modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
kevinzyz/chinese_roberta_L-12_H-768-finetuned-MC-hyper
d9fbeaab01bb46ec60542e42fc1149e8e39bdbc9
2021-12-09T04:48:15.000Z
[ "pytorch", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
kevinzyz
null
kevinzyz/chinese_roberta_L-12_H-768-finetuned-MC-hyper
0
null
transformers
35,500
Entry not found
kevinzyz/chinese_roberta_L-2_H-128-finetuned-MC-hyper
7c5490211a3b69e6297937f2ace5fbf4b9b87b17
2021-12-09T13:11:53.000Z
[ "pytorch", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
kevinzyz
null
kevinzyz/chinese_roberta_L-2_H-128-finetuned-MC-hyper
0
null
transformers
35,501
Entry not found
khizon/greek-speech-emotion-classifier-demo
f214ac6debe63f935a812ef62603481410772912
2022-01-09T12:49:04.000Z
[ "pytorch", "wav2vec2", "transformers" ]
null
false
khizon
null
khizon/greek-speech-emotion-classifier-demo
0
null
transformers
35,502
Entry not found
kika2000/wav2vec2-large-xls-r-300m-kika3_my-colab
dec99539624deeaebb9f2315b40ed8bd38221549
2022-01-25T23:11:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-kika3_my-colab
0
null
transformers
35,503
Entry not found
kika2000/wav2vec2-large-xls-r-300m-kika_my-colab
03143862fc5e7eb24e2198dbf32be7a57f47c5d6
2022-01-25T04:10:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-kika_my-colab
0
null
transformers
35,504
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-kika_my-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kika_my-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.3300 - Wer: 0.5804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8067 | 4.82 | 400 | 1.2892 | 0.8886 | | 0.3048 | 9.64 | 800 | 1.2285 | 0.6797 | | 0.1413 | 14.46 | 1200 | 1.1970 | 0.6509 | | 0.1047 | 19.28 | 1600 | 1.3628 | 0.6166 | | 0.0799 | 24.1 | 2000 | 1.3345 | 0.6014 | | 0.0638 | 28.92 | 2400 | 1.3300 | 0.5804 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
kika2000/wav2vec2-large-xls-r-300m-test80_my-colab
b7a39f206ad59f0c37a86450b8e30c6707987647
2022-01-31T12:19:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-test80_my-colab
0
null
transformers
35,505
Entry not found
kika2000/wav2vec2-large-xls-r-300m-test81_my-colab
4fd6a06af3ae843deccacc9b8308903eb2214381
2022-02-04T11:14:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-test81_my-colab
0
null
transformers
35,506
Entry not found
kikumaru818/easy_algebra
c2e5c667c8e9d527213c1fa443a9bfdc2345c446
2021-11-29T00:37:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kikumaru818
null
kikumaru818/easy_algebra
0
null
transformers
35,507
Entry not found
kiyoung2/dpr_p-encoder_roberta-small
fe440fea034a4085323c18ee5eef5558763096d5
2021-10-29T02:38:33.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
kiyoung2
null
kiyoung2/dpr_p-encoder_roberta-small
0
null
transformers
35,508
Entry not found
kiyoung2/dpr_q-encoder_roberta-small
66437541310a6e3793a9328bcbab521f8439d507
2021-10-29T02:38:21.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
kiyoung2
null
kiyoung2/dpr_q-encoder_roberta-small
0
null
transformers
35,509
Entry not found
kizunasunhy/fnet-base-finetuned-ner
8adc76990574cc21f9bbc12e8d4254f827de6ad2
2021-10-15T09:33:49.000Z
[ "pytorch", "fnet", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kizunasunhy
null
kizunasunhy/fnet-base-finetuned-ner
0
null
transformers
35,510
Entry not found
kmfoda/output_dir
cb4ec67680c0b3f78f114901695306a31a7e563f
2022-02-01T11:06:56.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kmfoda
null
kmfoda/output_dir
0
null
transformers
35,511
Entry not found
koala/bert-large-uncased-ko
0cb0428a1f08779ce778fe535d4ce91bea912270
2021-12-10T08:29:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-ko
0
null
transformers
35,512
Entry not found
koala/xlm-roberta-large-bn
f7e8ea3f443589a5f5af64c9736ecab943f466ec
2022-01-05T13:05:16.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-bn
0
null
transformers
35,513
Entry not found
koala/xlm-roberta-large-de
08dcb3ce3813f966a5ef6a290d03c1e828b1f078
2021-12-06T18:16:37.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-de
0
null
transformers
35,514
Entry not found
koala/xlm-roberta-large-hi
018b51c821cddccd515436221a7432d3db0f8882
2021-12-21T12:58:05.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-hi
0
null
transformers
35,515
Entry not found
koala/xlm-roberta-large-zh
cbb7d05a8c7243a658ce51dfe4bd28da19feb775
2021-12-06T18:26:29.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-zh
0
null
transformers
35,516
Entry not found
korca/bert-base-mm-cased
6c72fa51242a8a17a4a9e94024f7699f2858e3a6
2021-09-15T07:41:23.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/bert-base-mm-cased
0
null
transformers
35,517
Entry not found
korca/meaning-match-bert-base
8410e651f39d3ea55a401d75474e83cd401de3ba
2021-11-23T08:35:37.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/meaning-match-bert-base
0
null
transformers
35,518
Entry not found
korca/meaning-match-bert-large
8a3eaeb1ba7708e0dcd7a954f35b9445b767d0ea
2021-11-18T17:52:44.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/meaning-match-bert-large
0
null
transformers
35,519
Entry not found
korca/meaning-match-electra-large
81b94142c53bb4a3b4d0f8e24592f346aa1e3f91
2021-11-29T08:40:30.000Z
[ "pytorch", "electra", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/meaning-match-electra-large
0
null
transformers
35,520
Entry not found
korca/roberta-base-mm
c04ee9a2161fd67746f2e269250c1ac9b35cf4ca
2021-09-14T07:46:00.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/roberta-base-mm
0
null
transformers
35,521
Entry not found
kp17/DialoGPT-small-tonystark
9107fc295d77cb38eeca18513c88d3be8ad0e1af
2021-08-27T06:44:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "Conversational" ]
text-generation
false
kp17
null
kp17/DialoGPT-small-tonystark
0
null
transformers
35,522
--- tags: - Conversational --- # Tony Stark DialoGPT Model
kr0n0s/AssameseBert
fdebb1792a5f876cf41f4955fb0327ede381bb9b
2021-07-29T20:24:48.000Z
[ "pytorch", "bert", "transformers" ]
null
false
kr0n0s
null
kr0n0s/AssameseBert
0
null
transformers
35,523
Entry not found
krevas/finance-electra-small-discriminator
139aedb657a7a7d8fc9024d4bc93346fbb8302cc
2020-07-09T05:46:38.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
krevas
null
krevas/finance-electra-small-discriminator
0
null
transformers
35,524
Entry not found
kris/DialoGPT-small-spock4
eb11e5daa35ffee8b279a529c0b0b9cefe46c0c3
2021-09-23T14:16:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kris
null
kris/DialoGPT-small-spock4
0
null
transformers
35,525
--- tags: - conversational --- #Spock model
kris/DialoGPT-small-spock5
bf3db76f28871513f4b28ceeb22000d81eeb8802
2021-09-23T15:12:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kris
null
kris/DialoGPT-small-spock5
0
null
transformers
35,526
--- tags: - conversational --- #Spock model
krupine/telectra-discriminator
6900ceca63aeb79f9cecd817ce4c2568d6ab45ef
2021-01-22T08:41:00.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
krupine
null
krupine/telectra-discriminator
0
null
transformers
35,527
Entry not found
kshitiz/testing-bot-repo
7ffcf35a9318f6c9767547481afcf3bb1a545509
2021-11-09T06:58:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kshitiz
null
kshitiz/testing-bot-repo
0
null
transformers
35,528
--- tags: - conversational --- #testing bot Model
ksinar/DialoGPT-small-morty
b784f81dda6602e541b82686245eff8e810dc9da
2021-08-28T14:40:58.000Z
[ "pytorch" ]
null
false
ksinar
null
ksinar/DialoGPT-small-morty
0
null
null
35,529
Entry not found
kumakino/fairy-tale-gpt2-small
5b672e6d77bbf42ce54be3790acd7b620428c8b3
2021-12-13T23:07:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kumakino
null
kumakino/fairy-tale-gpt2-small
0
null
transformers
35,530
Entry not found
kunalbhargava/DialoGPT-small-housebot
20299e2aa368dbb004427976aaffa6829877de9d
2021-11-11T09:00:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kunalbhargava
null
kunalbhargava/DialoGPT-small-housebot
0
null
transformers
35,531
--- tags: - conversational --- #House BOT
kvothe28/DiabloGPT-small-Rick
50535a92cb645b553224cacfa17c2fc1f124eed4
2021-09-03T21:16:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kvothe28
null
kvothe28/DiabloGPT-small-Rick
0
null
transformers
35,532
--- tags: - conversational --- # Rick DiabloGPT Model
kwang2049/SBERT-base-nli-stsb-v2
b97422efcaadd383da9a33f423e33271aa8d2047
2021-08-30T13:30:32.000Z
[ "pytorch" ]
null
false
kwang2049
null
kwang2049/SBERT-base-nli-stsb-v2
0
null
null
35,533
Entry not found
kwang2049/SBERT-base-nli-v2
f38abd2c15aacf7a3993754e72d4f1d0bb6b7843
2021-08-30T13:29:35.000Z
[ "pytorch" ]
null
false
kwang2049
null
kwang2049/SBERT-base-nli-v2
0
null
null
35,534
Entry not found
kwang2049/TSDAE-askubuntu
a7c794a288383693c964479710f519b30ae8321e
2021-10-25T16:17:47.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-askubuntu
0
null
transformers
35,535
# kwang2049/TSDAE-askubuntu2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on AskUbuntu in an unsupervised manner. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on AskUbuntu with the TSDAE objective; The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'askubuntu' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'askubuntu' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kwang2049/TSDAE-cqadupstack
9e5000f269f165a79392a858ee60653bc2cb634f
2021-10-25T16:18:29.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-cqadupstack
0
null
transformers
35,536
# kwang2049/TSDAE-cqadupstack2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on cqadupstack in an unsupervised manner. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on cqadupstack with the TSDAE objective; The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kwang2049/TSDAE-scidocs
d2f136c580be5d551232344d1f62b3ccec264d02
2021-10-25T16:19:04.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-scidocs
0
null
transformers
35,537
# kwang2049/TSDAE-scidocs2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on scidocs in an unsupervised manner. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on scidocs with the TSDAE objective; The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'scidocs' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'scidocs' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kwang2049/TSDAE-scidocs2nli_stsb
425ea67713d31c033f16c5e5a17a80de1ba7cc5a
2021-10-25T16:15:23.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-scidocs2nli_stsb
0
null
transformers
35,538
# kwang2049/TSDAE-scidocs2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain scidocs. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on scidocs with the TSDAE objective; 3. Supervised training on the NLI data with cross-entropy loss; 4. Supervised training on the STSb data with MSE loss. The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'scidocs' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'scidocs' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kwang2049/TSDAE-twitterpara
ae49bd6bb98ef1d586a6aee2a345b52a526749e8
2021-10-25T16:18:44.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-twitterpara
0
null
transformers
35,539
# kwang2049/TSDAE-twitterpara2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on twitterpara in an unsupervised manner. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on twitterpara with the TSDAE objective; The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'twitterpara' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'twitterpara' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
l53513955/False_Entity_Identifier
a259b8994fdb142623f147b2ca6733ac76082492
2021-12-20T05:48:31.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
l53513955
null
l53513955/False_Entity_Identifier
0
null
transformers
35,540
Entry not found
lagodw/plotly_gpt2_large
66d42bca940e070d2d846457bbf784d101dc8dd9
2021-10-06T22:33:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/plotly_gpt2_large
0
null
transformers
35,541
Entry not found
lagodw/reddit_bert
1a706487954953e865e6652a5030051d57105bab
2021-09-04T19:12:32.000Z
[ "pytorch", "bert", "next-sentence-prediction", "transformers" ]
null
false
lagodw
null
lagodw/reddit_bert
0
1
transformers
35,542
Entry not found
lalopey/benn_eifert
a7f2d28e0b18b8fb490ff783e77ad9e557577bfd
2021-05-23T06:25:18.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
lalopey
null
lalopey/benn_eifert
0
null
transformers
35,543
Entry not found
lapacc33/DialoGPT-medium-rick
c358130c33a6a9d51ecbcabe43ace1a64bd6bb98
2021-10-29T05:39:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lapacc33
null
lapacc33/DialoGPT-medium-rick
0
null
transformers
35,544
--- tags: - conversational --- # Rick DialoGPT Model
larcane/kogpt2-cat-diary
d4dbb048874c85408313922dd78e7c9b867312ed
2021-12-18T15:45:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
larcane
null
larcane/kogpt2-cat-diary
0
null
transformers
35,545
Entry not found
laugustyniak/roberta-polish-web-embedding-v1
ea9478a6bd3a99efb45cea4cd9adb635b2f7df3f
2021-05-20T17:37:19.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
laugustyniak
null
laugustyniak/roberta-polish-web-embedding-v1
0
null
transformers
35,546
Entry not found
laxya007/gpt2_BRM
fd100258c6e8867b5d81efa8befbc1933ab48d78
2021-10-23T08:23:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
laxya007
null
laxya007/gpt2_BRM
0
null
transformers
35,547
Entry not found
laxya007/gpt2_BSA_Leg_ipr_OE_OS
8cae9788ca2d14ed1a183231970bacde4fadfe4f
2021-06-18T08:40:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
laxya007
null
laxya007/gpt2_BSA_Leg_ipr_OE_OS
0
null
transformers
35,548
Entry not found
lbh020300/mymodel007
0d94893f4efee21622a8a660129f802193507171
2021-11-02T16:06:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lbh020300
null
lbh020300/mymodel007
0
null
transformers
35,549
Entry not found
lee1jun/wav2vec2-base-100h-finetuned
2b6bcfc36d916596b911d93cd26fc92b28984023
2021-07-06T10:01:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lee1jun
null
lee1jun/wav2vec2-base-100h-finetuned
0
null
transformers
35,550
Entry not found
leemii18/robustqa-baseline-02
245beb64ac2fe26658f32a30cbca6ebc5118901c
2021-05-05T17:47:41.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
leemii18
null
leemii18/robustqa-baseline-02
0
null
transformers
35,551
Entry not found
lewtun/dummy-translation
c2d443e0dccb8040e1f4520aec93db447df7b2d8
2021-07-13T12:43:13.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
false
lewtun
null
lewtun/dummy-translation
0
null
transformers
35,552
--- tags: - generated_from_trainer model_index: - name: dummy-translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
lewtun/marian-finetuned-kde4-en-to-fr
e51aad09934acd4a5d0bb38d0686bedbab7840c4
2021-11-14T16:59:34.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
lewtun
null
lewtun/marian-finetuned-kde4-en-to-fr
0
null
transformers
35,553
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 38.988820814501665 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.6772 - Bleu: 38.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
lewtun/metnet-test-2
e55e5fd8e175b9679cdcdc21416afff44475d861
2021-09-06T10:42:38.000Z
[ "pytorch", "transformers" ]
null
false
lewtun
null
lewtun/metnet-test-2
0
null
transformers
35,554
Entry not found
lewtun/metnet-test-3
0ff97bde804713a4ad00899d2862f74586306ba2
2021-09-06T10:53:04.000Z
[ "pytorch", "transformers", "autonlp", "evaluation", "benchmark" ]
null
false
lewtun
null
lewtun/metnet-test-3
0
null
transformers
35,555
--- tags: - autonlp - evaluation - benchmark --- # Model Card for MetNet
lewtun/metnet-test-5
12fe5921c2c4bef26138ec8d3d34b27c0ebd70bd
2021-09-06T11:01:50.000Z
[ "pytorch", "transformers", "satflow", "license:mit" ]
null
false
lewtun
null
lewtun/metnet-test-5
0
null
transformers
35,556
--- license: mit tags: - satflow --- # MetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
lewtun/metnet-test
2cb8dbf9b3e001519cb4b6206f93cd62d9ded316
2021-09-06T09:22:37.000Z
[ "pytorch" ]
null
false
lewtun
null
lewtun/metnet-test
0
null
null
35,557
Entry not found
lewtun/minilm-finetuned-imdb-accelerate
da6f67e725230781b225a986e40c9e283bcb537e
2021-09-29T08:48:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lewtun
null
lewtun/minilm-finetuned-imdb-accelerate
0
null
transformers
35,558
Entry not found
lewtun/mt5-finetuned-amazon-en-es-accelerate
dfe5bea91037602120869439cb6f63cd259c91e4
2021-11-11T15:12:52.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lewtun
null
lewtun/mt5-finetuned-amazon-en-es-accelerate
0
null
transformers
35,559
Entry not found
lg/fexp_1
1ca4f9b9a7238ffa70bc0a46c3a72ea75f81fdf5
2021-05-20T23:37:11.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_1
0
null
transformers
35,560
# This model is probably not what you're looking for.
lg/fexp_2
ae084e2eb00c3cba0af49853fc3694d321c8a4a6
2021-05-01T17:56:11.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_2
0
null
transformers
35,561
Entry not found
lg/fexp_7
0f948d3e89789b81f90fbcf1b69aed53afa0269e
2021-05-03T05:27:39.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_7
0
null
transformers
35,562
Entry not found
lg/fexp_8
e438f00780887eed802bcbf528b4e788760d0aaf
2021-05-02T16:58:34.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_8
0
null
transformers
35,563
Entry not found
lg/ghpy_2k
14f17bce6bfdfd7e8217d599b125a4ac1dc32c3c
2021-05-14T16:27:41.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/ghpy_2k
0
null
transformers
35,564
Entry not found
lg/ghpy_40k
8994fc0eae81882834ca1c11d7847efd2a9db012
2021-05-20T23:37:47.000Z
[ "pytorch" ]
null
false
lg
null
lg/ghpy_40k
0
null
null
35,565
# This model is probably not what you're looking for.
lgris/bp-commonvoice10-xlsr
163b0e6c4474f107e62193dae59882cfc73b537c
2021-11-27T21:02:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-commonvoice10-xlsr
0
null
transformers
35,566
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # commonvoice10-xlsr: Wav2vec 2.0 with Common Voice Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [Common Voice 7.0](https://commonvoice.mozilla.org/pt) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | 37.8h | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total | | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | commonvoice10 (demonstration below) | 0.133 | 0.189 | 0.165 | 0.189 | 0.247 | 0.474 | 0.251 | 0.235 | | commonvoice10 + 4-gram (demonstration below) | 0.060 | 0.117 | 0.088 | 0.136 | 0.181 | 0.394 | 0.227 | 0.171 | ## Demonstration ```python MODEL_NAME = "lgris/commonvoice10-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.13291846056190185 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.18909733896486755 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.1655429292929293 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.1894711228284466 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.2471983709551264 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.4739658565194102 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.2510294913419914 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.060609303416680915 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.11758415681158373 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.08815340909090909 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.1359966791836458 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.1818429601530829 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.39469326522731385 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.22779897186147183
lgris/bp-lapsbm1-xlsr
905303347f0caffc6a8b13abc00177eedbf9e4ce
2021-11-27T21:07:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-lapsbm1-xlsr
0
null
transformers
35,567
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # lapsbm1-xlsr: Wav2vec 2.0 with LaPSBM Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [LaPS BM](https://github.com/falabrasil/gitlab-resources) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | | -- | 9.5h | | LaPS BM | 0.8h | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total | | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | lapsbm1\_100 (demonstration below) | 0.111 | 0.418 | 0.145 | 0.299 | 0.562 | 0.580 | 0.469 | 0.369 | | lapsbm1\_100 + 4-gram (demonstration below) | 0.061 | 0.305 | 0.089 | 0.201 | 0.452 | 0.525 | 0.381 | 0.287 | ## Demonstration ```python MODEL_NAME = "lgris/lapsbm1-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.11147816967489037 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.41880890234535906 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.1451893939393939 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.29958960206171104 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.5626767414610376 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.5807549973642049 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.4693479437229436 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.06157628194513477 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.3051714756833442 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.0893623737373737 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.20062044237806004 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.4522665618175908 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.5256707813182246 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.38106331168831165
lgris/bp-sid10-xlsr
4284d50d1d0b6561e63615dc1585d9425db2f03d
2021-11-27T21:09:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-sid10-xlsr
0
null
transformers
35,568
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # sid10-xlsr: Wav2vec 2.0 with Sidney Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [Sidney](https://igormq.github.io/datasets/) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | 7.2h | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total | 7.2h| -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | sid\_10 (demonstration below) |0.186 | 0.327 | 0.207 | 0.505 | 0.124 | 0.835 | 0.472 | 0.379| | sid\_10 + 4-gram (demonstration below) |0.096 | 0.223 | 0.115 | 0.432 | 0.101 | 0.791 | 0.348 | 0.301| ## Demonstration ```python MODEL_NAME = "lgris/sid10-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.18623689076557778 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.3279775395502392 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.20780303030303032 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.5056711598536057 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.1247776617710105 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.8350609256842175 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.47242153679653687 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.09677271347353278 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.22363215674470321 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.1154924242424242 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.4322369152606427 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.10080313085145765 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.7911789829264236 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.34786255411255407
lgris/distilxlsr_bp_16-24
61102aab99832521692f62cdd8a5f9e4ac914047
2021-12-30T00:38:16.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "pt", "arxiv:2110.01900", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
lgris
null
lgris/distilxlsr_bp_16-24
0
null
transformers
35,569
--- language: pt tags: - speech license: apache-2.0 --- # DistilXLSR-53 for BP [DistilXLSR-53 for BP: DistilHuBERT applied to Wav2vec XLSR-53 for Brazilian Portuguese](https://github.com/s3prl/s3prl/tree/master/s3prl/upstream/distiller) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. Paper: [DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT](https://arxiv.org/abs/2110.01900) Authors: Heng-Jui Chang, Shu-wen Yang, Hung-yi Lee **Note 2**: The XLSR-53 model was distilled using [Brazilian Portuguese Datasets](https://huggingface.co/lgris/bp400-xlsr) for test purposes. The dataset is quite small to perform such task (the performance might not be so good as the [original work](https://arxiv.org/abs/2110.01900)). **Abstract** Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model.
lgris/distilxlsr_bp_4-12
61d69f4659aa8e30bce84daf6f9769f16dfcd68a
2021-12-30T00:38:04.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "pt", "arxiv:2110.01900", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
lgris
null
lgris/distilxlsr_bp_4-12
0
null
transformers
35,570
--- language: pt tags: - speech license: apache-2.0 --- # DistilXLSR-53 for BP [DistilXLSR-53 for BP: DistilHuBERT applied to Wav2vec XLSR-53 for Brazilian Portuguese](https://github.com/s3prl/s3prl/tree/master/s3prl/upstream/distiller) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. Paper: [DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT](https://arxiv.org/abs/2110.01900) Authors: Heng-Jui Chang, Shu-wen Yang, Hung-yi Lee **Note 2**: The XLSR-53 model was distilled using [Brazilian Portuguese Datasets](https://huggingface.co/lgris/bp400-xlsr) for test purposes. The dataset is quite small to perform such task (the performance might not be so good as the [original work](https://arxiv.org/abs/2110.01900)). **Abstract** Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model.
lgris/distilxlsr_bp_8-12-24
1af2b82d5420a218887d21a032cc37cbadd16842
2021-12-30T00:37:34.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "pt", "arxiv:2110.01900", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
lgris
null
lgris/distilxlsr_bp_8-12-24
0
null
transformers
35,571
--- language: pt tags: - speech license: apache-2.0 --- # DistilXLSR-53 for BP [DistilXLSR-53 for BP: DistilHuBERT applied to Wav2vec XLSR-53 for Brazilian Portuguese](https://github.com/s3prl/s3prl/tree/master/s3prl/upstream/distiller) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. Paper: [DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT](https://arxiv.org/abs/2110.01900) Authors: Heng-Jui Chang, Shu-wen Yang, Hung-yi Lee **Note 2**: The XLSR-53 model was distilled using [Brazilian Portuguese Datasets](https://huggingface.co/lgris/bp400-xlsr) for test purposes. The dataset is quite small to perform such task (the performance might not be so good as the [original work](https://arxiv.org/abs/2110.01900)). **Abstract** Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model.
lgris/wav2vec2-large-xls-r-300m-pt-cv
3906b54f22780a919093296fa94edf627b1926a3
2022-03-24T11:52:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-large-xls-r-300m-pt-cv
0
null
transformers
35,572
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - robust-speech-event - pt - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pt-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 24.29 - name: Test CER type: cer value: 7.51 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 55.72 - name: Test CER type: cer value: 21.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 47.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 50.78 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-cv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3418 - Wer: 0.3581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.9035 | 0.2 | 100 | 4.2750 | 1.0 | | 3.3275 | 0.41 | 200 | 3.0334 | 1.0 | | 3.0016 | 0.61 | 300 | 2.9494 | 1.0 | | 2.1874 | 0.82 | 400 | 1.4355 | 0.8721 | | 1.09 | 1.02 | 500 | 0.9987 | 0.7165 | | 0.8251 | 1.22 | 600 | 0.7886 | 0.6406 | | 0.6927 | 1.43 | 700 | 0.6753 | 0.5801 | | 0.6143 | 1.63 | 800 | 0.6300 | 0.5509 | | 0.5451 | 1.84 | 900 | 0.5586 | 0.5156 | | 0.5003 | 2.04 | 1000 | 0.5493 | 0.5027 | | 0.3712 | 2.24 | 1100 | 0.5271 | 0.4872 | | 0.3486 | 2.45 | 1200 | 0.4953 | 0.4817 | | 0.3498 | 2.65 | 1300 | 0.4619 | 0.4538 | | 0.3112 | 2.86 | 1400 | 0.4570 | 0.4387 | | 0.3013 | 3.06 | 1500 | 0.4437 | 0.4147 | | 0.2136 | 3.27 | 1600 | 0.4176 | 0.4124 | | 0.2131 | 3.47 | 1700 | 0.4281 | 0.4194 | | 0.2099 | 3.67 | 1800 | 0.3864 | 0.3949 | | 0.1925 | 3.88 | 1900 | 0.3926 | 0.3913 | | 0.1709 | 4.08 | 2000 | 0.3764 | 0.3804 | | 0.1406 | 4.29 | 2100 | 0.3787 | 0.3742 | | 0.1342 | 4.49 | 2200 | 0.3645 | 0.3693 | | 0.1305 | 4.69 | 2300 | 0.3463 | 0.3625 | | 0.1298 | 4.9 | 2400 | 0.3418 | 0.3581 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
lgris/wav2vec2-large-xlsr-coraa-portuguese-cv7
b1331c0703c2bc32fbaf46d1e12d00d3e990e8b5
2022-02-10T23:22:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "pt", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-large-xlsr-coraa-portuguese-cv7
0
null
transformers
35,573
--- license: apache-2.0 tags: - generated_from_trainer - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xlsr-coraa-portuguese-cv7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-coraa-portuguese-cv7 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1777 - Wer: 0.1339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4779 | 0.13 | 100 | 0.2620 | 0.2020 | | 0.4505 | 0.26 | 200 | 0.2339 | 0.1998 | | 0.4285 | 0.39 | 300 | 0.2507 | 0.2109 | | 0.4148 | 0.52 | 400 | 0.2311 | 0.2101 | | 0.4072 | 0.65 | 500 | 0.2278 | 0.1899 | | 0.388 | 0.78 | 600 | 0.2193 | 0.1898 | | 0.3952 | 0.91 | 700 | 0.2108 | 0.1901 | | 0.3851 | 1.04 | 800 | 0.2121 | 0.1788 | | 0.3496 | 1.17 | 900 | 0.2154 | 0.1776 | | 0.3063 | 1.3 | 1000 | 0.2095 | 0.1730 | | 0.3376 | 1.43 | 1100 | 0.2129 | 0.1801 | | 0.3273 | 1.56 | 1200 | 0.2132 | 0.1776 | | 0.3347 | 1.69 | 1300 | 0.2054 | 0.1698 | | 0.323 | 1.82 | 1400 | 0.1986 | 0.1724 | | 0.3079 | 1.95 | 1500 | 0.2005 | 0.1701 | | 0.3029 | 2.08 | 1600 | 0.2159 | 0.1644 | | 0.2694 | 2.21 | 1700 | 0.1992 | 0.1678 | | 0.2733 | 2.34 | 1800 | 0.2032 | 0.1657 | | 0.269 | 2.47 | 1900 | 0.2056 | 0.1592 | | 0.2869 | 2.6 | 2000 | 0.2058 | 0.1616 | | 0.2813 | 2.73 | 2100 | 0.1868 | 0.1584 | | 0.2616 | 2.86 | 2200 | 0.1841 | 0.1550 | | 0.2809 | 2.99 | 2300 | 0.1902 | 0.1577 | | 0.2598 | 3.12 | 2400 | 0.1910 | 0.1514 | | 0.24 | 3.25 | 2500 | 0.1971 | 0.1555 | | 0.2481 | 3.38 | 2600 | 0.1853 | 0.1537 | | 0.2437 | 3.51 | 2700 | 0.1897 | 0.1496 | | 0.2384 | 3.64 | 2800 | 0.1842 | 0.1495 | | 0.2405 | 3.77 | 2900 | 0.1884 | 0.1500 | | 0.2372 | 3.9 | 3000 | 0.1950 | 0.1548 | | 0.229 | 4.03 | 3100 | 0.1928 | 0.1477 | | 0.2047 | 4.16 | 3200 | 0.1891 | 0.1472 | | 0.2102 | 4.29 | 3300 | 0.1930 | 0.1473 | | 0.199 | 4.42 | 3400 | 0.1914 | 0.1456 | | 0.2121 | 4.55 | 3500 | 0.1840 | 0.1437 | | 0.211 | 4.67 | 3600 | 0.1843 | 0.1403 | | 0.2072 | 4.8 | 3700 | 0.1836 | 0.1428 | | 0.2224 | 4.93 | 3800 | 0.1747 | 0.1412 | | 0.1974 | 5.06 | 3900 | 0.1813 | 0.1416 | | 0.1895 | 5.19 | 4000 | 0.1869 | 0.1406 | | 0.1763 | 5.32 | 4100 | 0.1830 | 0.1394 | | 0.2001 | 5.45 | 4200 | 0.1775 | 0.1394 | | 0.1909 | 5.58 | 4300 | 0.1806 | 0.1373 | | 0.1812 | 5.71 | 4400 | 0.1784 | 0.1359 | | 0.1737 | 5.84 | 4500 | 0.1778 | 0.1353 | | 0.1915 | 5.97 | 4600 | 0.1777 | 0.1349 | | 0.1921 | 6.1 | 4700 | 0.1784 | 0.1359 | | 0.1805 | 6.23 | 4800 | 0.1757 | 0.1348 | | 0.1742 | 6.36 | 4900 | 0.1771 | 0.1341 | | 0.1709 | 6.49 | 5000 | 0.1777 | 0.1339 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
lgris/wavlm-large-CORAA-pt-cv7
abbdddf9b74b4637df78675b0e3a657c190a77bc
2022-02-10T23:16:09.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wavlm-large-CORAA-pt-cv7
0
null
transformers
35,574
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - pt datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wavlm-large-CORAA-pt-cv7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-large-CORAA-pt-cv7 This model is a fine-tuned version of [lgris/WavLM-large-CORAA-pt](https://huggingface.co/lgris/WavLM-large-CORAA-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2546 - Wer: 0.2261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6029 | 0.13 | 100 | 0.3679 | 0.3347 | | 0.5297 | 0.26 | 200 | 0.3516 | 0.3227 | | 0.5134 | 0.39 | 300 | 0.3327 | 0.3167 | | 0.4941 | 0.52 | 400 | 0.3281 | 0.3122 | | 0.4816 | 0.65 | 500 | 0.3154 | 0.3102 | | 0.4649 | 0.78 | 600 | 0.3199 | 0.3058 | | 0.461 | 0.91 | 700 | 0.3047 | 0.2974 | | 0.4613 | 1.04 | 800 | 0.3006 | 0.2900 | | 0.4198 | 1.17 | 900 | 0.2951 | 0.2891 | | 0.3864 | 1.3 | 1000 | 0.2989 | 0.2862 | | 0.3963 | 1.43 | 1100 | 0.2932 | 0.2830 | | 0.3953 | 1.56 | 1200 | 0.2936 | 0.2829 | | 0.3962 | 1.69 | 1300 | 0.2952 | 0.2773 | | 0.3811 | 1.82 | 1400 | 0.2915 | 0.2748 | | 0.3736 | 1.95 | 1500 | 0.2839 | 0.2684 | | 0.3507 | 2.08 | 1600 | 0.2914 | 0.2678 | | 0.3277 | 2.21 | 1700 | 0.2895 | 0.2652 | | 0.3344 | 2.34 | 1800 | 0.2843 | 0.2673 | | 0.335 | 2.47 | 1900 | 0.2821 | 0.2635 | | 0.3559 | 2.6 | 2000 | 0.2830 | 0.2599 | | 0.3254 | 2.73 | 2100 | 0.2711 | 0.2577 | | 0.3263 | 2.86 | 2200 | 0.2685 | 0.2546 | | 0.3266 | 2.99 | 2300 | 0.2679 | 0.2521 | | 0.3066 | 3.12 | 2400 | 0.2727 | 0.2526 | | 0.2998 | 3.25 | 2500 | 0.2648 | 0.2537 | | 0.2961 | 3.38 | 2600 | 0.2630 | 0.2519 | | 0.3046 | 3.51 | 2700 | 0.2684 | 0.2506 | | 0.3006 | 3.64 | 2800 | 0.2604 | 0.2492 | | 0.2992 | 3.77 | 2900 | 0.2682 | 0.2508 | | 0.2775 | 3.9 | 3000 | 0.2732 | 0.2440 | | 0.2903 | 4.03 | 3100 | 0.2659 | 0.2427 | | 0.2535 | 4.16 | 3200 | 0.2650 | 0.2433 | | 0.2714 | 4.29 | 3300 | 0.2588 | 0.2394 | | 0.2636 | 4.42 | 3400 | 0.2652 | 0.2434 | | 0.2647 | 4.55 | 3500 | 0.2624 | 0.2371 | | 0.2796 | 4.67 | 3600 | 0.2611 | 0.2373 | | 0.2644 | 4.8 | 3700 | 0.2604 | 0.2341 | | 0.2657 | 4.93 | 3800 | 0.2567 | 0.2331 | | 0.2423 | 5.06 | 3900 | 0.2594 | 0.2322 | | 0.2556 | 5.19 | 4000 | 0.2587 | 0.2323 | | 0.2327 | 5.32 | 4100 | 0.2639 | 0.2299 | | 0.2613 | 5.45 | 4200 | 0.2569 | 0.2310 | | 0.2382 | 5.58 | 4300 | 0.2585 | 0.2298 | | 0.2404 | 5.71 | 4400 | 0.2543 | 0.2287 | | 0.2368 | 5.84 | 4500 | 0.2553 | 0.2286 | | 0.2514 | 5.97 | 4600 | 0.2517 | 0.2279 | | 0.2415 | 6.1 | 4700 | 0.2524 | 0.2270 | | 0.2338 | 6.23 | 4800 | 0.2540 | 0.2265 | | 0.219 | 6.36 | 4900 | 0.2549 | 0.2263 | | 0.2428 | 6.49 | 5000 | 0.2546 | 0.2261 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
liaad/srl-enpt_xlmr-base
da8cf09e9d7ec9758e2531387b3003114cf9cd9b
2021-09-22T08:56:20.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "multilingual", "pt", "en", "dataset:PropBank.Br", "dataset:CoNLL-2012", "arxiv:2101.01213", "transformers", "xlm-roberta-base", "semantic role labeling", "finetuned", "license:apache-2.0" ]
feature-extraction
false
liaad
null
liaad/srl-enpt_xlmr-base
0
null
transformers
35,575
--- language: - multilingual - pt - en tags: - xlm-roberta-base - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 metrics: - F1 Measure --- # XLM-R base fine-tune in English and Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) fine-tuned first on the English CoNLL formatted OntoNotes v5.0 semantic role labeling data and then fine-tuned on the PropBank.Br data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-enpt_xlmr-base") model = AutoModel.from_pretrained("liaad/srl-enpt_xlmr-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. - The English data was preprocessed to match the Portuguese data, so there are some differences in role attributions and some roles were removed from the data. ## Training procedure The model was first fine-tuned on the CoNLL-2012 dataset, preprocessed to match the Portuguese PropBank.Br data; then it was fine-tuned in the PropBank.Br dataset using 10-fold Cross-Validation. The resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-enpt_xlmr-large
25990972fccbf1783c9ffad016cb7fa19c2f6e73
2021-09-22T08:56:23.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "multilingual", "pt", "en", "dataset:PropBank.Br", "dataset:CoNLL-2012", "arxiv:2101.01213", "transformers", "xlm-roberta-large", "semantic role labeling", "finetuned", "license:apache-2.0" ]
feature-extraction
false
liaad
null
liaad/srl-enpt_xlmr-large
0
null
transformers
35,576
--- language: - multilingual - pt - en tags: - xlm-roberta-large - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 metrics: - F1 Measure --- # XLM-R large fine-tuned in English and Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-large`](https://huggingface.co/xlm-roberta-large) fine-tuned first on the English CoNLL formatted OntoNotes v5.0 semantic role labeling data and then fine-tuned on the PropBank.Br data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-enpt_xlmr-large") model = AutoModel.from_pretrained("liaad/srl-enpt_xlmr-large") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. - The English data was preprocessed to match the Portuguese data, so there are some differences in role attributions and some roles were removed from the data. ## Training procedure The model was first fine-tuned on the CoNLL-2012 dataset, preprocessed to match the Portuguese PropBank.Br data; then it was fine-tuned in the PropBank.Br dataset using 10-fold Cross-Validation. The resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
life4free96/DialogGPT-med-TeiaMoranta
ff21b49f9ea3598fd3650ea1da98cdb741b1f83b
2021-11-11T12:07:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
life4free96
null
life4free96/DialogGPT-med-TeiaMoranta
0
null
transformers
35,577
--- tags: - conversational --- #Teia Moranta
light/small-rickk
e1989ea7092f9666e7d923e7c85aa20e736c6ecf
2021-09-15T18:38:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
light
null
light/small-rickk
0
null
transformers
35,578
--- tags: - conversational --- #rick sanchez
lilitket/wav2vec2-large-xls-r-300m-turkish-colab
b66d79874e2ea37e805d29b53bb857ee011ef5df
2022-02-24T18:57:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/wav2vec2-large-xls-r-300m-turkish-colab
0
null
transformers
35,579
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7126 - Wer: 0.8198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 6.7419 | 2.38 | 200 | 3.1913 | 1.0 | | 3.0446 | 4.76 | 400 | 2.3247 | 1.0 | | 1.3163 | 7.14 | 600 | 1.2629 | 0.9656 | | 0.6058 | 9.52 | 800 | 1.2203 | 0.9343 | | 0.3687 | 11.9 | 1000 | 1.2157 | 0.8849 | | 0.2644 | 14.29 | 1200 | 1.3693 | 0.8992 | | 0.2147 | 16.67 | 1400 | 1.3321 | 0.8623 | | 0.1962 | 19.05 | 1600 | 1.3476 | 0.8886 | | 0.1631 | 21.43 | 1800 | 1.3984 | 0.8755 | | 0.15 | 23.81 | 2000 | 1.4602 | 0.8798 | | 0.1311 | 26.19 | 2200 | 1.4727 | 0.8836 | | 0.1174 | 28.57 | 2400 | 1.5257 | 0.8805 | | 0.1155 | 30.95 | 2600 | 1.4697 | 0.9337 | | 0.1046 | 33.33 | 2800 | 1.6076 | 0.8667 | | 0.1063 | 35.71 | 3000 | 1.5012 | 0.8861 | | 0.0996 | 38.1 | 3200 | 1.6204 | 0.8605 | | 0.088 | 40.48 | 3400 | 1.4788 | 0.8586 | | 0.089 | 42.86 | 3600 | 1.5983 | 0.8648 | | 0.0805 | 45.24 | 3800 | 1.5045 | 0.8298 | | 0.0718 | 47.62 | 4000 | 1.6361 | 0.8611 | | 0.0718 | 50.0 | 4200 | 1.5088 | 0.8548 | | 0.0649 | 52.38 | 4400 | 1.5491 | 0.8554 | | 0.0685 | 54.76 | 4600 | 1.5939 | 0.8442 | | 0.0588 | 57.14 | 4800 | 1.6321 | 0.8536 | | 0.0591 | 59.52 | 5000 | 1.6468 | 0.8442 | | 0.0529 | 61.9 | 5200 | 1.6086 | 0.8661 | | 0.0482 | 64.29 | 5400 | 1.6622 | 0.8517 | | 0.0396 | 66.67 | 5600 | 1.6191 | 0.8436 | | 0.0463 | 69.05 | 5800 | 1.6231 | 0.8661 | | 0.0415 | 71.43 | 6000 | 1.6874 | 0.8511 | | 0.0383 | 73.81 | 6200 | 1.7054 | 0.8411 | | 0.0411 | 76.19 | 6400 | 1.7073 | 0.8486 | | 0.0346 | 78.57 | 6600 | 1.7137 | 0.8342 | | 0.0318 | 80.95 | 6800 | 1.6523 | 0.8329 | | 0.0299 | 83.33 | 7000 | 1.6893 | 0.8579 | | 0.029 | 85.71 | 7200 | 1.7162 | 0.8429 | | 0.025 | 88.1 | 7400 | 1.7589 | 0.8529 | | 0.025 | 90.48 | 7600 | 1.7581 | 0.8398 | | 0.0232 | 92.86 | 7800 | 1.8459 | 0.8442 | | 0.0215 | 95.24 | 8000 | 1.7942 | 0.8448 | | 0.0222 | 97.62 | 8200 | 1.6848 | 0.8442 | | 0.0179 | 100.0 | 8400 | 1.7223 | 0.8298 | | 0.0176 | 102.38 | 8600 | 1.7426 | 0.8404 | | 0.016 | 104.76 | 8800 | 1.7501 | 0.8411 | | 0.0153 | 107.14 | 9000 | 1.7185 | 0.8235 | | 0.0136 | 109.52 | 9200 | 1.7250 | 0.8292 | | 0.0117 | 111.9 | 9400 | 1.7159 | 0.8185 | | 0.0123 | 114.29 | 9600 | 1.7135 | 0.8248 | | 0.0121 | 116.67 | 9800 | 1.7189 | 0.8210 | | 0.0116 | 119.05 | 10000 | 1.7126 | 0.8198 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
limivan/DialoGPT-small-c3po
bcc7b306c371668e90f83440dbbf67f6243b0a13
2021-08-27T12:40:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
limivan
null
limivan/DialoGPT-small-c3po
0
null
transformers
35,580
--- tags: - conversational --- #C3PO DialoGPT Model
lincoln/2021twitchfr-conv-bert-small-mlm-simcse
1e612dcc79b987a80bb69608ad2d2318d93b7042
2022-01-07T18:00:43.000Z
[ "pytorch", "convbert", "feature-extraction", "fr", "sentence-transformers", "sentence-similarity", "transformers", "twitch", "license:mit" ]
sentence-similarity
false
lincoln
null
lincoln/2021twitchfr-conv-bert-small-mlm-simcse
0
1
sentence-transformers
35,581
--- language: - fr license: mit pipeline_tag: sentence-similarity widget: - source_sentence: "Bonsoir" sentences: - "Salut !" - "Hello" - "Bonsoir!" - "Bonsouar!" - "Bonsouar !" - "De rien" - "LUL LUL" example_title: "Coucou" - source_sentence: "elle s'en sort bien" sentences: - "elle a raison" - "elle a tellement raison" - "Elle a pas tort" - "C'est bien ce qu'elle dit là" - "Hello" example_title: "Raison or not" - source_sentence: "et la question énergétique n'est pas politique ?" sentences: - "C'est le nucléaire militaire qui a entaché le nucléaire pour l'énergie." - "La fusion nucléaire c'est pas pour maintenant malheureusement" - "le pro nucléaire redevient acceptable à gauche j'ai l'impression" - "La mer à Nantes?" - "c'est bien un olivier pour l'upr" - "Moi je vois juste sa lavallière" example_title: "Nucléaire" tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - twitch - convbert --- ## Modèle de représentation d'un message Twitch à l'aide de ConvBERT Modèle [sentence-transformers](https://www.SBERT.net): cela permet de mapper une séquence de texte en un vecteur numérique de dimension 256 et peut être utilisé pour des tâches de clustering ou de recherche sémantique. L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...). Après avoir entrainé un modèle `ConvBert` puis `MLM` (cf section smodèles), nous avons entrainé un modèle _sentence-transformers_ à l'aide du framework d'apprentissage [SimCSE](https://www.sbert.net/examples/unsupervised_learning/SimCSE/README.html) en non supervisée. L'objectif est de spécialiser la moyenne des tokens _CLS_ de chaque token de la séquence pour représenter un vecteur numérique cohérent avec l'ensemble du corpus. _SimCSE_ crée fictivement des exemples positifs et négatifs supervisées à l'aide du dropout pour revenir à une tâche classique. _Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._ ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('2021twitchfr-conv-bert-small-mlm-simcse') embeddings = model.encode(sentences) print(embeddings) ``` ## Semantic Textual Similarity ```python from sentence_transformers import SentenceTransformer, models, util # Two lists of sentences sentences1 = ['zackFCZack', 'Team bons petits plats', 'sa commence a quelle heure de base popcorn ?', 'BibleThump'] sentences2 = ['zack titulaire', 'salade de pates c une dinguerie', 'ça commence à être long la', 'NotLikeThis'] # Compute embedding for both lists embeddings1 = model.encode(sentences1, convert_to_tensor=True) embeddings2 = model.encode(sentences2, convert_to_tensor=True) # Compute cosine-similarits cosine_scores = util.cos_sim(embeddings1, embeddings2) # Output the pairs with their score for i in range(len(sentences1)): print("Score: {:.4f} | \"{}\" -vs- \"{}\" ".format(cosine_scores[i][i], sentences1[i], sentences2[i])) # Score: 0.5783 | "zackFCZack" -vs- "zack titulaire" # Score: 0.2881 | "Team bons petits plats" -vs- "salade de pates c une dinguerie" # Score: 0.4529 | "sa commence a quelle heure de base popcorn ?" -vs- "ça commence à être long la" # Score: 0.5805 | "BibleThump" -vs- "NotLikeThis" ``` ## Entrainement * 500 000 messages twitchs échantillonnés (cf description données des modèles de bases) * Batch size: 24 * Epochs: 24 * Loss: MultipleNegativesRankingLoss _A noter:_ * _ConvBert a été entrainé avec un longueur de 128 tokens max, mais est utilisé pour 512 dans ce modèle. Pas de problème._ * _La loss d'apprentissage n'est pas encore disponible: peu de visibilité sur les performances._ L'ensemble du code d'entrainement sur le github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds). ## Application: Nous avons utilisé une approche détournée de [BERTopic](https://maartengr.github.io/BERTopic/) pour réaliser un clustering d'un stream en prenant en compte la dimension temporelle: i.e. le nombre de seconde écoulée depuis le début du stream. ![approche_bertopic_lincoln](assets/approche_lincoln_topic_clustering_twitch.jpg) Globalement, l'approche donnes des résultats satisfaisant pour identifier des messages dit "similaires" récurrents. L'approche en revanche est fortement influencée par la ponctuation et la structure d'un message. Cela est largement explicable par le manque d'entrainement de l'ensemble des modèles et une volumétrie faible. ### Clustering émission "Backseat": Entre 19h30 et 20h00: ![1930_2000](./assets/scale_600_1930_2000.png) 🎞️ en vidéo: [youtu.be/EcjvlE9aTls](https://youtu.be/EcjvlE9aTls) ### Exemple regroupement émission "PopCorn": ```txt -------------------- LABEL 106 -------------------- circus (0.88)/sulli (0.23)/connu (0.19)/jure (0.12)/aime (0.11) silouhette moyenne: 0.04 -------------------- LABEL 106 -------------------- 2021-03-30 20:10:22 0.01: les gosse c est des animaux 2021-03-30 20:12:11 -0.03: oue c connu 2021-03-30 20:14:15 0.03: oh le circus !! <3 2021-03-30 20:14:19 0.12: le circus l'anciennnee 2021-03-30 20:14:22 0.06: jure le circus ! 2021-03-30 20:14:27 -0.03: le sulli 2021-03-30 20:14:31 0.09: le circus??? j'aime po 2021-03-30 20:14:34 0.11: le Circus, hors de prix ! 2021-03-30 20:14:35 -0.09: le Paddock a Rignac en Aveyron 2021-03-30 20:14:39 0.11: le circus >< 2021-03-30 20:14:39 0.04: le Titty Twister de Besançon -------------------- LABEL 17 -------------------- pates (0.12)/riz (0.09)/pâtes (0.09)/salade (0.07)/emission (0.07) silouhette moyenne: -0.05 -------------------- LABEL 17 -------------------- 2021-03-30 20:11:18 -0.03: Des nanimaux trop beaux ! 2021-03-30 20:13:11 -0.01: episode des simpsons ça... 2021-03-30 20:13:41 -0.01: des le debut d'emission ca tue mdrrrrr 2021-03-30 20:13:50 0.03: des "lasagnes" 2021-03-30 20:14:37 -0.18: poubelle la vie 2021-03-30 20:15:13 0.03: Une omelette 2021-03-30 20:15:35 -0.19: salade de bite 2021-03-30 20:15:36 -0.00: hahaha ce gastronome 2021-03-30 20:15:43 -0.08: salade de pates c une dinguerie 2021-03-30 20:17:00 -0.11: Une bonne femme ! 2021-03-30 20:17:06 -0.05: bouffe des graines 2021-03-30 20:17:08 -0.06: des pokeball ? 2021-03-30 20:17:11 -0.12: le choux fleur cru 2021-03-30 20:17:15 0.05: des pockeball ? 2021-03-30 20:17:27 -0.00: du chou fleur crue 2021-03-30 20:17:36 -0.09: un râgout de Meynia !!!! 2021-03-30 20:17:43 -0.07: une line up Sa rd o ch Zack Ponce my dream 2021-03-30 20:17:59 -0.10: Pâtes/10 2021-03-30 20:18:09 -0.05: Team bons petits plats 2021-03-30 20:18:13 -0.10: pate level 2021-03-30 20:18:19 -0.03: que des trucs très basiques 2021-03-30 20:18:24 0.03: des pates et du jambon c'est de la cuisine? 2021-03-30 20:18:30 0.05: Des pates et du riz ouai 2021-03-30 20:18:37 -0.02: des gnocchis à la poele c'est cuisiner ? 2021-03-30 20:18:50 -0.03: Pâtes à pizzas, pulled pork, carbonade flamande, etc.. 2021-03-30 20:19:01 -0.11: Des pâtes ou du riz ça compte ? 2021-03-30 20:19:22 -0.21: le noob 2021-03-30 20:19:47 -0.02: Une bonne escalope de milanaise les gars 2021-03-30 20:20:05 -0.04: faites des gratins et des quiches -------------------- LABEL 67 -------------------- 1 1 (0.25)/1 (0.19)/ (0.0)/ (0.0)/ (0.0) silouhette moyenne: 0.96 -------------------- LABEL 67 -------------------- 2021-03-30 20:24:17 0.94: +1 2021-03-30 20:24:37 0.97: +1 2021-03-30 20:24:37 0.97: +1 2021-03-30 20:24:38 0.97: +1 2021-03-30 20:24:39 0.97: +1 2021-03-30 20:24:43 0.97: +1 2021-03-30 20:24:44 0.97: +1 2021-03-30 20:24:47 0.97: +1 2021-03-30 20:24:49 0.97: +1 2021-03-30 20:25:00 0.97: +1 2021-03-30 20:25:21 0.95: +1 2021-03-30 20:25:25 0.95: +1 2021-03-30 20:25:28 0.94: +1 2021-03-30 20:25:30 0.94: +1 ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ConvBertModel (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Modèles: * [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small) * [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm) * [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
linyi/dummy-model
d254ef8a8bdb3e86752fc45c0d8ce9995c23fb82
2021-11-07T00:42:27.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
linyi
null
linyi/dummy-model
0
null
transformers
35,582
Entry not found
lkh4317/gpt2_fairy_tale
9072d3366c57083192390f449429a234628a8aee
2022-02-02T23:19:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lkh4317
null
lkh4317/gpt2_fairy_tale
0
null
transformers
35,583
Entry not found
logicbloke/wav2vec2-large-xlsr-53-arabic
e0ab8005d9072404d8768d16c35c030519acd5e0
2021-07-06T10:09:12.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
logicbloke
null
logicbloke/wav2vec2-large-xlsr-53-arabic
0
null
transformers
35,584
Entry not found
logube/DialogGPT_small_harrypotter
d318f5c4d2cae946034ea8531f43217b48a56c22
2021-08-27T23:18:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
logube
null
logube/DialogGPT_small_harrypotter
0
null
transformers
35,585
--- tags: - conversational --- # harry potter DialogGPT Model
lonewanderer27/KeitaroBot
088feb8381efb70f435363bea297a7c19c7b483e
2022-02-12T16:15:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lonewanderer27
null
lonewanderer27/KeitaroBot
0
null
transformers
35,586
--- tags: - conversational --- # Camp Buddy - Keitaro - DialoGPTSmall Model
longcld/t5-base-squad-visquad-aqg
503405836758f1f9a44bd1b18ecb81510305f9a5
2021-09-08T01:36:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5-base-squad-visquad-aqg
0
null
transformers
35,587
Entry not found
longcld/t5-small-itranslate-visquad-aqg
c2b786e4f1db69d5a660db67876eb07711653300
2021-08-19T08:55:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5-small-itranslate-visquad-aqg
0
null
transformers
35,588
Entry not found
longcld/t5-small-squad-itranslate-aqg
33df45fbff5d865d417ddb101ea19268d4676d0f
2021-08-17T20:44:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5-small-squad-itranslate-aqg
0
null
transformers
35,589
Entry not found
longge/test
3188372dfc9687561e46291998e2656fff84d9e0
2021-11-02T06:36:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
longge
null
longge/test
0
null
transformers
35,590
Entry not found
longjuanfen/model700
88b475ba828919d78debe0f1b1303c694bc1ef12
2021-11-02T16:24:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
longjuanfen
null
longjuanfen/model700
0
null
transformers
35,591
Entry not found
longjuanfen/model701
aef1b4582976b7151e4a6242f5e81ad8d9213bdf
2021-11-03T17:23:57.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
longjuanfen
null
longjuanfen/model701
0
null
transformers
35,592
Entry not found
longnhit07/distilbert-base-uncased-finetuned-imdb
6fe0181a2aa074e52528005975958ec249b6613f
2022-01-10T09:02:05.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
longnhit07
null
longnhit07/distilbert-base-uncased-finetuned-imdb
0
null
transformers
35,593
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7117 | 1.0 | 157 | 2.4977 | | 2.5783 | 2.0 | 314 | 2.4241 | | 2.5375 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
lovellyweather/DialoGPT-medium-johnny
9e30b225f829b6dde42881274a8d7c063b251817
2021-08-31T13:58:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lovellyweather
null
lovellyweather/DialoGPT-medium-johnny
0
null
transformers
35,594
--- tags: - conversational --- # Johnny DialoGPT Model
lsy641/ESC_Blender_Strategy
72c5d30a57217f7b44b7dae6d95230241335ec04
2021-07-05T14:23:34.000Z
[ "pytorch" ]
null
false
lsy641
null
lsy641/ESC_Blender_Strategy
0
1
null
35,595
Entry not found
lsy641/ESC_Blender_noStrategy
793dfc0d06ce980674b226a745d6dffd09761a4c
2021-07-05T14:22:05.000Z
[ "pytorch" ]
null
false
lsy641
null
lsy641/ESC_Blender_noStrategy
0
null
null
35,596
Entry not found
ltrctelugu/ltrc-albert
4c5f82a4367c836af23a467350d5caf13cdbe819
2021-11-23T16:49:32.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ltrctelugu
null
ltrctelugu/ltrc-albert
0
null
transformers
35,597
hello
ltrctelugu/ltrc-roberta
2e5cff54823703dfe5600f733e9d80d0320cee19
2021-10-17T16:45:03.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ltrctelugu
null
ltrctelugu/ltrc-roberta
0
null
transformers
35,598
RoBERTa trained on 8.8 Million Telugu Sentences
lucasnobre212/description-test
5795790b439bbf641b2fc538fb1ee70741538f48
2021-12-29T15:17:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lucasnobre212
null
lucasnobre212/description-test
0
null
transformers
35,599
Entry not found