modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
mrm8488/electricidad-base-finetuned-ner
6e759fe1e4ade1e92320f2ead88101b5c9698bcb
2020-08-24T16:31:14.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mrm8488
null
mrm8488/electricidad-base-finetuned-ner
0
null
transformers
35,700
Entry not found
mrm8488/electricidad-base-finetuned-pos
db6a864999fdf3ac7f704129c2397a5a32056c89
2020-08-24T16:52:15.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mrm8488
null
mrm8488/electricidad-base-finetuned-pos
0
null
transformers
35,701
Entry not found
mrm8488/roberta-base-bne-finetuned-sqac-retriever
395e704d6a12cd7beb32d0b244da3bd989490da3
2022-02-04T17:59:07.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
mrm8488
null
mrm8488/roberta-base-bne-finetuned-sqac-retriever
0
1
sentence-transformers
35,702
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 939 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 93, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mrm8488/roberta-base-finetuned-multitask
af2c180d2c07a6654b7277e3ac234da9e79b3ca6
2020-06-23T20:13:34.000Z
[ "pytorch", "transformers" ]
null
false
mrm8488
null
mrm8488/roberta-base-finetuned-multitask
0
null
transformers
35,703
Entry not found
mrm8488/t5-base-finetuned-math-list-prime-factors
ea062d4d455eb9877c01a82135555421fc39f68a
2021-06-23T12:50:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-math-list-prime-factors
0
null
transformers
35,704
Entry not found
mrm8488/t5-base-finetuned-qasc-sc
e405dda22ebfc864ef9212ca76c42e4c2ebb1491
2020-11-01T10:04:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-qasc-sc
0
null
transformers
35,705
Entry not found
mrm8488/t5-base-finetuned-spa-squadv1
336b1a26662bbb63f617ab99b4b3041e530f1f3e
2020-05-26T13:23:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-spa-squadv1
0
null
transformers
35,706
Entry not found
mrm8488/t5-base-finetuned-swag
a98fc10cdd70c654f3282b8b5778f18e304c445a
2020-06-18T01:12:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-swag
0
null
transformers
35,707
Entry not found
mrm8488/t5-small-finetuned-AESLC-summarization
c310383b4c337edcffdd1e9a875df965a2ea731e
2020-07-22T08:42:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-AESLC-summarization
0
null
transformers
35,708
Entry not found
mrm8488/wav2vec2-large-xlsr-53-breton
d1cd1ab90a8e1270e676d28503ef363cb91cabf5
2021-07-06T12:57:34.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "br", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mrm8488
null
mrm8488/wav2vec2-large-xlsr-53-breton
0
null
transformers
35,709
--- language: br datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Breton Manuel Romero results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 46.49 --- # Wav2Vec2-Large-XLSR-53-breton Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Breton using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "br", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-breton") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-breton") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Breton test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "br", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-breton") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-breton") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.49 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
mrm8488/wav2vec2-large-xlsr-53-esperanto
fd2f793058ef80ece5aa0c635c60fbf6a5fe100c
2021-07-06T13:02:46.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "eo", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mrm8488
null
mrm8488/wav2vec2-large-xlsr-53-esperanto
0
null
transformers
35,710
--- language: eo datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Esperanto Manuel Romero results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eo type: common_voice args: eo metrics: - name: Test WER type: wer value: 15.86 --- # Wav2Vec2-Large-XLSR-53-esperanto Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Esperanto using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eo", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eo", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-esperanto") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 15.86 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
mrm8488/wav2vec2-large-xlsr-53-euskera
89afb3abbc14de3f07dea8484e2b8a4276329ffd
2021-07-06T13:09:18.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "eu", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mrm8488
null
mrm8488/wav2vec2-large-xlsr-53-euskera
0
null
transformers
35,711
--- language: eu datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Euskera Manuel Romero results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eu type: common_voice args: eu metrics: - name: Test WER type: wer value: 24.03 --- # Wav2Vec2-Large-XLSR-53-euskera Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Euskera using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Euskera test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera") model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.03 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
mrojas/bio-bert-base-spanish-wwm-cased
19a4c7ed6d68d34d0d920da92ffe1ba326d96d5d
2022-02-07T00:52:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mrojas
null
mrojas/bio-bert-base-spanish-wwm-cased
0
null
transformers
35,712
Entry not found
msakthiganesh/TabQGen-Base
731b5bb2f6b6db089f138977354ef56a50ca84d0
2021-08-18T14:38:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
msakthiganesh
null
msakthiganesh/TabQGen-Base
0
null
transformers
35,713
> **TabQGen** model is released along with the dataset **Question Generation for Tables** in the paper - **Answer-Aware Question Generation from Tabular and Textual Data using T5**
msakthiganesh/TabQGen-Large
f67493959357b2f6ca8b0bb1a0e421b04304b087
2021-08-18T14:37:35.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
msakthiganesh
null
msakthiganesh/TabQGen-Large
0
null
transformers
35,714
> **TabQGen** model is released along with the dataset **Question Generation for Tables** in the paper - **Answer-Aware Question Generation from Tabular and Textual Data using T5**
msarmi9/multi30k
ce65571f421c2a11ab8252046973dcac0f975ed0
2022-02-22T23:28:58.000Z
[ "tensorboard", "de", "en", "dataset:multi30k", "translation", "pytorch", "license:mit", "model-index" ]
translation
false
msarmi9
null
msarmi9/multi30k
0
2
null
35,715
--- license: mit language: - de - en tags: - translation - pytorch datasets: - multi30k metrics: - bleu model-index: - name: multi30k results: - task: type: translation dataset: type: multi30k name: multi30k-de-en metrics: - type: bleu value: 33.468 name: Test BLEU args: n_gram=4 --- # Seq2seq + Attention Pytorch implementation of [Neural Machine Translation by Jointly Learning to Align and Translate](https://arxiv.org/abs/1409.0473). Trained on the [Multi30k-de-en](http://www.statmt.org/wmt16/multimodal-task.html#task1) dataset with sentencepiece as the tokenizer. Here's the attention heatmap of a random sample from the test set: ![attention-heatmap](attention-heatmap.png)
mse30/bart-base-finetuned-cnn
5d3bf17f7f5ceb51524af0c99f2308aa14dc3569
2021-10-09T01:50:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mse30
null
mse30/bart-base-finetuned-cnn
0
null
transformers
35,716
Entry not found
mtr0930/koelectra-base-v3_epoch-10
0fedbc0e700e4b501207c64c769571068102aab4
2021-08-18T17:33:01.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mtr0930
null
mtr0930/koelectra-base-v3_epoch-10
0
null
transformers
35,717
i-manual KoELECTRA-base-v3
mtr0930/koelectra-base-v3_epoch-100
311fe8e2885b069bc8c36f001fc3264e7d438904
2021-08-23T12:08:35.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mtr0930
null
mtr0930/koelectra-base-v3_epoch-100
0
null
transformers
35,718
Entry not found
mukherjeearnab/opsolBERT
f78218028511cc6101c9e4683ac4d35e6a5c8ab6
2021-05-20T18:38:11.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mukherjeearnab
null
mukherjeearnab/opsolBERT
0
null
transformers
35,719
hello
munggok/xlsr_indonesia
266eccdd703db568c13a336490c981f4ab3f1cad
2021-03-18T09:53:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "id", "dataset:common_voice", "transformers", "speech", "audio", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
false
munggok
null
munggok/xlsr_indonesia
0
null
transformers
35,720
--- language: id datasets: - common_voice tags: - speech - audio - automatic-speech-recognition - xlsr-fine-tuning-week license: apache-2.0 --- ## Evaluation on Common Voice ID Test ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys model_name = "munggok/xlsr_indonesia" device = "cuda" chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]' # noqa: W605 model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "id", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` **Result**: 25.7 %
mutamuta/DialoGPT-small-rick
71254a3400dd930d2a55d971be01b6f0aeee70a6
2021-09-22T01:05:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mutamuta
null
mutamuta/DialoGPT-small-rick
0
null
transformers
35,721
--- tags: - conversational --- # Rick DialoGPT Model
mutamuta/DialoGPT-spongebob-small
d356ffb7c160a5fcbb778f2cf1ce731df7b53637
2021-09-22T20:06:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mutamuta
null
mutamuta/DialoGPT-spongebob-small
0
null
transformers
35,722
--- tags: - conversational --- # SpongeBob DialoGPT Model
mvip/wav2vec2-large-xls-r-300m-tr
30c4de4ad3667f26522ebf5bd379c24665c8ba0a
2022-02-11T10:58:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mvip
null
mvip/wav2vec2-large-xls-r-300m-tr
0
null
transformers
35,723
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4074 - Wer: 0.4227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9399 | 4.21 | 400 | 0.7252 | 0.7387 | | 0.4147 | 8.42 | 800 | 0.4693 | 0.5201 | | 0.1855 | 12.63 | 1200 | 0.4584 | 0.4848 | | 0.1256 | 16.84 | 1600 | 0.4464 | 0.4708 | | 0.0948 | 21.05 | 2000 | 0.4261 | 0.4389 | | 0.0714 | 25.26 | 2400 | 0.4331 | 0.4349 | | 0.0532 | 29.47 | 2800 | 0.4074 | 0.4227 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
mvip/wav2vec2-large-xls-r-300m-turkish-local-2
e5d18f24335c3b725c6ef5bba49d0bf7fc8f04a6
2022-02-23T14:27:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mvip
null
mvip/wav2vec2-large-xls-r-300m-turkish-local-2
0
null
transformers
35,724
Entry not found
mvonwyl/roberta-base-finetuned-squad2
028722d9913840390f897a26998dbc5e581374c0
2021-11-01T17:51:41.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
mvonwyl
null
mvonwyl/roberta-base-finetuned-squad2
0
null
transformers
35,725
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.88 | 1.0 | 8160 | 0.8129 | | 0.6643 | 2.0 | 16320 | 0.8567 | | 0.5096 | 3.0 | 24480 | 0.9325 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
naiyalee/DialoGPT-small-neku
541315306340df225664357d7a8458c3210fc92d
2021-08-06T13:06:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
naiyalee
null
naiyalee/DialoGPT-small-neku
0
null
transformers
35,726
namanrana16/DialoGPT-small-TrumpBot
bab78c77fe2493e4b3faef8ec1ef85122d6c9fd4
2021-09-29T16:58:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
namanrana16
null
namanrana16/DialoGPT-small-TrumpBot
0
null
transformers
35,727
--- tags: - conversational --- #TRUUMP BOT
nanometeres/DialoGPT-small-halbot
946e5efd7038b45a72f4e7761a494f523f1b4afe
2021-08-28T05:41:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nanometeres
null
nanometeres/DialoGPT-small-halbot
0
null
transformers
35,728
--- tags: - conversational --- #lilhalbot DialoGPT Model
napoler/chinese_roberta_L-2_H-512-8021
778bcf957ddd4026b458dd1f441d372753d64420
2021-09-26T07:10:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
napoler
null
napoler/chinese_roberta_L-2_H-512-8021
0
1
transformers
35,729
Entry not found
napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100
62285452251b918d7b95b4cfb4aea944076d9422
2021-09-26T03:21:48.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
napoler
null
napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100
0
null
transformers
35,730
-修改为相对位置 -对内容类型进行修改 ```python from transformers import BertTokenizer, BertModel,BertConfig Config = BertConfig.from_pretrained("napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100") tokenizer = BertTokenizer.from_pretrained('napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100') model = BertModel.from_pretrained("napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100",config=Config) ``` 修改方案 https://www.kaggle.com/terrychanorg/bert-notebook9525623d9e
napoler/chinese_roberta_L-4_H-512_rdrop
f3d98b8c2ff92d84e50f43de54dcc5bfd1d7ddf5
2022-01-22T01:00:59.000Z
[ "pytorch", "bert", "feature-extraction", "Chinese", "transformers", "license:apache-2.0" ]
feature-extraction
false
napoler
null
napoler/chinese_roberta_L-4_H-512_rdrop
0
null
transformers
35,731
--- license: "apache-2.0" language: Chinese widget: - text: "北京是[MASK]国的首都。" --- chinese_roberta_L-4_H-512_rdrop
napoler/mcbert_l3_768
0c729154901cb1862355cc67629fb9c8a9708fc7
2021-12-01T08:41:47.000Z
[ "pytorch", "bert", "transformers" ]
null
false
napoler
null
napoler/mcbert_l3_768
0
null
transformers
35,732
3层
narabzad/upload
11ed70da6c8923942f6d8ca60f1c1a32919a1921
2020-08-15T16:56:43.000Z
[ "pytorch", "transformers" ]
null
false
narabzad
null
narabzad/upload
0
null
transformers
35,733
Entry not found
nateraw/aae-fraud-base-7
2d8a3f7de9e80505721e676257157fcfbd2313a3
2021-07-05T09:12:06.000Z
[ "pytorch", "tensorboard", "transformers" ]
null
false
nateraw
null
nateraw/aae-fraud-base-7
0
null
transformers
35,734
Entry not found
nateraw/autoencoder-cifar10
3c19b7fdd1a0261feb5f3211616fdf3e669f84f1
2021-06-30T06:26:34.000Z
[ "pytorch", "transformers" ]
null
false
nateraw
null
nateraw/autoencoder-cifar10
0
null
transformers
35,735
Entry not found
nateraw/basic-ae-cifar10
b06a6d68830525b6ce2b15c1930709365a55a2ca
2021-06-30T02:05:17.000Z
[ "pytorch", "transformers" ]
null
false
nateraw
null
nateraw/basic-ae-cifar10
0
null
transformers
35,736
Entry not found
nateraw/cnn-dummy
3cc0d1a11a7ece62036c1e3c020aaea2054dd648
2021-09-03T20:39:32.000Z
[ "pytorch" ]
null
false
nateraw
null
nateraw/cnn-dummy
0
null
null
35,737
Entry not found
nateraw/dummy
e39e45cf308894b7c6ced409c9df3d7a4baec8c2
2021-06-29T06:34:02.000Z
[ "pytorch", "transformers" ]
null
false
nateraw
null
nateraw/dummy
0
null
transformers
35,738
Entry not found
nateraw/resnet101
a04b7ca0ca356dc1246557c4fda0523768520bdf
2021-04-13T09:54:57.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/resnet101
0
null
transformers
35,739
Entry not found
nateraw/resnet18-dummy
0d8abf42e371de826225c110a70f35c321ed34bb
2021-09-08T00:24:38.000Z
[ "pytorch", "transformers" ]
null
false
nateraw
null
nateraw/resnet18-dummy
0
null
transformers
35,740
Entry not found
nateraw/resnet18
69868120cb36991d0b1079056060b72251a78a15
2021-04-13T10:06:56.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/resnet18
0
null
transformers
35,741
Entry not found
nateraw/resnet34
ef0642dabeaa8d181aed91ea939c63622ce7010a
2021-04-13T10:09:31.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/resnet34
0
null
transformers
35,742
Entry not found
nateraw/resnet50-beans-dummy-sagemaker
d579246c49b86c33caad5a7e81e957d7020d2393
2021-09-22T18:01:58.000Z
[ "pytorch", "tensorboard", "dataset:beans", "timm", "image-classification", "generated_from_trainer", "model-index" ]
image-classification
false
nateraw
null
nateraw/resnet50-beans-dummy-sagemaker
0
null
timm
35,743
--- tags: - image-classification - timm - generated_from_trainer datasets: - beans model-index: - name: model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default library_tag: timm --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.0219 - Acc1: 56.3910 - Acc5: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 20 ### Training results ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.12.1 - Tokenizers 0.10.3
nateraw/resnext50_32x4d
bbbc875826128bc1105b2bc8a42f17fdd0a21aff
2021-04-13T10:21:23.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/resnext50_32x4d
0
null
transformers
35,744
Entry not found
nateraw/test-classifier-flash-2
8b2e7f8c8b642d1b0e3e30a31d2b99babe157929
2021-09-28T01:57:13.000Z
[ "pytorch", "generic", "image-classification" ]
image-classification
false
nateraw
null
nateraw/test-classifier-flash-2
0
null
generic
35,745
--- tags: - image-classification library_name: generic --- # Test
nateraw/text-classification-flash-demo-2
def7d7720f1027a0d1ef07867f56b9a01a299b9a
2021-09-28T04:42:37.000Z
[ "pytorch", "generic", "text-classification" ]
text-classification
false
nateraw
null
nateraw/text-classification-flash-demo-2
0
null
generic
35,746
--- tags: - text-classification library_name: generic --- # Test
nateraw/wide_resnet101_2
824b02923c930a28c0ac7653b4ee034f468d1bcb
2021-04-13T10:26:39.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/wide_resnet101_2
0
null
transformers
35,747
Entry not found
nateraw/wide_resnet50_2
912799d703816c9e2f6fd8210ffdef7315231dc6
2021-04-13T10:42:01.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/wide_resnet50_2
0
null
transformers
35,748
Entry not found
nates-test-org/cait_s24_384
c4ea39213e40cac30a1cbf51ab0b00e6a833e0da
2021-10-29T04:25:03.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_s24_384
0
null
timm
35,749
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_s24_384
nates-test-org/cait_s36_384
256bf3d611972995458cd768c3151c1ab72f884d
2021-10-29T04:27:40.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_s36_384
0
null
timm
35,750
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_s36_384
nates-test-org/coat_lite_mini
9547fd30b2e8063fddf1f7c17044f8b8e857796e
2021-10-29T04:36:52.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/coat_lite_mini
0
null
timm
35,751
--- tags: - image-classification - timm library_tag: timm --- # Model card for coat_lite_mini
nates-test-org/cspdarknet53
8610503147e2c4e579df71887c688a6c51c5c0b9
2021-10-29T04:47:12.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cspdarknet53
0
null
timm
35,752
--- tags: - image-classification - timm library_tag: timm --- # Model card for cspdarknet53
natsuo/ja_hiragana
0d9b88241ab41aeb8e4f687fc862a04a4a829e55
2021-07-13T07:59:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
natsuo
null
natsuo/ja_hiragana
0
null
transformers
35,753
Entry not found
naughtycult/my-awesome-model
026ff88e75afe1cc6af66b933a1fe95767d9083c
2021-07-19T12:18:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
naughtycult
null
naughtycult/my-awesome-model
0
null
transformers
35,754
Entry not found
navid-rekabsaz/advbert_ranker_l4
d87b39af8b3e199f6707db96cf371768c83a54a5
2021-06-04T17:01:05.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
navid-rekabsaz
null
navid-rekabsaz/advbert_ranker_l4
0
null
transformers
35,755
## Welcome
navjordj/gpt2_no
f3c46a34b68badfa6e1e60c82c89ebef02ca2c07
2021-11-17T20:09:17.000Z
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
navjordj
null
navjordj/gpt2_no
0
null
transformers
35,756
3 epoch på norsk oscar corpus. warmup_steps = 1000 learning_rate = 5e-3 block_size =512 per_device_train_batch_size = 64 cirka 1,5 time på TPU v3-8 per epoch
nboost/pt-biobert-base-msmarco
c5d5eeac4da656703ea42ca9ae4871d71f5776b2
2021-05-20T01:27:20.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
nboost
null
nboost/pt-biobert-base-msmarco
0
null
transformers
35,757
Entry not found
ncduy/bert-base-cased-finetuned-squad-test
ea8c5f629829e3a1c71dbedd42e2a4d7d399d548
2021-12-09T11:44:13.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ncduy
null
ncduy/bert-base-cased-finetuned-squad-test
0
null
transformers
35,758
Entry not found
ncduy/gpt2-wikitext2
eb272c815e8f6af45f5c64dcc6e597dce497c911
2021-08-06T14:27:43.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer" ]
text-generation
false
ncduy
null
ncduy/gpt2-wikitext2
0
null
transformers
35,759
--- tags: - generated_from_trainer datasets: - null model_index: - name: gpt2-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7439 | 1.0 | 2249 | 6.6501 | | 6.4023 | 2.0 | 4498 | 6.3852 | | 6.2426 | 3.0 | 6747 | 6.3114 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ncoop57/athena
e87ac647d1a7bb02e3ba0677b2713b1536b155e0
2022-01-04T19:24:11.000Z
[ "pytorch", "longformer", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
ncoop57
null
ncoop57/athena
0
null
sentence-transformers
35,760
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ncoop57/athena This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ncoop57/athena') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ncoop57/athena) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 50 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ncoop57/codeparrot-py
0ee25d2d8a639ef1a3919371a1dc84c2e04d8675
2022-01-26T00:54:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ncoop57
null
ncoop57/codeparrot-py
0
null
transformers
35,761
Entry not found
ncoop57/codeparrot-test
9cf10d70660adbfb399cee321a00241ae7d03f3d
2021-12-17T20:46:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ncoop57
null
ncoop57/codeparrot-test
0
null
transformers
35,762
Entry not found
ncoop57/multilingual-codesearch
a6806056bcbc54fc23c51d949ef74ee97a52fbc5
2021-04-03T03:06:55.000Z
[ "pytorch", "transformers" ]
null
false
ncoop57
null
ncoop57/multilingual-codesearch
0
null
transformers
35,763
Entry not found
ncoop57/testmodel
2e88b479f867f8730ec6d4ed7eb31a71c4e5c373
2021-06-07T00:41:20.000Z
[ "pytorch", "transformers" ]
null
false
ncoop57
null
ncoop57/testmodel
0
null
transformers
35,764
Entry not found
ndevavarapu/utterance_gen
48ecbb09983d38d453804c3c8c1ed58258be740b
2021-06-23T13:11:00.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ndevavarapu
null
ndevavarapu/utterance_gen
0
null
transformers
35,765
Entry not found
negfir/Bert2layer
672490459661d2d669880ac334cc19aa203cc612
2021-12-15T13:53:26.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/Bert2layer
0
null
transformers
35,766
Entry not found
negfir/Bertbase
fbd42f17c3472ac8c7deee949b55cf383c7ce2ee
2021-12-14T20:57:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/Bertbase
0
null
transformers
35,767
Entry not found
negfir/my-awesome-model
c3d6a24593c7427c1f8c7c572c40cd695815b488
2021-12-07T02:48:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/my-awesome-model
0
null
transformers
35,768
Entry not found
neuralspace/indic-transformers-hi-distilbert
294d253afa53724ccee4c894ee24bfbd32e936d9
2020-10-27T15:02:32.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
neuralspace
null
neuralspace/indic-transformers-hi-distilbert
0
1
transformers
35,769
Entry not found
neurocode/Icelandic-NER-base
447ed2be4570c70c99496de4e12a428bf5f261c5
2020-10-22T07:52:14.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
neurocode
null
neurocode/Icelandic-NER-base
0
null
transformers
35,770
Entry not found
neurocode/Icelandic-NER-large
77dfcdf42cec37211a2b582df19cb486e8905af3
2020-10-22T09:32:22.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
neurocode
null
neurocode/Icelandic-NER-large
0
null
transformers
35,771
Entry not found
nfliu/roberta_books_wiki_bpe_32k
f1b2d98bdf8a047ed59f4605b74f2fa5e478905c
2021-12-08T21:48:25.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nfliu
null
nfliu/roberta_books_wiki_bpe_32k
0
null
transformers
35,772
Entry not found
nfliu/roberta_books_wiki_bpe_47k
d731e404efe7d11ae090fbeb3df729793f54ecab
2021-12-08T21:52:31.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nfliu
null
nfliu/roberta_books_wiki_bpe_47k
0
null
transformers
35,773
Entry not found
ngdiana/xlsr-2-bart
7a3fd2a466aec73d3e3750337dcba6f08493040a
2022-02-12T12:52:12.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ngdiana
null
ngdiana/xlsr-2-bart
0
null
transformers
35,774
Entry not found
nhrony/bert-bn
b0ca6b3496230dd346b27b7fa26de867fdcba76b
2022-01-16T17:36:43.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nhrony
null
nhrony/bert-bn
0
null
transformers
35,775
Entry not found
niclas/model_en_2
53d97898d67438bb3c13d1a70208f7808a6176e5
2022-02-17T21:15:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
niclas
null
niclas/model_en_2
0
null
transformers
35,776
Entry not found
niclas/model_sv_5
69d5936002eb7f8003cde870fb2c9710b3035e69
2021-12-23T01:05:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
niclas
null
niclas/model_sv_5
0
null
transformers
35,777
Entry not found
niclas/models_sv_6
bc90f8dd476d165a4d03a0c55a3fd676fc00ea94
2022-02-21T16:30:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
niclas
null
niclas/models_sv_6
0
null
transformers
35,778
nielsr/deformable-detr
ef2269b4fa98a9cb738132da885dcb5f80e284c3
2022-02-01T13:29:07.000Z
[ "pytorch", "deformable_detr", "transformers" ]
null
false
nielsr
null
nielsr/deformable-detr
0
null
transformers
35,779
Entry not found
nielsr/detr-testje
6aeb8da036b70de4925edc23f4f1d8508b0c75f5
2021-04-28T06:42:48.000Z
[ "pytorch", "detr", "transformers" ]
null
false
nielsr
null
nielsr/detr-testje
0
null
transformers
35,780
Entry not found
nielsr/tapex-large-finetuned-wtq
c418203c2388b7475d74012b6d98b7224955d2ef
2022-01-17T09:56:43.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:wtq", "arxiv:2107.07653", "transformers", "tapex", "table-question-answering", "license:apache-2.0", "autotrain_compatible" ]
table-question-answering
false
nielsr
null
nielsr/tapex-large-finetuned-wtq
0
2
transformers
35,781
--- language: en tags: - tapex - table-question-answering license: apache-2.0 datasets: - wtq inference: false --- TAPEX-large model fine-tuned on WTQ. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining). To load it and run inference, you can do the following: ``` from transformers import BartTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-wtq") model = BartForConditionalGeneration.from_pretrained("nielsr/tapex-large-finetuned-wtq") # create table data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) # turn into dict table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]} # turn into format TAPEX expects # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py linearizer = IndexedRowTableLinearize() linear_table = linearizer.process_table(table_dict) # add question question = "how many movies does George Clooney have?" joint_input = question + " " + linear_table # encode encoding = tokenizer(joint_input, return_tensors="pt") # forward pass outputs = model.generate(**encoding) # decode tokenizer.batch_decode(outputs, skip_special_tokens=True) ```
nikcook/distilbert-base-uncased-finetuned-squad
da4190f9f867de446aa1aab81e77c9dd10bd5bdc
2022-01-13T11:28:01.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
nikcook
null
nikcook/distilbert-base-uncased-finetuned-squad
0
null
transformers
35,782
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2199 | 1.0 | 5533 | 1.1525 | | 0.9463 | 2.0 | 11066 | 1.1298 | | 0.7636 | 3.0 | 16599 | 1.1581 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nikhilpatil2532000/DialoGPT-small-harrypotter
684c2f56ca8e715d59b321b4fb6167dede8c3e3e
2021-10-11T15:34:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nikhilpatil2532000
null
nikhilpatil2532000/DialoGPT-small-harrypotter
0
null
transformers
35,783
--- tags: - conversational --- # Harry Potter DialoGPT Model
nikitam/mbert-tlm-chat-en-zh
fe6f9ea87d337da10fc62c79678e567724ef1d00
2021-09-27T11:08:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-tlm-chat-en-zh
0
null
transformers
35,784
Entry not found
nikitam/mbert-xdm-en-zh
c1d56a829141712e7cfa9c73a9c7a65308c15570
2021-10-12T10:50:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-xdm-en-zh
0
null
transformers
35,785
Entry not found
nikolamilosevic/xlm-roberta-base-finetuned-panx-de
ea628988d681ef54e4b7c99428b1e219102d2aad
2022-02-15T14:52:51.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
nikolamilosevic
null
nikolamilosevic/xlm-roberta-base-finetuned-panx-de
0
null
transformers
35,786
Entry not found
nimelinia/rut5-reply-headline-model
b88438af97550fdf4eb3da9f79350f9c76e0f8d9
2022-01-24T12:31:54.000Z
[ "pytorch" ]
null
false
nimelinia
null
nimelinia/rut5-reply-headline-model
0
null
null
35,787
This model was trained from rut5-base-multitask with pair of questions and answers (in Russian). The model demonstrate interesting behavior with option "reply" and "headline". When model creates a headline for paragraph of text, it not only uses phrases from text, but also generate new words and sometimes new meanings. Examples of questions and answers: > Как зовут отца Александра Сергеевича Пушкина? > - Пушкин > Где купить вкусное мороженое? > - В супермаркете > Красивая ли Мона Лиза? > - Очень красивая Examples of headlines: > Власти Пекина из-за пандемии COVID-19 призвали жителей города отказаться от помощи и избегать любого контакта с олимпийскими машинами, попавшими в ДТП. Об этом сообщает South China Morning Post. > - Китайский губернатор призвал жителей Пекина отказаться от помощи > Казахский народ должен поддержать своего президента Касым-Жомарт Токаева на фоне угрозы повторения массовых беспорядков, но и властям страны следует провести демократические реформы для снижения недовольства. Об этом в интервью изданию Orda заявил бывший генеральный продюсер гостелеканала «Хабар», экс-глава канала «Ел Арна» Серик Абас-Шах. > - Казахский народ должен поддержать Токаева > Позиция России по макроэкономическим показателям является лучшей в мире. Об этом сказал ТАСС российский исполнительный директор в Международном валютном фонде (МВФ) Алексей Можин. > - Российская экономика является лучшей в мире
nimrah/wav2vec2-large-xls-r-300m-hindi-colab
6ab9b2f2bb1b75fdcacb35c3b1dc31a51a4edc1a
2022-01-19T21:21:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nimrah
null
nimrah/wav2vec2-large-xls-r-300m-hindi-colab
0
null
transformers
35,788
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
nimrah/wav2vec2-large-xls-r-300m-my_hindi_presentation-colab
88e5b5d5fc5a3874a153e67c7847f27dd4678155
2022-02-20T11:04:36.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nimrah
null
nimrah/wav2vec2-large-xls-r-300m-my_hindi_presentation-colab
0
null
transformers
35,789
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-my_hindi_presentation-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-my_hindi_presentation-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
nimrazaheer/DialoGPT-small-harrypotter
8e188bf9245965bd324c115bc6fc3e564991b0bf
2022-02-07T16:08:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nimrazaheer
null
nimrazaheer/DialoGPT-small-harrypotter
0
null
transformers
35,790
--- tags: - conversational --- # Harry Potter DialoGPT Model
nlpHakdang/roberta-large-NER
1ea9fd970cb30d3d1da79631e101b7a1226cab2c
2021-12-20T11:32:10.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
nlpHakdang
null
nlpHakdang/roberta-large-NER
0
null
transformers
35,791
Entry not found
nlpunibo/distilbert_config1
fb6504b687b3e528a6e69be4f05acf14ef7d88b4
2021-02-19T14:45:08.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/distilbert_config1
0
null
transformers
35,792
Entry not found
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-localParams
c8e7b75720735e534141e5fff1457e8049380cb7
2022-01-24T08:29:47.000Z
[ "pytorch", "tensorboard", "xlnet", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
nntadotzip
null
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-localParams
0
null
transformers
35,793
--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-IUChatbot-ontologyDts-localParams results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-IUChatbot-ontologyDts-localParams This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1172 | 1.0 | 1119 | 0.0657 | | 0.0564 | 2.0 | 2238 | 0.0237 | | 0.033 | 3.0 | 3357 | 0.0238 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts
cf0209052dd04ba385ebb2f260908c363ed3ada6
2022-01-20T17:12:19.000Z
[ "pytorch", "tensorboard", "xlnet", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
nntadotzip
null
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts
0
null
transformers
35,794
--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-IUChatbot-ontologyDts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-IUChatbot-ontologyDts This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 318 | 0.5005 | | 0.8222 | 2.0 | 636 | 0.4488 | | 0.8222 | 3.0 | 954 | 0.4965 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nostalgebraist/clip-tumblr-vae
8849154c3eb898c71070b021345c72bb74aec552
2021-08-12T21:51:28.000Z
[ "pytorch", "clip", "feature-extraction", "transformers" ]
feature-extraction
false
nostalgebraist
null
nostalgebraist/clip-tumblr-vae
0
null
transformers
35,795
Entry not found
not-tanh/wav2vec2-large-xlsr-53-vietnamese
3423b2dc7e8e0f1e41078cdaf51a25ae592864fa
2021-04-02T10:59:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "vi", "dataset:common_voice", "dataset:vivos", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
not-tanh
null
not-tanh/wav2vec2-large-xlsr-53-vietnamese
0
2
transformers
35,796
--- language: vi datasets: - common_voice - vivos metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Ted Vietnamese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 39.571823 --- # Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [Vivos dataset](https://ailab.hcmus.edu.vn/vivos) and [FOSD dataset](https://data.mendeley.com/datasets/k9sxg2twv4/4). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test") processor = Wav2Vec2Processor.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese") model.to("cuda") chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 39.571823% ## Training ## TODO The Common Voice `train`, `validation`, the VIVOS and FOSD datasets were used for training The script used for training can be found ... # TODO
not7even/DialoGPT-small-7evenpool
1230d2467c4a1b1f10c2d6e86997eda7263b5e56
2021-11-30T17:17:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
not7even
null
not7even/DialoGPT-small-7evenpool
0
null
transformers
35,797
--- tags: - conversational --- # 7evenpool DialoGPT Model
ntp0102/wav2vec2-base-timit-demo-colab
3a1d99375b2a7dd46d4af3da8951fa059deda337
2021-12-31T10:30:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ntp0102
null
ntp0102/wav2vec2-base-timit-demo-colab
0
null
transformers
35,798
pretrain
nuod/wav2vec2
4a8b8474fbb58b654c46d942b63cfbdb3729b5fe
2021-11-22T05:53:23.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
nuod
null
nuod/wav2vec2
0
null
transformers
35,799
Entry not found