modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
anugunj/omnivore-swinB-in21k
030c17f4c4d1c9c77b903703c4bc3f26a2d10742
2022-06-19T00:22:01.000Z
[ "pytorch", "omnivore", "transformers" ]
null
false
anugunj
null
anugunj/omnivore-swinB-in21k
1
null
transformers
33,000
Entry not found
anugunj/omnivore-swinB
0c6b22f8c02b1cf0fb36dda7df4ecb148f21ce75
2022-06-19T05:58:42.000Z
[ "pytorch", "omnivore", "transformers" ]
null
false
anugunj
null
anugunj/omnivore-swinB
1
null
transformers
33,001
Entry not found
anugunj/omnivore-swinT
4c52b0a234f57f0a5710b4304bc3c4d9a41a191f
2022-06-19T05:28:27.000Z
[ "pytorch", "omnivore", "transformers" ]
null
false
anugunj
null
anugunj/omnivore-swinT
1
null
transformers
33,002
Entry not found
anugunj/omnivore-swinS
73eab5962bbe7e0f48e4961d0838ceeec93096c9
2022-06-19T00:30:40.000Z
[ "pytorch", "omnivore", "transformers" ]
null
false
anugunj
null
anugunj/omnivore-swinS
1
null
transformers
33,003
Entry not found
ryota/newsCreate
d31a3808b0c1cd28c6259f59e288df257114d5aa
2022-06-19T03:40:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ryota
null
ryota/newsCreate
1
null
transformers
33,004
huggingtweets/shxtou
950090c40137792f0471cbe37a0f63927f546574
2022-06-19T03:58:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/shxtou
1
null
transformers
33,005
--- language: en thumbnail: http://www.huggingtweets.com/shxtou/1655611088443/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419320614205198350/gHkqH6YI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Shoto πŸ—‘οΈ</div> <div style="text-align: center; font-size: 14px;">@shxtou</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Shoto πŸ—‘οΈ. | Data | Shoto πŸ—‘οΈ | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 617 | | Short tweets | 533 | | Tweets kept | 2098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mdmjop6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shxtou's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pdig81x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pdig81x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shxtou') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ryota/newsModelRe
66371892b29cc9b59522fd64c0898be707673a50
2022-06-19T06:56:09.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ryota
null
ryota/newsModelRe
1
null
transformers
33,006
Hausax/albert-xxlarge-v2-finetuned-Poems
a2095801d5a92e53ce3e69fd6b2104cd7de92991
2022-06-20T07:19:43.000Z
[ "pytorch", "tensorboard", "albert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Hausax
null
Hausax/albert-xxlarge-v2-finetuned-Poems
1
null
transformers
33,007
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: albert-xxlarge-v2-finetuned-Poems results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-finetuned-Poems This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.482 | 1.0 | 19375 | 2.2959 | | 2.258 | 2.0 | 38750 | 2.2357 | | 2.2146 | 3.0 | 58125 | 2.2085 | | 2.1975 | 4.0 | 77500 | 2.1929 | | 2.1893 | 5.0 | 96875 | 2.1863 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
EddieChen372/xlm_roberta-base-fintuned-react
dfc310422682e803f21263c7e3d290ea9f0833f2
2022-06-19T11:36:25.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
EddieChen372
null
EddieChen372/xlm_roberta-base-fintuned-react
1
null
transformers
33,008
Entry not found
huggingtweets/rsapublic
332b7f43a73ed526f24fa67651d04502c51e7b36
2022-06-19T11:26:27.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rsapublic
1
null
transformers
33,009
--- language: en thumbnail: http://www.huggingtweets.com/rsapublic/1655637814216/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1536637048391491584/zfHd6Mha_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bopo mofo</div> <div style="text-align: center; font-size: 14px;">@rsapublic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bopo mofo. | Data | bopo mofo | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 1562 | | Short tweets | 303 | | Tweets kept | 1347 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qnsx0b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rsapublic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/368jvjwu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/368jvjwu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rsapublic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lmqg/t5-base-squadshifts-vanilla-new_wiki
e3c25536fbf7fedee7197dbb9772cb73dcd05bac
2022-06-19T14:07:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squadshifts-vanilla-new_wiki
1
null
transformers
33,010
Entry not found
lmqg/t5-base-squadshifts-vanilla-nyt
a65e24080c0864f13524cc5f647c4277500dcb46
2022-06-19T14:09:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squadshifts-vanilla-nyt
1
null
transformers
33,011
Entry not found
Danastos/dpr_query_el_3
fe500a12ca4aa4faa68d29172329db33856a3be6
2022-06-19T20:04:53.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
Danastos
null
Danastos/dpr_query_el_3
1
null
transformers
33,012
Entry not found
Danastos/dpr_passage_el_3
2db54f97d4a5bbf56fd73e5706a22968d15a51c8
2022-06-19T20:03:06.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
Danastos
null
Danastos/dpr_passage_el_3
1
null
transformers
33,013
Entry not found
sudo-s/modelversion01
6fdfbc7d15562401e34d9ebff7d62eac9a8e558c
2022-06-19T14:45:01.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/modelversion01
1
null
transformers
33,014
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: modelversion01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelversion01 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 1.3888 - Accuracy: 0.7224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.1304 | 0.16 | 100 | 3.1546 | 0.3254 | | 2.6514 | 0.31 | 200 | 2.5058 | 0.4854 | | 2.0636 | 0.47 | 300 | 2.0647 | 0.5771 | | 1.7812 | 0.63 | 400 | 1.7536 | 0.6423 | | 1.5857 | 0.78 | 500 | 1.5272 | 0.6974 | | 1.3055 | 0.94 | 600 | 1.3888 | 0.7224 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/thenoelmiller
bfac4dfb83e550673d074d84231308d94ec3b523
2022-06-19T19:18:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thenoelmiller
1
null
transformers
33,015
--- language: en thumbnail: http://www.huggingtweets.com/thenoelmiller/1655666288084/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438687880101212170/nNi2oamd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Noel Miller</div> <div style="text-align: center; font-size: 14px;">@thenoelmiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Noel Miller. | Data | Noel Miller | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 313 | | Short tweets | 710 | | Tweets kept | 2184 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kgitqrm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thenoelmiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a9yazcq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a9yazcq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thenoelmiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/carboxylace
489d3c283e4a88bd14e163208b056ca1bf2054ed
2022-06-19T22:43:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/carboxylace
1
null
transformers
33,016
--- language: en thumbnail: http://www.huggingtweets.com/carboxylace/1655678588553/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509050806795964416/g7FedcOa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lace</div> <div style="text-align: center; font-size: 14px;">@carboxylace</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lace. | Data | lace | | --- | --- | | Tweets downloaded | 3065 | | Retweets | 394 | | Short tweets | 850 | | Tweets kept | 1821 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vscgyw1o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @carboxylace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/327ix6tk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/327ix6tk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/carboxylace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/borisjohnson-elonmusk-majornelson
cddbc7b7654ae03eafa4ea9ec03bf1fbb264f7fb
2022-06-19T22:42:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/borisjohnson-elonmusk-majornelson
1
null
transformers
33,017
--- language: en thumbnail: http://www.huggingtweets.com/borisjohnson-elonmusk-majornelson/1655678567047/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519703427240013824/FOED2v9N_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500170386520129536/Rr2G6A-N_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Larry Hryb πŸ‡ΊπŸ‡¦ & Boris Johnson</div> <div style="text-align: center; font-size: 14px;">@borisjohnson-elonmusk-majornelson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Larry Hryb πŸ‡ΊπŸ‡¦ & Boris Johnson. | Data | Elon Musk | Larry Hryb πŸ‡ΊπŸ‡¦ | Boris Johnson | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3248 | | Retweets | 147 | 736 | 653 | | Short tweets | 985 | 86 | 17 | | Tweets kept | 2118 | 2428 | 2578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22m356ew/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisjohnson-elonmusk-majornelson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/316f3w9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/316f3w9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/borisjohnson-elonmusk-majornelson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fabrizioromano
711bef2fb839f5cf429958c517692de2ced0132d
2022-06-19T23:37:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fabrizioromano
1
null
transformers
33,018
--- language: en thumbnail: http://www.huggingtweets.com/fabrizioromano/1655681846804/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486761402853380113/3ifAqala_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fabrizio Romano</div> <div style="text-align: center; font-size: 14px;">@fabrizioromano</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fabrizio Romano. | Data | Fabrizio Romano | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 192 | | Short tweets | 255 | | Tweets kept | 2803 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mdxozh7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fabrizioromano's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ltk44ap) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ltk44ap/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fabrizioromano') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
joshanashakya/codebert_sourcecode_nmt_pn2ja_50E_2e-05LR_16B_12E_12D
2490fcd6501ab6115a8d2432ee387ed0ff94dacf
2022-06-20T01:36:42.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_pn2ja_50E_2e-05LR_16B_12E_12D
1
null
transformers
33,019
Entry not found
huggingtweets/grassmannian
f416ca775f74b79fa47fe9fb62b3d554aac54c07
2022-06-20T02:11:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/grassmannian
1
null
transformers
33,020
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529201641290752000/al3uPjXp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brendan πŸ«₯ era</div> <div style="text-align: center; font-size: 14px;">@grassmannian</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brendan πŸ«₯ era. | Data | Brendan πŸ«₯ era | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 779 | | Short tweets | 400 | | Tweets kept | 2060 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27vq2cvc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @grassmannian's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pai1njh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pai1njh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/grassmannian') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
qgrantq/bert-finetuned-squad
be5a83180d0455ff30ba9a6b8723064ea19ff7c8
2022-06-20T08:03:46.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
qgrantq
null
qgrantq/bert-finetuned-squad
1
null
transformers
33,021
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M7_MLM_final
5d4799457909d334a791523e3216e65471017e45
2022-06-20T08:37:57.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M7_MLM_final
1
null
transformers
33,022
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M7_MLM_final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M7_MLM_final This model is a fine-tuned version of [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.4732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.769 | 1.0 | 92 | 6.6861 | | 6.3549 | 2.0 | 184 | 5.7455 | | 5.826 | 3.0 | 276 | 5.5610 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RuiqianLi/Malaya-speech_fine-tune_MrBrown_20_Jun
6ea681253ce07c203c4d0383271ef613ab7fd6d2
2022-06-20T10:23:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:uob_singlish", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
RuiqianLi
null
RuiqianLi/Malaya-speech_fine-tune_MrBrown_20_Jun
1
null
transformers
33,023
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: Malaya-speech_fine-tune_MrBrown_20_Jun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Malaya-speech_fine-tune_MrBrown_20_Jun This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. It achieves the following results on the evaluation set: - Loss: 0.8868 - Wer: 0.3244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8027 | 3.85 | 200 | 0.4800 | 0.2852 | | 0.3773 | 7.69 | 400 | 0.6292 | 0.3316 | | 0.3394 | 11.54 | 600 | 0.7376 | 0.3494 | | 0.2653 | 15.38 | 800 | 0.9595 | 0.3137 | | 0.1785 | 19.23 | 1000 | 0.7381 | 0.3440 | | 0.1669 | 23.08 | 1200 | 0.9534 | 0.3529 | | 0.0971 | 26.92 | 1400 | 0.8868 | 0.3244 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
aiBoo/opus-mt-en-ro-finetuned-en-to-ro
b7c088b9bb9186662d1cacc41a7c601f7ec8693e
2022-06-20T10:44:47.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
aiBoo
null
aiBoo/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
33,024
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.1031 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2896 - Bleu: 28.1031 - Gen Len: 34.082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.744 | 1.0 | 38145 | 1.2896 | 28.1031 | 34.082 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
dayone/simcse-nli-sbert-sts-klue-roberta-base
5fe1c16477fa4d2abc7697eee6933274ccbf87df
2022-06-20T12:01:54.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
dayone
null
dayone/simcse-nli-sbert-sts-klue-roberta-base
1
null
transformers
33,025
Entry not found
aminnaghavi/bert-base-parsbert-uncased-finetuned-perQA
9f0f7d004f5ee638aee04b1f996e12f721c15c5e
2022-06-20T14:45:21.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:persian_qa", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
aminnaghavi
null
aminnaghavi/bert-base-parsbert-uncased-finetuned-perQA
1
null
transformers
33,026
--- tags: - generated_from_trainer datasets: - persian_qa model-index: - name: bert-base-parsbert-uncased-finetuned-perQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-parsbert-uncased-finetuned-perQA This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on the persian_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.8648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9599 | 1.0 | 565 | 2.0185 | | 1.8889 | 2.0 | 1130 | 1.8088 | | 1.4282 | 3.0 | 1695 | 1.8648 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Gerard/xlm-roberta-base-finetuned-panx-de
87e62cc4a00c254ff03916f5e33b546b5d706d5a
2022-06-20T17:16:29.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Gerard
null
Gerard/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,027
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ornil1/marian-finetuned-kde4-en-to-fr
08cab9ccc5237dde1095840921d8efdf3f1632ae
2022-06-21T01:21:05.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
ornil1
null
ornil1/marian-finetuned-kde4-en-to-fr
1
null
transformers
33,028
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mhmsadegh/bert-base-parsbert-uncased-finetuned-squad
5d4dfd8a097a3988f9299ea785b51e90cb34a83e
2022-06-21T06:32:55.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
mhmsadegh
null
mhmsadegh/bert-base-parsbert-uncased-finetuned-squad
1
null
transformers
33,029
--- tags: - generated_from_trainer model-index: - name: bert-base-parsbert-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-parsbert-uncased-finetuned-squad This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 57 | 4.3248 | | No log | 2.0 | 114 | 4.2283 | | No log | 3.0 | 171 | 4.2932 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nthakur/mcontriever-base-msmarco
b4ea743fb2e09bc686f43b77d571e55e2051fd84
2022-06-20T22:14:34.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2112.09118", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
nthakur
null
nthakur/mcontriever-base-msmarco
1
null
sentence-transformers
33,030
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # mcontriever-base-msmarco This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model was converted from the facebook [mcontriever-msmarco model](https://huggingface.co/facebook/mcontriever-msmarco). When using this model, have a look at the publication: [Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118). <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nthakur/mcontriever-base-msmarco') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nthakur/mcontriever-base-msmarco') model = AutoModel.from_pretrained('nthakur/mcontriever-base-msmarco') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_namenthakur/=mcontriever-base-msmarco) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
spencer/contriever_pipeline
dff1e38677dd0254393766423c4fb785b585bc29
2022-06-21T00:35:23.000Z
[ "pytorch", "bert", "arxiv:2112.09118", "transformers", "feature-extraction" ]
feature-extraction
false
spencer
null
spencer/contriever_pipeline
1
null
transformers
33,031
--- tags: feature-extraction pipeline_tag: feature-extraction --- This model has been trained without supervision following the approach described in [Towards Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118). The associated GitHub repository is available here https://github.com/facebookresearch/contriever. ## Usage (HuggingFace Transformers) Using the model directly available in HuggingFace transformers requires to add a mean pooling operation to obtain a sentence embedding. ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('facebook/contriever') model = AutoModel.from_pretrained('facebook/contriever') sentences = [ "Where was Marie Curie born?", "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings outputs = model(**inputs) # Mean pooling def mean_pooling(token_embeddings, mask): token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.) sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] return sentence_embeddings embeddings = mean_pooling(outputs[0], inputs['attention_mask']) ```
huggingtweets/dav_erage
fd456b4bcc036e38a7d2a49cd16e2117675f6714
2022-06-21T00:57:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dav_erage
1
null
transformers
33,032
--- language: en thumbnail: http://www.huggingtweets.com/dav_erage/1655773043560/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1517890310642278400/p9HNFjUU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🐊 blooming 'bold 🌻</div> <div style="text-align: center; font-size: 14px;">@dav_erage</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🐊 blooming 'bold 🌻. | Data | 🐊 blooming 'bold 🌻 | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 279 | | Short tweets | 440 | | Tweets kept | 2528 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2l3pf3na/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dav_erage's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/228evxem) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/228evxem/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dav_erage') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
anonsubms/msrp_length
b22d22b010f4f50483699b619a9e03e22f7f12d9
2022-06-21T04:43:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anonsubms
null
anonsubms/msrp_length
1
null
transformers
33,033
Entry not found
anonsubms/msrp_ratio
c82ad9b4ab4255fa29d6aaaac815ab52a88a793a
2022-06-21T04:47:15.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anonsubms
null
anonsubms/msrp_ratio
1
null
transformers
33,034
Entry not found
anonsubms/msrp_ratio_sb
8c5c1018479608e26a4ecb81c799c96d1fccdfb8
2022-06-21T04:45:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anonsubms
null
anonsubms/msrp_ratio_sb
1
null
transformers
33,035
Entry not found
anonsubms/t5pretrain
be6be544cfb42455df0ebf5122e731f2f0d53b8c
2022-06-21T05:58:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anonsubms
null
anonsubms/t5pretrain
1
null
transformers
33,036
Entry not found
kjunelee/bert-base-uncased-issues-128
adea1e13e7584660cc061b0e94dd41804aa34412
2022-06-21T07:24:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
kjunelee
null
kjunelee/bert-base-uncased-issues-128
1
null
transformers
33,037
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.193 | 1.0 | 146 | 1.7004 | | 1.7081 | 2.0 | 292 | 1.4895 | | 1.5458 | 3.0 | 438 | 1.4427 | | 1.4715 | 4.0 | 584 | 1.4081 | | 1.3944 | 5.0 | 730 | 1.3163 | | 1.3396 | 6.0 | 876 | 1.3200 | | 1.2945 | 7.0 | 1022 | 1.2785 | | 1.2652 | 8.0 | 1168 | 1.2473 | | 1.2332 | 9.0 | 1314 | 1.2321 | | 1.2042 | 10.0 | 1460 | 1.2162 | | 1.204 | 11.0 | 1606 | 1.1781 | | 1.1866 | 12.0 | 1752 | 1.2211 | | 1.1592 | 13.0 | 1898 | 1.2801 | | 1.1503 | 14.0 | 2044 | 1.1768 | | 1.1268 | 15.0 | 2190 | 1.1657 | | 1.1521 | 16.0 | 2336 | 1.2314 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
UrukHan/wav2vec2-ru
0673734b60747b2b4783b545aaf8aaae6b5ba02f
2022-06-21T21:19:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
UrukHan
null
UrukHan/wav2vec2-ru
1
null
transformers
33,038
--- tags: - generated_from_trainer model-index: - name: wav2vec2-ru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-ru This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5468 - Wer: 0.4124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.511 | 0.21 | 1000 | 0.5444 | 0.4183 | | 0.5021 | 0.43 | 2000 | 0.5727 | 0.4112 | | 0.4746 | 0.64 | 3000 | 0.5495 | 0.4116 | | 0.5052 | 0.85 | 4000 | 0.5468 | 0.4124 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
abhishek/autotrain-vision_af7ac4244f7a4f96bc89a28a87b2bb60-217226
d1b4097993e575fc6170c0ebc82e32bab5b6c84a
2022-06-21T11:03:15.000Z
[ "pytorch", "swin", "image-classification", "transformers" ]
image-classification
false
abhishek
null
abhishek/autotrain-vision_af7ac4244f7a4f96bc89a28a87b2bb60-217226
1
null
transformers
33,039
Entry not found
lmqg/t5-large-subjqa-vanilla-electronics
0bdd3e883844e7ee646d8d866efe6dc7fbc68fdc
2022-06-21T11:00:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-subjqa-vanilla-electronics
1
null
transformers
33,040
Entry not found
Nonnyss/Music-wav2vec2-finetune
d42ac9c06b3433939b43fefe13fab0d01fb61504
2022-06-21T16:05:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Nonnyss
null
Nonnyss/Music-wav2vec2-finetune
1
null
transformers
33,041
Entry not found
sasha/dog-food-swin-tiny-patch4-window7-224
ba6973a9898980d2091a7d54f441be55e6bb4ad0
2022-06-22T13:56:12.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:sasha/dog-food", "transformers", "huggingpics", "model-index" ]
image-classification
false
sasha
null
sasha/dog-food-swin-tiny-patch4-window7-224
1
null
transformers
33,042
--- tags: - image-classification - pytorch - huggingpics datasets: - sasha/dog-food metrics: - accuracy - f1 model-index: - name: dog-food-swin-tiny-patch4-window7-224 results: - task: name: Image Classification type: image-classification dataset: name: Dog Food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-food-swin-tiny-patch4-window7-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/dog.jpg) #### food ![food](images/food.jpg)
sasha/dog-food-convnext-tiny-224
e1831d21b96a4a51dc39fcf7b7110cdd5f8f9dfd
2022-06-22T13:56:32.000Z
[ "pytorch", "tensorboard", "convnext", "image-classification", "dataset:sasha/dog-food", "transformers", "huggingpics", "model-index" ]
image-classification
false
sasha
null
sasha/dog-food-convnext-tiny-224
1
null
transformers
33,043
--- tags: - image-classification - pytorch - huggingpics datasets: - sasha/dog-food metrics: - accuracy - f1 model-index: - name: dog-food-convnext-tiny-224 results: - task: name: Image Classification type: image-classification dataset: name: Dog Food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 1.0 --- # dog-food-convnext-tiny-224 This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/image2.jpg) #### food ![food](images/image1.jpg)
Nonnyss/Music-wav2vec2-finetunee
e6a4ae654caaa39e385e097031f87808ca15a65f
2022-06-21T16:19:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Nonnyss
null
Nonnyss/Music-wav2vec2-finetunee
1
null
transformers
33,044
Entry not found
Mascariddu8/masca-tokenizer
03730ae21d0724acc38e84a67316c9a8a92e8c8a
2022-06-21T17:13:01.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Mascariddu8
null
Mascariddu8/masca-tokenizer
1
null
transformers
33,045
Entry not found
roshnir/xlmr-finetuned-mlqa-dev-cross-vi-hi
bded3a4f05c52671d8361284850809655b64d4e0
2022-06-21T20:09:40.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/xlmr-finetuned-mlqa-dev-cross-vi-hi
1
null
transformers
33,046
Entry not found
AlekseyKorshuk/temp-model
b69ea92ae216787eea20d976078b412dcbcb6ce7
2022-06-21T21:04:12.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/temp-model
1
null
transformers
33,047
Entry not found
Laggrif/DialoGPT-medium-3PO
7b73c52a5ee8ed50eaf0a1ac98d9e4b488a0e94b
2022-06-21T22:01:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Laggrif
null
Laggrif/DialoGPT-medium-3PO
1
null
transformers
33,048
--- tags: - conversational --- # C-3PO DialoGPT Model
chandrasutrisnotjhong/marian-finetuned-kde4-en-to-fr
043cc627156f834a50cf26f0bf012c6a4d30b075
2022-06-28T04:10:31.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
chandrasutrisnotjhong
null
chandrasutrisnotjhong/marian-finetuned-kde4-en-to-fr
1
null
transformers
33,049
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.83242564204547 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mhmsadegh/albert-fa-base-v2-finetuned-squad
46e0c9bfddc06efb068392dc27cf6eb4aedafb59
2022-06-22T19:50:58.000Z
[ "pytorch", "tensorboard", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mhmsadegh
null
mhmsadegh/albert-fa-base-v2-finetuned-squad
1
null
transformers
33,050
Entry not found
chandrasutrisnotjhong/marian-finetuned-kde4-en-to-fr-accelerate
ac28ae226be025488a93fb95d023159855388b41
2022-06-28T05:12:53.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
chandrasutrisnotjhong
null
chandrasutrisnotjhong/marian-finetuned-kde4-en-to-fr-accelerate
1
null
transformers
33,051
Entry not found
lmqg/bart-large-squadshifts-vanilla-nyt
fcb6bb7060ed700af0cf83019411dd81210c9540
2022-06-22T10:56:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-squadshifts-vanilla-nyt
1
null
transformers
33,052
Entry not found
abhishek/autotrain-vision_528a5bd60a4b4b1080538a6ede3f23c7-260265
29350300f3e729094365b2ec4d454ba94b9c1b85
2022-06-22T10:02:50.000Z
[ "pytorch", "swin", "image-classification", "dataset:abhishek/autotrain-data-vision_528a5bd60a4b4b1080538a6ede3f23c7", "transformers", "autotrain", "co2_eq_emissions" ]
image-classification
false
abhishek
null
abhishek/autotrain-vision_528a5bd60a4b4b1080538a6ede3f23c7-260265
1
null
transformers
33,053
--- tags: autotrain datasets: - abhishek/autotrain-data-vision_528a5bd60a4b4b1080538a6ede3f23c7 co2_eq_emissions: 8.217704896005591 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 260265 - CO2 Emissions (in grams): 8.217704896005591 ## Validation Metrics - Loss: 0.24580252170562744 - Accuracy: 0.914 - Macro F1: 0.912823674084623 - Micro F1: 0.914 - Weighted F1: 0.9128236740846232 - Macro Precision: 0.9135654150297885 - Micro Precision: 0.914 - Weighted Precision: 0.9135654150297884 - Macro Recall: 0.9139999999999999 - Micro Recall: 0.914 - Weighted Recall: 0.914
sasuke/bert-finetuned-squad
c4a3920a46fdfb2f770730b90a1cdf048b1266c8
2022-06-22T12:01:31.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sasuke
null
sasuke/bert-finetuned-squad
1
null
transformers
33,054
Entry not found
elena-soare/docu-t5-large-FK
e684abdb56022ad2c1d95daf64cc47ea655e400a
2022-06-22T13:04:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
elena-soare
null
elena-soare/docu-t5-large-FK
1
null
transformers
33,055
Entry not found
elena-soare/docu-t5-large-SD
e6c8a7717cdda9e1555d8aff4e9c599bf4836728
2022-06-22T13:28:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
elena-soare
null
elena-soare/docu-t5-large-SD
1
null
transformers
33,056
Entry not found
paola-md/recipe-ts
d0e750c7989c14be4ba62ff01c1ea7e95e2c9d02
2022-06-22T13:03:45.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-ts
1
null
transformers
33,057
Entry not found
mayoughi/where_am_I_hospital-balcony-hallway-airport-coffee-house
81e05b54015f7f750d9ebd66a110023e32105949
2022-06-22T16:00:57.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
mayoughi
null
mayoughi/where_am_I_hospital-balcony-hallway-airport-coffee-house
1
null
transformers
33,058
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: where_am_I_hospital-balcony-hallway-airport-coffee-house results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8839285969734192 --- # where_am_I_hospital-balcony-hallway-airport-coffee-house Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### airport ![airport](images/airport.jpg) #### balcony ![balcony](images/balcony.jpg) #### coffee house indoors ![coffee house indoors](images/coffee_house_indoors.jpg) #### hallway ![hallway](images/hallway.jpg) #### hospital ![hospital](images/hospital.jpg)
atendstowards0/codeparrot-ds
f78c14bae27b05646e3502746678f5daa35735dd
2022-06-22T17:56:15.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
atendstowards0
null
atendstowards0/codeparrot-ds
1
null
transformers
33,059
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
atendstowards0/testing0
4d9aa6456efe8b82b58e789097024ae6afe91611
2022-06-22T18:48:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
atendstowards0
null
atendstowards0/testing0
1
null
transformers
33,060
--- license: mit tags: - generated_from_trainer model-index: - name: testing0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
amandaraeb/bert-base-uncased-finetuned-swag
11c1e9d5dcce6bcf23399be71820993139bfe39e
2022-06-23T00:01:46.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
amandaraeb
null
amandaraeb/bert-base-uncased-finetuned-swag
1
null
transformers
33,061
Entry not found
BukaByaka/opus-mt-ru-en-finetuned-en-to-ru
880cb446a7ceadb30206cff9ed79373dad321f6b
2022-06-23T12:32:37.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BukaByaka
null
BukaByaka/opus-mt-ru-en-finetuned-en-to-ru
1
null
transformers
33,062
Entry not found
Akshay1791/bert-finetuned-squad
e8c9d2402cb1aa97c7bb31f6d9b947f9691500d6
2022-06-23T05:09:34.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Akshay1791
null
Akshay1791/bert-finetuned-squad
1
null
transformers
33,063
Entry not found
mgtoxd/machineLearningCourse
9913687349f2fed7516add14c6faad0b0307bc33
2022-06-23T02:14:44.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mgtoxd
null
mgtoxd/machineLearningCourse
1
null
transformers
33,064
# ζœΊε™¨ε­¦δΉ θ―Ύη¨‹
Misterpy/models
a367f778aa417f59e7875dbb9f550ded5cb67d6d
2022-06-23T07:52:38.000Z
[ "pytorch", "layoutlmv3", "feature-extraction", "transformers" ]
feature-extraction
false
Misterpy
null
Misterpy/models
1
null
transformers
33,065
Entry not found
iaanimashaun/distilgpt2-finetuned-wikitext2
aa8e323bb1035c973e8e777026b2af3c0d8264b2
2022-06-24T05:13:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
iaanimashaun
null
iaanimashaun/distilgpt2-finetuned-wikitext2
1
null
transformers
33,066
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7852 | 1.0 | 2334 | 3.6895 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
cwkeam/m-ctc-t-large-frame-lid
900453f61be2906475b020c18c9fcb7e7a3329d4
2022-06-29T05:11:04.000Z
[ "pytorch", "mctct", "en", "dataset:librispeech_asr", "dataset:common_voice", "arxiv:2111.00161", "transformers", "speech", "license:apache-2.0" ]
null
false
cwkeam
null
cwkeam/m-ctc-t-large-frame-lid
1
null
transformers
33,067
--- language: en datasets: - librispeech_asr - common_voice tags: - speech license: apache-2.0 --- # M-CTC-T ​ Massively multilingual speech recognizer from Meta AI. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal. ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-arch.png) ​ The original Flashlight code, model checkpoints, and Colab notebook can be found at https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl . ​ ​ ## Citation ​ [Paper](https://arxiv.org/abs/2111.00161) ​ Authors: Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert ​ ``` @article{lugosch2021pseudo, title={Pseudo-Labeling for Massively Multilingual Speech Recognition}, author={Lugosch, Loren and Likhomanenko, Tatiana and Synnaeve, Gabriel and Collobert, Ronan}, journal={ICASSP}, year={2022} } ``` ​ Additional thanks to [Chan Woo Kim](https://huggingface.co/cwkeam) and [Patrick von Platen](https://huggingface.co/patrickvonplaten) for porting the model from Flashlight to PyTorch. ​ # Training method ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-slimipl.png) TO-DO: replace with the training diagram from paper ​ For more information on how the model was trained, please take a look at the [official paper](https://arxiv.org/abs/2111.00161). ​ # Usage ​ To transcribe audio files the model can be used as a standalone acoustic model as follows: ​ ```python import torch import torchaudio from datasets import load_dataset from transformers import MCTCTForCTC, MCTCTProcessor model = MCTCTForCTC.from_pretrained("speechbrain/mctct-large") processor = MCTCTProcessor.from_pretrained("speechbrain/mctct-large") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_features = processor(ds[0]["audio"]["array"], return_tensors="pt").input_features # retrieve logits logits = model(input_features).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` Results for Common Voice, averaged over all languages: ​ *Character error rate (CER)*: ​ | Valid | Test | |-------|------| | 21.4 | 23.3 |
eugenetanjc/trained_french
53602e26745c0e88cf3e1ee7137a73535efdfe3d
2022-06-24T17:50:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
eugenetanjc
null
eugenetanjc/trained_french
1
null
transformers
33,068
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: trained_french results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trained_french This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8493 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 6.2268 | 5.53 | 50 | 4.9813 | 1.0 | | 5.724 | 11.11 | 100 | 4.8808 | 1.0 | | 5.629 | 16.63 | 150 | 4.9001 | 1.0 | | 5.3351 | 22.21 | 200 | 4.8457 | 1.0 | | 5.2043 | 27.74 | 250 | 4.8386 | 1.0 | | 5.1709 | 33.32 | 300 | 4.8647 | 1.0 | | 5.065 | 38.84 | 350 | 4.8574 | 1.0 | | 5.0685 | 44.42 | 400 | 4.8449 | 1.0 | | 5.0584 | 49.95 | 450 | 4.8412 | 1.0 | | 4.9626 | 55.53 | 500 | 4.8493 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
guidecare/all-mpnet-base-v2-feature-extraction
52e1833177b6e3163e478556edf5463806d62a51
2022-06-23T20:29:14.000Z
[ "pytorch", "mpnet", "feature-extraction", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "sentence-transformers", "sentence-similarity", "license:apache-2.0" ]
feature-extraction
false
guidecare
null
guidecare/all-mpnet-base-v2-feature-extraction
1
null
sentence-transformers
33,069
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-mpnet-base-v2 clone This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 384 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
shpotes/codegen-350M
8ff8b64213d4dc1d83006bc1f1dffda0c1a60e90
2022-06-24T02:56:23.000Z
[ "pytorch", "codegen", "text-generation", "transformers", "license:bsd-3-clause" ]
text-generation
false
shpotes
null
shpotes/codegen-350M
1
null
transformers
33,070
--- license: bsd-3-clause ---
Guo-Zikun/distilbert-base-uncased-finetuned-squad
8a48f92e1db4a1ede6963148ed2cd17ecd13a5de
2022-07-04T12:19:52.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Guo-Zikun
null
Guo-Zikun/distilbert-base-uncased-finetuned-squad
1
null
transformers
33,071
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.8.2 - Datasets 2.2.1 - Tokenizers 0.12.1
mousaazari/t5-small-finetuned-wikisql
03cf2e00a260e2c73ae5777fa4527b086bf941e5
2022-06-30T11:37:10.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mousaazari
null
mousaazari/t5-small-finetuned-wikisql
1
null
transformers
33,072
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-wikisql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikisql This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2640 - Rouge2 Precision: 0.8471 - Rouge2 Recall: 0.3841 - Rouge2 Fmeasure: 0.5064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 11 | 2.7587 | 0.098 | 0.0305 | 0.045 | | No log | 2.0 | 22 | 2.0056 | 0.0969 | 0.0284 | 0.0422 | | No log | 3.0 | 33 | 1.4456 | 0.1046 | 0.0349 | 0.0503 | | No log | 4.0 | 44 | 1.0317 | 0.1054 | 0.0337 | 0.0482 | | No log | 5.0 | 55 | 0.7603 | 0.2749 | 0.1299 | 0.1724 | | No log | 6.0 | 66 | 0.5722 | 0.7115 | 0.352 | 0.4552 | | No log | 7.0 | 77 | 0.4751 | 0.6872 | 0.337 | 0.436 | | No log | 8.0 | 88 | 0.4253 | 0.7256 | 0.3439 | 0.4462 | | No log | 9.0 | 99 | 0.3805 | 0.7335 | 0.3204 | 0.4308 | | No log | 10.0 | 110 | 0.3562 | 0.7342 | 0.3239 | 0.433 | | No log | 11.0 | 121 | 0.3275 | 0.7906 | 0.355 | 0.471 | | No log | 12.0 | 132 | 0.3133 | 0.8382 | 0.3838 | 0.5061 | | No log | 13.0 | 143 | 0.2996 | 0.8409 | 0.3841 | 0.5062 | | No log | 14.0 | 154 | 0.2903 | 0.8304 | 0.3763 | 0.4978 | | No log | 15.0 | 165 | 0.2867 | 0.8409 | 0.3841 | 0.5062 | | No log | 16.0 | 176 | 0.2786 | 0.8409 | 0.3841 | 0.5062 | | No log | 17.0 | 187 | 0.2711 | 0.8409 | 0.3841 | 0.5062 | | No log | 18.0 | 198 | 0.2673 | 0.8409 | 0.3841 | 0.5062 | | No log | 19.0 | 209 | 0.2643 | 0.8471 | 0.3841 | 0.5064 | | No log | 20.0 | 220 | 0.2640 | 0.8471 | 0.3841 | 0.5064 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
akhisreelibra/t5-small-finetuned-xsum
7b111e90cf1fd20ee85252d29b18746d38d067e7
2022-06-24T16:46:21.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
akhisreelibra
null
akhisreelibra/t5-small-finetuned-xsum
1
null
transformers
33,073
pitronalldak/distilbert-base-uncased-finetuned-ner
d3491d744d125853783afb5c10615843d6a7e503
2022-06-28T17:30:43.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
pitronalldak
null
pitronalldak/distilbert-base-uncased-finetuned-ner
1
null
transformers
33,074
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0709 - Precision: 0.8442 - Recall: 0.8364 - F1: 0.8403 - Accuracy: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0442 | 1.0 | 1875 | 0.0772 | 0.7945 | 0.7627 | 0.7783 | 0.9739 | | 0.0272 | 2.0 | 3750 | 0.0679 | 0.8465 | 0.8551 | 0.8507 | 0.9791 | | 0.0175 | 3.0 | 5625 | 0.0709 | 0.8442 | 0.8364 | 0.8403 | 0.9794 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
eugenetanjc/wav2vec_cv
33196b9a2c084ec314072809e3f31fc83a5ac52e
2022-06-25T04:16:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
eugenetanjc
null
eugenetanjc/wav2vec_cv
1
null
transformers
33,075
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec_cv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec_cv This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1760 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 7.1467 | 4.29 | 30 | 4.2173 | 1.0 | | 6.8918 | 8.57 | 60 | 4.2004 | 1.0 | | 5.4913 | 12.86 | 90 | 4.2007 | 1.0 | | 5.3906 | 17.14 | 120 | 4.1765 | 1.0 | | 4.9212 | 21.43 | 150 | 4.1714 | 1.0 | | 4.3916 | 25.71 | 180 | 4.1811 | 1.0 | | 5.2255 | 30.0 | 210 | 4.1633 | 1.0 | | 4.501 | 34.29 | 240 | 4.2050 | 1.0 | | 4.4328 | 38.57 | 270 | 4.1572 | 1.0 | | 4.2136 | 42.86 | 300 | 4.1698 | 1.0 | | 4.3353 | 47.14 | 330 | 4.1721 | 1.0 | | 4.1805 | 51.43 | 360 | 4.1804 | 1.0 | | 4.1695 | 55.71 | 390 | 4.1801 | 1.0 | | 4.2978 | 60.0 | 420 | 4.1760 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
kennbyee25/trundlebot-poc
00d02beeec2de88f40435b15692237e12eb21159
2022-06-29T14:39:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kennbyee25
null
kennbyee25/trundlebot-poc
1
null
transformers
33,076
Entry not found
KukuyKukuev/gpt2-wikitext2
33971f2ee8735fd96ecdcf1e918f2dbd0641a3b2
2022-06-24T21:51:22.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
KukuyKukuev
null
KukuyKukuev/gpt2-wikitext2
1
null
transformers
33,077
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5562 | 1.0 | 2249 | 6.4689 | | 6.1912 | 2.0 | 4498 | 6.2003 | | 6.0155 | 3.0 | 6747 | 6.1099 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KukuyKukuev/bert-base-cased-wikitext2
28b99b7c2855fade183ba6f77f9edc784bebe791
2022-06-24T22:55:09.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
KukuyKukuev
null
KukuyKukuev/bert-base-cased-wikitext2
1
null
transformers
33,078
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0916 | 1.0 | 2346 | 7.0492 | | 6.9039 | 2.0 | 4692 | 6.8751 | | 6.8845 | 3.0 | 7038 | 6.8929 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-de
d2bf6d0615bfdc5ae398929268fc7a2c770fd5bf
2022-06-25T14:52:35.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
bousejin
null
bousejin/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,079
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
YZzfDY/RICE-large
a51bd97bfb0ea64fcbe402e55d8d413801898f4d
2022-06-25T08:37:24.000Z
[ "pytorch", "bert", "pretraining", "en", "transformers" ]
null
false
YZzfDY
null
YZzfDY/RICE-large
1
null
transformers
33,080
--- language: - en tag: fill-mask widget: - text: "Paris is the <mask> of France." example_title: "Capital" ---
bousejin/xlm-roberta-base-finetuned-panx-de-fr
5107551683b7689b8bb58a9c72cf989ff00e3cd6
2022-06-25T15:06:04.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
bousejin
null
bousejin/xlm-roberta-base-finetuned-panx-de-fr
1
null
transformers
33,081
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - F1: 0.8579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2878 | 1.0 | 715 | 0.1840 | 0.8247 | | 0.1456 | 2.0 | 1430 | 0.1596 | 0.8473 | | 0.0925 | 3.0 | 2145 | 0.1631 | 0.8579 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-fr
dcde57a9994d0a52cfb9b38112ed7a6c73122046
2022-06-25T06:15:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
bousejin
null
bousejin/xlm-roberta-base-finetuned-panx-fr
1
null
transformers
33,082
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.9241871401929781 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1013 - F1: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5667 | 1.0 | 191 | 0.2318 | 0.8415 | | 0.2539 | 2.0 | 382 | 0.1428 | 0.8988 | | 0.1739 | 3.0 | 573 | 0.1013 | 0.9242 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-en
5492d1d3d0535e2c10e95a83dbd9ea94e63b9d65
2022-06-25T06:48:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
bousejin
null
bousejin/xlm-roberta-base-finetuned-panx-en
1
null
transformers
33,083
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6900780379041249 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - F1: 0.6901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1446 | 1.0 | 50 | 0.6385 | 0.3858 | | 0.5317 | 2.0 | 100 | 0.4248 | 0.6626 | | 0.3614 | 3.0 | 150 | 0.3909 | 0.6901 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
EddieChen372/longT5-js2jest
7c77ced5b8f4fdd8a771827d2055a985fbaa109b
2022-06-26T10:45:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
EddieChen372
null
EddieChen372/longT5-js2jest
1
null
transformers
33,084
Entry not found
VedantS01/bert-finetuned-custom-2
f34bb2b1e21361984d6cf4f16ee6b0c7548e717a
2022-06-25T15:33:51.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
VedantS01
null
VedantS01/bert-finetuned-custom-2
1
null
transformers
33,085
Entry not found
eugenetanjc/wav2vec_trained
4cf3837cf5030b8556089dd671ef6dd8be0f0729
2022-06-25T18:29:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
eugenetanjc
null
eugenetanjc/wav2vec_trained
1
null
transformers
33,086
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec_trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec_trained This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0337 - Wer: 0.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3849 | 2.21 | 500 | 2.9148 | 1.0 | | 1.9118 | 4.42 | 1000 | 0.9627 | 0.5833 | | 0.7596 | 6.64 | 1500 | 0.8953 | 0.3542 | | 0.4602 | 8.85 | 2000 | 0.3325 | 0.2083 | | 0.331 | 11.06 | 2500 | 0.3084 | 0.2083 | | 0.2474 | 13.27 | 3000 | 0.0960 | 0.1667 | | 0.1934 | 15.49 | 3500 | 0.1276 | 0.125 | | 0.156 | 17.7 | 4000 | 0.0605 | 0.0833 | | 0.1244 | 19.91 | 4500 | 0.0831 | 0.1458 | | 0.1006 | 22.12 | 5000 | 0.0560 | 0.125 | | 0.0827 | 24.34 | 5500 | 0.0395 | 0.0833 | | 0.0723 | 26.55 | 6000 | 0.0573 | 0.0833 | | 0.0606 | 28.76 | 6500 | 0.0337 | 0.1042 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
eugenetanjc/wav2vec_test
0d8a6f31f3d16dfef9bfee559ca9afd98f5ad70a
2022-06-25T17:00:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
eugenetanjc
null
eugenetanjc/wav2vec_test
1
null
transformers
33,087
--- tags: - generated_from_trainer model-index: - name: wav2vec_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec_test This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
HKHKHKHK/bert-finetuned-squad
e93cc4051c9263de51ae7478bbd6c8f4f5a007d6
2022-06-26T07:25:52.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
HKHKHKHK
null
HKHKHKHK/bert-finetuned-squad
1
null
transformers
33,088
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sasha/swin-tiny-finetuned-dogfood
a0fc3a3272a5b867486733bc2f092c1290a7bad6
2022-06-27T13:26:02.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:imagefolder", "dataset:lewtun/dog_food", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sasha
null
sasha/swin-tiny-finetuned-dogfood
1
1
transformers
33,089
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: swin-tiny-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.988 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.9826666666666667 verified: true - name: Precision Macro type: precision value: 0.9820904286553143 verified: true - name: Precision Micro type: precision value: 0.9826666666666667 verified: true - name: Precision Weighted type: precision value: 0.9828416519866903 verified: true - name: Recall Macro type: recall value: 0.9828453314981092 verified: true - name: Recall Micro type: recall value: 0.9826666666666667 verified: true - name: Recall Weighted type: recall value: 0.9826666666666667 verified: true - name: F1 Macro type: f1 value: 0.9824101123169301 verified: true - name: F1 Micro type: f1 value: 0.9826666666666667 verified: true - name: F1 Weighted type: f1 value: 0.9826983433609648 verified: true - name: loss type: loss value: 0.2326570302248001 verified: true - name: matthews_correlation type: matthews_correlation value: 0.974016655798285 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-finetuned-dogfood This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Accuracy: 0.988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8198 | 1.0 | 16 | 0.1901 | 0.9822 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4
6328e5e43a14581643c5bb3526221d154e8fae0b
2022-06-27T13:34:30.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4
1
null
transformers
33,090
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0298 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9218 | 1.0 | 188 | 1.0718 | 0.6958 | | 0.9194 | 2.0 | 376 | 1.0354 | 0.6937 | | 0.9077 | 3.0 | 564 | 1.0365 | 0.6730 | | 0.8956 | 4.0 | 752 | 1.0497 | 0.6727 | | 0.877 | 5.0 | 940 | 1.0299 | 0.6694 | | 0.8736 | 6.0 | 1128 | 1.0298 | 0.6642 | | 0.8769 | 7.0 | 1316 | 1.0348 | 0.6584 | | 0.8571 | 8.0 | 1504 | 1.0689 | 0.6602 | | 0.8573 | 9.0 | 1692 | 1.0559 | 0.6549 | | 0.8458 | 10.0 | 1880 | 1.0706 | 0.6588 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
shubhamsalokhe/distilgpt2-finetuned-wikitext2
4966ca6a3e1e075044f7c868ec31ba98bc3769c5
2022-06-26T18:38:27.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
shubhamsalokhe
null
shubhamsalokhe/distilgpt2-finetuned-wikitext2
1
null
transformers
33,091
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SoDehghan/supmpn-bert-large-uncased
4d82f25c0a1e428a64eed6b146dc86f90ea8adc4
2022-06-26T19:41:58.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
SoDehghan
null
SoDehghan/supmpn-bert-large-uncased
1
null
transformers
33,092
--- license: apache-2.0 ---
Samiul/wav2vec2-large-xls-r-300m-turkish-colab
b5c53c5132699106fcbe835493a90f3d9650e9ae
2022-06-26T23:31:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Samiul
null
Samiul/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
33,093
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3821 - Wer: 0.3208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9162 | 3.67 | 400 | 0.6340 | 0.6360 | | 0.4033 | 7.34 | 800 | 0.4588 | 0.4911 | | 0.1919 | 11.01 | 1200 | 0.4392 | 0.4460 | | 0.1315 | 14.68 | 1600 | 0.4269 | 0.4270 | | 0.0963 | 18.35 | 2000 | 0.4327 | 0.3834 | | 0.0801 | 22.02 | 2400 | 0.3867 | 0.3643 | | 0.0631 | 25.69 | 2800 | 0.3854 | 0.3441 | | 0.0492 | 29.36 | 3200 | 0.3821 | 0.3208 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
gngpostalsrvc/BERiT
1b8bdbd009ee6ba5bde8bb7e0c50dcf8be219e46
2022-06-26T21:30:33.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
gngpostalsrvc
null
gngpostalsrvc/BERiT
1
null
transformers
33,094
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: BERiT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT This model is a fine-tuned version of [onlplab/alephbert-base](https://huggingface.co/onlplab/alephbert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.6813 | 1.0 | 2582 | 4.5557 | | 4.4115 | 2.0 | 5164 | 4.4279 | | 4.2192 | 3.0 | 7746 | 4.3661 | | 4.0148 | 4.0 | 10328 | 4.2336 | | 3.8166 | 5.0 | 12910 | 4.2115 | | 3.5512 | 6.0 | 15492 | 4.0535 | | 3.4319 | 7.0 | 18074 | 3.8681 | | 3.2164 | 8.0 | 20656 | 3.9730 | | 3.0837 | 9.0 | 23238 | 3.7807 | | 2.9773 | 10.0 | 25820 | 3.6773 | | 2.8521 | 11.0 | 28402 | 3.7304 | | 2.6034 | 12.0 | 30984 | 3.6530 | | 2.4614 | 13.0 | 33566 | 3.6396 | | 2.3812 | 14.0 | 36148 | 3.7146 | | 2.3812 | 15.0 | 38730 | 3.5800 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper_batch_32_e4
edc455d97ab2854c1b4c5c89d5fb4b844e0d24db
2022-06-26T22:47:06.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper_batch_32_e4
1
null
transformers
33,095
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_32_e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_32_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4295 | 0.31 | 100 | 3.4027 | 0.2837 | | 2.5035 | 0.62 | 200 | 2.4339 | 0.5247 | | 1.6542 | 0.94 | 300 | 1.7690 | 0.6388 | | 1.1589 | 1.25 | 400 | 1.3106 | 0.7460 | | 0.9363 | 1.56 | 500 | 0.9977 | 0.7803 | | 0.6946 | 1.88 | 600 | 0.8138 | 0.8207 | | 0.3488 | 2.19 | 700 | 0.6593 | 0.8489 | | 0.2935 | 2.5 | 800 | 0.5725 | 0.8662 | | 0.2557 | 2.81 | 900 | 0.5088 | 0.8855 | | 0.1509 | 3.12 | 1000 | 0.4572 | 0.8971 | | 0.1367 | 3.44 | 1100 | 0.4129 | 0.9090 | | 0.1078 | 3.75 | 1200 | 0.3909 | 0.9067 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
neweasterns/wav2vec2-base-timit-demo-google-colab
f7beeeee1121eea8f19d5c8a69412d572ea983b5
2022-06-27T02:49:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
neweasterns
null
neweasterns/wav2vec2-base-timit-demo-google-colab
1
null
transformers
33,096
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5206 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5597 | 1.0 | 500 | 2.3415 | 0.9991 | | 0.9759 | 2.01 | 1000 | 0.5556 | 0.5382 | | 0.4587 | 3.01 | 1500 | 0.7690 | 0.4781 | | 0.3156 | 4.02 | 2000 | 0.7994 | 0.4412 | | 0.2272 | 5.02 | 2500 | 0.8948 | 0.4120 | | 0.1921 | 6.02 | 3000 | 0.7065 | 0.3940 | | 0.1618 | 7.03 | 3500 | 0.4333 | 0.3855 | | 0.1483 | 8.03 | 4000 | 0.4232 | 0.3872 | | 0.156 | 9.04 | 4500 | 0.4172 | 0.3749 | | 0.1138 | 10.04 | 5000 | 0.4084 | 0.3758 | | 0.1045 | 11.04 | 5500 | 0.4665 | 0.3623 | | 0.0908 | 12.05 | 6000 | 0.4416 | 0.3684 | | 0.0788 | 13.05 | 6500 | 0.4801 | 0.3659 | | 0.0773 | 14.06 | 7000 | 0.4560 | 0.3583 | | 0.0684 | 15.06 | 7500 | 0.4878 | 0.3610 | | 0.0645 | 16.06 | 8000 | 0.4635 | 0.3567 | | 0.0577 | 17.07 | 8500 | 0.5245 | 0.3548 | | 0.0547 | 18.07 | 9000 | 0.5265 | 0.3639 | | 0.0466 | 19.08 | 9500 | 0.5161 | 0.3546 | | 0.0432 | 20.08 | 10000 | 0.5263 | 0.3558 | | 0.0414 | 21.08 | 10500 | 0.4874 | 0.3500 | | 0.0365 | 22.09 | 11000 | 0.5266 | 0.3472 | | 0.0321 | 23.09 | 11500 | 0.5422 | 0.3458 | | 0.0325 | 24.1 | 12000 | 0.5201 | 0.3428 | | 0.0262 | 25.1 | 12500 | 0.5208 | 0.3398 | | 0.0249 | 26.1 | 13000 | 0.5034 | 0.3429 | | 0.0262 | 27.11 | 13500 | 0.5055 | 0.3396 | | 0.0248 | 28.11 | 14000 | 0.5164 | 0.3404 | | 0.0222 | 29.12 | 14500 | 0.5206 | 0.3388 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
lingchensanwen/distilbert-base-uncased-finetuned-squad
ac1f1f3b602524b632588c45f9301767bc3b8986
2022-06-28T02:57:31.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
lingchensanwen
null
lingchensanwen/distilbert-base-uncased-finetuned-squad
1
null
transformers
33,097
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 46 | 0.4284 | | No log | 2.0 | 92 | 0.0573 | | No log | 3.0 | 138 | 0.0337 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
TheRensselaerIDEA/gpt2-large-vaccine-tweet-response
8e8164ed21f0e299565eec0db0153ed884046c78
2022-06-27T03:22:42.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "transformers", "license:mit" ]
text-generation
false
TheRensselaerIDEA
null
TheRensselaerIDEA/gpt2-large-vaccine-tweet-response
1
null
transformers
33,098
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [Vaccine public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (2.82 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. For input format and usage examples, see our [COVID-19 public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-covid-tweet-response).
deepesh0x/autotrain-a3-1043835930
05714926b15a15db8c356e87813c1c2d31b6f2f5
2022-06-27T05:12:13.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
deepesh0x
null
deepesh0x/autotrain-a3-1043835930
1
null
transformers
33,099
Entry not found