modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
nvkha/bert-qa-vi
0833d29c7f224469100e84ef3c5d447736bf5cbc
2022-02-02T06:22:15.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nvkha
null
nvkha/bert-qa-vi
0
null
transformers
35,800
Suggest under 1k character
nyu-mll/roberta-base-1B-1
71bca774d4a7399d7da0990a6dbdd2d30642291e
2021-05-20T19:03:06.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nyu-mll
null
nyu-mll/roberta-base-1B-1
0
null
transformers
35,801
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
obss/mt5-small-3task-prepend-tquad2
82ba154657e40f601637403b9e5f8196c604d6fe
2021-12-03T23:55:18.000Z
[ "pytorch", "mt5", "text2text-generation", "tr", "dataset:tquad1", "dataset:tquad2", "dataset:xquad", "arxiv:2111.06476", "transformers", "question-generation", "answer-extraction", "question-answering", "text-generation", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
obss
null
obss/mt5-small-3task-prepend-tquad2
0
null
transformers
35,802
--- language: tr datasets: - tquad1 - tquad2 - xquad tags: - text2text-generation - question-generation - answer-extraction - question-answering - text-generation pipeline_tag: text2text-generation widget: - text: "answer: film ve TV haklarını context: Legendary Entertainment, 2016 yılında bilimkurgu romanı Dune'un film ve TV haklarını satın aldı. Geliştirme kısa bir süre sonra başladı. Villeneuve projeye olan ilgisini dile getirdi ve resmi olarak yönetmen olarak imza attı. Roth ve Spaihts ile birlikte çalışarak senaryoyu iki bölüme ayırdı ve 1965 romanının 21. yüzyıla güncellenmiş bir uyarlamasını ekledi." example_title: "Question Generation (Movie)" - text: "answer: bir antlaşma yaparak context: Fatih Sultan Mehmet, Cenevizlilerin önemli üslerinden Amasra’yı aldı. 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa son verdi." example_title: "Question Generation (History)" - text: "answer: Venedik'le context: Cenevizlilerin önemli üslerinden Amasra’yı aldı. 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi." example_title: "Question Generation (History 2)" - text: "extract answers: Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl> 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi. <hl>" example_title: "Answer Extraction (History)" - text: "question: Bu model ne ise yarar? context: Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir." example_title: "Answer Extraction (Open Domain)" license: cc-by-4.0 --- # mt5-small for Turkish Question Generation Automated question generation and question answering using text-to-text transformers by OBSS AI. ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-small-3task-prepend-tquad2', qg_format='prepend') ``` ## Citation 📜 ``` @article{akyon2021automated, title={Automated question generation and question answering from Turkish texts using text-to-text transformers}, author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin}, journal={arXiv preprint arXiv:2111.06476}, year={2021} } ``` ## Overview ✔️ **Language model:** mt5-small **Language:** Turkish **Downstream-task:** Extractive QA/QG, Answer Extraction **Training data:** TQuADv2-train **Code:** https://github.com/obss/turkish-question-generation **Paper:** https://arxiv.org/abs/2111.06476 ## Hyperparameters ``` batch_size = 256 n_epochs = 15 base_LM_model = "mt5-small" max_source_length = 512 max_target_length = 64 learning_rate = 1.0e-3 task_lisst = ["qa", "qg", "ans_ext"] qg_format = "prepend" ``` ## Performance Refer to [paper](https://arxiv.org/abs/2111.06476). ## Usage 🔥 ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-small-3task-prepend-tquad2', qg_format='prepend') context = """ Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır. Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir. """ # a) Fully Automated Question Generation generation_api(task='question-generation', context=context) # b) Question Answering question = "Bu model ne işe yarar?" generation_api(task='question-answering', context=context, question=question) # b) Answer Extraction generation_api(task='answer-extraction', context=context) ```
odinmay/joebot
926fc217bc407b6c0d3dbbfb94f8d553443daa3d
2021-06-05T03:37:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
odinmay
null
odinmay/joebot
0
null
transformers
35,803
--- tags: - conversational --- # Joebot
ogpat123/DialoGPT-small-Michael
49812e513662faf4a04011d6e18a09ebcef36b66
2022-02-08T09:03:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ogpat123
null
ogpat123/DialoGPT-small-Michael
0
null
transformers
35,804
--- tags: - conversational --- # Michael DialoGPT model
omnimokha/DialoGPT-medium-jakeamal
1bd71103481960e563c975845887db0b6361a19f
2021-09-10T22:42:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
omnimokha
null
omnimokha/DialoGPT-medium-jakeamal
0
null
transformers
35,805
--- tags: - conversational --- # DialoGPT Jakeamal model
omnimokha/DialoGPT-small-jakeamal
4de700bcc1f3cdae2467c110abc93cc239354e62
2021-09-10T22:26:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
omnimokha
null
omnimokha/DialoGPT-small-jakeamal
0
null
transformers
35,806
--- tags: - conversational --- # DialoGPT Jakeamal model
omnimokha/jakebot2
a3798565392e411ce22bbc7db81454b68989e864
2021-09-12T03:14:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
omnimokha
null
omnimokha/jakebot2
0
null
transformers
35,807
--- tags: - conversational --- # DialoGPT Jakeamal model
omoekan/opus-tatoeba-eng-yor
1e4d4253b0666205c4b4dfc92ab2c8c10c416dd8
2022-02-05T10:15:11.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
omoekan
null
omoekan/opus-tatoeba-eng-yor
0
null
transformers
35,808
## OPUS Tatoeba English-Yoruba This model was obtained by running the script convert_marian_to_pytorch.py with the flag -m eng-yor. The original models were trained by Jörg Tiedemann using the MarianNMT library. See all available MarianMTModel models on the profile of the Helsinki NLP group. --- - tags: translation - source language: English - target language: Yoruba - dataset: opus+bt -model: transformer-align -pre-processing: normalization + SentencePiece (spm12k,spm12k) -download original weights: [opus+bt-2021-04-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-yor/opus+bt-2021-04-10.zip) -test set translations: [opus+bt-2021-04-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-yor/opus+bt-2021-04-10.test.txt) -test set scores: [opus+bt-2021-04-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-yor/opus+bt-2021-04-10.eval.txt) -Benchmarks |test set|BLEU|chr-F| |:---|:---|:---| |Tatoeba-test.eng-yor|13.0|0.333| ---
openclimatefix/dgmr-generator
9f24d2a8444a84409a8af349a11fb57a4710aa4d
2022-02-02T16:54:27.000Z
[ "pytorch" ]
null
false
openclimatefix
null
openclimatefix/dgmr-generator
0
null
null
35,809
Entry not found
orendar/distilbert-base-cased-finetuned-conll03-english
9db71fd18194434b7b1d18b72e56953c2b79f561
2021-01-05T11:26:25.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
orendar
null
orendar/distilbert-base-cased-finetuned-conll03-english
0
null
transformers
35,810
Entry not found
orendar/en_he_base
ae3c45f8167225ca804fde3898b071ca6b69b6e2
2022-05-01T12:11:58.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
orendar
null
orendar/en_he_base
0
null
transformers
35,811
Entry not found
orri/IceBERT-finetuned-ner
f0927451c9da138adb048311c06dde47dc0eb175
2021-10-01T15:49:00.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
orri
null
orri/IceBERT-finetuned-ner
0
null
transformers
35,812
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy widget: - text: Systurnar Guðrún og Monique átu einar á McDonalds og horfðu á Stöð 2, þar glitti í Bruce Willis leika í Die Hard 2. model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.89397115028973 - name: Recall type: recall value: 0.8664117576771418 - name: F1 type: f1 value: 0.8799757281553399 - name: Accuracy type: accuracy value: 0.9854156499755994 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0802 - Precision: 0.8940 - Recall: 0.8664 - F1: 0.8800 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0528 | 1.0 | 2904 | 0.0779 | 0.8829 | 0.8504 | 0.8663 | 0.9831 | | 0.0274 | 2.0 | 5808 | 0.0784 | 0.8802 | 0.8585 | 0.8692 | 0.9839 | | 0.0162 | 3.0 | 8712 | 0.0802 | 0.8940 | 0.8664 | 0.8800 | 0.9854 | ### Framework versions - Transformers 4.11.1 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
osanseviero/ConvTasNet_Libri1Mix_enhsingle_16k
4601b9678f3a3eae81f61499718c33dfbe1c3da6
2021-09-23T16:16:32.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "audio", "ConvTasNet", "audio-to-audio", "license:cc-by-sa-4.0" ]
audio-to-audio
false
osanseviero
null
osanseviero/ConvTasNet_Libri1Mix_enhsingle_16k
0
null
null
35,813
--- tags: - audio - ConvTasNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 library_tag: generic --- ## Clone from Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.743051006476085 si_sdr_imp: 11.293269700616385 sdr: 15.300522933671061 sdr_imp: 11.797860134458015 sir: Infinity sir_imp: NaN sar: 15.300522933671061 sar_imp: 11.797860134458015 stoi: 0.9310514162434267 stoi_imp: 0.13513159270288563 ``` License notice: This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
osanseviero/dummy-model2
b4e4cf150705f20dab52ddb44111b6683e81d34b
2021-06-30T18:59:53.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
osanseviero
null
osanseviero/dummy-model2
0
null
transformers
35,814
Entry not found
osanseviero/flair-ner-english3
c556f812228fdf38bc225065dc9ab1164048ed5e
2021-06-10T10:46:45.000Z
[ "pytorch" ]
null
false
osanseviero
null
osanseviero/flair-ner-english3
0
null
null
35,815
Entry not found
osanseviero/full-sentence-upload-to-hub2
8afa3969c5724cf91739e0172ebe104cb774571b
2021-05-20T19:12:25.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
osanseviero
null
osanseviero/full-sentence-upload-to-hub2
0
null
transformers
35,816
Entry not found
osanseviero/just-a-test2
bc8e72d9337391e10138fc066e5642a2942fa4f0
2022-07-01T06:49:46.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "causal-lm", "license:cc-by-sa-4.0", "sentence-similarity" ]
sentence-similarity
false
osanseviero
null
osanseviero/just-a-test2
0
null
sentence-transformers
35,817
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - causal-lm license: - cc-by-sa-4.0 --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence"] model = SentenceTransformer(TODO) embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch # The next step is optional if you want your own pooling function. # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] return max_over_time # Sentences we want sentence embeddings for sentences = ['This is an example sentence'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(TODO) model = AutoModel.from_pretrained(TODO) # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## TODO: Training Procedure ## TODO: Evaluation Results ## TODO: Citing & Authors
osanseviero/upload-to-hub
c41d941f2b9a849c64c18928c667363094454124
2021-05-20T19:13:12.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
osanseviero
null
osanseviero/upload-to-hub
0
null
transformers
35,818
Example card Second modification
osunlp/ReasonBERT-TAPAS-base
65dfad734539724a417c7877f9d2dd2328446f9e
2021-09-13T05:46:43.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
osunlp
null
osunlp/ReasonBERT-TAPAS-base
0
null
transformers
35,819
Entry not found
owen99630/catexp
b09b21e32a50f9ca27117892a9af6ab67b036ea4
2021-09-29T13:27:55.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
owen99630
null
owen99630/catexp
0
null
transformers
35,820
Entry not found
owencubes/DialoGPT-small-Josuke
ff456962d2e21a6fbc457411a5a902df052a8738
2021-08-29T21:39:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
owencubes
null
owencubes/DialoGPT-small-Josuke
0
null
transformers
35,821
--- tags: - conversational --- # Test
oya163/NepBERT
48e21e711754350db73b0e4c79f008d92942d7f2
2021-05-20T19:14:16.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
oya163
null
oya163/NepBERT
0
null
transformers
35,822
Entry not found
p208p2002/qmst-qgg-qa
259afd243a3046ae77c116f68b3efe970421f81e
2021-06-19T05:04:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
p208p2002
null
p208p2002/qmst-qgg-qa
0
null
transformers
35,823
Entry not found
pablouribe/bertstem
ad78bd6fb51e32f68309cb9324fe8983031d1acc
2021-11-11T18:11:49.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
pablouribe
null
pablouribe/bertstem
0
null
transformers
35,824
# BERT-STEM BERT model fine-tuned on Science Technology Engineering and Mathematics (STEM) lessons. ## Install: To install from pip: ``` pip install bertstem ``` ## Quickstart To encode sentences and get embedding matrix for embedding layers: ```python from BERT_STEM.BertSTEM import * bert = BertSTEM() # Example dataframe with text in spanish data = {'col_1': [3, 2, 1], 'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']} df = pd.DataFrame.from_dict(data) # Encode sentences using BertSTEM: bert._encode_df(df, column='col_2', encoding='sum') # Get embedding matrix: embedding_matrix = bert.get_embedding_matrix() ``` To use it from HuggingFace: ```python from BERT_STEM.Encode import * import pandas as pd import transformers # Download spanish BERTSTEM: model = transformers.BertModel.from_pretrained("pablouribe/bertstem") # Download spanish tokenizer: tokenizer = transformers.BertTokenizerFast.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased", do_lower_case=True, add_special_tokens = False) # Example dataframe with text in spanish data = {'col_1': [3, 2, 1], 'col_2': ['hola como estan', 'alumnos queridos', 'vamos a hablar de matematicas']} df = pd.DataFrame.from_dict(data) # Encode sentences using BertSTEM: sentence_encoder(df, model, tokenizer, column = 'col_2', encoding = 'sum') ```
paladinx00/rh-bender
38f073a38da43644c6f583641bba93d078db1b65
2021-07-17T16:05:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
paladinx00
null
paladinx00/rh-bender
0
null
transformers
35,825
--- tags: - conversational --- # GPT
parhamabedazad/ft-bz
d95ef282f46dff940b31c9eba74975085d76c50a
2022-01-01T18:53:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
parhamabedazad
null
parhamabedazad/ft-bz
0
null
transformers
35,826
Entry not found
parigaswetha/DialoGPT-small-jakeperalta
1b3ba23a7e99f4a7ca9a10fc25f12acf21aa9966
2022-02-08T19:35:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
parigaswetha
null
parigaswetha/DialoGPT-small-jakeperalta
0
null
transformers
35,827
--- tags: - conversational --- # Jake Peralta DialoGPT Model
parthsinha/DialoGPT-small-rickandmorty
da630a8461d05f39252e309f64b6978524ae0d24
2021-10-04T13:30:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
parthsinha
null
parthsinha/DialoGPT-small-rickandmorty
0
null
transformers
35,828
--- tags: - conversational --- #Rick and Morty DialoGPT Model
patricklai14/tapt_citation
065cb2df377138991778a73a1db9ec00fd10dfc4
2021-05-20T19:15:14.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
patricklai14
null
patricklai14/tapt_citation
0
null
transformers
35,829
Entry not found
patrickvonplaten/data2vec-base
650cb56bf0ba309ab4514b79700fc51c7135721b
2022-04-18T16:29:03.000Z
[ "pytorch", "data2vec-audio", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
patrickvonplaten
null
patrickvonplaten/data2vec-base
0
null
transformers
35,830
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Data2Vec-Audio-Base [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
patrickvonplaten/dummy_to_del
2ffdceee0753c3b31882e897d1e477b9681d28cf
2021-05-26T11:23:40.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
patrickvonplaten
null
patrickvonplaten/dummy_to_del
0
null
transformers
35,831
Entry not found
patrickvonplaten/dummy_wav2vec2_with_adapter
f4d9ec9942b629768f2a380247b1c8a58e3931e8
2022-02-02T11:06:17.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
patrickvonplaten
null
patrickvonplaten/dummy_wav2vec2_with_adapter
0
null
transformers
35,832
Entry not found
patrickvonplaten/sew-mid-100k-librispeech-clean-100h-ft
20e4af30fb69f62c2eb7f634afd100956f3ecedc
2021-12-20T12:53:26.000Z
[ "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "transformers", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/sew-mid-100k-librispeech-clean-100h-ft
0
null
transformers
35,833
--- license: apache-2.0 tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: sew-mid-100k-librispeech-clean-100h-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-librispeech-clean-100h-ft This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.1976 - Wer: 0.1665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4274 | 0.11 | 100 | 4.1419 | 1.0 | | 2.9657 | 0.22 | 200 | 3.1203 | 1.0 | | 2.9069 | 0.34 | 300 | 3.0107 | 1.0 | | 2.8666 | 0.45 | 400 | 2.8960 | 1.0 | | 1.4535 | 0.56 | 500 | 1.4062 | 0.8664 | | 0.6821 | 0.67 | 600 | 0.5530 | 0.4930 | | 0.4827 | 0.78 | 700 | 0.4122 | 0.3630 | | 0.4485 | 0.9 | 800 | 0.3597 | 0.3243 | | 0.2666 | 1.01 | 900 | 0.3104 | 0.2790 | | 0.2378 | 1.12 | 1000 | 0.2913 | 0.2613 | | 0.2516 | 1.23 | 1100 | 0.2702 | 0.2452 | | 0.2456 | 1.35 | 1200 | 0.2619 | 0.2338 | | 0.2392 | 1.46 | 1300 | 0.2466 | 0.2195 | | 0.2117 | 1.57 | 1400 | 0.2379 | 0.2092 | | 0.1837 | 1.68 | 1500 | 0.2295 | 0.2029 | | 0.1757 | 1.79 | 1600 | 0.2240 | 0.1949 | | 0.1626 | 1.91 | 1700 | 0.2195 | 0.1927 | | 0.168 | 2.02 | 1800 | 0.2137 | 0.1853 | | 0.168 | 2.13 | 1900 | 0.2123 | 0.1839 | | 0.1576 | 2.24 | 2000 | 0.2095 | 0.1803 | | 0.1756 | 2.35 | 2100 | 0.2075 | 0.1776 | | 0.1467 | 2.47 | 2200 | 0.2049 | 0.1754 | | 0.1702 | 2.58 | 2300 | 0.2013 | 0.1722 | | 0.177 | 2.69 | 2400 | 0.1993 | 0.1701 | | 0.1417 | 2.8 | 2500 | 0.1983 | 0.1688 | | 0.1302 | 2.91 | 2600 | 0.1977 | 0.1678 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.4.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-base-100h-13K-steps
408690c6146563a72807cb77026e57b5e8cc8839
2021-03-03T13:11:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base-100h-13K-steps
0
null
transformers
35,834
Fine-tuning of `wav2vec2-base` on 100h of Librispeech training data. Results on "clean" data are very similar to the ones of the [official model](https://huggingface.co/facebook/wav2vec2-base-100h). However, the result on "other" is significantly worse - the model seems to have overfitting to the "clean" data. Model was trained on *librispeech-clean-train.100* with following hyper-parameters: - 2 GPUs Titan RTX - Total update steps 13000 - Batch size per GPU: 32 corresponding to a *total batch size* of ca. ~1500 seconds - Adam with linear decaying learning rate with 3000 warmup steps - dynamic grouping for batch - fp16 - attention_mask was **not** used during training Check: https://wandb.ai/patrickvonplaten/huggingface/reports/Project-Dashboard--Vmlldzo1MDI2MTU?accessToken=69z0mrkoxs1msgh71p4nntr9shi6mll8rhtbo6c56yynygw0scp11d8z9o1xd0uk *Result (WER)* on Librispeech test: | "clean" | "other" | |---|---| | 6.5 | 18.7 |
patrickvonplaten/wav2vec2-base-random
74835ba563e79a9e7743e7ad36473159e6a644da
2021-10-22T15:56:55.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base-random
0
null
transformers
35,835
Entry not found
patrickvonplaten/wav2vec2-common_voice-tamil
d1b7543d186217b9f745efc9b329cd8df486b0c0
2022-02-01T14:17:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ta", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-common_voice-tamil
0
null
transformers
35,836
--- language: - ta license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tamil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tamil This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TA dataset. It achieves the following results on the evaluation set: - Loss: 1.1172 - Wer: 1.0070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.84 | 100 | 4.0148 | 1.0 | | No log | 1.69 | 200 | 3.1738 | 1.0 | | No log | 2.54 | 300 | 2.5980 | 1.0236 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-129-turkish-colab
d1400d953f36cc08e629dc6f3c1df16292af10cf
2021-10-27T17:08:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-xlsr-129-turkish-colab
0
null
transformers
35,837
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-129-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-129-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-129](https://huggingface.co/facebook/wav2vec2-large-xlsr-129) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3149 - Wer: 0.4748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.4837 | 3.67 | 400 | 3.2526 | 1.0 | | 3.0896 | 7.34 | 800 | 2.8037 | 1.0 | | 1.5604 | 11.01 | 1200 | 0.5688 | 0.6613 | | 0.6511 | 14.68 | 1600 | 0.3998 | 0.5580 | | 0.4798 | 18.35 | 2000 | 0.3505 | 0.5118 | | 0.4047 | 22.02 | 2400 | 0.3273 | 0.4858 | | 0.3519 | 25.69 | 2800 | 0.3224 | 0.4796 | | 0.343 | 29.36 | 3200 | 0.3149 | 0.4748 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo-colab
38e6fca7875aae416436220a6f167cfad2f8fcfb
2021-10-19T17:18:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo-colab
0
null
transformers
35,838
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-turkish-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-turkish-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4055 - Wer: 0.4800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0179 | 4.21 | 400 | 1.4935 | 1.0249 | | 0.7075 | 8.42 | 800 | 0.4546 | 0.6071 | | 0.3072 | 12.63 | 1200 | 0.3947 | 0.5401 | | 0.2145 | 16.84 | 1600 | 0.4049 | 0.5194 | | 0.1647 | 21.05 | 2000 | 0.4199 | 0.5003 | | 0.1338 | 25.26 | 2400 | 0.4144 | 0.4859 | | 0.116 | 29.47 | 2800 | 0.4055 | 0.4800 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-xls-r-100m-common_voice-tr-ft
eb295d91e297ece394b9184c4614d60b47e5aab7
2021-11-14T16:43:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "xls_r_repro_common_voice_tr", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-xls-r-100m-common_voice-tr-ft
0
null
transformers
35,839
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - xls_r_repro_common_voice_tr datasets: - common_voice model-index: - name: wav2vec2-xls-r-100m-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-100m-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-100m](https://huggingface.co/facebook/wav2vec2-xls-r-100m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 3.4113 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:---:|:---:| | 3.1315 | 9.09 | 500 | 3.3832 | 1.0 | 1.0 | | 3.1163 | 18.18 | 1000 | 3.4252 | 1.0 | 1.0 | | 3.121 | 27.27 | 1500 | 3.4051 | 1.0 | 1.0 | | 3.1273 | 36.36 | 2000 | 3.4345 | 1.0 | 1.0 | | 3.2257 | 45.45 | 2500 | 3.4097 | 1.0 | 1.0 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2_tiny_random
24bc33e6e5d824bef7eafd205bb0a70dcffec750
2021-07-05T13:53:54.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
patrickvonplaten
null
patrickvonplaten/wav2vec2_tiny_random
0
null
transformers
35,840
## Test model To test this model run the following code: ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC import torchaudio import torch ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2_tiny_random") def load_audio(batch): batch["samples"], _ = torchaudio.load(batch["file"]) return batch ds = ds.map(load_audio) input_values = torch.nn.utils.rnn.pad_sequence([torch.tensor(x[0]) for x in ds["samples"][:10]], batch_first=True) # forward logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) # dummy loss dummy_labels = pred_ids.clone() dummy_labels[dummy_labels == model.config.pad_token_id] = 1 # can't have CTC blank token in label dummy_labels = dummy_labels[:, -(dummy_labels.shape[1] // 4):] # make sure labels are shorter to avoid "inf" loss (can still happen though...) loss = model(input_values, labels=dummy_labels).loss ```
patrickvonplaten/xls-r-300m-sv-cv8
56c65864b2cfdc76946c1251aafb740e5138c908
2022-03-24T11:54:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sv-SE", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sv", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/xls-r-300m-sv-cv8
0
null
transformers
35,841
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sv - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Swedish - CV8 - v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sv-SE metrics: - name: Test WER type: wer value: 17.33 - name: Test CER type: cer value: 5.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 27.01 - name: Test CER type: cer value: 12.92 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.2779 - Wer: 0.2525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3224 | 1.37 | 500 | 3.3354 | 1.0 | | 2.9318 | 2.74 | 1000 | 2.9361 | 1.0000 | | 2.1371 | 4.11 | 1500 | 1.1157 | 0.8359 | | 1.6883 | 5.48 | 2000 | 0.6003 | 0.6314 | | 1.5812 | 6.85 | 2500 | 0.4746 | 0.4725 | | 1.5145 | 8.22 | 3000 | 0.4376 | 0.4736 | | 1.4763 | 9.59 | 3500 | 0.4006 | 0.3863 | | 1.4215 | 10.96 | 4000 | 0.3783 | 0.3629 | | 1.3638 | 12.33 | 4500 | 0.3555 | 0.3425 | | 1.3561 | 13.7 | 5000 | 0.3340 | 0.3228 | | 1.3406 | 15.07 | 5500 | 0.3373 | 0.3295 | | 1.3055 | 16.44 | 6000 | 0.3432 | 0.3210 | | 1.3048 | 17.81 | 6500 | 0.3282 | 0.3118 | | 1.2863 | 19.18 | 7000 | 0.3226 | 0.3018 | | 1.2389 | 20.55 | 7500 | 0.3050 | 0.2986 | | 1.2361 | 21.92 | 8000 | 0.3048 | 0.2980 | | 1.2263 | 23.29 | 8500 | 0.3011 | 0.2977 | | 1.2225 | 24.66 | 9000 | 0.3017 | 0.2959 | | 1.2044 | 26.03 | 9500 | 0.2977 | 0.2782 | | 1.2017 | 27.4 | 10000 | 0.2966 | 0.2781 | | 1.1912 | 28.77 | 10500 | 0.2999 | 0.2786 | | 1.1658 | 30.14 | 11000 | 0.2991 | 0.2757 | | 1.148 | 31.51 | 11500 | 0.2915 | 0.2684 | | 1.1423 | 32.88 | 12000 | 0.2913 | 0.2643 | | 1.123 | 34.25 | 12500 | 0.2777 | 0.2630 | | 1.1297 | 35.62 | 13000 | 0.2873 | 0.2646 | | 1.0987 | 36.98 | 13500 | 0.2829 | 0.2619 | | 1.0873 | 38.36 | 14000 | 0.2864 | 0.2608 | | 1.0848 | 39.73 | 14500 | 0.2827 | 0.2577 | | 1.0628 | 41.1 | 15000 | 0.2896 | 0.2581 | | 1.0815 | 42.47 | 15500 | 0.2814 | 0.2561 | | 1.0587 | 43.83 | 16000 | 0.2738 | 0.2542 | | 1.0709 | 45.21 | 16500 | 0.2785 | 0.2578 | | 1.0512 | 46.57 | 17000 | 0.2793 | 0.2539 | | 1.0396 | 47.94 | 17500 | 0.2788 | 0.2525 | | 1.0481 | 49.31 | 18000 | 0.2777 | 0.2534 | ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id patrickvonplaten/xls-r-300m-sv-cv8 --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id patrickvonplaten/xls-r-300m-sv-cv8 --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
peggyhuang/SciBERT-CoQA
85d08d1c348b58419270c02fd1a3e99c5a9083a0
2021-11-27T11:43:10.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peggyhuang
null
peggyhuang/SciBERT-CoQA
0
null
transformers
35,842
Entry not found
peggyhuang/finetune-SciBert-v2
17f2645388f80da94d810ecf01531b219264b473
2022-01-17T07:12:34.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peggyhuang
null
peggyhuang/finetune-SciBert-v2
0
null
transformers
35,843
Entry not found
peggyhuang/finetune-bert-base-v1
7c916e2453c2a64bcdb93d44d6e8c747e95560db
2021-12-13T04:11:11.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peggyhuang
null
peggyhuang/finetune-bert-base-v1
0
null
transformers
35,844
Entry not found
peggyhuang/finetune-bert-base-v2
b00820a6a54ca72239f6747200110dfb0589d305
2022-01-17T07:21:17.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peggyhuang
null
peggyhuang/finetune-bert-base-v2
0
null
transformers
35,845
Entry not found
peggyhuang/nolog-SciBert-v2
084b8c5e05a69e97fbe3bee2b4603f0141dab315
2022-01-17T07:33:18.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peggyhuang
null
peggyhuang/nolog-SciBert-v2
0
null
transformers
35,846
Entry not found
peixian/bridge-scribe
8d48f8039ac60e6de51d6d0804b5592dde7bfa2a
2021-06-20T17:05:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
peixian
null
peixian/bridge-scribe
0
null
transformers
35,847
Entry not found
pere/nb-nn-dev2
06f299eac8157b83e64029861c48723782abfd82
2021-09-23T16:19:18.000Z
[ "pytorch", "jax", "no", "dataset:oscar", "translation", "license:cc-by-4.0" ]
translation
false
pere
null
pere/nb-nn-dev2
0
null
null
35,848
--- language: no license: cc-by-4.0 tags: - translation datasets: - oscar widget: - text: Skriv inn en tekst som du ønsker å oversette til en annen målform. --- # Norwegian T5 - Translation Bokmål Nynorsk - Development ## Description This is the development version of the Bokmål-Nynorsk translator. If you want something that is stable, Please do run [this version](https://huggingface.co/pere/nb-nn-translation/) instead. Here is an example of how to use the model from Python ```python # Import libraries from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('pere/nb-nn-dev',from_flax=True) tokenizer = AutoTokenizer.from_pretrained('pere/nb-nn-dev') #Encode the text text = "Hun vil ikke gi bort sine personlige data." inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True) #Decode and print the result print(tokenizer.decode(outputs[0])) ``` Or if you like to use the pipeline instead ```python # Set up the pipeline from transformers import pipeline translator = pipeline("translation", model='pere/nb-nn-dev') # Do the translation text = "Hun vil ikke gi bort sine personlige data." print(translator(text, max_length=255)) ```
pere/nb-roberta-base-scandinavian-long
b6fe1e0dcce11016f027454f9ec730e56e55cd12
2021-11-25T18:21:53.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pere
null
pere/nb-roberta-base-scandinavian-long
0
null
transformers
35,849
# This is just a Test Model. Do NOT use for anything! Continued pretrained from the nb-roberta-base. The domain specific pretraining is done on the 102GB (Scandinavian corpus)[https://huggingface.co/datasets/NbAiLab/scandinavian]. ## Train for 180k steps for 128 sequences: ```bash ./run_mlm_flax_stream.py \ --output_dir="./" \ --model_type="roberta" \ --config_name="./" \ --tokenizer_name="./" \ --model_name_or_path="./" \ --dataset_name="NbAiLab/scandinavian" \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="6e-5" \ --warmup_steps="5000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_steps="180000" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="10000" \ --save_steps="10000" \ --eval_steps="10000" \ --preprocessing_num_workers 96 \ --auth_token True \ --adafactor \ --push_to_hub ``` ## Train for 20k steps for 512 sequences: ```bash ./run_mlm_flax_stream.py \ --output_dir="./" \ --model_type="roberta" \ --config_name="./" \ --tokenizer_name="./" \ --model_name_or_path="./" \ --dataset_name="NbAiLab/scandinavian" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="48" \ --per_device_eval_batch_size="48" \ --learning_rate="3e-5" \ --warmup_steps="5000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_steps="20000" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="20000" \ --save_steps="10000" \ --eval_steps="10000" \ --preprocessing_num_workers 96 \ --auth_token True \ --adafactor \ --push_to_hub ``` Approximate additional training time: 1 week.
peterhsu/distilbert-base-uncased-finetuned-imdb-accelerate
ca8b7a194e288b721a6f7b6aa8d19444f85a1bba
2022-02-15T13:46:25.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
peterhsu
null
peterhsu/distilbert-base-uncased-finetuned-imdb-accelerate
0
null
transformers
35,850
Entry not found
pewriebontal/DialoGPT-medium-Pewpewbon
07ea6ed54b2c5d7ddffbcd98dbf3432ab2023fb2
2021-06-13T11:46:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pewriebontal
null
pewriebontal/DialoGPT-medium-Pewpewbon
0
null
transformers
35,851
--- tags: - conversational --- # My Awesome Model
phantom-deluxe/dialoGPT-RickBot
335e81b22c14a8cfa58d729d8d1ff530a1b6db69
2021-09-18T04:05:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
phantom-deluxe
null
phantom-deluxe/dialoGPT-RickBot
0
null
transformers
35,852
--- tags: - conversational --- #Rick Style dialoGPT Model
phantom-deluxe/dialoGPT-harry
4b860a78c0d8149a3a17e9a6d6cbc3506a4d7d08
2021-09-16T13:29:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
phantom-deluxe
null
phantom-deluxe/dialoGPT-harry
0
null
transformers
35,853
--- tags: - conversational --- #Harry Style dialoGPT Model
philschmid/pt-test
992fc3657d646769ba4407239fe1c6a8588e0bac
2022-01-24T07:46:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
philschmid
null
philschmid/pt-test
0
null
transformers
35,854
Entry not found
phongdtd/fb-vindata-vi-large
fa1b25704aa9011973452ab134c7785c2afff544
2022-02-24T10:24:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "phongdtd/VinDataVLSP", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
phongdtd
null
phongdtd/fb-vindata-vi-large
0
null
transformers
35,855
--- license: apache-2.0 tags: - automatic-speech-recognition - phongdtd/VinDataVLSP - generated_from_trainer model-index: - name: fb-vindata-vi-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fb-vindata-vi-large This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the PHONGDTD/VINDATAVLSP - NA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
phongdtd/fb-youtube-vi-large
51b2b513289287aa355154191855bc0b4cbbd193
2022-02-23T13:56:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "phongdtd/youtube_casual_audio", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
phongdtd
null
phongdtd/fb-youtube-vi-large
0
null
transformers
35,856
--- license: apache-2.0 tags: - automatic-speech-recognition - phongdtd/youtube_casual_audio - generated_from_trainer model-index: - name: fb-youtube-vi-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fb-youtube-vi-large This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the PHONGDTD/YOUTUBE_CASUAL_AUDIO - NA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 25.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
phozon/harry-potter-medium
39aebf959c64be5700c18b469e3a7cdc768847ca
2021-06-22T20:23:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
phozon
null
phozon/harry-potter-medium
0
null
transformers
35,857
--- tags: - conversational --- # My Awesome Model
pitehu/T5_NER_CONLL_LIST
932fad7362502e0e399a1b5995fff791619b4a78
2022-01-20T14:32:20.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:wmt19", "transformers", "Named Entity Recognition", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
pitehu
null
pitehu/T5_NER_CONLL_LIST
0
null
transformers
35,858
--- language: - en tags: - Named Entity Recognition license: apache-2.0 datasets: - wmt19 metrics: - bleu - sacrebleu inference: parameters: max_length: 1024 ---
pixyz/distilbert-base-uncased-finetuned-squad
6a028ec273761e49de82188ba02d51156ee1d5c0
2021-11-20T14:49:58.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
pixyz
null
pixyz/distilbert-base-uncased-finetuned-squad
0
null
transformers
35,859
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2203 | 1.0 | 5533 | 1.1569 | | 0.9452 | 2.0 | 11066 | 1.1234 | | 0.7656 | 3.0 | 16599 | 1.1586 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
piyushdubey/DialoGPT-Mi
4986fa86aad9d8f1c332740d01e65fc3a44b75a3
2021-09-20T21:19:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
piyushdubey
null
piyushdubey/DialoGPT-Mi
0
null
transformers
35,860
--- tags: - conversational --- # Sheldon GPT Model
porpaul/t5-small-finetuned-xsum
e72518929ceb01914cb330eee68560bc1e0b07a7
2022-01-16T06:59:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
porpaul
null
porpaul/t5-small-finetuned-xsum
0
null
transformers
35,861
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 0.5217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.2188 - Rouge1: 0.5217 - Rouge2: 0.0464 - Rougel: 0.527 - Rougelsum: 0.5215 - Gen Len: 6.7441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.3831 | 1.0 | 7475 | 1.2188 | 0.5217 | 0.0464 | 0.527 | 0.5215 | 6.7441 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ppletscher/dummy
c320c820f57922d78ae76662bbb33727558c4115
2021-07-16T09:21:12.000Z
[ "pytorch", "camembert", "fill-mask", "fr", "transformers", "autotrain_compatible" ]
fill-mask
false
ppletscher
null
ppletscher/dummy
0
null
transformers
35,862
--- language: fr --- # Foo Bar
prajjwal1/ctrl_discovery_4
85ef10cdb41e591a2c4b91d19ca261c63704d0da
2021-03-19T20:28:51.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_4
0
null
transformers
35,863
Entry not found
prajjwal1/ctrl_discovery_5
d95b0591ac168844ab4cc45dd420210af1ed1f96
2021-03-23T02:54:01.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_5
0
null
transformers
35,864
Entry not found
prajjwal1/ctrl_discovery_flipped_6
946f972d415186dbc43c678e3c74a2bc168d3b41
2021-06-06T19:32:48.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_flipped_6
0
null
transformers
35,865
Entry not found
prajwalcr/poetry-disgust_gpt2
b7ad45c952f63332fd980286636a6c852572e82d
2021-05-29T18:47:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prajwalcr
null
prajwalcr/poetry-disgust_gpt2
0
null
transformers
35,866
Entry not found
prajwalcr/poetry-fear_gpt2
c8b1aa0dd98c9c78e9559ffa19ef2c000cacfcca
2021-05-29T19:35:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prajwalcr
null
prajwalcr/poetry-fear_gpt2
0
null
transformers
35,867
Entry not found
prajwalcr/poetry-sadness_gpt2
6749594078dea7d952fd0eb867dee11eb86660e6
2021-08-03T11:37:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prajwalcr
null
prajwalcr/poetry-sadness_gpt2
0
null
transformers
35,868
Entry not found
prajwalcr/poetry_gpt2
0f04d6c001ec0235368ccbd3bd434f5dda035ada
2021-05-29T08:37:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prajwalcr
null
prajwalcr/poetry_gpt2
0
null
transformers
35,869
Entry not found
pranavtharoor/test
f637758376b1627de457b23d00be26294f65daa9
2021-09-10T22:13:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pranavtharoor
null
pranavtharoor/test
0
null
transformers
35,870
--- tags: - conversational --- # Test Model
princeton-nlp/datamux-qnli-40
9fb4c2634aa25f989c228274e65867919e85e564
2022-02-16T17:01:46.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qnli-40
0
null
transformers
35,871
Entry not found
princeton-nlp/datamux-qqp-2
a0f1566b497b6d2f5a9589f437a5676acf6fc0f2
2022-02-16T17:02:26.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qqp-2
0
null
transformers
35,872
Entry not found
princeton-nlp/datamux-qqp-20
41422d2a83b1879334c2070ed67d753cf6289330
2022-02-16T17:05:39.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qqp-20
0
null
transformers
35,873
Entry not found
princeton-nlp/datamux-qqp-5
b0af020f40fcb327d982972a7dcd68a13fba0c8c
2022-02-16T17:03:38.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qqp-5
0
null
transformers
35,874
Entry not found
princeton-nlp/datamux-sst2-5
4cc7baeac894e53decaf1f1dff21840ea4573614
2022-02-16T17:08:25.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-sst2-5
0
null
transformers
35,875
Entry not found
princeton-nlp/densephrases-multi-query-kilt-multi
24e67af2578a03aac5c223c5d771b4621b131564
2021-09-23T18:54:51.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-kilt-multi
0
null
transformers
35,876
Entry not found
princeton-nlp/densephrases-multi-query-wow
72b86e6d511273ea983184e6f0c4b47760ca6ffa
2021-09-23T18:48:26.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-wow
0
null
transformers
35,877
Entry not found
prithivida/bertscrnn-probwordnoise
b99c0e14f89b755ebcfbf7c1e255e7f1722c918b
2021-12-06T05:57:30.000Z
[ "pytorch", "en", "BERT", "RNN", "license:mit" ]
null
false
prithivida
null
prithivida/bertscrnn-probwordnoise
0
null
null
35,878
--- language: - en tags: - BERT - RNN license: "MIT" --- # NeuSpell: A Neural Spelling Correction Toolkit This model checkpoint belongs to the Original Neuspell python library and is ported to HuggingFace Hub to be used as a part of NeuSpell-Demo spaces. - [Refer to the Fork of the library (with HF hub support) in GitHub:](https://github.com/PrithivirajDamodaran/neuspell) - [Refer to the original library in GitHub:](https://github.com/neuspell/neuspell)
prithivida/cnn-lstm-probwordnoise
f24fcebe64f3f17f7e328b331fa124ad48e89407
2021-12-06T05:56:30.000Z
[ "pytorch", "en", "CNN", "LSTM", "license:mit" ]
null
false
prithivida
null
prithivida/cnn-lstm-probwordnoise
0
null
null
35,879
--- language: - en tags: - CNN - LSTM license: "MIT" --- # NeuSpell: A Neural Spelling Correction Toolkit This model checkpoint belongs to the Original Neuspell python library and is ported to HuggingFace Hub to be used as a part of NeuSpell-Demo spaces. - [Refer to the Fork of the library (with HF hub support) in GitHub:](https://github.com/PrithivirajDamodaran/neuspell) - [Refer to the original library in GitHub:](https://github.com/neuspell/neuspell)
prithivida/elmoscrnn-probwordnoise
2262a7ba8b2b473ee305be3723cbf7982f12ae1a
2021-12-06T05:54:22.000Z
[ "pytorch", "en", "ELMo", "RNN", "license:mit" ]
null
false
prithivida
null
prithivida/elmoscrnn-probwordnoise
0
null
null
35,880
--- language: - en tags: - ELMo - RNN license: "MIT" --- # NeuSpell: A Neural Spelling Correction Toolkit This model checkpoint belongs to the Original Neuspell python library and is ported to HuggingFace Hub to be used as a part of NeuSpell-Demo spaces. - [Refer to the Fork of the library (with HF hub support) in GitHub:](https://github.com/PrithivirajDamodaran/neuspell) - [Refer to the original library in GitHub:](https://github.com/neuspell/neuspell)
pritoms/distilgpt2-YTTranscriptTrial2
d1896b09075d829c3d1e65ea4b9c23b65027a401
2022-02-03T04:46:19.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/distilgpt2-YTTranscriptTrial2
0
null
transformers
35,881
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-YTTranscriptTrial2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-YTTranscriptTrial2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.8738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 70 | 6.0027 | | No log | 2.0 | 140 | 5.9072 | | No log | 3.0 | 210 | 5.8738 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
pritoms/distilgpt2-finetuned-irll2
f32737ce8fb7668510c0a332e828c37474077434
2021-09-25T11:34:01.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/distilgpt2-finetuned-irll2
0
null
transformers
35,882
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: distilgpt2-finetuned-irll2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-irll2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 12 | 4.2919 | | No log | 2.0 | 24 | 4.2158 | | No log | 3.0 | 36 | 4.1925 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
pritoms/distilgpt2-finetuned-mit-lecture
f9bc82b421a4a85205fe05bc1dcfe1e4558e226d
2021-10-21T08:59:34.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/distilgpt2-finetuned-mit-lecture
0
null
transformers
35,883
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-mit-lecture results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-mit-lecture This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 144 | 3.8737 | | No log | 2.0 | 288 | 3.8436 | | No log | 3.0 | 432 | 3.8377 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
pritoms/distilgpt2-finetuned-pgt
fac0f561f0c05ca95187863fb3cbdf217eba41a6
2021-09-04T11:16:01.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/distilgpt2-finetuned-pgt
0
null
transformers
35,884
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: distilgpt2-finetuned-pgt results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-pgt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.0132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 31 | 5.0513 | | No log | 2.0 | 62 | 5.0175 | | No log | 3.0 | 93 | 5.0132 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
pritoms/distilgpt2-finetuned-wikitext2
5fa01312bd0e3c77f4386831980ef8c1298ef79d
2021-10-21T21:16:24.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/distilgpt2-finetuned-wikitext2
0
null
transformers
35,885
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 130 | 3.1733 | | No log | 2.0 | 260 | 3.0756 | | No log | 3.0 | 390 | 3.0540 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
pritoms/gpt2-group2
4ec633d272595e01b0c6a43de09e5787d3b3fda6
2022-02-21T23:03:28.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
pritoms
null
pritoms/gpt2-group2
0
null
transformers
35,886
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-group2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-group2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 3.7517 | | No log | 2.0 | 12 | 3.6951 | | No log | 3.0 | 18 | 3.6769 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
promisemee/odqa-roberta-large
ba69bb30708f76d1a8c4230587951b05da7b33cf
2021-12-15T14:47:15.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
promisemee
null
promisemee/odqa-roberta-large
0
null
transformers
35,887
Entry not found
prophetikai/gpt-code
326fe357e67d55f67d99ad722ab85a0169fe62d6
2021-08-11T22:24:38.000Z
[ "pytorch", "tf", "keras", "gpt2", "text-generation" ]
text-generation
false
prophetikai
null
prophetikai/gpt-code
0
null
keras
35,888
TODO gpt-code uses the weights and tokenizer of https://huggingface.co/Sentdex/GPyT as a starting point for pretraining
prows12/wav2vec2-base-timit-demo-test_jong
e685aa56d3b6e25acebc6dc37f8eb661ab656a32
2021-10-23T13:10:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
prows12
null
prows12/wav2vec2-base-timit-demo-test_jong
0
null
transformers
35,889
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-test_jong results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-test_jong This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
proxyht/mdsister-news-100
df1c1eb45687a598eb291e85cb92925fe969786c
2021-07-14T11:48:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
proxyht
null
proxyht/mdsister-news-100
0
null
transformers
35,890
Entry not found
proycon/robbert2-pos-cased-deepfrog-nld
bf03279dbf37190f034123fca95f0b7f88458150
2021-05-20T19:45:16.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
proycon
null
proycon/robbert2-pos-cased-deepfrog-nld
0
null
transformers
35,891
Entry not found
ps2102/DialoGPT-small-harrypotter
f3e62eab0de21d335ac9d61fb6751ad305b204b1
2022-01-24T05:27:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ps2102
null
ps2102/DialoGPT-small-harrypotter
0
null
transformers
35,892
--- tags: - conversational --- # Harry Potter DialoGPT Model
pszemraj/Ballpark-Trivia-L
b1e14d7509cd62b11f97290c7eb28ae79ea3ed9a
2022-01-18T23:32:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:natural questions", "transformers", "gpt", "license:mit" ]
text-generation
false
pszemraj
null
pszemraj/Ballpark-Trivia-L
0
null
transformers
35,893
--- language: - en tags: - text-generation - gpt2 - gpt license: mit datasets: - natural questions widget: - text: "how many ping-pong balls fit inside a standard 747 jet aeroplane?\nperson beta:\n\n" example_title: "ping-pong" - text: "What is the capital of Uganda?\nperson beta:\n\n" example_title: "geography" - text: "What is the most popular TV show of all time?\nperson beta:\n\n" example_title: "pseudo-culture" - text: "A man pushes his car to a hotel and tells the owner he’s bankrupt. Why?\nperson beta:\n\n" example_title: "brain teaser" inference: parameters: min_length: 2 max_length: 32 no_repeat_ngram_size: 2 do_sample: True top_p: 0.90 top_k: 10 repetition_penalty: 2.1 --- # Ballpark Trivia: Size L Are you frequently asked google-able Trivia questions and annoyed by it? Well, this is the model for you! Ballpark Trivia Bot answers any trivia question with something that sounds plausible but is probably not 100% correct. One might say.. the answers are in the right ballpark. Check out a demo of it [here](https://huggingface.co/spaces/pszemraj/ballpark-trivia). ``` how many varieties of eggplant are there? person beta: about 4,000 ``` ## Training This text gen model is a GPT-2 774M Parameter Size L Model, first trained on [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia/) for 40k steps (34/36 layers frozen for the fine-tuning), and then subsequently trained for 40k steps on a parsed variant of [Natural Questions](https://ai.google.com/research/NaturalQuestions)(**also** 34/36 layers frozen for the fine-tuning) to accidentally create this model. Note that because the model was originally trained for use in a [chatbot application](https://github.com/pszemraj/ai-msgbot), it uses a named conversation dialogue structure, _, i.e. the questions are asked by person alpha, and responded to by person beta_. Even if you don't specify person alpha, it should hopefully respond to any question. ## Example Prompt - the default examples are not great - you can type in any trivia question or delete the example and write `what` or `when` in there, and it will generate the rest of the trivia question **and the answer**! ``` where is the tv show the arrow filmed person beta: Vancouver, British Columbia ```
pszemraj/Ballpark-Trivia-M
cf25fc2fd9e87c3863b2edc70572ec8c17238b3e
2022-01-18T23:45:09.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:natural questions", "transformers", "gpt", "license:mit" ]
text-generation
false
pszemraj
null
pszemraj/Ballpark-Trivia-M
0
null
transformers
35,894
--- language: - en tags: - text-generation - gpt2 - gpt license: mit datasets: - natural questions widget: - text: "how many ping-pong balls fit inside a standard 747 jet aeroplane?\nperson beta:\n\n" example_title: "ping-pong" - text: "What is the capital of Uganda?\nperson beta:\n\n" example_title: "geography" - text: "What is the most popular TV show of all time?\nperson beta:\n\n" example_title: "pseudo-culture" - text: "A man pushes his car to a hotel and tells the owner he’s bankrupt. Why?\nperson beta:\n\n" example_title: "brain teaser" inference: parameters: min_length: 2 max_length: 32 no_repeat_ngram_size: 2 do_sample: True top_p: 0.90 top_k: 10 --- # Ballpark Trivia: Size M Are you frequently asked google-able Trivia questions and annoyed by it? Well, this is the model for you! Ballpark Trivia Bot answers any trivia question with something that sounds plausible but is probably not 100% correct. One might say.. the answers are in the right ballpark. > The size M is smaller and less capable but loads _a lot_ faster. The inference API does not like size M for some reason, [here](https://colab.research.google.com/gist/pszemraj/e2c5cee3361122d878062d0287ebc799/scratchpad.ipynb) is a Colab gist to test it out. ## Training This text gen model is a GPT-2 ~350 M Parameter Size M Model, trained for 40k steps on a parsed variant of [Natural Questions](https://ai.google.com/research/NaturalQuestions)(with **22**/24 layers frozen for the fine-tuning) to create this model accidentally. Note that because the model was originally trained for use in a [chatbot application](https://github.com/pszemraj/ai-msgbot), it uses a named conversation dialogue structure, _, i.e. the questions are asked by person alpha, and responded to by person beta_. Even if you don't specify person alpha in the prompt, it hopefully responds to any question. ## Example Prompt ``` when was the french revolution? person beta: 1805 ``` - the provided examples are not great - you can type in any trivia question or delete the example and write `what` or `when` in there, and it will generate the rest of the trivia question **and the answer**!
pszemraj/t5_1_1-base-writing-analysis
648ba0e665e479c9572c322db835638401b41a94
2022-02-03T23:09:08.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:kmfoda/booksum", "transformers", "analysis", "book", "notes", "autotrain_compatible" ]
text2text-generation
false
pszemraj
null
pszemraj/t5_1_1-base-writing-analysis
0
null
transformers
35,895
--- language: - en tags: - t5 - analysis - book - notes datasets: - kmfoda/booksum metrics: - rouge widget: - text: "A large drop of sun lingered on the horizon and then dripped over and was gone, and the sky was brilliant over the spot where it had gone, and a torn cloud, like a bloody rag, hung over the spot of its going. And dusk crept over the sky from the eastern horizon, and darkness crept over the land from the east." example_title: "grapes of wrath" - text: "The year was 2081, and everybody was finally equal. They weren’t only equal before God and the law. They were equal every which way. Nobody was smarter than anybody else. Nobody was better looking than anybody else. Nobody was stronger or quicker than anybody else. All this equality was due to the 211th, 212th, and 213th Amendments to the Constitution, and to the unceasing vigilance of agents of the United States Handicapper General." example_title: "Harrison Bergeron" - text: "The ledge, where I placed my candle, had a few mildewed books piled up in one corner; and it was covered with writing scratched on the paint. This writing, however, was nothing but a name repeated in all kinds of characters, large and small—Catherine Earnshaw, here and there varied to Catherine Heathcliff, and then again to Catherine Linton. In vapid listlessness I leant my head against the window, and continued spelling over Catherine Earnshaw—Heathcliff—Linton, till my eyes closed; but they had not rested five minutes when a glare of white letters started from the dark, as vivid as spectres—the air swarmed with Catherines; and rousing myself to dispel the obtrusive name, I discovered my candle wick reclining on one of the antique volumes, and perfuming the place with an odour of roasted calf-skin." example_title: "Wuthering Heights" inference: parameters: no_repeat_ngram_size: 2 max_length: 32 early_stopping: True --- # literary analysis with t5-base - t5 sort-of learning to do literary analysis. It was trained on the booksum dataset with `chapter` (original text) as input and `summary_analysis` as the output text, where `summary_analysis` is the sparknotes/cliff notes/etc analysis - It was trained for 8 epochs - Testing may need to be completed in Colab as it seems to be CPU-intensive. A link to an example notebook is [here](https://colab.research.google.com/gist/pszemraj/fe495bc0225ef0c00c9f8445b64672a6/example-t5_1_1-base-writing-analysis.ipynb) # Example ``` !pip install -U -q transformers !pip install -U -q sentencepiece from transformers import pipeline analyzer = pipeline("text2text-generation", "pszemraj/t5_1_1-base-writing-analysis") ``` - enter text and compute. ``` text = "text to be analyzed goes here" result = analyzer( text, max_length=int(len(text) * 1.2), no_repeat_ngram_size= 2, repetition_penalty= 2.4, num_beams=4, early_stopping= True, ) ``` # sample results - inputs: > Beren now, he never thought he was going to get that silmaril from the iron crown in thangorodrim, and yet he did, and that was a worse place and a blacker danger than ours. but that’s a long tale, of course, and goes on past the happiness and into grief and beyond it – and the silmaril went on and came to eärendil. and why, sir, I never thought of that before! we’ve got – you’ve got some of the light of it in that star glass that the lady gave you! why, to think of it, we’re in the same tale still! it’s going on. don’t the great tales never end? - output: > The silmaril comes to eärendil. it is a long tale, and it is going on beyond the happy ending of the story. in this way, we see that Berens dream has come true. he is in love with her, but she doesnt know how to do it. she thinks about it as if he had never thought of it before. then again, there is an ironic contrast between his dreams and reality. this is not surprising because they are so far apart from each other. they have been together foreshadowing one another. and yet, even though, they were at the same time. but now, their relationship is more important than any other characters. for example, the two men seem to be separated by them. their friendship is very much more interesting. we can imagine what happens when they get back home. when they meet up in the next chapter, however, then, the darkest danger seems to suggest that they will go on the night. now, after all, everyone else does not want to find outwardly. \* _NOTE:_ As the above were not saved in real-time, both the input and output had `humanize` string formatting applied to quickly clean them as they were copied and pasted from a Colab notebook.
pulp/ParentBERTo-4-years-old
01ae536104f56bd9f27358f625989b0ee145c73f
2021-12-09T20:55:04.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pulp
null
pulp/ParentBERTo-4-years-old
0
null
transformers
35,896
This is a Roberta-based model trained on parents' input before 4 years old.
qdenisq/BertFormalityClassificiation
62aa201c04395d781398d4325da0a2bd856f5d2a
2021-09-05T12:03:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
qdenisq
null
qdenisq/BertFormalityClassificiation
0
null
transformers
35,897
Entry not found
qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500
bfb4994e32547ea47719acf43eec5e1f7a46b41a
2021-04-01T15:16:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
qqhann
null
qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500
0
null
transformers
35,898
--- language: ja datasets: - common_voice #TODO: remove if you did not use the common voice dataset - TODO: add more datasets if you have used additional datasets. Make sure to use the exact same dataset name as the one found [here](https://huggingface.co/datasets). If the dataset can not be found in the official datasets, just give it a new name metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Japanese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: 70.1869 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 70.18 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... <!-- # TODO: adapt to state all the datasets that were used for training. --> The script used for training can be found [here](...) <!-- # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. -->
quangtran199hust/layoutlmv2_e
a086fcd08048000f75cf7cc67eeff3cda6ce905b
2021-10-28T08:17:21.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
quangtran199hust
null
quangtran199hust/layoutlmv2_e
0
null
transformers
35,899
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2_e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2_e This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.0+cu101 - Tokenizers 0.10.3