modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
income/jpq-gpl-fiqa-document_encoder-base-msmarco-distilbert-tas-b
de20e7a20b6b0c0578752f10364ed78e9e63f4fc
2022-06-15T17:16:03.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-fiqa-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,900
--- license: apache-2.0 ---
income/jpq-gpl-hotpotqa-question_encoder-base-msmarco-distilbert-tas-b
b49937e6fc7c669f005a27cf90637c8af89074a5
2022-06-15T17:17:27.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-hotpotqa-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,901
--- license: apache-2.0 ---
income/jpq-gpl-nfcorpus-question_encoder-base-msmarco-distilbert-tas-b
19904b962f446c08207093f994ee7b6fd0e0d357
2022-06-15T17:26:15.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-nfcorpus-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,902
--- license: apache-2.0 ---
income/jpq-gpl-nfcorpus-document_encoder-base-msmarco-distilbert-tas-b
cebf1424e99886dbdd69c3498763910499edd1b4
2022-06-15T17:28:14.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-nfcorpus-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,903
--- license: apache-2.0 ---
income/jpq-gpl-nq-question_encoder-base-msmarco-distilbert-tas-b
ca30ac871ab926e67c64a25f8d8c61b7ba588b09
2022-06-15T17:29:28.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-nq-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,904
--- license: apache-2.0 ---
income/jpq-gpl-nq-document_encoder-base-msmarco-distilbert-tas-b
afbe9b09c4d23fa21d6fa33252a082be31ffd6f3
2022-06-15T17:30:10.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-nq-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,905
--- license: apache-2.0 ---
income/jpq-gpl-quora-question_encoder-base-msmarco-distilbert-tas-b
d0913555feba8151cd5c6fa4e983ba12d8fb0aa9
2022-06-15T17:31:38.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-quora-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,906
--- license: apache-2.0 ---
income/jpq-gpl-scidocs-question_encoder-base-msmarco-distilbert-tas-b
e8ddf4ae5e14aec9682aa54690d9c3c00f188d87
2022-06-15T17:36:01.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-scidocs-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,907
--- license: apache-2.0 ---
income/jpq-gpl-scidocs-document_encoder-base-msmarco-distilbert-tas-b
ed5d266d9562925523affb3fb059bce6fb9f2432
2022-06-15T17:36:43.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-scidocs-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,908
--- license: apache-2.0 ---
income/jpq-gpl-scifact-document_encoder-base-msmarco-distilbert-tas-b
8658482ed31ff6193289017cb577248e3880267d
2022-06-15T17:38:40.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-scifact-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,909
--- license: apache-2.0 ---
income/jpq-gpl-trec-covid-question_encoder-base-msmarco-distilbert-tas-b
4c3cf9c0d0d38834882b732bf7a1ebedcf848b52
2022-06-15T17:43:02.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-trec-covid-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,910
--- license: apache-2.0 ---
lmqg/t5-large-squadshifts-nyt
6623d6952f5bbd917c0d136f1d47b7d37c19c1f5
2022-06-16T11:55:05.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-nyt
1
null
transformers
32,911
Entry not found
Nadav/xlm-roberta-base-squad-finetuned-on-runaways-en
157942d7c69496eeb3b199a4c7eaf8ebd01d5aaa
2022-06-19T14:09:31.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Nadav
null
Nadav/xlm-roberta-base-squad-finetuned-on-runaways-en
1
null
transformers
32,912
Entry not found
Nadav/roberta-base-finetuned-on-runaways-en
e69d843860ceecca4eae9f780de04fff35d592a8
2022-06-19T12:41:17.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Nadav
null
Nadav/roberta-base-finetuned-on-runaways-en
1
null
transformers
32,913
Entry not found
Nadav/xlm-roberta-base-finetuned-on-runaways-en
130b35410dd7e9992a316874fba2491463fc0fb9
2022-06-19T13:17:36.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Nadav
null
Nadav/xlm-roberta-base-finetuned-on-runaways-en
1
null
transformers
32,914
Entry not found
erickfm/bright-sweep-9
4172724cf12fb83378031b0cb2e545f5a955dac8
2022-06-15T21:16:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/bright-sweep-9
1
null
transformers
32,915
Entry not found
income/jpq-gpl-trec-news-question_encoder-base-msmarco-distilbert-tas-b
1e897e579a15314e489272d05244113ce8c1f062
2022-06-15T21:53:20.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-trec-news-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,916
--- license: apache-2.0 ---
income/jpq-genq-arguana-question_encoder-base-msmarco-distilbert-tas-b
27b7ef687f6e2c5cbf84559a11d3b09535d16458
2022-06-15T21:57:39.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-arguana-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,917
--- license: apache-2.0 ---
income/jpq-genq-webis-touche2020-question_encoder-base-msmarco-distilbert-tas-b
b418a08a9caa905bc1536c35ee54e14192bb87e7
2022-06-15T21:59:53.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-webis-touche2020-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,918
--- license: apache-2.0 ---
income/jpq-genq-webis-touche2020-document_encoder-base-msmarco-distilbert-tas-b
baa9bd6ecbfc878886535b81375a240715341228
2022-06-15T22:00:21.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-webis-touche2020-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,919
--- license: apache-2.0 ---
income/jpq-genq-climate-fever-question_encoder-base-msmarco-distilbert-tas-b
9bf52f0a0f695b57a43780069c2ebd5de111c893
2022-06-15T22:00:52.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-climate-fever-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,920
--- license: apache-2.0 ---
income/jpq-genq-climate-fever-document_encoder-base-msmarco-distilbert-tas-b
f22da808212b17ac0f99da3ba99f50057a7facb0
2022-06-15T22:01:26.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-climate-fever-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,921
--- license: apache-2.0 ---
income/jpq-genq-dbpedia-entity-question_encoder-base-msmarco-distilbert-tas-b
60d6c9ea2b91c63b3e9681b03ae9a0e3676f38da
2022-06-15T22:01:59.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-dbpedia-entity-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,922
--- license: apache-2.0 ---
income/jpq-genq-dbpedia-entity-document_encoder-base-msmarco-distilbert-tas-b
4402affbfcc2a3a80609c61231aa5c51b343b340
2022-06-15T22:02:38.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-dbpedia-entity-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,923
--- license: apache-2.0 ---
income/jpq-genq-fever-question_encoder-base-msmarco-distilbert-tas-b
7e2b7a313f431a784e2e97e3dcea6d44b0d2156e
2022-06-15T22:04:20.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-fever-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,924
--- license: apache-2.0 ---
income/jpq-genq-fiqa-document_encoder-base-msmarco-distilbert-tas-b
7b861ad0abd69e4c5fe8bbf6a871d64de2eec8bf
2022-06-15T22:08:15.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-fiqa-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,925
--- license: apache-2.0 ---
income/jpq-genq-hotpotqa-question_encoder-base-msmarco-distilbert-tas-b
b42dcfc35ca57124a4e29b818173496d8ff7bafc
2022-06-15T22:10:03.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-hotpotqa-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,926
--- license: apache-2.0 ---
Asia-N/opus-mt-ar-en-finetuned-ar-to-en
e9cc735df9354f1f61a60d6044d9012197a332b7
2022-06-18T10:25:40.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:news_commentary", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Asia-N
null
Asia-N/opus-mt-ar-en-finetuned-ar-to-en
1
null
transformers
32,927
--- license: apache-2.0 tags: - generated_from_trainer datasets: - news_commentary metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: news_commentary type: news_commentary args: ar-en metrics: - name: Bleu type: bleu value: 32.5327 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the news_commentary dataset. It achieves the following results on the evaluation set: - Loss: 10.6102 - Bleu: 32.5327 - Gen Len: 56.234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-09 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 32 | 10.6112 | 32.5327 | 56.234 | | No log | 2.0 | 64 | 10.6103 | 32.5327 | 56.234 | | No log | 3.0 | 96 | 10.6102 | 32.5327 | 56.234 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
income/jpq-genq-nfcorpus-question_encoder-base-msmarco-distilbert-tas-b
25a938df61362627f18f668881e4f47eb4884e89
2022-06-15T22:13:23.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-nfcorpus-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,928
--- license: apache-2.0 ---
income/jpq-genq-nfcorpus-document_encoder-base-msmarco-distilbert-tas-b
cf43fed71d0f69ad26ab6ad81eba183b1f63ffc8
2022-06-15T22:13:59.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-nfcorpus-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,929
--- license: apache-2.0 ---
income/jpq-genq-nq-question_encoder-base-msmarco-distilbert-tas-b
5b67cfe6c86743f1b8651ce26ba42f97c75283e8
2022-06-15T22:14:43.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-nq-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,930
--- license: apache-2.0 ---
income/jpq-genq-quora-question_encoder-base-msmarco-distilbert-tas-b
563fad59e86021cb50f97513e88e549af3ee992e
2022-06-15T22:37:26.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-quora-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,931
--- license: apache-2.0 ---
income/jpq-genq-quora-document_encoder-base-msmarco-distilbert-tas-b
6bc478ca9afa13e32bafba975be773bead18c578
2022-06-15T22:39:05.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-quora-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,932
--- license: apache-2.0 ---
income/jpq-genq-scidocs-question_encoder-base-msmarco-distilbert-tas-b
259262a072d3d0cb98b84fb7eba3ee6804e97c72
2022-06-15T22:48:35.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-scidocs-question_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,933
--- license: apache-2.0 ---
income/jpq-genq-scidocs-document_encoder-base-msmarco-distilbert-tas-b
efd83b6678418cdf9e4d9e0e87f95e42c281b8d8
2022-06-15T22:49:10.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-scidocs-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,934
--- license: apache-2.0 ---
income/jpq-genq-scifact-document_encoder-base-msmarco-distilbert-tas-b
aac91bc108b03aae36f1353ccba34b614bacb1a8
2022-06-15T22:50:10.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-scifact-document_encoder-base-msmarco-distilbert-tas-b
1
null
transformers
32,935
--- license: apache-2.0 ---
huggingtweets/43folders-hotdogsladies
e7c279afea975d9812be130d1a3afe63d7dacba8
2022-06-15T23:14:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/43folders-hotdogsladies
1
null
transformers
32,936
--- language: en thumbnail: http://www.huggingtweets.com/43folders-hotdogsladies/1655334875186/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1165801400/43f-logo-square-300_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474526156430798849/0Z_zfYqH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">43 Folders & Merlin Mann</div> <div style="text-align: center; font-size: 14px;">@43folders-hotdogsladies</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 43 Folders & Merlin Mann. | Data | 43 Folders | Merlin Mann | | --- | --- | --- | | Tweets downloaded | 149 | 317 | | Retweets | 8 | 41 | | Short tweets | 0 | 48 | | Tweets kept | 141 | 228 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gd31yq9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @43folders-hotdogsladies's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/148w4fxc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/148w4fxc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/43folders-hotdogsladies') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gary109/ai-light-dance_singing_wav2vec2-large-xlsr-53-5gram
66cd384b15b59cd1f0a57c32a0be0ea7061df166
2022-06-16T01:42:47.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_wav2vec2-large-xlsr-53-5gram
1
null
transformers
32,937
Entry not found
ryo0634/luke-base-embedding-predictor-20181220-concat
b4d8a51825d49a99b11a7c98152afb81bbdc2535
2022-06-16T02:27:11.000Z
[ "pytorch", "luke", "transformers" ]
null
false
ryo0634
null
ryo0634/luke-base-embedding-predictor-20181220-concat
1
null
transformers
32,938
Train with the hyperlink dataset from en-wiki-20181220 of the entity vocabulary (0-400K). The base model is studio-ousia/luke-base.
huggingtweets/fushidahardy
ce430a0cced44dbb7ddb4fef42a8bc187999d7bb
2022-06-16T03:42:42.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fushidahardy
1
null
transformers
32,939
--- language: en thumbnail: http://www.huggingtweets.com/fushidahardy/1655350909485/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1271291765719351297/_NdPd0cg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Shintaro Fushida-Hardy 🦎</div> <div style="text-align: center; font-size: 14px;">@fushidahardy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Shintaro Fushida-Hardy 🦎. | Data | Shintaro Fushida-Hardy 🦎 | | --- | --- | | Tweets downloaded | 1728 | | Retweets | 253 | | Short tweets | 115 | | Tweets kept | 1360 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pk5r7pt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fushidahardy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dxchh1a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dxchh1a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fushidahardy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/shammytv
656196abe8b40549103f95fbfd3f0d1e8638c6c1
2022-06-16T05:07:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/shammytv
1
null
transformers
32,940
--- language: en thumbnail: http://www.huggingtweets.com/shammytv/1655356038315/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1191610860973764608/vH0nHzO8_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Swift</div> <div style="text-align: center; font-size: 14px;">@shammytv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Swift. | Data | Swift | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 173 | | Short tweets | 449 | | Tweets kept | 2581 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12udt9tp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shammytv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wp1epufz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wp1epufz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shammytv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Nadav/xlm-roberta-base-finetuned-on-runaways-fr
f2eb0aa7f1ba438246bae540360c7eb11f3a8da1
2022-06-19T15:12:08.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Nadav
null
Nadav/xlm-roberta-base-finetuned-on-runaways-fr
1
null
transformers
32,941
Entry not found
Nadav/xlm-roberta-base-squad-finetuned-on-runaways-fr
16d720034839504d55f0987644a5027143039b96
2022-06-19T16:42:57.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Nadav
null
Nadav/xlm-roberta-base-squad-finetuned-on-runaways-fr
1
null
transformers
32,942
Entry not found
Addedk/kbbert-distilled-cased
7e6660109b82dfb90f7a624a5135d22468e86402
2022-07-18T14:14:12.000Z
[ "pytorch", "tf", "bert", "fill-mask", "sv", "arxiv:2103.06418", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Addedk
null
Addedk/kbbert-distilled-cased
1
1
transformers
32,943
--- language: sv license: apache-2.0 --- # KB-BERT distilled base model (cased) This model is a distilled version of [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased). It was distilled using Swedish data, the 2010-2015 portion of the [Swedish Culturomics Gigaword Corpus](https://spraakbanken.gu.se/en/resources/gigaword). The code for the distillation process can be found [here](https://github.com/AddedK/swedish-mbert-distillation/blob/main/azureML/pretrain_distillation.py). This was done as part of my Master's Thesis: *Task-agnostic knowledge distillation of mBERT to Swedish*. ## Model description This is a 6-layer version of KB-BERT, having been distilled using the [LightMBERT](https://arxiv.org/abs/2103.06418) distillation method, but without freezing the embedding layer. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. ## Training data The data used for distillation was the 2010-2015 portion of the [Swedish Culturomics Gigaword Corpus](https://spraakbanken.gu.se/en/resources/gigaword). The tokenized data had a file size of approximately 7.4 GB. ## Evaluation results When evaluated on the [SUCX 3.0 ](https://huggingface.co/datasets/KBLab/sucx3_ner) dataset, it achieved an average F1 score of 0.887 which is competitive with the score KB-BERT obtained, 0.894. Additional results and comparisons are presented in my Master's Thesis
good-ai-club/NBB
459cfe319968e35cdd5bf6c7c7932d8cc2e94966
2022-06-16T08:51:44.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
good-ai-club
null
good-ai-club/NBB
1
null
sentence-transformers
32,944
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3188 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 355, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1594, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
roymukund/xlm-roberta-base-finetuned-ner
73a88bb38a01c9bc95fa9ce80d5a6d194ec91555
2022-06-16T20:32:08.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:hi_ner-original", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
roymukund
null
roymukund/xlm-roberta-base-finetuned-ner
1
null
transformers
32,945
--- license: mit tags: - generated_from_trainer datasets: - hi_ner-original metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: hi_ner-original type: hi_ner-original args: HiNER metrics: - name: Precision type: precision value: 0.7366076627460114 - name: Recall type: recall value: 0.6770947627585838 - name: F1 type: f1 value: 0.7055985498152408 - name: Accuracy type: accuracy value: 0.9359390321752693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the hi_ner-original dataset. It achieves the following results on the evaluation set: - Loss: 0.2314 - Precision: 0.7366 - Recall: 0.6771 - F1: 0.7056 - Accuracy: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2025 | 0.74 | 7000 | 0.2146 | 0.7399 | 0.6197 | 0.6745 | 0.9316 | | 0.1641 | 1.47 | 14000 | 0.2238 | 0.7618 | 0.6108 | 0.6780 | 0.9336 | | 0.1404 | 2.21 | 21000 | 0.2302 | 0.7560 | 0.6327 | 0.6889 | 0.9350 | | 0.1371 | 2.95 | 28000 | 0.2226 | 0.7395 | 0.6600 | 0.6975 | 0.9350 | | 0.1248 | 3.68 | 35000 | 0.2314 | 0.7366 | 0.6771 | 0.7056 | 0.9359 | | 0.1112 | 4.42 | 42000 | 0.2423 | 0.7089 | 0.7064 | 0.7077 | 0.9333 | | 0.1048 | 5.16 | 49000 | 0.2599 | 0.7326 | 0.6793 | 0.7050 | 0.9349 | | 0.1091 | 5.89 | 56000 | 0.2542 | 0.7244 | 0.6918 | 0.7077 | 0.9348 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
janeel/tinyroberta-squad2-finetuned-squad
bbbb15cc9754966f1f3454c1143812a4097bca5b
2022-06-19T08:51:09.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
janeel
null
janeel/tinyroberta-squad2-finetuned-squad
1
null
transformers
32,946
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: tinyroberta-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyroberta-squad2-finetuned-squad This model is a fine-tuned version of [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6185 | 1.0 | 8239 | 0.9460 | | 0.4243 | 2.0 | 16478 | 1.1592 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
income/bpr-gpl-webis-touche2020-base-msmarco-distilbert-tas-b
76ee22e524c9d49a9e34498b9b9cfd3f289c41b4
2022-06-16T17:58:08.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-webis-touche2020-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,947
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 34866 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-trec-news-base-msmarco-distilbert-tas-b
4fb42b68b1fef5018ea8b9e7ee663214c5781570
2022-06-16T17:59:18.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-trec-news-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,948
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 55028 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-trec-covid-base-msmarco-distilbert-tas-b
27ce375acf65d524100ddea534d136e2ee7361fc
2022-06-16T18:00:33.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-trec-covid-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,949
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15001 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-signal1m-base-msmarco-distilbert-tas-b
2d66071e8b6799f4a9c4cb5017e0fb861d0c3c76
2022-06-16T18:02:31.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-signal1m-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,950
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 263015 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-scidocs-base-msmarco-distilbert-tas-b
6e47641a22bb4932844c5e2991b9fff4d1eef86c
2022-06-16T18:07:08.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-scidocs-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,951
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2337 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-robust04-base-msmarco-distilbert-tas-b
341493d0a26d1c186f0e4e6cb0526ebe0a467b5d
2022-06-16T18:10:03.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-robust04-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,952
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 48784 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-quora-base-msmarco-distilbert-tas-b
3a4b917039aaae7a2b1ecdfaca6e6ea5362ba9bd
2022-06-16T18:14:29.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-quora-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,953
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 16341 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-nq-base-msmarco-distilbert-tas-b
6b0c9249c2e1f24cb79bc38fc94f1bbc5a958c7c
2022-06-16T18:15:23.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-nq-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,954
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 245832 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-nfcorpus-base-msmarco-distilbert-tas-b
36dea9161d802901e2c206f9f689f7e66f08a522
2022-06-16T18:17:34.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-nfcorpus-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,955
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 338 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-hotpotqa-base-msmarco-distilbert-tas-b
047170edc7fa8442a4a455132ce17333200802f6
2022-06-16T18:19:52.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-hotpotqa-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,956
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 163541 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-fiqa-base-msmarco-distilbert-tas-b
2f6edf788df69260d53dd94f5999bb8ab6d90ef8
2022-06-16T18:21:26.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-fiqa-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,957
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5076 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-fever-base-msmarco-distilbert-tas-b
76a67d925b14d8f4abf4abadea7e2001e372808c
2022-06-16T18:22:17.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-fever-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,958
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 169267 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-dbpedia-entity-base-msmarco-distilbert-tas-b
824b93e566e2b73c3b76aedb4eb365c4b34eef89
2022-06-16T18:23:49.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-dbpedia-entity-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,959
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 144872 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-climate-fever-base-msmarco-distilbert-tas-b
3f4f28f4de68aa390d17c7a9a4220cbf995fbec6
2022-06-16T18:25:16.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-climate-fever-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,960
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 169268 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-arguana-base-msmarco-distilbert-tas-b
5321885fd29a7a7dedc7132d416cf1bb461df462
2022-06-16T18:28:01.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-arguana-base-msmarco-distilbert-tas-b
1
null
sentence-transformers
32,961
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 807 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
S2312dal/M3_MLM
300c0c02f6b25d5542e4a46b29e36aeabae749c4
2022-06-16T19:46:04.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M3_MLM
1
null
transformers
32,962
--- tags: - generated_from_trainer model-index: - name: M3_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M3_MLM This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.8186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.6707 | 1.0 | 26 | 7.4412 | | 6.9122 | 2.0 | 52 | 6.3385 | | 6.2166 | 3.0 | 78 | 5.9148 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M4_MLM
5c5578287359ae3bb6da116e0358d7c2e615e54b
2022-06-16T19:42:02.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M4_MLM
1
null
transformers
32,963
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M4_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M4_MLM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.7633 | 1.0 | 26 | 8.0400 | | 7.8899 | 2.0 | 52 | 7.6923 | | 7.589 | 3.0 | 78 | 7.4373 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
eplatas/scibert_scivocab_uncased_finetuned_leukaemia
3847812f20b5acf3a76b2c95279193c13a1ec0d9
2022-06-16T20:01:22.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
eplatas
null
eplatas/scibert_scivocab_uncased_finetuned_leukaemia
1
null
transformers
32,964
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_uncased_finetuned_leukaemia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased_finetuned_leukaemia This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.742 | 1.0 | 50 | 2.9184 | | 0.7729 | 2.0 | 100 | 1.0324 | | 0.697 | 3.0 | 150 | 0.5968 | | 0.6573 | 4.0 | 200 | 0.4985 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/chrishemsworth-deadpoolmovie
e0a7491d6df2c7a41df6ac7e0220a95a3e7ebdc1
2022-06-16T23:26:07.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chrishemsworth-deadpoolmovie
1
null
transformers
32,965
--- language: en thumbnail: http://www.huggingtweets.com/chrishemsworth-deadpoolmovie/1655421962384/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1247482752351588352/EgHoUNqQ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1208234904405757953/mT0cFOVQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Hemsworth & Deadpool Movie</div> <div style="text-align: center; font-size: 14px;">@chrishemsworth-deadpoolmovie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Hemsworth & Deadpool Movie. | Data | Chris Hemsworth | Deadpool Movie | | --- | --- | --- | | Tweets downloaded | 482 | 1125 | | Retweets | 140 | 276 | | Short tweets | 39 | 115 | | Tweets kept | 303 | 734 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f48nrzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrishemsworth-deadpoolmovie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tf8a3vu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tf8a3vu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrishemsworth-deadpoolmovie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fawfulthgreat64
6091494da27a3e63f358b95d953a984f0edd0875
2022-06-17T00:31:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fawfulthgreat64
1
null
transformers
32,966
--- language: en thumbnail: http://www.huggingtweets.com/fawfulthgreat64/1655425906757/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520110813209665538/-4GuBQGb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jamey Viv 🏳️‍⚧️ 🇺🇦 #Toaster4DisneyPlus</div> <div style="text-align: center; font-size: 14px;">@fawfulthgreat64</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jamey Viv 🏳️‍⚧️ 🇺🇦 #Toaster4DisneyPlus. | Data | Jamey Viv 🏳️‍⚧️ 🇺🇦 #Toaster4DisneyPlus | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1394 | | Short tweets | 133 | | Tweets kept | 1719 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21ve8lp9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fawfulthgreat64's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hg3e2g0j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hg3e2g0j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fawfulthgreat64') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tomcruise
ef6ecc3ef6a45c19efa81a01feafd2fc1143a1e4
2022-06-17T01:00:02.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tomcruise
1
null
transformers
32,967
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/603269306026106880/42CwEF4n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Cruise</div> <div style="text-align: center; font-size: 14px;">@tomcruise</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Cruise. | Data | Tom Cruise | | --- | --- | | Tweets downloaded | 3036 | | Retweets | 1055 | | Short tweets | 88 | | Tweets kept | 1893 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ppnkvd5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tomcruise's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q772s43) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q772s43/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tomcruise') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mcdonaldsuk-potus-tomcruise
b80c60ae6e9a818f6d6c54e7faa6366a9cd2aba8
2022-06-17T01:44:54.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mcdonaldsuk-potus-tomcruise
1
null
transformers
32,968
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/603269306026106880/42CwEF4n_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533739179770843141/kNhGgW4K_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1380530524779859970/TfwVAbyX_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Cruise & McDonald's UK & President Biden</div> <div style="text-align: center; font-size: 14px;">@mcdonaldsuk-potus-tomcruise</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Cruise & McDonald's UK & President Biden. | Data | Tom Cruise | McDonald's UK | President Biden | | --- | --- | --- | --- | | Tweets downloaded | 3036 | 3250 | 3250 | | Retweets | 1055 | 0 | 96 | | Short tweets | 88 | 36 | 8 | | Tweets kept | 1893 | 3214 | 3146 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xo9k90g3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mcdonaldsuk-potus-tomcruise's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uk4lqo8q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uk4lqo8q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mcdonaldsuk-potus-tomcruise') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lmqg/t5-large-squadshifts-amazon
dff928cd916982b9258d71a756a7b3ec53dff59e
2022-06-17T02:31:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-amazon
1
null
transformers
32,969
Entry not found
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli-v2
2a910979e7c5e556e9a54f6c6c87487ea1423e17
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli-v2
1
null
null
32,970
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - MNLI 97%` (in the upcoming updated version of the paper). ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | m-acc | mm-acc| | ------------- | ----- | ----- | | seed=42 | 80.86 | 80.88 | | seed=3407 | 80.83 | 81.65 | | seed=123 (*)| 81.18 | 81.06 | | seed=12345 | 80.79 | 80.95 | | ------------- | ----- | ----- | | mean | 80.91 | 81.13 | | stdev | 0.178 | 0.351 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
botika/checkpoint-124500-finetuned-squad
5dab949e1c03afe043de31f361822045ed178de6
2022-06-19T05:53:11.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
botika
null
botika/checkpoint-124500-finetuned-squad
1
null
transformers
32,971
--- tags: - generated_from_trainer model-index: - name: checkpoint-124500-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint-124500-finetuned-squad This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 14.9594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.9975 | 1.0 | 3289 | 3.8405 | | 3.7311 | 2.0 | 6578 | 3.7114 | | 3.5681 | 3.0 | 9867 | 3.6829 | | 3.4101 | 4.0 | 13156 | 3.6368 | | 3.2487 | 5.0 | 16445 | 3.6526 | | 3.1143 | 6.0 | 19734 | 3.7567 | | 2.9783 | 7.0 | 23023 | 3.8469 | | 2.8295 | 8.0 | 26312 | 4.0040 | | 2.6912 | 9.0 | 29601 | 4.1996 | | 2.5424 | 10.0 | 32890 | 4.3387 | | 2.4161 | 11.0 | 36179 | 4.4988 | | 2.2713 | 12.0 | 39468 | 4.7861 | | 2.1413 | 13.0 | 42757 | 4.9276 | | 2.0125 | 14.0 | 46046 | 5.0598 | | 1.8798 | 15.0 | 49335 | 5.3347 | | 1.726 | 16.0 | 52624 | 5.5869 | | 1.5994 | 17.0 | 55913 | 5.7161 | | 1.4643 | 18.0 | 59202 | 6.0174 | | 1.3237 | 19.0 | 62491 | 6.4926 | | 1.2155 | 20.0 | 65780 | 6.4882 | | 1.1029 | 21.0 | 69069 | 6.9922 | | 0.9948 | 22.0 | 72358 | 7.1357 | | 0.9038 | 23.0 | 75647 | 7.3676 | | 0.8099 | 24.0 | 78936 | 7.4180 | | 0.7254 | 25.0 | 82225 | 7.7753 | | 0.6598 | 26.0 | 85514 | 7.8643 | | 0.5723 | 27.0 | 88803 | 8.1798 | | 0.5337 | 28.0 | 92092 | 8.3053 | | 0.4643 | 29.0 | 95381 | 8.8597 | | 0.4241 | 30.0 | 98670 | 8.9849 | | 0.3763 | 31.0 | 101959 | 8.8406 | | 0.3479 | 32.0 | 105248 | 9.1517 | | 0.3271 | 33.0 | 108537 | 9.3659 | | 0.2911 | 34.0 | 111826 | 9.4813 | | 0.2836 | 35.0 | 115115 | 9.5746 | | 0.2528 | 36.0 | 118404 | 9.7027 | | 0.2345 | 37.0 | 121693 | 9.7515 | | 0.2184 | 38.0 | 124982 | 9.9729 | | 0.2067 | 39.0 | 128271 | 10.0828 | | 0.2077 | 40.0 | 131560 | 10.0878 | | 0.1876 | 41.0 | 134849 | 10.2974 | | 0.1719 | 42.0 | 138138 | 10.2712 | | 0.1637 | 43.0 | 141427 | 10.5788 | | 0.1482 | 44.0 | 144716 | 10.7465 | | 0.1509 | 45.0 | 148005 | 10.4603 | | 0.1358 | 46.0 | 151294 | 10.7665 | | 0.1316 | 47.0 | 154583 | 10.7724 | | 0.1223 | 48.0 | 157872 | 11.1766 | | 0.1205 | 49.0 | 161161 | 11.1870 | | 0.1203 | 50.0 | 164450 | 11.1053 | | 0.1081 | 51.0 | 167739 | 10.9696 | | 0.103 | 52.0 | 171028 | 11.2010 | | 0.0938 | 53.0 | 174317 | 11.6728 | | 0.0924 | 54.0 | 177606 | 11.1423 | | 0.0922 | 55.0 | 180895 | 11.7409 | | 0.0827 | 56.0 | 184184 | 11.7850 | | 0.0829 | 57.0 | 187473 | 11.8956 | | 0.073 | 58.0 | 190762 | 11.8915 | | 0.0788 | 59.0 | 194051 | 12.1617 | | 0.0734 | 60.0 | 197340 | 12.2007 | | 0.0729 | 61.0 | 200629 | 12.2388 | | 0.0663 | 62.0 | 203918 | 12.2471 | | 0.0662 | 63.0 | 207207 | 12.5830 | | 0.064 | 64.0 | 210496 | 12.6105 | | 0.0599 | 65.0 | 213785 | 12.3712 | | 0.0604 | 66.0 | 217074 | 12.9249 | | 0.0574 | 67.0 | 220363 | 12.7309 | | 0.0538 | 68.0 | 223652 | 12.8068 | | 0.0526 | 69.0 | 226941 | 13.4368 | | 0.0471 | 70.0 | 230230 | 13.5148 | | 0.0436 | 71.0 | 233519 | 13.3391 | | 0.0448 | 72.0 | 236808 | 13.4100 | | 0.0428 | 73.0 | 240097 | 13.5617 | | 0.0401 | 74.0 | 243386 | 13.8674 | | 0.035 | 75.0 | 246675 | 13.5746 | | 0.0342 | 76.0 | 249964 | 13.5042 | | 0.0344 | 77.0 | 253253 | 14.2085 | | 0.0365 | 78.0 | 256542 | 13.6393 | | 0.0306 | 79.0 | 259831 | 13.9807 | | 0.0311 | 80.0 | 263120 | 13.9768 | | 0.0353 | 81.0 | 266409 | 14.5245 | | 0.0299 | 82.0 | 269698 | 13.9471 | | 0.0263 | 83.0 | 272987 | 13.7899 | | 0.0254 | 84.0 | 276276 | 14.3786 | | 0.0267 | 85.0 | 279565 | 14.5611 | | 0.022 | 86.0 | 282854 | 14.2658 | | 0.0198 | 87.0 | 286143 | 14.9215 | | 0.0193 | 88.0 | 289432 | 14.5650 | | 0.0228 | 89.0 | 292721 | 14.7014 | | 0.0184 | 90.0 | 296010 | 14.6946 | | 0.0182 | 91.0 | 299299 | 14.6614 | | 0.0188 | 92.0 | 302588 | 14.6915 | | 0.0196 | 93.0 | 305877 | 14.7262 | | 0.0138 | 94.0 | 309166 | 14.7625 | | 0.0201 | 95.0 | 312455 | 15.0442 | | 0.0189 | 96.0 | 315744 | 14.8832 | | 0.0148 | 97.0 | 319033 | 14.8995 | | 0.0129 | 98.0 | 322322 | 14.8974 | | 0.0132 | 99.0 | 325611 | 14.9813 | | 0.0139 | 100.0 | 328900 | 14.9594 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
S2312dal/M5_MLM
1d28b1c7f62cb935a0aa88617c2ea8b023bc7865
2022-06-17T08:25:48.000Z
[ "pytorch", "tensorboard", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M5_MLM
1
null
transformers
32,972
--- license: mit tags: - generated_from_trainer model-index: - name: M5_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M5_MLM This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.8279 | 1.0 | 62 | 7.9889 | | 7.7536 | 2.0 | 124 | 7.3750 | | 7.2065 | 3.0 | 186 | 6.8625 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M7_MLM
cb0e5ee487aa46fff06386d2c0c63b2bcf3f4acb
2022-06-17T08:49:00.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M7_MLM
1
null
transformers
32,973
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M7_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M7_MLM This model is a fine-tuned version of [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.2304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.2227 | 1.0 | 25 | 8.6091 | | 8.6536 | 2.0 | 50 | 8.2492 | | 8.5065 | 3.0 | 75 | 8.3056 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M8_MLM
043d1e6891fde585eb80813065b7c58c5c300773
2022-06-17T08:55:06.000Z
[ "pytorch", "tensorboard", "albert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M8_MLM
1
null
transformers
32,974
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M8_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M8_MLM This model is a fine-tuned version of [sentence-transformers/paraphrase-albert-small-v2](https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.9140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.5021 | 1.0 | 25 | 9.1463 | | 9.0507 | 2.0 | 50 | 8.9504 | | 8.9528 | 3.0 | 75 | 8.9148 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ahujaniharika95/roberta-base-squad2-finetuned-squad
4097c98bac7c851c6c25300cb54ea4af13491a5b
2022-06-21T14:06:07.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ahujaniharika95
null
ahujaniharika95/roberta-base-squad2-finetuned-squad
1
null
transformers
32,975
Entry not found
Sanjeev49/mariaJ
de7b52d7b10d556c43d0e4c40a22d5e0b35b1fe6
2022-06-20T08:59:55.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Sanjeev49
null
Sanjeev49/mariaJ
1
1
transformers
32,976
This model translate engilish to romanian language. This model has been build using Helsinki-NLP/opus-mt-en-ro prebuild model. The dataset has been used for this model was "wmt16", "ro-en" dataset. Tensorflow has been used for finetunning this model. Trainning epoch was 1 for this for finetunning model.
anibahug/marian-finetuned-kde4-en-to-ar
0aadad8db21e057eb0e48cd18c73c790da60e722
2022-06-18T15:19:04.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
anibahug
null
anibahug/marian-finetuned-kde4-en-to-ar
1
null
transformers
32,977
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-ar This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the kde4 dataset. ## Model description if you want to learn about the model used check [Helsinki-NLP Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) ## Intended uses & limitations ## Training and evaluation data More information needed ## Training procedure the training was done on google colab. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sasuke/gpt2-wikitext2
872563c729363b8d00bc0927ed1cbab2a622972b
2022-06-17T15:02:05.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
sasuke
null
sasuke/gpt2-wikitext2
1
null
transformers
32,978
Entry not found
loubnabnl/codeparrot-small-near-dedup
015e1dc76630179d0f4f84c4e013d1cf272e2e73
2022-06-18T20:59:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
loubnabnl
null
loubnabnl/codeparrot-small-near-dedup
1
null
transformers
32,979
--- license: apache-2.0 ---
ericklerouge123/xlm-roberta-base-finetuned-panx-de
c4f16c55b3b4f76be260c09cfec9a748f87398bc
2022-07-14T14:05:25.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ericklerouge123
null
ericklerouge123/xlm-roberta-base-finetuned-panx-de
1
null
transformers
32,980
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
gemasphi/laprador_f
dfd84070c29a7dde6f62f7f3563ece4f625846db
2022-06-17T21:11:03.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador_f
1
null
sentence-transformers
32,981
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_f This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_f') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_f') model = AutoModel.from_pretrained('gemasphi/laprador_f') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_f) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NadiaSan/udesa-model-aah-es-r-25k
6a18c4f689fd87c77c8695098d0064e4bf2af17d
2022-06-17T21:46:41.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
NadiaSan
null
NadiaSan/udesa-model-aah-es-r-25k
1
1
transformers
32,982
Entry not found
huggingtweets/datgameryolo
ef136183c1a5d246a7e99761aa5a38f109e412d8
2022-06-17T21:54:15.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/datgameryolo
1
null
transformers
32,983
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1319790462966837248/wzixCGlX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DatGamerYolo</div> <div style="text-align: center; font-size: 14px;">@datgameryolo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from DatGamerYolo. | Data | DatGamerYolo | | --- | --- | | Tweets downloaded | 173 | | Retweets | 8 | | Short tweets | 44 | | Tweets kept | 121 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wrqoqd8d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @datgameryolo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1h9mtj40) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1h9mtj40/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/datgameryolo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1
7fd58da77ca825df970a0275deecd4aecbbbcbc8
2022-06-19T00:31:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1
1
1
transformers
32,984
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4123 - Wer: 0.1668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2696 | 1.0 | 552 | 0.4421 | 0.2013 | | 0.2498 | 2.0 | 1104 | 0.4389 | 0.1887 | | 0.2387 | 3.0 | 1656 | 0.4154 | 0.1788 | | 0.1902 | 4.0 | 2208 | 0.4143 | 0.1753 | | 0.1896 | 5.0 | 2760 | 0.4123 | 0.1668 | | 0.1658 | 6.0 | 3312 | 0.4366 | 0.1651 | | 0.1312 | 7.0 | 3864 | 0.4309 | 0.1594 | | 0.1186 | 8.0 | 4416 | 0.4432 | 0.1561 | | 0.1476 | 9.0 | 4968 | 0.4400 | 0.1569 | | 0.1027 | 10.0 | 5520 | 0.4389 | 0.1554 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
Nadav/xlm-roberta-base-finetuned-on-runaways-nl
496f09bdc454609e32a9ee2e69797dbf96e28ba4
2022-06-18T09:21:01.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Nadav
null
Nadav/xlm-roberta-base-finetuned-on-runaways-nl
1
null
transformers
32,985
Entry not found
Nadav/xlm-roberta-base-squad-finetuned-on-runaways-nl
e8cc869c4aeb235f0602d3c0e39d382b5c3d7351
2022-06-18T09:35:01.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Nadav
null
Nadav/xlm-roberta-base-squad-finetuned-on-runaways-nl
1
null
transformers
32,986
Entry not found
nestoralvaro/mt5-small-test-amazon
048612a9d0bc57f8459c26255f7d979b30cd0a35
2022-06-18T11:51:27.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
nestoralvaro
null
nestoralvaro/mt5-small-test-amazon
1
null
transformers
32,987
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-test-amazon results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-test-amazon This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9515 - Rouge1: 30.3066 - Rouge2: 3.3019 - Rougel: 30.1887 - Rougelsum: 30.0314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 10.0147 | 1.0 | 1004 | 2.9904 | 7.3703 | 0.2358 | 7.3703 | 7.4292 | | 3.4892 | 2.0 | 2008 | 2.4061 | 23.4178 | 2.4764 | 23.2901 | 23.3097 | | 2.724 | 3.0 | 3012 | 2.1630 | 26.6706 | 2.8302 | 26.6509 | 26.5723 | | 2.4395 | 4.0 | 4016 | 2.0815 | 26.7296 | 2.9481 | 26.6313 | 26.533 | | 2.2881 | 5.0 | 5020 | 2.0048 | 30.1887 | 3.3019 | 30.0708 | 29.9135 | | 2.1946 | 6.0 | 6024 | 1.9712 | 29.4811 | 2.9481 | 29.4025 | 29.3042 | | 2.1458 | 7.0 | 7028 | 1.9545 | 29.8153 | 3.3019 | 29.717 | 29.5204 | | 2.1069 | 8.0 | 8032 | 1.9515 | 30.3066 | 3.3019 | 30.1887 | 30.0314 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nestoralvaro/mt5-small-test-amazon-v2
e51192da19b5de9674cd8e980f2ccdc3cd5b2fac
2022-06-18T13:28:50.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
nestoralvaro
null
nestoralvaro/mt5-small-test-amazon-v2
1
null
transformers
32,988
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-test-amazon-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-test-amazon-v2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0555 - Rouge1: 27.8124 - Rouge2: 15.3682 - Rougel: 27.8646 - Rougelsum: 27.9044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 6.2982 | 1.0 | 1935 | 2.7890 | 23.293 | 12.7229 | 23.3183 | 23.3368 | | 2.9801 | 2.0 | 3870 | 2.4341 | 25.9888 | 14.0833 | 26.07 | 26.0897 | | 2.5025 | 3.0 | 5805 | 2.2611 | 26.5127 | 14.5775 | 26.5105 | 26.5442 | | 2.2681 | 4.0 | 7740 | 2.1966 | 27.7476 | 14.9971 | 27.835 | 27.8186 | | 2.1198 | 5.0 | 9675 | 2.1209 | 27.3796 | 15.1938 | 27.4549 | 27.4759 | | 2.0089 | 6.0 | 11610 | 2.0856 | 27.6637 | 15.2345 | 27.7419 | 27.7608 | | 1.9416 | 7.0 | 13545 | 2.0637 | 27.9013 | 15.3682 | 27.9621 | 27.9833 | | 1.9034 | 8.0 | 15480 | 2.0555 | 27.8124 | 15.3682 | 27.8646 | 27.9044 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lmqg/t5-base-subjqa-vanilla-books
deba1ae6667bc99f8f6b14c6ec4424c65816c0aa
2022-06-18T13:56:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-vanilla-books
1
null
transformers
32,989
Entry not found
janeel/roberta-base-finetuned-squad
855f5d44926eebe4dc17bcff5c4816f8c6a911a0
2022-06-19T04:32:50.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
janeel
null
janeel/roberta-base-finetuned-squad
1
null
transformers
32,990
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8678 | 1.0 | 8239 | 0.8014 | | 0.6423 | 2.0 | 16478 | 0.8556 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lmqg/t5-small-subjqa-vanilla-books
e9c77fc653b6b95d68c3c34fb05affc9d2fefe82
2022-06-18T14:12:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-vanilla-books
1
null
transformers
32,991
Entry not found
nestoralvaro/mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10
8181d57191af9c14430383fe567fb9a8e3d6fccc
2022-06-19T13:34:09.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
nestoralvaro
null
nestoralvaro/mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10
1
null
transformers
32,992
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0338 - Rouge1: 28.7359 - Rouge2: 15.6289 - Rougel: 28.6407 - Rougelsum: 28.7016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 6.0554 | 1.0 | 1935 | 2.7346 | 23.7306 | 13.3598 | 23.7172 | 23.7447 | | 2.9111 | 2.0 | 3870 | 2.3916 | 26.5211 | 14.5628 | 26.4827 | 26.5716 | | 2.464 | 3.0 | 5805 | 2.2382 | 27.4404 | 15.1211 | 27.3331 | 27.401 | | 2.2328 | 4.0 | 7740 | 2.1557 | 28.3377 | 14.7406 | 28.2386 | 28.249 | | 2.0845 | 5.0 | 9675 | 2.1324 | 29.1476 | 15.7579 | 29.0614 | 29.1701 | | 1.9825 | 6.0 | 11610 | 2.0668 | 28.4677 | 15.3332 | 28.4128 | 28.4093 | | 1.9233 | 7.0 | 13545 | 2.0441 | 28.6832 | 15.5251 | 28.5723 | 28.6479 | | 1.8842 | 8.0 | 15480 | 2.0338 | 28.7359 | 15.6289 | 28.6407 | 28.7016 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
anibahug/mt5-small-finetuned-amazon-en-de
d80260e66cca53283da0158f03b6f5fd50651fb6
2022-06-18T15:39:26.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
anibahug
null
anibahug/mt5-small-finetuned-amazon-en-de
1
null
transformers
32,993
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-de This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [Amazon reviews multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset. It achieves the following results on the evaluation set: - Loss: 3.2896 - Rouge1: 14.7163 - Rouge2: 6.6341 - Rougel: 14.2052 - Rougelsum: 14.2318 ## Model description the model can summarize texts for english and deutsch ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure the training was done on google colab ( using it's free GPU) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.2925 | 1.0 | 1276 | 3.5751 | 13.6254 | 6.0527 | 13.109 | 13.1438 | | 4.0677 | 2.0 | 2552 | 3.4031 | 13.5907 | 6.068 | 13.3526 | 13.2471 | | 3.7458 | 3.0 | 3828 | 3.3434 | 14.7229 | 6.8482 | 14.1443 | 14.2218 | | 3.5831 | 4.0 | 5104 | 3.3353 | 14.8696 | 6.6371 | 14.1342 | 14.2907 | | 3.4841 | 5.0 | 6380 | 3.3037 | 14.233 | 6.2318 | 13.9218 | 13.9781 | | 3.4142 | 6.0 | 7656 | 3.2914 | 13.7344 | 5.9446 | 13.5476 | 13.6362 | | 3.3587 | 7.0 | 8932 | 3.2959 | 14.2007 | 6.1905 | 13.5255 | 13.5237 | | 3.3448 | 8.0 | 10208 | 3.2896 | 14.7163 | 6.6341 | 14.2052 | 14.2318 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bert-base-xsum
17f568f47ecadd544cbef785b79a8efa9108a72a
2022-06-18T14:36:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Aktsvigun
null
Aktsvigun/bert-base-xsum
1
null
transformers
32,994
Entry not found
theojolliffe/bart-cnn-science-v3-e5-v4-e6-manual
08df59da3475bd7c37d88c144e023e762b0991ee
2022-06-18T15:08:31.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science-v3-e5-v4-e6-manual
1
null
transformers
32,995
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e5-v4-e6-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e5-v4-e6-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e5](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8609 - Rouge1: 54.0982 - Rouge2: 36.1022 - Rougel: 36.9584 - Rougelsum: 52.5383 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 0.7022 | 56.9307 | 38.2717 | 39.9091 | 53.9037 | 142.0 | | No log | 2.0 | 84 | 0.6840 | 50.7036 | 29.9002 | 33.0298 | 47.8775 | 142.0 | | No log | 3.0 | 126 | 0.7179 | 52.8561 | 32.2202 | 35.7914 | 51.0248 | 142.0 | | No log | 4.0 | 168 | 0.8149 | 54.8457 | 36.4705 | 35.931 | 52.4241 | 142.0 | | No log | 5.0 | 210 | 0.8330 | 55.6746 | 37.8316 | 36.9614 | 54.3022 | 142.0 | | No log | 6.0 | 252 | 0.8609 | 54.0982 | 36.1022 | 36.9584 | 52.5383 | 142.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e1-v4-e4-manual
c34a75fa85fecd210301a24cdef773f835c730b5
2022-06-18T17:13:00.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science-v3-e1-v4-e4-manual
1
null
transformers
32,996
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e1-v4-e4-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e1-v4-e4-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e1](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2615 - Rouge1: 53.36 - Rouge2: 32.0237 - Rougel: 33.2835 - Rougelsum: 50.7455 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 1.0675 | 51.743 | 31.3774 | 34.1939 | 48.7234 | 142.0 | | No log | 2.0 | 84 | 1.0669 | 49.4166 | 28.1438 | 30.188 | 46.0289 | 142.0 | | No log | 3.0 | 126 | 1.1799 | 52.6909 | 31.0174 | 35.441 | 50.0351 | 142.0 | | No log | 4.0 | 168 | 1.2615 | 53.36 | 32.0237 | 33.2835 | 50.7455 | 142.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e1-v4-e6-manual
acc39f3fac80b87c4a969fa20df0c4f32de77721
2022-06-18T17:37:36.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science-v3-e1-v4-e6-manual
1
null
transformers
32,997
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e1-v4-e6-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e1-v4-e6-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e1](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4513 - Rouge1: 51.4471 - Rouge2: 31.5595 - Rougel: 31.7717 - Rougelsum: 49.4999 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 1.0691 | 51.1883 | 31.2479 | 33.7004 | 48.9571 | 142.0 | | No log | 2.0 | 84 | 1.0883 | 51.7634 | 29.8573 | 30.7155 | 49.3378 | 142.0 | | No log | 3.0 | 126 | 1.2355 | 52.9606 | 31.3539 | 33.5131 | 49.9275 | 142.0 | | No log | 4.0 | 168 | 1.3430 | 52.2108 | 32.7896 | 34.65 | 50.4271 | 139.1 | | No log | 5.0 | 210 | 1.3963 | 51.5335 | 30.4157 | 31.5759 | 49.6904 | 142.0 | | No log | 6.0 | 252 | 1.4513 | 51.4471 | 31.5595 | 31.7717 | 49.4999 | 142.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
NadiaSan/udesa-model-aah-es-b-25k
bfcecde3ece414ea8cc32dbc4a499ee6439e9b58
2022-06-18T22:25:56.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
NadiaSan
null
NadiaSan/udesa-model-aah-es-b-25k
1
null
transformers
32,998
Entry not found
anugunj/omnivore-swinL-in21k
d71828fffd64ae94a6f6d26ab8d547ed45b4eb37
2022-06-19T00:18:18.000Z
[ "pytorch", "omnivore", "transformers" ]
null
false
anugunj
null
anugunj/omnivore-swinL-in21k
1
null
transformers
32,999
Entry not found