd
2021-07-02T17:47:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
jfhr1999
null
jfhr1999/CharacterTest
0
null
transformers
35,428
--- tags: - conversational --- ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jfhr1999/CharacterTest") model = AutoModelWithLMHead.from_pretrained("jfhr1999/CharacterTest") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
jgammack/MTL-bert-base-uncased-ww
3454496bbffc403986a43775673729409aee70a4
2022-02-08T17:50:13.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
jgammack
null
jgammack/MTL-bert-base-uncased-ww
0
null
transformers
35,429
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MTL-bert-base-uncased-ww results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-bert-base-uncased-ww This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2964 | 1.0 | 99 | 2.9560 | | 3.0419 | 2.0 | 198 | 2.8336 | | 2.8979 | 3.0 | 297 | 2.8009 | | 2.8815 | 4.0 | 396 | 2.7394 | | 2.8373 | 5.0 | 495 | 2.6813 | | 2.741 | 6.0 | 594 | 2.6270 | | 2.6877 | 7.0 | 693 | 2.5216 | | 2.6823 | 8.0 | 792 | 2.5485 | | 2.6326 | 9.0 | 891 | 2.5690 | | 2.5976 | 10.0 | 990 | 2.6336 | | 2.6009 | 11.0 | 1089 | 2.5919 | | 2.5615 | 12.0 | 1188 | 2.4264 | | 2.5826 | 13.0 | 1287 | 2.5562 | | 2.5693 | 14.0 | 1386 | 2.5529 | | 2.5494 | 15.0 | 1485 | 2.5300 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/MTL-roberta-base
64bd9accf802b7c8ab8e4180c5ffbccc9496402b
2022-02-07T22:45:49.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
jgammack
null
jgammack/MTL-roberta-base
0
null
transformers
35,430
--- license: mit tags: - generated_from_trainer model-index: - name: MTL-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8338 | 1.0 | 98 | 1.6750 | | 1.7732 | 2.0 | 196 | 1.6229 | | 1.7208 | 3.0 | 294 | 1.6131 | | 1.6917 | 4.0 | 392 | 1.5936 | | 1.6579 | 5.0 | 490 | 1.6183 | | 1.6246 | 6.0 | 588 | 1.6015 | | 1.6215 | 7.0 | 686 | 1.5248 | | 1.5743 | 8.0 | 784 | 1.5454 | | 1.5621 | 9.0 | 882 | 1.5925 | | 1.5652 | 10.0 | 980 | 1.5213 | | 1.5615 | 11.0 | 1078 | 1.4845 | | 1.5349 | 12.0 | 1176 | 1.5443 | | 1.5165 | 13.0 | 1274 | 1.5304 | | 1.5164 | 14.0 | 1372 | 1.4773 | | 1.5293 | 15.0 | 1470 | 1.5537 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/SAE-roberta-base-squad
a67cec7fc04405033f80b137414840e0bdcb1d58
2022-02-08T11:17:55.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
jgammack
null
jgammack/SAE-roberta-base-squad
0
null
transformers
35,431
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: SAE-roberta-base-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAE-roberta-base-squad This model is a fine-tuned version of [jgammack/SAE-roberta-base](https://huggingface.co/jgammack/SAE-roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/distilbert-base-uncased-squad
0392553a2ee05867b60b636bb0340b64f87f48a2
2022-02-08T01:36:38.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
jgammack
null
jgammack/distilbert-base-uncased-squad
0
null
transformers
35,432
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/roberta-base-squad
03cdc6f3863369f684a9e39a875959845113bd65
2022-02-08T07:39:59.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
jgammack
null
jgammack/roberta-base-squad
0
null
transformers
35,433
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jhemmingsson/lab2
b48a38b1917fb1ba41c606c4f1cc13079d5e80ce
2021-12-13T23:07:17.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jhemmingsson
null
jhemmingsson/lab2
0
null
sentence-transformers
35,434
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jhemmingsson/lab2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jhemmingsson/lab2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jhemmingsson/lab2') model = AutoModel.from_pretrained('jhemmingsson/lab2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jhemmingsson/lab2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 357 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom
90f6ce68df655dd2ebff32d542c733506c2dad13
2022-01-27T14:58:01.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "model-index" ]
automatic-speech-recognition
false
jhonparra18
null
jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom
0
null
transformers
35,435
--- tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-custom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-custom This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2245 - eval_wer: 0.2082 - eval_runtime: 801.6784 - eval_samples_per_second: 18.822 - eval_steps_per_second: 2.354 - epoch: 0.76 - step: 8400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
jihji/koelectra-base-klue-mrc
fdbdefb80a3d5f292cadf35ce30edd32f1eb2782
2021-09-02T09:15:16.000Z
[ "pytorch" ]
null
false
jihji
null
jihji/koelectra-base-klue-mrc
0
null
null
35,436
Entry not found
jihopark/colloquial
96268c07120d0c8223aad4ded5d082a419cbd178
2021-05-23T05:54:19.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
jihopark
null
jihopark/colloquial
0
null
transformers
35,437
Entry not found
jimregan/wav2vec2-large-xlsr-slovakian
96b1d77fab81e307c9888e89358c676706090527
2021-07-06T06:54:45.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
jimregan
null
jimregan/wav2vec2-large-xlsr-slovakian
0
null
transformers
35,438
Entry not found
jinbbong/kbert_base_esg_e10
938fcb5b00f025d1befbd3e7f91e75125e54e1ba
2021-11-03T12:52:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinbbong
null
jinbbong/kbert_base_esg_e10
0
null
transformers
35,439
Entry not found
jinbbong/kbert_base_esg_e3
c60c5f4d06d791fc2231e2536ec2aaa3d2b0806d
2021-11-02T23:29:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinbbong
null
jinbbong/kbert_base_esg_e3
0
null
transformers
35,440
Entry not found
jindongwang/opus-mt-en-ro-finetuned-en-to-ro
949f60b2185be1aa6f8f611488c2791a3e75c83e
2022-02-10T08:32:02.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jindongwang
null
jindongwang/opus-mt-en-ro-finetuned-en-to-ro
0
null
transformers
35,441
Entry not found
jinlmsft/t5-large-domain-detect
4067ec19b8a5d02b46d551e0209fb61527ec1b5f
2022-01-30T07:47:26.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
jinlmsft
null
jinlmsft/t5-large-domain-detect
0
null
transformers
35,442
Entry not found
jinmang2/roberta-large-re-tapt-20300
08f2ea297f42263dc437aab04061d85ce637aa4a
2021-10-06T07:10:00.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinmang2
null
jinmang2/roberta-large-re-tapt-20300
0
null
transformers
35,443
Entry not found
jiobiala24/wav2vec2-base-checkpoint-1
3ae82ebd1277c0682b7eb50106a2c2654d36a929
2022-01-06T09:39:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-1
0
null
transformers
35,444
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-TPU-cv-fine-tune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-TPU-cv-fine-tune This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6987 - Wer: 0.6019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1017 | 8.88 | 400 | 1.4635 | 0.7084 | | 0.436 | 17.77 | 800 | 1.4765 | 0.6231 | | 0.1339 | 26.66 | 1200 | 1.6987 | 0.6019 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jiobiala24/wav2vec2-base-checkpoint-12
706104ef91be96f28befc6095bad66b599c1d12f
2022-02-12T23:02:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-12
0
null
transformers
35,445
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-12 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-11.1](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-11.1) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0795 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2793 | 1.64 | 1000 | 0.5692 | 0.3518 | | 0.2206 | 3.28 | 2000 | 0.6127 | 0.3460 | | 0.1733 | 4.93 | 3000 | 0.6622 | 0.3580 | | 0.1391 | 6.57 | 4000 | 0.6768 | 0.3519 | | 0.1193 | 8.21 | 5000 | 0.7559 | 0.3540 | | 0.1053 | 9.85 | 6000 | 0.7873 | 0.3562 | | 0.093 | 11.49 | 7000 | 0.8170 | 0.3612 | | 0.0833 | 13.14 | 8000 | 0.8682 | 0.3579 | | 0.0753 | 14.78 | 9000 | 0.8317 | 0.3573 | | 0.0698 | 16.42 | 10000 | 0.9213 | 0.3525 | | 0.0623 | 18.06 | 11000 | 0.9746 | 0.3531 | | 0.0594 | 19.7 | 12000 | 1.0027 | 0.3502 | | 0.0538 | 21.35 | 13000 | 1.0045 | 0.3545 | | 0.0504 | 22.99 | 14000 | 0.9821 | 0.3523 | | 0.0461 | 24.63 | 15000 | 1.0818 | 0.3462 | | 0.0439 | 26.27 | 16000 | 1.0995 | 0.3495 | | 0.0421 | 27.91 | 17000 | 1.0533 | 0.3430 | | 0.0415 | 29.56 | 18000 | 1.0795 | 0.3452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jiobiala24/wav2vec2-base-checkpoint-9
e7ef05e1afcee7a76d0488b389d31b1fc58a7846
2022-01-25T19:52:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-checkpoint-9
0
null
transformers
35,446
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-9 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-8](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-8) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9203 - Wer: 0.3258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2783 | 1.58 | 1000 | 0.5610 | 0.3359 | | 0.2251 | 3.16 | 2000 | 0.5941 | 0.3374 | | 0.173 | 4.74 | 3000 | 0.6026 | 0.3472 | | 0.1475 | 6.32 | 4000 | 0.6750 | 0.3482 | | 0.1246 | 7.9 | 5000 | 0.6673 | 0.3414 | | 0.1081 | 9.48 | 6000 | 0.7072 | 0.3409 | | 0.1006 | 11.06 | 7000 | 0.7413 | 0.3392 | | 0.0879 | 12.64 | 8000 | 0.7831 | 0.3394 | | 0.0821 | 14.22 | 9000 | 0.7371 | 0.3333 | | 0.0751 | 15.8 | 10000 | 0.8321 | 0.3445 | | 0.0671 | 17.38 | 11000 | 0.8362 | 0.3357 | | 0.0646 | 18.96 | 12000 | 0.8709 | 0.3367 | | 0.0595 | 20.54 | 13000 | 0.8352 | 0.3321 | | 0.0564 | 22.12 | 14000 | 0.8854 | 0.3323 | | 0.052 | 23.7 | 15000 | 0.9031 | 0.3315 | | 0.0485 | 25.28 | 16000 | 0.9171 | 0.3278 | | 0.046 | 26.86 | 17000 | 0.9390 | 0.3254 | | 0.0438 | 28.44 | 18000 | 0.9203 | 0.3258 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jivatneet/bert-mlm-batchsize8
e0ce8351e1cded2e214386de931160924a26edea
2021-07-09T06:35:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jivatneet
null
jivatneet/bert-mlm-batchsize8
0
null
transformers
35,447
BERT MLM
jje1113/wav2vec2-base-timit-demo
6e66337855fee3f1032c5000ecc1c5bc3242ebba
2022-02-07T15:21:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
jje1113
null
jje1113/wav2vec2-base-timit-demo
0
null
transformers
35,448
Entry not found
jky594176/BART2_GRU
75a1db3b712dc6de35fdd9c5425105155f08c970
2021-05-31T19:41:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jky594176
null
jky594176/BART2_GRU
0
null
transformers
35,449
Entry not found
jky594176/recipe_BART1_GRU
0a29db1872dd5d43893c055dbb554c8ad44b01e5
2021-05-31T05:50:11.000Z
[ "pytorch", "bart", "text-generation", "transformers" ]
text-generation
false
jky594176
null
jky594176/recipe_BART1_GRU
0
null
transformers
35,450
Entry not found
jky594176/recipe_BART2GRU_0601_BCElogitsloss
c0b6c982a51c5d21dbc6e8d6dc8350b215423dca
2021-06-01T05:28:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jky594176
null
jky594176/recipe_BART2GRU_0601_BCElogitsloss
0
null
transformers
35,451
Entry not found
jky594176/recipe_BART2GRU_0601_BCEloss
cdc7029554f810fa345e91c78341cf926a7d352c
2021-06-01T05:29:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jky594176
null
jky594176/recipe_BART2GRU_0601_BCEloss
0
null
transformers
35,452
Entry not found
jky594176/recipe_GPT2
db4168a2f3d98739d5b1e8681846cbeabda52511
2021-05-30T16:46:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jky594176
null
jky594176/recipe_GPT2
0
null
transformers
35,453
Entry not found
jky594176/recipe_bart2_v3
dec01e292cfa1dadb9998a14afb7ca333c07761e
2021-06-01T06:37:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jky594176
null
jky594176/recipe_bart2_v3
0
null
transformers
35,454
Entry not found
jmamou/gpt2-medium-IMDB
c2a67e6adcf965f1e71fe347567da27571549b0f
2021-08-23T13:24:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jmamou
null
jmamou/gpt2-medium-IMDB
0
null
transformers
35,455
Entry not found
jmamou/gpt2-medium-SST-2
caa5d21332ee4293ad259d66415649bbe684370b
2021-08-23T13:29:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jmamou
null
jmamou/gpt2-medium-SST-2
0
null
transformers
35,456
Entry not found
joehdownardkainos/autonlp-intent-modelling-21895237
db88fd1d5ef0ece9d935d4c9db70057249c013a0
2021-10-21T11:29:28.000Z
[ "pytorch", "bart", "text2text-generation", "unk", "dataset:joehdownardkainos/autonlp-data-intent-modelling", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
joehdownardkainos
null
joehdownardkainos/autonlp-intent-modelling-21895237
0
null
transformers
35,457
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - joehdownardkainos/autonlp-data-intent-modelling co2_eq_emissions: 1.5688902203257171 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 21895237 - CO2 Emissions (in grams): 1.5688902203257171 ## Validation Metrics - Loss: 1.6614878177642822 - Rouge1: 32.4158 - Rouge2: 24.6194 - RougeL: 29.9278 - RougeLsum: 29.4988 - Gen Len: 58.7778 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/joehdownardkainos/autonlp-intent-modelling-21895237 ```
joheras/xls-r-ab-spanish
8e8de22d41c3e99f57c57f681b5976057235e423
2022-01-21T15:42:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
joheras
null
joheras/xls-r-ab-spanish
0
null
transformers
35,458
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8790 - Wer: 1.3448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
johnpaulbin/gpt2-skript-1m-v5
9ca22bfc8685c85870c8fbeaac339f0386b71a51
2021-07-24T20:56:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
johnpaulbin
null
johnpaulbin/gpt2-skript-1m-v5
0
null
transformers
35,459
## GPT-2 for Skript ## Complete your Skript automatically via a finetuned GPT-2 model `0.57` Training loss on about 2 epochs (in total) 1.2 million lines of Skript is inside the dataset. Inference Colab: https://colab.research.google.com/drive/1ujtLt7MOk7Nsag3q-BYK62Kpoe4Lr4PE
johnpaulbin/gpt2-skript-base
955b8bf96cdd0a4f1cc517d7e06a427ed6b93849
2021-07-15T07:14:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
johnpaulbin
null
johnpaulbin/gpt2-skript-base
0
null
transformers
35,460
GPT2 for Minecraft Plugin Skript (50,000 Lines, 3 GB: GPT-Large model finetune) Inference Colab: https://colab.research.google.com/drive/1z8dwtNP8Kj3evEOmKmGBHK_vmP30lgiY
jonpodtu/02sparseOverlapConvTasNet_SUM_2spk_8k
cf506809abd86b072c316723e05bd6d9ade5eda9
2021-06-23T14:56:56.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/02sparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,461
The following model is trained on the SUM partition of 20% overlapping mixtures
jonpodtu/04sparseOverlapConvTasNet_SUM_2spk_8k
9c74c590af419b8e930cc12e3f3e0c769cd39df4
2021-06-23T14:58:31.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/04sparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,462
Entry not found
jonpodtu/06sparseOverlapConvTasNet_SUM_2spk_8k
92d1c02c75ce859f2e956b4f6378a94b9bba002d
2021-06-23T15:00:27.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/06sparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,463
Entry not found
jonpodtu/08sparseOverlapConvTasNet_SUM_2spk_8k
1007929d2c660142afdcfebc4a48631897b32d2b
2021-06-23T15:01:34.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/08sparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,464
Entry not found
jonpodtu/0sparseOverlapConvTasNet_SUM_2spk_8k
de33d8c227e2eda4474974867cc25f93261a9f48
2021-06-23T14:54:00.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/0sparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,465
Entry not found
jonpodtu/1sparseOverlapConvTasNet_SUM_2spk_8k
fa4b5c408ad3f4618c1efc6c9eed1a0101394a64
2021-06-23T14:55:19.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/1sparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,466
Entry not found
jonpodtu/1sparseOverlapDPRNN_SUM_2spk_8k
21426b568c6508a2c75b2157e99ee4a9359c3bbb
2021-06-23T15:46:44.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/1sparseOverlapDPRNN_SUM_2spk_8k
0
null
null
35,467
Entry not found
jonpodtu/mixsparseOverlapConvTasNet_SUM_2spk_8k
5e8ace7b8aa15a92425205f0f8740c1abdcf7e84
2021-06-23T15:47:50.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/mixsparseOverlapConvTasNet_SUM_2spk_8k
0
null
null
35,468
Entry not found
jonpodtu/mixsparseOverlapDPRNN_SUM_2spk_8k
299cacb62f842acb6a8aa39ed11b8fb854d20f0f
2021-06-23T15:47:14.000Z
[ "pytorch" ]
null
false
jonpodtu
null
jonpodtu/mixsparseOverlapDPRNN_SUM_2spk_8k
0
null
null
35,469
Entry not found
jontooy/AraBERT32-Flickr8k
45de03041774f9ffafdd3ca3d7616a3c476a8bc2
2022-06-06T13:07:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
jontooy
null
jontooy/AraBERT32-Flickr8k
0
null
transformers
35,470
--- license: afl-3.0 ---
josedlhm/trump_tweet
89ff4f277638aafbfd3eb65cd088afd5e72fac47
2021-11-24T14:19:14.000Z
[ "pytorch", "openai-gpt", "text-generation", "transformers" ]
text-generation
false
josedlhm
null
josedlhm/trump_tweet
0
null
transformers
35,471
Entry not found
josepjulia/RepoHumanChatBot
236651af2887c4c32fc7e48d3c28e7e047d7d7d0
2021-12-11T19:59:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
josepjulia
null
josepjulia/RepoHumanChatBot
0
null
transformers
35,472
--- tags: - conversational --- # HumanChat Model
josh8/DialoGPT-medium-josh
227a1e080c0793b0b985336cc12bfa2b30acca1f
2022-01-28T05:41:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
josh8
null
josh8/DialoGPT-medium-josh
0
null
transformers
35,473
--- tags: - conversational --- # Josh DialoGPT medium Bot
josh8/DialoGPT-small-josh
3dac7bd66cb38f743ca2ba3c1314123a3dc25a17
2022-01-28T04:51:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
josh8
null
josh8/DialoGPT-small-josh
0
null
transformers
35,474
--- tags: - conversational --- # Josh DialoGPT Model
jppaolim/homerGPT2
ae6018ad39a077624f056e420eca7e44541a0832
2021-05-23T06:05:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
jppaolim
null
jppaolim/homerGPT2
0
null
transformers
35,475
First model for storytelling
jpsxlr8/DialoGPT-small-harrypotter
038f4eb94bd48176282afd7642203e17ae304ace
2021-09-27T17:35:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
jpsxlr8
null
jpsxlr8/DialoGPT-small-harrypotter
0
null
transformers
35,476
--- tags: - conversational --- # Harry Potter DialoGPT Model
jsm33/d4-primary
949259b2840e31326ca59720a7c4c34e05fc9aa8
2021-05-30T18:19:39.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
jsm33
null
jsm33/d4-primary
0
null
transformers
35,477
Entry not found
juanhebert/wav2vec2-base-timit-demo-colab
53b806beca264d2856500efedbda5259c85d5e43
2022-02-24T02:32:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
juanhebert
null
juanhebert/wav2vec2-base-timit-demo-colab
0
null
transformers
35,478
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.2385 - eval_wer: 1.0 - eval_runtime: 145.9952 - eval_samples_per_second: 11.507 - eval_steps_per_second: 1.438 - epoch: 0.25 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
juliagsy/tapas-fine-tuned
233c7e2c04082cd528e3240219bdaa2694ca0630
2022-01-31T07:38:13.000Z
[ "pytorch", "tapas", "table-question-answering", "transformers" ]
table-question-answering
false
juliagsy
null
juliagsy/tapas-fine-tuned
0
null
transformers
35,479
Entry not found
julien-c/ColabTest
1f91c072d4736703f7ada9f6932cae4eb63faebf
2022-01-27T14:28:57.000Z
[ "pytorch", "tf", "license:mit" ]
null
false
julien-c
null
julien-c/ColabTest
0
null
null
35,480
--- license: mit ---
julien-c/dummy-model-from-colab
c72f32ba20a2914898964feb7e693456afd42249
2021-05-20T17:30:49.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
julien-c
null
julien-c/dummy-model-from-colab
0
null
transformers
35,481
Entry not found
julien-c/t5-3b-fork
0cd1f84a5a36cda36011bfe8bb1ec9df9ab484ba
2020-11-20T15:39:22.000Z
[ "pytorch" ]
null
false
julien-c
null
julien-c/t5-3b-fork
0
null
null
35,482
Entry not found
julien-c/voice-activity-detection
acc249138b33c0eaff12814b270c78e9fdddd923
2020-12-21T22:38:05.000Z
[ "pytorch", "dataset:dihard", "arxiv:1910.10655", "pyannote", "audio", "voice-activity-detection", "license:mit" ]
voice-activity-detection
false
julien-c
null
julien-c/voice-activity-detection
0
1
null
35,483
--- tags: - pyannote - audio - voice-activity-detection datasets: - dihard license: mit inference: false --- ## Example pyannote-audio Voice Activity Detection model ### `pyannote.audio.models.segmentation.PyanNet` ♻️ Imported from https://github.com/pyannote/pyannote-audio-hub This model was trained by @hbredin. ### Demo: How to use in pyannote-audio ```python from pyannote.audio.core.inference import Inference model = Inference('julien-c/voice-activity-detection', device='cuda') model({ "audio": "TheBigBangTheory.wav" }) ``` ### Citing pyannote-audio ```BibTex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ``` or ```bibtex @inproceedings{Lavechin2020, author = {Marvin Lavechin and Marie-Philippe Gill and Ruben Bousbib and Herv\'{e} Bredin and Leibny Paola Garcia-Perera}, title = {{End-to-end Domain-Adversarial Voice Activity Detection}}, year = {2020}, url = {https://arxiv.org/abs/1910.10655}, } ```
juliusco/biobert-base-cased-v1.1-squad-finetuned-biobert
dff6e0d79317c10d5b8324a9531a3ea3f79e8a65
2021-12-14T08:04:26.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
juliusco
null
juliusco/biobert-base-cased-v1.1-squad-finetuned-biobert
0
null
transformers
35,484
Entry not found
juliusco/distilbert-base-uncased-finetuned-covdistilbert
f5a35111c147610df158622b81fbee46ec494121
2021-12-14T09:08:34.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
juliusco
null
juliusco/distilbert-base-uncased-finetuned-covdistilbert
0
null
transformers
35,485
--- license: apache-2.0 tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: distilbert-base-uncased-finetuned-covdistilbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-covdistilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 457 | 0.5125 | | 0.5146 | 2.0 | 914 | 0.4843 | | 0.2158 | 3.0 | 1371 | 0.4492 | | 0.1639 | 4.0 | 1828 | 0.4760 | | 0.1371 | 5.0 | 2285 | 0.4844 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
junzai/bert_finetuning_test_hug
35552c31a5e3c420e33be6df532582cd1a1f2527
2021-08-31T09:16:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
junzai
null
junzai/bert_finetuning_test_hug
0
null
transformers
35,486
Entry not found
junzai/bert_funting_test_ai10
eeeb76183fc15b9d2b7b664a96190805071381e5
2021-09-02T09:33:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
junzai
null
junzai/bert_funting_test_ai10
0
null
transformers
35,487
Entry not found
justin871030/bert-base-uncased-goemotions
a1e60a37f7ed2c3a786b84aa8423929135df8af5
2022-01-08T09:50:28.000Z
[ "pytorch", "bert", "transformers" ]
null
false
justin871030
null
justin871030/bert-base-uncased-goemotions
0
null
transformers
35,488
Entry not found
kSaluja/autonlp-tele_new_5k-557515810
7dc76de4ebe21ec56530656e4b0192144171b2d7
2022-02-08T20:58:51.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:kSaluja/autonlp-data-tele_new_5k", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/autonlp-tele_new_5k-557515810
0
1
transformers
35,489
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kSaluja/autonlp-data-tele_new_5k co2_eq_emissions: 2.96638567287195 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 557515810 - CO2 Emissions (in grams): 2.96638567287195 ## Validation Metrics - Loss: 0.12897901237010956 - Accuracy: 0.9713212700580403 - Precision: 0.9475614228089475 - Recall: 0.96274217585693 - F1: 0.9550914803178709 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_new_5k-557515810 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_new_5k-557515810", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_new_5k-557515810", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
kaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaot1k/DialoGPT-small-Wanda
115f39b4f35f8238e7adcac626353dc59131ecc2
2021-10-18T16:45:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaot1k
null
kaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaot1k/DialoGPT-small-Wanda
0
null
transformers
35,490
--- tags: - conversational --- #wanda bot go reeeeeeeeeeeeeeeeeeeeee
kamilali/distilbert-base-uncased-finetuned-squad
f4fee81592a301db97cbfc6cf2138b8e9c33ab6f
2022-03-06T03:16:01.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
kamilali
null
kamilali/distilbert-base-uncased-finetuned-squad
0
null
transformers
35,491
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 0.5793 | | No log | 2.0 | 2 | 0.1730 | | No log | 3.0 | 3 | 0.1042 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
karthik19967829/XLM-R-af-model
0d2c4960c66b9dc97c66970a4cc5b6939cc24c48
2022-02-03T07:52:45.000Z
[ "pytorch" ]
null
false
karthik19967829
null
karthik19967829/XLM-R-af-model
0
null
null
35,492
Entry not found
karthik19967829/XLM-R-es-model
ec3591a393cf73b395b508f16ae5f79f146e5a95
2022-02-03T08:29:24.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
karthik19967829
null
karthik19967829/XLM-R-es-model
0
null
transformers
35,493
Entry not found
karthik19967829/XLM-R-hy-model
34142176b42f2b2ae7c357d41d255301798f56ce
2022-02-03T08:35:57.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
karthik19967829
null
karthik19967829/XLM-R-hy-model
0
null
transformers
35,494
Entry not found
karthik19967829/XLM-R-lt-model
4d92fc3c705d83e7fc99036fc3731b1754ec5f11
2022-02-03T08:43:28.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
karthik19967829
null
karthik19967829/XLM-R-lt-model
0
null
transformers
35,495
Entry not found
karthik19967829/XLM-R-ta-model
c518417ec4f48d83a3e766671f2dc49bd97205b7
2022-02-03T08:50:15.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
karthik19967829
null
karthik19967829/XLM-R-ta-model
0
null
transformers
35,496
Entry not found
kazandaev/opus-mt-en-ru-finetuned
f08b1fed350670e0aa791766b8a3aba82c7bd083
2022-02-27T22:31:49.000Z
[ "pytorch", "tensorboard", "rust", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
kazandaev
null
kazandaev/opus-mt-en-ru-finetuned
0
null
transformers
35,497
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-ru-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ru-finetuned This model is a fine-tuned version of [kazandaev/opus-mt-en-ru-finetuned](https://huggingface.co/kazandaev/opus-mt-en-ru-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7763 - Bleu: 41.0065 - Gen Len: 29.7548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 49 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 0.6903 | 1.0 | 35147 | 0.7779 | 40.9223 | 29.7846 | | 0.6999 | 2.0 | 70294 | 0.7776 | 40.8267 | 29.8421 | | 0.7257 | 3.0 | 105441 | 0.7769 | 40.8549 | 29.8765 | | 0.7238 | 4.0 | 140588 | 0.7763 | 41.0225 | 29.7129 | | 0.7313 | 5.0 | 175735 | 0.7763 | 41.0065 | 29.7548 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
kelvinih/pubmedbert-abs-base-lm-header
54fc2bfa6891797be65f3f144a370212f2649f08
2021-09-21T07:06:53.000Z
[ "pytorch", "bert", "transformers" ]
null
false
kelvinih
null
kelvinih/pubmedbert-abs-base-lm-header
0
null
transformers
35,498
Entry not found
kevinzyz/chinese-roberta-wwm-ext-finetuned-MC-hyper
2714d4c804ffe739e31a090c75bb20be20421891
2021-12-10T07:32:54.000Z
[ "pytorch", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
kevinzyz
null
kevinzyz/chinese-roberta-wwm-ext-finetuned-MC-hyper
0
null
transformers
35,499
Entry not found