modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
erickfm/t5-small-finetuned-bias-v8
7abddfbe4f6bf8bbf0d7615361d775192ec15980
2022-06-07T21:38:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-v8
1
null
transformers
32,700
Entry not found
erickfm/t5-small-finetuned-bias-sweep-08544cdb
0bd29a22b264930c1c923f2430219d021f792235
2022-06-07T21:45:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-08544cdb
1
null
transformers
32,701
Entry not found
simonnedved/bert-seg-with-cf
a877c7cf2674cd7fcf7cd74f762871fed0c69cb5
2022-06-08T00:34:12.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
simonnedved
null
simonnedved/bert-seg-with-cf
1
null
transformers
32,702
--- license: apache-2.0 ---
twieland/VN_ja-en_byt5
9af0576322d906731d1446bec13b3758d77a6451
2022-06-08T01:42:43.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/VN_ja-en_byt5
1
null
transformers
32,703
Entry not found
Lekshmiprabha/opus-mt-en-ro-finetuned-en-to-ro
7a1a290f4b192e7e3949fc546ffafd16fdc37af8
2022-06-08T03:36:47.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lekshmiprabha
null
Lekshmiprabha/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
32,704
Entry not found
erickfm/t5-small-finetuned-bias-sweep-cb55d551
74e3a07861d187a086937026aa857d9a4a30f40d
2022-06-08T01:30:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-cb55d551
1
null
transformers
32,705
Entry not found
twieland/VN_ja-en_byt5_small
aa3faf6eefff530eea94e6d6447e2280f0b8627b
2022-06-08T14:53:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/VN_ja-en_byt5_small
1
null
transformers
32,706
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: VN_ja-en_byt5_small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VN_ja-en_byt5_small This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1687 | 0.1 | 2000 | 1.1805 | | 0.9685 | 0.19 | 4000 | 1.1384 | | 0.8989 | 0.29 | 6000 | 1.1207 | | 0.8583 | 0.39 | 8000 | 1.1046 | | 0.833 | 0.49 | 10000 | 1.1290 | | 0.8102 | 0.58 | 12000 | 1.1225 | | 0.7932 | 0.68 | 14000 | 1.0956 | | 0.7776 | 0.78 | 16000 | 1.0970 | | 0.762 | 0.88 | 18000 | 1.0992 | | 0.7522 | 0.97 | 20000 | 1.0760 | | 0.7318 | 1.07 | 22000 | 1.0579 | | 0.7197 | 1.17 | 24000 | 1.0780 | | 0.7142 | 1.27 | 26000 | 1.0748 | | 0.7093 | 1.36 | 28000 | 1.0781 | | 0.7005 | 1.46 | 30000 | 1.0756 | | 0.6938 | 1.56 | 32000 | 1.0702 | | 0.6896 | 1.65 | 34000 | 1.0563 | | 0.6846 | 1.75 | 36000 | 1.0603 | | 0.6807 | 1.85 | 38000 | 1.0626 | | 0.6766 | 1.95 | 40000 | 1.0666 | | 0.6649 | 2.04 | 42000 | 1.0694 | | 0.6532 | 2.14 | 44000 | 1.0564 | | 0.6501 | 2.24 | 46000 | 1.0715 | | 0.6476 | 2.34 | 48000 | 1.0551 | | 0.646 | 2.43 | 50000 | 1.0601 | | 0.6445 | 2.53 | 52000 | 1.0595 | | 0.6404 | 2.63 | 54000 | 1.0494 | | 0.6378 | 2.72 | 56000 | 1.0584 | | 0.636 | 2.82 | 58000 | 1.0531 | | 0.6345 | 2.92 | 60000 | 1.0552 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/_pancagkes
7a55e82fbe3ad9e9ae72a665c25294dc7b5a7367
2022-06-08T02:40:03.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/_pancagkes
1
null
transformers
32,707
--- language: en thumbnail: http://www.huggingtweets.com/_pancagkes/1654655985301/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1525194520970899457/uqCAbAl__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">carlala</div> <div style="text-align: center; font-size: 14px;">@_pancagkes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from carlala. | Data | carlala | | --- | --- | | Tweets downloaded | 3096 | | Retweets | 2299 | | Short tweets | 253 | | Tweets kept | 544 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/w3ejvw24/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_pancagkes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e8xcsmm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e8xcsmm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_pancagkes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
erickfm/t5-small-finetuned-bias-sweep-c649f8e9
9cb389d652ab22b62b7f4b5c47a2d08a1c2824a6
2022-06-08T03:19:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-c649f8e9
1
null
transformers
32,708
Entry not found
erickfm/t5-small-finetuned-bias-sweep-85ba4637
17c81f2826c3cd3f30aa0ec6916122101aad8dff
2022-06-08T03:42:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-85ba4637
1
null
transformers
32,709
Entry not found
nloc2578/3rd
c68e7be87d8cadbf07f49f5f8af6d4a32af706fe
2022-06-08T09:03:38.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
nloc2578
null
nloc2578/3rd
1
null
transformers
32,710
--- tags: - generated_from_trainer model-index: - name: 3rd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 3rd This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0015 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.1114 | 0.18 | 1500 | 3.0346 | | 3.0808 | 0.36 | 3000 | 2.9687 | | 2.9443 | 0.54 | 4500 | 2.9548 | | 2.9606 | 0.72 | 6000 | 2.8818 | | 2.9475 | 0.9 | 7500 | 2.8668 | | 2.4882 | 1.08 | 9000 | 2.8979 | | 2.5669 | 1.26 | 10500 | 2.8673 | | 2.5047 | 1.44 | 12000 | 2.8176 | | 2.5524 | 1.62 | 13500 | 2.8458 | | 2.5275 | 1.8 | 15000 | 2.7372 | | 2.4982 | 1.98 | 16500 | 2.7297 | | 1.9936 | 2.16 | 18000 | 2.7922 | | 2.0063 | 2.34 | 19500 | 2.7160 | | 1.9143 | 2.52 | 21000 | 2.7135 | | 1.9644 | 2.7 | 22500 | 2.6860 | | 1.9235 | 2.88 | 24000 | 2.6462 | | 1.381 | 3.06 | 25500 | 2.8203 | | 1.3569 | 3.24 | 27000 | 2.8321 | | 1.4043 | 3.42 | 28500 | 2.8262 | | 1.365 | 3.6 | 30000 | 2.8376 | | 1.3719 | 3.78 | 31500 | 2.8236 | | 1.3408 | 3.96 | 33000 | 2.8129 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.9_topk50_epoch3
0258aebb167f27bc4b46f4aa5cd521831ec3c879
2022-06-08T06:18:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.9_topk50_epoch3
1
null
transformers
32,711
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.9_topk40_epoch3
1c9bf0b42e118a9bfb69186639dc29f590ae06df
2022-06-08T07:46:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.9_topk40_epoch3
1
null
transformers
32,712
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.9_topk30_epoch3
8fe35f1b571210d57c7b61bd7974b653e80211a7
2022-06-08T09:15:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.9_topk30_epoch3
1
null
transformers
32,713
Entry not found
Jawaher/Covid19-fake-news-bert-uncased
d1ee887678274c7ce5315856fbe3fe384b958aee
2022-06-08T11:02:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jawaher
null
Jawaher/Covid19-fake-news-bert-uncased
1
null
transformers
32,714
Domain adaptation is the process of fine-tuning pre-trained language models (PLMs) on domain-specific datasets to produce predictions that are better suited to the new datasets. Here, we re-train the BERT-base-uncased model on an unlabelled COVID-19 fake news dataset (Constraint@AAAI2021) using the masked language modeling (MLM) objective, where 15% of input text is masked, and the model is expected to predict the masked tokens.
huggingtweets/conspiracymill
298d9834b2948c961c7b91d33da0047899709855
2022-06-08T10:46:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/conspiracymill
1
null
transformers
32,715
--- language: en thumbnail: http://www.huggingtweets.com/conspiracymill/1654685163989/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447765226376638469/EuvZlKan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Conspiracy Mill</div> <div style="text-align: center; font-size: 14px;">@conspiracymill</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Conspiracy Mill. | Data | Conspiracy Mill | | --- | --- | | Tweets downloaded | 3196 | | Retweets | 626 | | Short tweets | 869 | | Tweets kept | 1701 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yowpn7j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conspiracymill's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39srf3ca) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39srf3ca/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conspiracymill') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
roscazo/covid-model
b6abd1c83ad9653db3800bf9b35f5392c1c0de98
2022-06-08T11:11:58.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
roscazo
null
roscazo/covid-model
1
null
transformers
32,716
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk50_epoch3
55657bffc8024c86eebbcb4aafffa6e2013bbd5d
2022-06-08T11:52:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk50_epoch3
1
null
transformers
32,717
Entry not found
oftshsl/t5_ua_gec
72896eff252e0b91b0503fd60e2635716d2e2a59
2022-06-08T13:37:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:other", "autotrain_compatible" ]
text2text-generation
false
oftshsl
null
oftshsl/t5_ua_gec
1
null
transformers
32,718
--- license: other ---
ctoraman/RoBERTweetTurkCovid
f1b27a1cea91de913cd8ff10225d50151d6538a8
2022-06-19T14:25:58.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTweetTurkCovid
1
null
transformers
32,719
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 --- # RoBERTweetTurkCovid (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is a Turkish tweets collection related to COVID-19. Model architecture is similar to RoBERTa-base (12 layers, 12 heads, and 768 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 30k. The details of pretraining can be found at this paper: ```bibtex @InProceedings{clef-checkthat:2022:task1:oguzhan, author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin}, title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection", year = {2022}, booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum", editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin}, series = {CLEF~'2022}, address = {Bologna, Italy}, } ``` The following code can be used for model loading and tokenization, example max length (768) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 768 ``` ### BibTeX entry and citation info ```bibtex @InProceedings{clef-checkthat:2022:task1:oguzhan, author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin}, title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection", year = {2022}, booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum", editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin}, series = {CLEF~'2022}, address = {Bologna, Italy}, } ```
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk40_epoch3
b55ee0308a895e49de7b10e5826136bdcf2f47a8
2022-06-08T13:21:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk40_epoch3
1
null
transformers
32,720
Entry not found
FabianWillner/distilbert-base-uncased-finetuned-triviaqa-finetuned-squad
ef03bbbe3920c502559a8c3e4b8749fc9eac824d
2022-06-08T15:46:03.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FabianWillner
null
FabianWillner/distilbert-base-uncased-finetuned-triviaqa-finetuned-squad
1
null
transformers
32,721
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-triviaqa-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-triviaqa-finetuned-squad This model is a fine-tuned version of [FabianWillner/distilbert-base-uncased-finetuned-triviaqa](https://huggingface.co/FabianWillner/distilbert-base-uncased-finetuned-triviaqa) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2153 | 1.0 | 5533 | 1.1555 | | 0.9614 | 2.0 | 11066 | 1.1417 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
cutten/wav2vec2-large-multilang-cv-ru-night
4ae74601571b5fd85b938486fb4e05509ac8846a
2022-06-08T19:58:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cutten
null
cutten/wav2vec2-large-multilang-cv-ru-night
1
null
transformers
32,722
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-multilang-cv-ru-night results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-multilang-cv-ru-night This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6617 - Wer: 0.5097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 8.725 | 1.58 | 500 | 3.2788 | 1.0 | | 3.1184 | 3.15 | 1000 | 2.4018 | 1.0015 | | 1.2393 | 4.73 | 1500 | 0.6213 | 0.7655 | | 0.6899 | 6.31 | 2000 | 0.5518 | 0.6811 | | 0.5532 | 7.89 | 2500 | 0.5102 | 0.6467 | | 0.4604 | 9.46 | 3000 | 0.4887 | 0.6213 | | 0.4095 | 11.04 | 3500 | 0.4874 | 0.6042 | | 0.3565 | 12.62 | 4000 | 0.4810 | 0.5893 | | 0.3238 | 14.2 | 4500 | 0.5028 | 0.5890 | | 0.3011 | 15.77 | 5000 | 0.5475 | 0.5808 | | 0.2827 | 17.35 | 5500 | 0.5289 | 0.5720 | | 0.2659 | 18.93 | 6000 | 0.5496 | 0.5733 | | 0.2445 | 20.5 | 6500 | 0.5354 | 0.5737 | | 0.2366 | 22.08 | 7000 | 0.5357 | 0.5686 | | 0.2181 | 23.66 | 7500 | 0.5491 | 0.5611 | | 0.2146 | 25.24 | 8000 | 0.5591 | 0.5597 | | 0.2006 | 26.81 | 8500 | 0.5625 | 0.5631 | | 0.1912 | 28.39 | 9000 | 0.5577 | 0.5647 | | 0.1821 | 29.97 | 9500 | 0.5684 | 0.5519 | | 0.1744 | 31.55 | 10000 | 0.5639 | 0.5551 | | 0.1691 | 33.12 | 10500 | 0.5596 | 0.5425 | | 0.1577 | 34.7 | 11000 | 0.5770 | 0.5551 | | 0.1522 | 36.28 | 11500 | 0.5634 | 0.5560 | | 0.1468 | 37.85 | 12000 | 0.5815 | 0.5453 | | 0.1508 | 39.43 | 12500 | 0.6053 | 0.5490 | | 0.1394 | 41.01 | 13000 | 0.6193 | 0.5504 | | 0.1291 | 42.59 | 13500 | 0.5930 | 0.5424 | | 0.1345 | 44.16 | 14000 | 0.6283 | 0.5442 | | 0.1296 | 45.74 | 14500 | 0.6063 | 0.5560 | | 0.1286 | 47.32 | 15000 | 0.6248 | 0.5378 | | 0.1231 | 48.9 | 15500 | 0.6106 | 0.5405 | | 0.1189 | 50.47 | 16000 | 0.6164 | 0.5342 | | 0.1127 | 52.05 | 16500 | 0.6269 | 0.5359 | | 0.112 | 53.63 | 17000 | 0.6170 | 0.5390 | | 0.1113 | 55.21 | 17500 | 0.6489 | 0.5385 | | 0.1023 | 56.78 | 18000 | 0.6826 | 0.5490 | | 0.1069 | 58.36 | 18500 | 0.6147 | 0.5296 | | 0.1008 | 59.94 | 19000 | 0.6414 | 0.5332 | | 0.1018 | 61.51 | 19500 | 0.6454 | 0.5288 | | 0.0989 | 63.09 | 20000 | 0.6603 | 0.5303 | | 0.0944 | 64.67 | 20500 | 0.6350 | 0.5288 | | 0.0905 | 66.25 | 21000 | 0.6386 | 0.5247 | | 0.0837 | 67.82 | 21500 | 0.6563 | 0.5298 | | 0.0868 | 69.4 | 22000 | 0.6375 | 0.5208 | | 0.0827 | 70.98 | 22500 | 0.6401 | 0.5271 | | 0.0797 | 72.56 | 23000 | 0.6723 | 0.5191 | | 0.0847 | 74.13 | 23500 | 0.6610 | 0.5213 | | 0.0818 | 75.71 | 24000 | 0.6774 | 0.5254 | | 0.0793 | 77.29 | 24500 | 0.6543 | 0.5250 | | 0.0758 | 78.86 | 25000 | 0.6607 | 0.5218 | | 0.0755 | 80.44 | 25500 | 0.6599 | 0.5160 | | 0.0722 | 82.02 | 26000 | 0.6683 | 0.5196 | | 0.0714 | 83.6 | 26500 | 0.6941 | 0.5180 | | 0.0684 | 85.17 | 27000 | 0.6581 | 0.5167 | | 0.0686 | 86.75 | 27500 | 0.6651 | 0.5172 | | 0.0712 | 88.33 | 28000 | 0.6547 | 0.5208 | | 0.0697 | 89.91 | 28500 | 0.6555 | 0.5162 | | 0.0696 | 91.48 | 29000 | 0.6678 | 0.5107 | | 0.0686 | 93.06 | 29500 | 0.6630 | 0.5124 | | 0.0671 | 94.64 | 30000 | 0.6675 | 0.5143 | | 0.0668 | 96.21 | 30500 | 0.6602 | 0.5107 | | 0.0666 | 97.79 | 31000 | 0.6611 | 0.5097 | | 0.0664 | 99.37 | 31500 | 0.6617 | 0.5097 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk30_epoch3
8994790a59f71d5b53511c7cb0c9fef4dcf74b2d
2022-06-08T14:52:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk30_epoch3
1
null
transformers
32,723
Entry not found
erickfm/t5-base-finetuned-bias-sweep-82cfb803
2b5ad37f21b7d5a0d292f20a77a2e270a2eaadfc
2022-06-08T15:43:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-base-finetuned-bias-sweep-82cfb803
1
null
transformers
32,724
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk20_epoch3
1772f1783c999e7c0f486c74353ff46339549051
2022-06-08T16:21:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.8_topk20_epoch3
1
null
transformers
32,725
Entry not found
Vkt/model-960hfacebook-2022.06.08
fe20f0ff3050b6afa618508c3bb90aa148fe8e0c
2022-06-15T18:17:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Vkt
null
Vkt/model-960hfacebook-2022.06.08
1
null
transformers
32,726
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: model-960hfacebook-2022.06.08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-960hfacebook-2022.06.08 This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2907 - Wer: 0.1804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.7634 | 0.21 | 300 | 2.9743 | 0.9998 | | 1.6536 | 0.43 | 600 | 0.8605 | 0.7529 | | 0.9823 | 0.64 | 900 | 0.6600 | 0.6286 | | 0.8708 | 0.86 | 1200 | 0.5780 | 0.5736 | | 0.7878 | 1.07 | 1500 | 0.5386 | 0.5326 | | 0.7033 | 1.29 | 1800 | 0.4986 | 0.4992 | | 0.681 | 1.5 | 2100 | 0.4575 | 0.4778 | | 0.6537 | 1.72 | 2400 | 0.4591 | 0.4482 | | 0.6263 | 1.93 | 2700 | 0.4317 | 0.4353 | | 0.5811 | 2.14 | 3000 | 0.4149 | 0.4159 | | 0.5565 | 2.36 | 3300 | 0.4170 | 0.3956 | | 0.5501 | 2.57 | 3600 | 0.4007 | 0.3929 | | 0.5444 | 2.79 | 3900 | 0.3930 | 0.3851 | | 0.5177 | 3.0 | 4200 | 0.4006 | 0.3630 | | 0.4682 | 3.22 | 4500 | 0.3707 | 0.3713 | | 0.4805 | 3.43 | 4800 | 0.3564 | 0.3583 | | 0.4715 | 3.65 | 5100 | 0.3596 | 0.3434 | | 0.4482 | 3.86 | 5400 | 0.3555 | 0.3394 | | 0.4407 | 4.07 | 5700 | 0.3680 | 0.3312 | | 0.4134 | 4.29 | 6000 | 0.3534 | 0.3328 | | 0.4165 | 4.5 | 6300 | 0.3294 | 0.3259 | | 0.4196 | 4.72 | 6600 | 0.3353 | 0.3214 | | 0.4117 | 4.93 | 6900 | 0.3266 | 0.3211 | | 0.3847 | 5.15 | 7200 | 0.3365 | 0.3156 | | 0.3687 | 5.36 | 7500 | 0.3233 | 0.3014 | | 0.376 | 5.58 | 7800 | 0.3345 | 0.2979 | | 0.3732 | 5.79 | 8100 | 0.3105 | 0.2882 | | 0.3705 | 6.0 | 8400 | 0.3252 | 0.2935 | | 0.3311 | 6.22 | 8700 | 0.3266 | 0.2911 | | 0.3386 | 6.43 | 9000 | 0.2975 | 0.2765 | | 0.337 | 6.65 | 9300 | 0.3070 | 0.2826 | | 0.3458 | 6.86 | 9600 | 0.3090 | 0.2766 | | 0.3218 | 7.08 | 9900 | 0.3117 | 0.2748 | | 0.3041 | 7.29 | 10200 | 0.2989 | 0.2651 | | 0.3031 | 7.51 | 10500 | 0.3210 | 0.2672 | | 0.3037 | 7.72 | 10800 | 0.3040 | 0.2667 | | 0.3126 | 7.93 | 11100 | 0.2867 | 0.2613 | | 0.3005 | 8.15 | 11400 | 0.3075 | 0.2610 | | 0.2802 | 8.36 | 11700 | 0.3129 | 0.2608 | | 0.2785 | 8.58 | 12000 | 0.3002 | 0.2579 | | 0.2788 | 8.79 | 12300 | 0.3063 | 0.2476 | | 0.286 | 9.01 | 12600 | 0.2971 | 0.2495 | | 0.2534 | 9.22 | 12900 | 0.2766 | 0.2452 | | 0.2542 | 9.44 | 13200 | 0.2893 | 0.2405 | | 0.2576 | 9.65 | 13500 | 0.3038 | 0.2518 | | 0.2552 | 9.86 | 13800 | 0.2851 | 0.2429 | | 0.2487 | 10.08 | 14100 | 0.2858 | 0.2356 | | 0.2441 | 10.29 | 14400 | 0.2999 | 0.2364 | | 0.2345 | 10.51 | 14700 | 0.2907 | 0.2373 | | 0.2352 | 10.72 | 15000 | 0.2885 | 0.2402 | | 0.2464 | 10.94 | 15300 | 0.2896 | 0.2339 | | 0.2219 | 11.15 | 15600 | 0.2999 | 0.2351 | | 0.2257 | 11.37 | 15900 | 0.2930 | 0.2326 | | 0.2184 | 11.58 | 16200 | 0.2980 | 0.2353 | | 0.2182 | 11.79 | 16500 | 0.2832 | 0.2296 | | 0.2224 | 12.01 | 16800 | 0.2797 | 0.2285 | | 0.1991 | 12.22 | 17100 | 0.2810 | 0.2296 | | 0.1993 | 12.44 | 17400 | 0.2949 | 0.2253 | | 0.2042 | 12.65 | 17700 | 0.2864 | 0.2207 | | 0.2083 | 12.87 | 18000 | 0.2860 | 0.2278 | | 0.1998 | 13.08 | 18300 | 0.2872 | 0.2232 | | 0.1919 | 13.3 | 18600 | 0.2894 | 0.2247 | | 0.1925 | 13.51 | 18900 | 0.3007 | 0.2234 | | 0.1966 | 13.72 | 19200 | 0.2831 | 0.2176 | | 0.1942 | 13.94 | 19500 | 0.2811 | 0.2161 | | 0.1778 | 14.15 | 19800 | 0.2901 | 0.2196 | | 0.1755 | 14.37 | 20100 | 0.2864 | 0.2188 | | 0.1795 | 14.58 | 20400 | 0.2927 | 0.2170 | | 0.1817 | 14.8 | 20700 | 0.2846 | 0.2156 | | 0.1754 | 15.01 | 21000 | 0.3036 | 0.2137 | | 0.1674 | 15.23 | 21300 | 0.2876 | 0.2156 | | 0.171 | 15.44 | 21600 | 0.2812 | 0.2106 | | 0.1603 | 15.65 | 21900 | 0.2692 | 0.2093 | | 0.1663 | 15.87 | 22200 | 0.2745 | 0.2094 | | 0.1608 | 16.08 | 22500 | 0.2807 | 0.2043 | | 0.1555 | 16.3 | 22800 | 0.2872 | 0.2036 | | 0.1546 | 16.51 | 23100 | 0.2837 | 0.2049 | | 0.1515 | 16.73 | 23400 | 0.2746 | 0.2031 | | 0.1571 | 16.94 | 23700 | 0.2767 | 0.2047 | | 0.1498 | 17.16 | 24000 | 0.2837 | 0.2050 | | 0.143 | 17.37 | 24300 | 0.2745 | 0.2038 | | 0.1471 | 17.58 | 24600 | 0.2787 | 0.2004 | | 0.1442 | 17.8 | 24900 | 0.2779 | 0.2005 | | 0.1481 | 18.01 | 25200 | 0.2906 | 0.2021 | | 0.1318 | 18.23 | 25500 | 0.2936 | 0.1991 | | 0.1396 | 18.44 | 25800 | 0.2913 | 0.1984 | | 0.144 | 18.66 | 26100 | 0.2806 | 0.1953 | | 0.1341 | 18.87 | 26400 | 0.2896 | 0.1972 | | 0.1375 | 19.09 | 26700 | 0.2937 | 0.2002 | | 0.1286 | 19.3 | 27000 | 0.2929 | 0.1954 | | 0.1242 | 19.51 | 27300 | 0.2968 | 0.1962 | | 0.1305 | 19.73 | 27600 | 0.2879 | 0.1944 | | 0.1287 | 19.94 | 27900 | 0.2850 | 0.1937 | | 0.1286 | 20.16 | 28200 | 0.2910 | 0.1961 | | 0.121 | 20.37 | 28500 | 0.2908 | 0.1912 | | 0.1264 | 20.59 | 28800 | 0.2853 | 0.1904 | | 0.1238 | 20.8 | 29100 | 0.2913 | 0.1926 | | 0.117 | 21.02 | 29400 | 0.2907 | 0.1922 | | 0.1154 | 21.23 | 29700 | 0.2902 | 0.1888 | | 0.1142 | 21.44 | 30000 | 0.2854 | 0.1907 | | 0.1168 | 21.66 | 30300 | 0.2918 | 0.1873 | | 0.1168 | 21.87 | 30600 | 0.2897 | 0.1873 | | 0.1105 | 22.09 | 30900 | 0.2951 | 0.1856 | | 0.1134 | 22.3 | 31200 | 0.2842 | 0.1847 | | 0.1111 | 22.52 | 31500 | 0.2884 | 0.1829 | | 0.1088 | 22.73 | 31800 | 0.2991 | 0.1840 | | 0.1139 | 22.94 | 32100 | 0.2876 | 0.1839 | | 0.1078 | 23.16 | 32400 | 0.2899 | 0.1830 | | 0.1087 | 23.37 | 32700 | 0.2927 | 0.1803 | | 0.1076 | 23.59 | 33000 | 0.2924 | 0.1801 | | 0.11 | 23.8 | 33300 | 0.2877 | 0.1804 | | 0.1067 | 24.02 | 33600 | 0.2918 | 0.1799 | | 0.1104 | 24.23 | 33900 | 0.2908 | 0.1809 | | 0.1023 | 24.45 | 34200 | 0.2939 | 0.1807 | | 0.0993 | 24.66 | 34500 | 0.2925 | 0.1802 | | 0.1053 | 24.87 | 34800 | 0.2907 | 0.1804 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu111 - Datasets 2.2.1 - Tokenizers 0.12.1
mischi001/bert-base-uncased-gu-128
141785b90561462e9f6649a797386f35e8986619
2022-06-08T16:28:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
mischi001
null
mischi001/bert-base-uncased-gu-128
1
null
transformers
32,727
--- license: apache-2.0 ---
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.7_topk50_epoch3
9521367a7fcce07c370330ee0a2b037f9b0ca010
2022-06-08T17:51:23.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.7_topk50_epoch3
1
null
transformers
32,728
Entry not found
victorlee071200/distilbert-base-cased-finetuned-squad_v2
8ab917ff6ffac95b40b4c4ee78824129ddf1ba6b
2022-06-09T07:51:00.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
victorlee071200
null
victorlee071200/distilbert-base-cased-finetuned-squad_v2
1
null
transformers
32,729
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-cased-finetuned-squad_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-squad_v2 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2416 | 1.0 | 8255 | 1.2973 | | 0.9689 | 2.0 | 16510 | 1.3242 | | 0.7803 | 3.0 | 24765 | 1.4225 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
erickfm/t5-base-finetuned-bias-sweep-240a1767
0dfa0f370ea46fd175ca27d7dbac6e0fcdfaf9c7
2022-06-08T18:16:43.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-base-finetuned-bias-sweep-240a1767
1
null
transformers
32,730
Entry not found
CataME/tp_nlp_Robertuito
7ff115c815dcb201510eb5753c76122e324217a4
2022-06-08T18:56:13.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
CataME
null
CataME/tp_nlp_Robertuito
1
null
transformers
32,731
Entry not found
simecek/DNADebertaSmall
4cbb4b0e1f70771daf4b5e0486a91a552f7b1ea6
2022-06-09T17:44:29.000Z
[ "pytorch", "tensorboard", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNADebertaSmall
1
null
transformers
32,732
Entry not found
CataME/tp_nlp_Ruperta
f4aaaea53c966af4c6b70e1a8183cccc7637c504
2022-06-08T21:36:00.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
CataME
null
CataME/tp_nlp_Ruperta
1
null
transformers
32,733
Entry not found
Vlasta/humandna_deberta_default_empty_stud_8442
e0947fd2730d41b0b030d315e6bafbfd8f8b1355
2022-06-08T21:39:20.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_deberta_default_empty_stud_8442
1
null
transformers
32,734
Entry not found
meghazisofiane/opus-mt-en-ar-finetuned-en-to-ar-test2-instances
15f0afbe7de199aebcdda8adf730e2d5527c17ca
2022-06-08T23:32:45.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:un_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
meghazisofiane
null
meghazisofiane/opus-mt-en-ar-finetuned-en-to-ar-test2-instances
1
null
transformers
32,735
--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi model-index: - name: opus-mt-en-ar-finetuned-en-to-ar-test2-instances results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-finetuned-en-to-ar-test2-instances This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 1 | 0.8295 | 66.2993 | 37.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
CataME/tp_nlp_Bertin
965c6f48d0fb0c3d9d245c8430b06849afad4a07
2022-06-09T00:16:55.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
CataME
null
CataME/tp_nlp_Bertin
1
null
transformers
32,736
Entry not found
erickfm/t5-base-finetuned-bias-sweep-21d27db3
07feac6da6c57cbbafac1f91ad317aa16e5ef1f5
2022-06-09T00:16:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-base-finetuned-bias-sweep-21d27db3
1
null
transformers
32,737
Entry not found
valhalla/ldm-bert
afbadf8b80ed8e51a9eacd27ffadedf68b23f294
2022-06-09T02:01:28.000Z
[ "pytorch", "ldmbert", "transformers" ]
null
false
valhalla
null
valhalla/ldm-bert
1
null
transformers
32,738
Entry not found
Vlasta/humandna_bert_default
abb5a36ac4d0e5f5464588782419fb71fc9bdb2e
2022-06-09T02:31:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_bert_default
1
null
transformers
32,739
Entry not found
crystina-z/mdpr-tied-mmarco-ru
be7688c4e202a4d7ec7c3b055278cf502cdfc3ec
2022-06-09T05:56:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-tied-mmarco-ru
1
null
transformers
32,740
Entry not found
twieland/SUBTITLE_ja-en_helsinki
4ff1d591ac2ec1e312c4ab1632462c51e4f4a2e1
2022-06-09T10:23:09.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/SUBTITLE_ja-en_helsinki
1
null
transformers
32,741
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SUBTITLE_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SUBTITLE_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.4097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.025 | 0.05 | 2000 | 5.1692 | | 2.9548 | 0.09 | 4000 | 5.7128 | | 2.8762 | 0.14 | 6000 | 5.9297 | | 2.821 | 0.18 | 8000 | 6.0415 | | 2.7826 | 0.23 | 10000 | 6.0416 | | 2.7386 | 0.27 | 12000 | 6.0069 | | 2.7036 | 0.32 | 14000 | 6.0192 | | 2.678 | 0.37 | 16000 | 5.9286 | | 2.6499 | 0.41 | 18000 | 5.9587 | | 2.6261 | 0.46 | 20000 | 5.9044 | | 2.6032 | 0.5 | 22000 | 5.8482 | | 2.5708 | 0.55 | 24000 | 5.7760 | | 2.5517 | 0.59 | 26000 | 5.7546 | | 2.5336 | 0.64 | 28000 | 5.7447 | | 2.5196 | 0.69 | 30000 | 5.7373 | | 2.4957 | 0.73 | 32000 | 5.6429 | | 2.483 | 0.78 | 34000 | 5.6874 | | 2.4599 | 0.82 | 36000 | 5.6482 | | 2.4468 | 0.87 | 38000 | 5.5951 | | 2.4344 | 0.92 | 40000 | 5.6355 | | 2.4223 | 0.96 | 42000 | 5.6135 | | 2.3878 | 1.01 | 44000 | 5.6164 | | 2.294 | 1.05 | 46000 | 5.5802 | | 2.2896 | 1.1 | 48000 | 5.5924 | | 2.2815 | 1.14 | 50000 | 5.5296 | | 2.2702 | 1.19 | 52000 | 5.5119 | | 2.2741 | 1.24 | 54000 | 5.4775 | | 2.2586 | 1.28 | 56000 | 5.4663 | | 2.2492 | 1.33 | 58000 | 5.4764 | | 2.2411 | 1.37 | 60000 | 5.4444 | | 2.2275 | 1.42 | 62000 | 5.4566 | | 2.218 | 1.46 | 64000 | 5.4845 | | 2.2086 | 1.51 | 66000 | 5.4681 | | 2.1976 | 1.56 | 68000 | 5.4775 | | 2.1877 | 1.6 | 70000 | 5.4619 | | 2.177 | 1.65 | 72000 | 5.4621 | | 2.1722 | 1.69 | 74000 | 5.4322 | | 2.1599 | 1.74 | 76000 | 5.4348 | | 2.1475 | 1.78 | 78000 | 5.4432 | | 2.1477 | 1.83 | 80000 | 5.4239 | | 2.134 | 1.88 | 82000 | 5.4182 | | 2.1302 | 1.92 | 84000 | 5.4089 | | 2.125 | 1.97 | 86000 | 5.4097 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Vlasta/humandna_distillbert_default_
9f8e60fa5f32758d4144825b540577a2616ee840
2022-06-09T08:31:24.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_distillbert_default_
1
null
transformers
32,742
Entry not found
Vlasta/humandna_distillbert_default_dual_liability_4383
ec04244f907f16519910b70e372d2956a04f283b
2022-06-09T08:31:49.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_distillbert_default_dual_liability_4383
1
null
transformers
32,743
Entry not found
RuiqianLi/wav2vec2-xls-r-300m_Mrbrown_finetune1
cfcf73152dd78b85c7a5ef2fa417625324c677d3
2022-06-10T03:17:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:uob_singlish", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
RuiqianLi
null
RuiqianLi/wav2vec2-xls-r-300m_Mrbrown_finetune1
1
null
transformers
32,744
--- license: apache-2.0 tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: wav2vec2-xls-r-300m_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m_Mrbrown_finetune1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), don't know why the word-error-rate keep 1. But can know that much be the problem of dataset, because last time use the same pre-trained model and standard singlish corpus fine-tune get nice result. (can find it at:RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab) It achieves the following results on the evaluation set: - Loss: 3.0927 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7943 | 20.0 | 200 | 3.0597 | 1.0 | | 2.9902 | 40.0 | 400 | 3.1604 | 1.0 | | 2.9696 | 60.0 | 600 | 3.1112 | 1.0 | | 2.8885 | 80.0 | 800 | 3.0234 | 1.0 | | 2.8154 | 100.0 | 1000 | 3.0927 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ghadeermobasher/WLT-BlueBERT-BC5CDR-Disease
8453f07ad180599df64e22bd436c085db41d3636
2022-06-09T11:18:51.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-BlueBERT-BC5CDR-Disease
1
null
transformers
32,745
Entry not found
Dewone/wav2vec2-base-timit-demo-google-colab
0b3f9ead19550135f924c5057bada164a3644475
2022-06-09T12:37:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Dewone
null
Dewone/wav2vec2-base-timit-demo-google-colab
1
null
transformers
32,746
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5182 - Wer: 0.3329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5177 | 1.0 | 500 | 1.8932 | 0.9837 | | 0.854 | 2.01 | 1000 | 0.5295 | 0.5266 | | 0.4205 | 3.01 | 1500 | 0.4299 | 0.4453 | | 0.2934 | 4.02 | 2000 | 0.3940 | 0.4180 | | 0.2272 | 5.02 | 2500 | 0.4269 | 0.4149 | | 0.1856 | 6.02 | 3000 | 0.4277 | 0.4335 | | 0.1668 | 7.03 | 3500 | 0.4214 | 0.3852 | | 0.1388 | 8.03 | 4000 | 0.4410 | 0.3805 | | 0.1254 | 9.04 | 4500 | 0.4152 | 0.3716 | | 0.1073 | 10.04 | 5000 | 0.4257 | 0.3726 | | 0.1 | 11.04 | 5500 | 0.4405 | 0.3642 | | 0.0928 | 12.05 | 6000 | 0.4823 | 0.3708 | | 0.0829 | 13.05 | 6500 | 0.4636 | 0.3548 | | 0.0682 | 14.06 | 7000 | 0.4718 | 0.3599 | | 0.0643 | 15.06 | 7500 | 0.4965 | 0.3583 | | 0.0609 | 16.06 | 8000 | 0.5279 | 0.3576 | | 0.0586 | 17.07 | 8500 | 0.4869 | 0.3528 | | 0.055 | 18.07 | 9000 | 0.4671 | 0.3567 | | 0.0465 | 19.08 | 9500 | 0.5090 | 0.3508 | | 0.0432 | 20.08 | 10000 | 0.5024 | 0.3543 | | 0.0427 | 21.08 | 10500 | 0.4658 | 0.3417 | | 0.033 | 22.09 | 11000 | 0.5276 | 0.3418 | | 0.0297 | 23.09 | 11500 | 0.5095 | 0.3415 | | 0.0317 | 24.1 | 12000 | 0.5061 | 0.3364 | | 0.0262 | 25.1 | 12500 | 0.4910 | 0.3367 | | 0.0257 | 26.1 | 13000 | 0.4869 | 0.3331 | | 0.0237 | 27.11 | 13500 | 0.5023 | 0.3333 | | 0.0228 | 28.11 | 14000 | 0.5131 | 0.3333 | | 0.021 | 29.12 | 14500 | 0.5182 | 0.3329 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingtweets/aylesim
5bfa4b047729d385973edacb1549ee008092aceb
2022-06-09T11:10:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/aylesim
1
null
transformers
32,747
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513156868612448256/2nXWRcn5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mira</div> <div style="text-align: center; font-size: 14px;">@aylesim</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mira. | Data | mira | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 255 | | Short tweets | 765 | | Tweets kept | 2195 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3buhour0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aylesim's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c2a7aq5o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c2a7aq5o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aylesim') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ghadeermobasher/WLT-SciBERT-BC5CDR-Chemical
3342380c5d728bc9a3326d27d942f04bfb4e08e0
2022-06-09T12:07:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-SciBERT-BC5CDR-Chemical
1
null
transformers
32,748
Entry not found
Vlasta/humandna_distillbert_random_systematic_walrus_56
4300e06b27effe51bf990abc34dbac899cb91564
2022-06-09T12:24:02.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_distillbert_random_systematic_walrus_56
1
null
transformers
32,749
Entry not found
twieland/MIX1_ja-en_helsinki
19e7728b31402b7e41a816f0ab69881448e4ff2b
2022-06-10T05:49:30.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/MIX1_ja-en_helsinki
1
null
transformers
32,750
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX1_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX1_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on a combination of Visual Novel, Light Novel, and Subtitle data. A total of ~10MM lines of training data were used. It achieves the following results on the evaluation set: - Loss: 1.7947 - Otaku Benchmark VN BLEU: 17.78 - Otaku Benchmark LN BLEU: 11.80 - Otaku Benchmark MANGA BLEU: 13.66 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7495 | 0.01 | 2000 | 2.5989 | | 2.5415 | 0.03 | 4000 | 2.4746 | | 2.4409 | 0.04 | 6000 | 2.4731 | | 2.3743 | 0.05 | 8000 | 2.4012 | | 2.3254 | 0.06 | 10000 | 2.3904 | | 2.2857 | 0.08 | 12000 | 2.3649 | | 2.2448 | 0.09 | 14000 | 2.3188 | | 2.2158 | 0.1 | 16000 | 2.2975 | | 2.193 | 0.11 | 18000 | 2.2756 | | 2.1669 | 0.13 | 20000 | 2.2852 | | 2.144 | 0.14 | 22000 | 2.2689 | | 2.1222 | 0.15 | 24000 | 2.2721 | | 2.1045 | 0.16 | 26000 | 2.2489 | | 2.0885 | 0.18 | 28000 | 2.2359 | | 2.0732 | 0.19 | 30000 | 2.2771 | | 2.0584 | 0.2 | 32000 | 2.2582 | | 2.0471 | 0.21 | 34000 | 2.2093 | | 2.0369 | 0.23 | 36000 | 2.1768 | | 2.0241 | 0.24 | 38000 | 2.1884 | | 2.0196 | 0.25 | 40000 | 2.2025 | | 2.004 | 0.27 | 42000 | 2.1507 | | 1.9936 | 0.28 | 44000 | 2.1668 | | 1.9869 | 0.29 | 46000 | 2.1432 | | 1.9735 | 0.3 | 48000 | 2.1662 | | 1.9651 | 0.32 | 50000 | 2.1824 | | 1.9551 | 0.33 | 52000 | 2.1608 | | 1.9485 | 0.34 | 54000 | 2.1322 | | 1.9421 | 0.35 | 56000 | 2.1476 | | 1.9303 | 0.37 | 58000 | 2.0994 | | 1.9236 | 0.38 | 60000 | 2.1182 | | 1.9183 | 0.39 | 62000 | 2.1305 | | 1.9108 | 0.4 | 64000 | 2.1469 | | 1.9051 | 0.42 | 66000 | 2.1414 | | 1.9018 | 0.43 | 68000 | 2.1089 | | 1.8959 | 0.44 | 70000 | 2.0908 | | 1.886 | 0.46 | 72000 | 2.0968 | | 1.8802 | 0.47 | 74000 | 2.0503 | | 1.8713 | 0.48 | 76000 | 2.0542 | | 1.8648 | 0.49 | 78000 | 2.0990 | | 1.8599 | 0.51 | 80000 | 2.1112 | | 1.8563 | 0.52 | 82000 | 2.1007 | | 1.8541 | 0.53 | 84000 | 2.0849 | | 1.845 | 0.54 | 86000 | 2.0831 | | 1.8448 | 0.56 | 88000 | 2.0560 | | 1.8342 | 0.57 | 90000 | 2.0349 | | 1.8344 | 0.58 | 92000 | 2.0301 | | 1.8291 | 0.59 | 94000 | 2.0300 | | 1.819 | 0.61 | 96000 | 2.0378 | | 1.8154 | 0.62 | 98000 | 2.0197 | | 1.82 | 0.63 | 100000 | 2.0463 | | 1.8081 | 0.64 | 102000 | 2.0077 | | 1.8046 | 0.66 | 104000 | 2.0101 | | 1.7978 | 0.67 | 106000 | 2.0150 | | 1.7934 | 0.68 | 108000 | 2.0215 | | 1.7904 | 0.7 | 110000 | 2.0278 | | 1.7871 | 0.71 | 112000 | 2.0588 | | 1.779 | 0.72 | 114000 | 2.0062 | | 1.7784 | 0.73 | 116000 | 2.0300 | | 1.7749 | 0.75 | 118000 | 1.9664 | | 1.7691 | 0.76 | 120000 | 2.0033 | | 1.7622 | 0.77 | 122000 | 1.9983 | | 1.7587 | 0.78 | 124000 | 2.0030 | | 1.755 | 0.8 | 126000 | 1.9955 | | 1.7531 | 0.81 | 128000 | 1.9764 | | 1.7439 | 0.82 | 130000 | 1.9942 | | 1.7406 | 0.83 | 132000 | 2.0221 | | 1.7385 | 0.85 | 134000 | 1.9835 | | 1.7332 | 0.86 | 136000 | 1.9967 | | 1.7332 | 0.87 | 138000 | 2.0247 | | 1.7309 | 0.88 | 140000 | 1.9817 | | 1.7248 | 0.9 | 142000 | 2.0063 | | 1.7209 | 0.91 | 144000 | 1.9583 | | 1.7154 | 0.92 | 146000 | 1.9779 | | 1.7153 | 0.94 | 148000 | 1.9478 | | 1.7094 | 0.95 | 150000 | 1.9706 | | 1.7061 | 0.96 | 152000 | 1.9605 | | 1.7017 | 0.97 | 154000 | 1.9447 | | 1.6965 | 0.99 | 156000 | 1.9419 | | 1.6929 | 1.0 | 158000 | 1.9589 | | 1.6628 | 1.01 | 160000 | 1.9383 | | 1.6535 | 1.02 | 162000 | 1.9487 | | 1.6495 | 1.04 | 164000 | 1.9400 | | 1.6516 | 1.05 | 166000 | 1.9353 | | 1.6513 | 1.06 | 168000 | 1.9253 | | 1.6518 | 1.07 | 170000 | 1.9132 | | 1.6491 | 1.09 | 172000 | 1.9076 | | 1.6453 | 1.1 | 174000 | 1.9192 | | 1.6426 | 1.11 | 176000 | 1.9191 | | 1.6353 | 1.13 | 178000 | 1.9367 | | 1.6352 | 1.14 | 180000 | 1.9218 | | 1.6304 | 1.15 | 182000 | 1.9305 | | 1.6299 | 1.16 | 184000 | 1.9072 | | 1.6263 | 1.18 | 186000 | 1.9211 | | 1.6284 | 1.19 | 188000 | 1.9037 | | 1.6237 | 1.2 | 190000 | 1.8951 | | 1.6231 | 1.21 | 192000 | 1.8998 | | 1.6184 | 1.23 | 194000 | 1.8960 | | 1.6153 | 1.24 | 196000 | 1.8776 | | 1.6122 | 1.25 | 198000 | 1.8747 | | 1.6109 | 1.26 | 200000 | 1.8951 | | 1.6072 | 1.28 | 202000 | 1.8705 | | 1.6094 | 1.29 | 204000 | 1.8903 | | 1.6063 | 1.3 | 206000 | 1.8660 | | 1.599 | 1.31 | 208000 | 1.8696 | | 1.5931 | 1.33 | 210000 | 1.8598 | | 1.5943 | 1.34 | 212000 | 1.8760 | | 1.5906 | 1.35 | 214000 | 1.8833 | | 1.5858 | 1.37 | 216000 | 1.8645 | | 1.5873 | 1.38 | 218000 | 1.8620 | | 1.5842 | 1.39 | 220000 | 1.8632 | | 1.5808 | 1.4 | 222000 | 1.8782 | | 1.5756 | 1.42 | 224000 | 1.8627 | | 1.5728 | 1.43 | 226000 | 1.8649 | | 1.5709 | 1.44 | 228000 | 1.8735 | | 1.5704 | 1.45 | 230000 | 1.8630 | | 1.5659 | 1.47 | 232000 | 1.8598 | | 1.5637 | 1.48 | 234000 | 1.8519 | | 1.5628 | 1.49 | 236000 | 1.8569 | | 1.5559 | 1.5 | 238000 | 1.8401 | | 1.5532 | 1.52 | 240000 | 1.8528 | | 1.557 | 1.53 | 242000 | 1.8637 | | 1.5499 | 1.54 | 244000 | 1.8701 | | 1.5476 | 1.55 | 246000 | 1.8423 | | 1.5502 | 1.57 | 248000 | 1.8320 | | 1.5469 | 1.58 | 250000 | 1.8542 | | 1.5382 | 1.59 | 252000 | 1.8526 | | 1.5396 | 1.61 | 254000 | 1.8537 | | 1.528 | 1.62 | 256000 | 1.8248 | | 1.532 | 1.63 | 258000 | 1.8322 | | 1.5269 | 1.64 | 260000 | 1.8381 | | 1.5269 | 1.66 | 262000 | 1.8389 | | 1.5269 | 1.67 | 264000 | 1.8445 | | 1.525 | 1.68 | 266000 | 1.8232 | | 1.5175 | 1.69 | 268000 | 1.8561 | | 1.5172 | 1.71 | 270000 | 1.8342 | | 1.5174 | 1.72 | 272000 | 1.8167 | | 1.5114 | 1.73 | 274000 | 1.8281 | | 1.5094 | 1.74 | 276000 | 1.8164 | | 1.5083 | 1.76 | 278000 | 1.8317 | | 1.5047 | 1.77 | 280000 | 1.8207 | | 1.5045 | 1.78 | 282000 | 1.8155 | | 1.497 | 1.8 | 284000 | 1.8275 | | 1.4996 | 1.81 | 286000 | 1.8152 | | 1.497 | 1.82 | 288000 | 1.8137 | | 1.4967 | 1.83 | 290000 | 1.8109 | | 1.4936 | 1.85 | 292000 | 1.8037 | | 1.4867 | 1.86 | 294000 | 1.7955 | | 1.4859 | 1.87 | 296000 | 1.8181 | | 1.4869 | 1.88 | 298000 | 1.7999 | | 1.4811 | 1.9 | 300000 | 1.8062 | | 1.4831 | 1.91 | 302000 | 1.8042 | | 1.4791 | 1.92 | 304000 | 1.8020 | | 1.4797 | 1.93 | 306000 | 1.7972 | | 1.483 | 1.95 | 308000 | 1.8044 | | 1.4748 | 1.96 | 310000 | 1.8036 | | 1.4772 | 1.97 | 312000 | 1.7958 | | 1.4708 | 1.98 | 314000 | 1.7967 | | 1.4743 | 2.0 | 316000 | 1.7947 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
vesteinn/icebert-xlmr-ic3-iec
6fbdd3cb4c1aaf5ffd3c64182521b7f676ec26a4
2022-06-09T14:29:05.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
vesteinn
null
vesteinn/icebert-xlmr-ic3-iec
1
null
transformers
32,751
--- license: cc-by-4.0 ---
flood/xlm-roberta-base-finetuned-panx-en
563b1b98cf1a6301975cddc87c00e2d750559925
2022-06-22T13:43:46.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
flood
null
flood/xlm-roberta-base-finetuned-panx-en
1
null
transformers
32,752
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6777777777777778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4025 - F1: 0.6778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1069 | 1.0 | 50 | 0.5201 | 0.5010 | | 0.4975 | 2.0 | 100 | 0.4503 | 0.6198 | | 0.3705 | 3.0 | 150 | 0.4025 | 0.6778 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
roshnir/mBert-finetuned-mlqa-dev-en-zh-hi
be00e7308a2936fc63e4e2b1f38f04d4ef4d8f4b
2022-06-09T18:32:18.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/mBert-finetuned-mlqa-dev-en-zh-hi
1
null
transformers
32,753
Entry not found
ajsmith201/t5-small-finetuned-bias-267d8789
8e9df5cd78d738b8d8581517f2f414be8d6a5726
2022-06-09T20:15:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ajsmith201
null
ajsmith201/t5-small-finetuned-bias-267d8789
1
null
transformers
32,754
Entry not found
simecek/MouseDNADeberta
243650849ec2f220c9aaa84378dd2024199c92b8
2022-06-09T23:58:58.000Z
[ "pytorch", "tensorboard", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/MouseDNADeberta
1
null
transformers
32,755
Entry not found
simecek/FruitflyDNADeberta
81280fb594fa5d6aa9b88677280397564073d39d
2022-06-10T00:39:45.000Z
[ "pytorch", "tensorboard", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/FruitflyDNADeberta
1
null
transformers
32,756
Entry not found
lak/poem_project_1
b489192b188ced70249fe27d0450a3803f98c2de
2022-06-09T20:41:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lak
null
lak/poem_project_1
1
null
transformers
32,757
Entry not found
Vlasta/humandna_Electra_random
88f4a945b27120720fdddb80fa2be6694f0797b6
2022-06-09T21:32:22.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_Electra_random
1
null
transformers
32,758
Entry not found
nthakur/contriever-base-msmarco
39068b4625fd866fc9f65a7689bfb4604e3ab5dd
2022-06-09T22:01:51.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
nthakur
null
nthakur/contriever-base-msmarco
1
null
sentence-transformers
32,759
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # nthakur/contriever-base-msmarco This is a port of the [Contriever MSMARCO Model](https://huggingface.co/facebook/contriever-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nthakur/contriever-base-msmarco') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nthakur/contriever-base-msmarco') model = AutoModel.from_pretrained('nthakur/contriever-base-msmarco') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nthakur/contriever-base-msmarco) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [Contriever Model](https://github.com/facebookresearch/contriever). <!--- Describe where people can find more information -->
huggingtweets/wick_is_tired
1e1663bac357edd13bf17c172c30524f6e13edfd
2022-06-10T01:42:38.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/wick_is_tired
1
null
transformers
32,760
--- language: en thumbnail: http://www.huggingtweets.com/wick_is_tired/1654825353897/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381121023567917058/JyYfOsKC_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">IntroWick</div> <div style="text-align: center; font-size: 14px;">@wick_is_tired</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from IntroWick. | Data | IntroWick | | --- | --- | | Tweets downloaded | 257 | | Retweets | 29 | | Short tweets | 77 | | Tweets kept | 151 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/az5xmdyn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wick_is_tired's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lxj96tnp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lxj96tnp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wick_is_tired') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
NadiaSan/udesa-model-aah-es-20k
a067c6fffe5b0229dab336e53c2510a5291f291b
2022-06-10T01:50:39.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
NadiaSan
null
NadiaSan/udesa-model-aah-es-20k
1
null
transformers
32,761
Entry not found
enoriega/rule_learning_margin_1mm
b2ff12bcb27fbd494cf5eab74c8a182ea027ccf1
2022-06-11T02:04:28.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_margin_1mm
1
null
transformers
32,762
--- license: apache-2.0 tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3806 - Margin Accuracy: 0.8239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.6482 | 0.16 | 20 | 0.6494 | 0.7263 | | 0.5151 | 0.32 | 40 | 0.5088 | 0.7792 | | 0.4822 | 0.48 | 60 | 0.4429 | 0.8045 | | 0.4472 | 0.64 | 80 | 0.4265 | 0.8107 | | 0.4352 | 0.8 | 100 | 0.4155 | 0.8132 | | 0.4335 | 0.96 | 120 | 0.4128 | 0.8116 | | 0.4113 | 1.12 | 140 | 0.4119 | 0.8142 | | 0.4186 | 1.28 | 160 | 0.4075 | 0.8120 | | 0.42 | 1.44 | 180 | 0.4072 | 0.8123 | | 0.4175 | 1.6 | 200 | 0.4080 | 0.8130 | | 0.4097 | 1.76 | 220 | 0.4031 | 0.8128 | | 0.397 | 1.92 | 240 | 0.4004 | 0.8130 | | 0.4115 | 2.08 | 260 | 0.3979 | 0.8136 | | 0.4108 | 2.24 | 280 | 0.3940 | 0.8167 | | 0.4125 | 2.4 | 300 | 0.3879 | 0.8218 | | 0.4117 | 2.56 | 320 | 0.3848 | 0.8217 | | 0.3967 | 2.72 | 340 | 0.3818 | 0.8231 | | 0.3947 | 2.88 | 360 | 0.3813 | 0.8240 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/wickdedaccount
1d92ae3987b04ae5ae5f8172b9b004f381d65c56
2022-06-10T02:20:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/wickdedaccount
1
null
transformers
32,763
--- language: en thumbnail: http://www.huggingtweets.com/wickdedaccount/1654827628283/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353151127026597889/Yarj5Kfr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pp</div> <div style="text-align: center; font-size: 14px;">@wickdedaccount</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pp. | Data | pp | | --- | --- | | Tweets downloaded | 1028 | | Retweets | 822 | | Short tweets | 119 | | Tweets kept | 87 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1of8kmw1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wickdedaccount's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wickdedaccount') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/loganpaul
037dd662c698e54be89720d7a9839420ecf488c2
2022-06-10T02:29:07.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/loganpaul
1
null
transformers
32,764
--- language: en thumbnail: http://www.huggingtweets.com/loganpaul/1654828143127/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401837042934468611/okzqIoMb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Logan Paul</div> <div style="text-align: center; font-size: 14px;">@loganpaul</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Logan Paul. | Data | Logan Paul | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 170 | | Short tweets | 318 | | Tweets kept | 2757 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wj9pph5f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @loganpaul's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sqzuxgo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sqzuxgo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/loganpaul') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
simecek/humandna_DEBERTASMALL_1epoch
245df0039ab266f58fb30363eaee208cd7f6544d
2022-06-10T02:45:42.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/humandna_DEBERTASMALL_1epoch
1
null
transformers
32,765
Entry not found
ajsmith201/t5-large-finetuned-bias-2e10ce74
1971225d2ecb2d12e0c43eba6a6931a7d4266d15
2022-06-10T02:57:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ajsmith201
null
ajsmith201/t5-large-finetuned-bias-2e10ce74
1
null
transformers
32,766
Entry not found
ajsmith201/t5-small-finetuned-bias-72bc782c
bab61c81605fe7d796593f31441fe237dce35747
2022-06-10T03:11:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ajsmith201
null
ajsmith201/t5-small-finetuned-bias-72bc782c
1
null
transformers
32,767
Entry not found
huggingtweets/ralee85
8df10ff33848a899102c79efa318a9e985f081d2
2022-06-10T06:27:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ralee85
1
null
transformers
32,768
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/964497068424249345/Y6ce6atF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rob Lee</div> <div style="text-align: center; font-size: 14px;">@ralee85</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rob Lee. | Data | Rob Lee | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 22 | | Short tweets | 1590 | | Tweets kept | 1638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/164xyalb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ralee85's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pc7ca11) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pc7ca11/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ralee85') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BettyFei/t5-small-finetuned-xsum
2fcd66897b118ef8ef89e0fc80bd598b383edcb7
2022-06-10T08:48:52.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BettyFei
null
BettyFei/t5-small-finetuned-xsum
1
null
transformers
32,769
Entry not found
FabianWillner/distilbert-base-uncased-finetuned-squad-finetuned-triviaqa
b06ecc62caf11fb21d0eb8d2c9244f3034472cc3
2022-06-10T11:54:41.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FabianWillner
null
FabianWillner/distilbert-base-uncased-finetuned-squad-finetuned-triviaqa
1
null
transformers
32,770
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad-finetuned-triviaqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-finetuned-triviaqa This model is a fine-tuned version of [FabianWillner/distilbert-base-uncased-finetuned-squad](https://huggingface.co/FabianWillner/distilbert-base-uncased-finetuned-squad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9722 | 1.0 | 11195 | 0.9665 | | 0.7558 | 2.0 | 22390 | 0.9583 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
simecek/humandna_ELECTRA_1epoch
71c5a1de61a3f8638f7071cad2b32e07b0038bd5
2022-06-10T09:49:01.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/humandna_ELECTRA_1epoch
1
null
transformers
32,771
Entry not found
stig/distilbert-base-uncased-finetuned
ceb218c0f9a55e75a29df521c8c6f4efe128ed2b
2022-06-10T10:59:39.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
stig
null
stig/distilbert-base-uncased-finetuned
1
null
transformers
32,772
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0255 | 1.0 | 2312 | 1.9202 | | 1.7483 | 2.0 | 4624 | 1.8437 | | 1.5733 | 3.0 | 6936 | 1.8627 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
becher/t5-small-finetuned-arxiv
575d0872a8bbc5be0e08f0b3faf697361f4b5347
2022-06-10T12:28:48.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
becher
null
becher/t5-small-finetuned-arxiv
1
null
transformers
32,773
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-arxiv This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1559 - Rouge1: 37.854 - Rouge2: 20.4934 - Rougel: 33.9992 - Rougelsum: 33.9943 - Gen Len: 15.847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 2.3848 | 1.0 | 3564 | 2.1559 | 37.854 | 20.4934 | 33.9992 | 33.9943 | 15.847 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
daedalus2003/HouseBot
b0fee41b5fbf36567a72cd62a6a1995efcc71fbc
2022-06-10T12:37:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
daedalus2003
null
daedalus2003/HouseBot
1
null
transformers
32,774
--- tags: - conversational --- # House MD DialoGPT Model
income/bpr-base-msmarco-contriever
222ce4846c85226087d2655a3ac7f52b76fd7979
2022-06-10T17:16:00.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-base-msmarco-contriever
1
null
sentence-transformers
32,775
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6653 with parameters: ``` {'batch_size': 75, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `bpr_loss.BPRLossFunction` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/ninjasexparty
48bd29477e7096a44db9dddbadb181f89c009da3
2022-06-10T19:56:27.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ninjasexparty
1
null
transformers
32,776
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446572046679302144/jF9HS_Yd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ninja Sex Party</div> <div style="text-align: center; font-size: 14px;">@ninjasexparty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ninja Sex Party. | Data | Ninja Sex Party | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 631 | | Short tweets | 439 | | Tweets kept | 2180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ik0ji2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ninjasexparty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ninjasexparty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
erickfm/t5-small-finetuned-bias-sweep-b7414781
8f796a0642745c9c65b263f2bc7cb995a6e8e1b9
2022-06-10T23:59:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-b7414781
1
null
transformers
32,777
Entry not found
erickfm/t5-small-finetuned-bias-sweep-f15c71f5
f6d8f23068107f640dbde8a51b5ec42fa6b0f022
2022-06-11T00:01:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-f15c71f5
1
null
transformers
32,778
Entry not found
huggingtweets/froliki2108
fbe1850a668d514850cfe88df9a4097e418fdee0
2022-06-11T00:04:16.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/froliki2108
1
null
transformers
32,779
--- language: en thumbnail: http://www.huggingtweets.com/froliki2108/1654905851117/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447692349493100549/1PV2c-PJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FrolikiπŸ’‰πŸ’‰πŸ’‰</div> <div style="text-align: center; font-size: 14px;">@froliki2108</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from FrolikiπŸ’‰πŸ’‰πŸ’‰. | Data | FrolikiπŸ’‰πŸ’‰πŸ’‰ | | --- | --- | | Tweets downloaded | 2223 | | Retweets | 1133 | | Short tweets | 229 | | Tweets kept | 861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tug3miv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @froliki2108's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/froliki2108') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/yomancuso
75be91fd11ca24c3475f8c001504b977460db93d
2022-06-11T01:08:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/yomancuso
1
null
transformers
32,780
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1490538004607385602/laSBwC6u_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Davey Wavey</div> <div style="text-align: center; font-size: 14px;">@yomancuso</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Davey Wavey. | Data | Davey Wavey | | --- | --- | | Tweets downloaded | 3176 | | Retweets | 1207 | | Short tweets | 485 | | Tweets kept | 1484 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2i0ci708/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yomancuso's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mexojoq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mexojoq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yomancuso') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gary109/ai-light-dance_singing_ft_pretrain_wav2vec2-large-lv60
c6118014f47123277bf2ce91bea57de1bfe78ce6
2022-06-14T16:00:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_pretrain_wav2vec2-large-lv60
1
null
transformers
32,781
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_pretrain_wav2vec2-large-lv60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_pretrain_wav2vec2-large-lv60 This model is a fine-tuned version of [gary109/ai-light-dance_pretrain_wav2vec2-large-lv60](https://huggingface.co/gary109/ai-light-dance_pretrain_wav2vec2-large-lv60) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 1.4961 - Wer: 0.9206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.6096 | 1.0 | 552 | 1.7650 | 1.0053 | | 1.6294 | 2.0 | 1104 | 1.6735 | 0.9591 | | 1.5509 | 3.0 | 1656 | 1.6170 | 0.9852 | | 1.5175 | 4.0 | 2208 | 1.6312 | 0.9626 | | 1.5267 | 5.0 | 2760 | 1.5032 | 0.9249 | | 1.4055 | 6.0 | 3312 | 1.6107 | 0.9438 | | 1.3267 | 7.0 | 3864 | 1.5386 | 0.9378 | | 1.312 | 8.0 | 4416 | 1.4961 | 0.9206 | | 1.3245 | 9.0 | 4968 | 1.5158 | 0.9182 | | 1.2885 | 10.0 | 5520 | 1.5296 | 0.9230 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
erickfm/t5-base-finetuned-bias-sweep-41313d89
c54fb3ac9a22597bc20475b8b7eca68cc44dc6ec
2022-06-11T05:22:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-base-finetuned-bias-sweep-41313d89
1
null
transformers
32,782
Entry not found
Jawaher/LIAR-fake-news-roberta-base
cb10690d29948434d3aae4c3926e987595adddb9
2022-06-11T11:12:24.000Z
[ "pytorch", "tf", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jawaher
null
Jawaher/LIAR-fake-news-roberta-base
1
null
transformers
32,783
A pre-trained Roberta masked language model (MLM) trained on around 12K fake news dataset called LIAR. The perplexity of the original pre-trained Roberta model on the dataset is 5.957 and the perplexity of the adapted model is 3.918.
erickfm/t5-base-finetuned-bias-sweep-4ddf2050
a2cf1d17b1183fa90733592ed7efa5b88757fe68
2022-06-11T09:12:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-base-finetuned-bias-sweep-4ddf2050
1
null
transformers
32,784
Entry not found
aware-ai/robust-wav2vec2-xls-r-1b-german
589c8e3179b472f44d7919c96930e1d4c38522f9
2022-06-12T12:34:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/robust-wav2vec2-xls-r-1b-german
1
null
transformers
32,785
Entry not found
shivarama23/swin-tiny-patch4-window7-224-finetuned-image_quality
2d14522cddcdb2e1b204a4ba59bc41207df01118
2022-06-11T11:54:49.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
shivarama23
null
shivarama23/swin-tiny-patch4-window7-224-finetuned-image_quality
1
null
transformers
32,786
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-image_quality results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-image_quality This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.5242 - Accuracy: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6762 | 0.6364 | | No log | 2.0 | 2 | 0.6309 | 0.7273 | | No log | 3.0 | 3 | 0.6095 | 0.6364 | | No log | 4.0 | 4 | 0.5775 | 0.6364 | | No log | 5.0 | 5 | 0.5443 | 0.8182 | | No log | 6.0 | 6 | 0.5242 | 0.9091 | | No log | 7.0 | 7 | 0.5149 | 0.8182 | | No log | 8.0 | 8 | 0.5094 | 0.8182 | | No log | 9.0 | 9 | 0.5038 | 0.8182 | | 0.4095 | 10.0 | 10 | 0.4992 | 0.8182 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
lllFaNToMlll/wac2vec-lllfantomlll
3cc8e8a445d71f79568198e28961ded0ecd99b17
2022-06-11T18:07:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lllFaNToMlll
null
lllFaNToMlll/wac2vec-lllfantomlll
1
null
transformers
32,787
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wac2vec-lllfantomlll results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wac2vec-lllfantomlll This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5560 - Wer: 0.3417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5768 | 1.0 | 500 | 2.0283 | 1.0238 | | 0.9219 | 2.01 | 1000 | 0.5103 | 0.5022 | | 0.4497 | 3.01 | 1500 | 0.4746 | 0.4669 | | 0.3163 | 4.02 | 2000 | 0.4144 | 0.4229 | | 0.2374 | 5.02 | 2500 | 0.4186 | 0.4161 | | 0.2033 | 6.02 | 3000 | 0.4115 | 0.3975 | | 0.1603 | 7.03 | 3500 | 0.4424 | 0.3817 | | 0.1455 | 8.03 | 4000 | 0.4151 | 0.3918 | | 0.1276 | 9.04 | 4500 | 0.4940 | 0.3798 | | 0.108 | 10.04 | 5000 | 0.4580 | 0.3688 | | 0.1053 | 11.04 | 5500 | 0.4243 | 0.3700 | | 0.0929 | 12.05 | 6000 | 0.4999 | 0.3727 | | 0.0896 | 13.05 | 6500 | 0.4991 | 0.3624 | | 0.0748 | 14.06 | 7000 | 0.4924 | 0.3602 | | 0.0681 | 15.06 | 7500 | 0.4908 | 0.3544 | | 0.0619 | 16.06 | 8000 | 0.5021 | 0.3559 | | 0.0569 | 17.07 | 8500 | 0.5448 | 0.3518 | | 0.0549 | 18.07 | 9000 | 0.4919 | 0.3508 | | 0.0478 | 19.08 | 9500 | 0.4704 | 0.3513 | | 0.0437 | 20.08 | 10000 | 0.5058 | 0.3555 | | 0.0421 | 21.08 | 10500 | 0.5127 | 0.3489 | | 0.0362 | 22.09 | 11000 | 0.5439 | 0.3527 | | 0.0322 | 23.09 | 11500 | 0.5418 | 0.3469 | | 0.0327 | 24.1 | 12000 | 0.5298 | 0.3422 | | 0.0292 | 25.1 | 12500 | 0.5511 | 0.3426 | | 0.0246 | 26.1 | 13000 | 0.5349 | 0.3472 | | 0.0251 | 27.11 | 13500 | 0.5646 | 0.3391 | | 0.0214 | 28.11 | 14000 | 0.5821 | 0.3424 | | 0.0217 | 29.12 | 14500 | 0.5560 | 0.3417 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
florver/modelo_NLI_kvd_1_1epoch
4d2f596399b243e43c9204383e37816366224204
2022-06-11T11:59:18.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
florver
null
florver/modelo_NLI_kvd_1_1epoch
1
null
transformers
32,788
Entry not found
huggingtweets/adrianramy
96eecd8c5d40b9b1478206db75e3c42d3e846f31
2022-06-11T12:12:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/adrianramy
1
null
transformers
32,789
--- language: en thumbnail: http://www.huggingtweets.com/adrianramy/1654949574810/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1192394634305134593/kWwF0YSv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adri</div> <div style="text-align: center; font-size: 14px;">@adrianramy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Adri. | Data | Adri | | --- | --- | | Tweets downloaded | 3050 | | Retweets | 1585 | | Short tweets | 275 | | Tweets kept | 1190 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30dqbz5d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adrianramy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16tp54yl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16tp54yl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/adrianramy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Akshat/xlm-roberta-base-finetuned-panx-de
98e1fc14b50af5a161d74a34ce754a5e0c95875c
2022-06-11T13:35:25.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Akshat
null
Akshat/xlm-roberta-base-finetuned-panx-de
1
null
transformers
32,790
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8611443210930829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - F1: 0.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2542 | 1.0 | 787 | 0.1788 | 0.8083 | | 0.1307 | 2.0 | 1574 | 0.1371 | 0.8488 | | 0.0784 | 3.0 | 2361 | 0.1405 | 0.8611 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
gary109/ai-light-dance_singing_pretrain_wav2vec2-large-lv60-5gram
ebaf7589260e33467575a3a1d6b08aba9733db0c
2022-06-11T12:35:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_pretrain_wav2vec2-large-lv60-5gram
1
null
transformers
32,791
Entry not found
finiteautomata/pepe-5k_nodiff
27a1d2f9b0243a2492e1f32806d881fe32ece0c9
2022-06-11T15:17:59.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
finiteautomata
null
finiteautomata/pepe-5k_nodiff
1
null
transformers
32,792
Entry not found
florver/modelo_NLI_kvd_2_8000
86cd359eb9924f36673ab7c35045c5b532c705b4
2022-06-11T17:35:50.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
florver
null
florver/modelo_NLI_kvd_2_8000
1
null
transformers
32,793
Entry not found
abdoutony207/m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1
075155baf7d1825b9408e94c5aab18bfc4d71e93
2022-06-11T16:26:19.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "dataset:opus100", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdoutony207
null
abdoutony207/m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1
1
null
transformers
32,794
--- license: mit tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 13.1835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1 This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.3640 - Bleu: 13.1835 - Meteor: 0.1189 - Gen Len: 17.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 6.1776 | 1.0 | 100 | 3.8904 | 10.5866 | 0.0995 | 16.64 | | 2.4531 | 2.0 | 200 | 1.0928 | 12.3452 | 0.1108 | 17.0575 | | 0.512 | 3.0 | 300 | 0.3625 | 10.5224 | 0.0982 | 17.2575 | | 0.1924 | 4.0 | 400 | 0.3342 | 12.4242 | 0.1098 | 16.6325 | | 0.1227 | 5.0 | 500 | 0.3403 | 13.0526 | 0.1185 | 17.3475 | | 0.0889 | 6.0 | 600 | 0.3481 | 13.1323 | 0.1133 | 17.815 | | 0.0651 | 7.0 | 700 | 0.3601 | 12.6684 | 0.1133 | 17.3525 | | 0.0533 | 8.0 | 800 | 0.3640 | 13.1835 | 0.1189 | 17.72 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
aprischa/bart-large-cnn-aprischa
3ac58b6a029f4558cf6805f613dd028cd3ede75b
2022-06-11T17:21:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
aprischa
null
aprischa/bart-large-cnn-aprischa
1
null
transformers
32,795
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3589 - Rouge1: 66.7098 - Rouge2: 57.7992 - Rougel: 63.2231 - Rougelsum: 65.9009 - Gen Len: 141.198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.369 | 1.0 | 5403 | 0.3835 | 66.0604 | 56.9948 | 62.4967 | 65.265 | 141.1126 | | 0.2985 | 2.0 | 10806 | 0.3589 | 66.7098 | 57.7992 | 63.2231 | 65.9009 | 141.198 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
aprischa/bart-large-cnn-aprischa2
774332492a49b5c42047529f4b7dadb4b7707dcd
2022-06-11T23:27:38.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
aprischa
null
aprischa/bart-large-cnn-aprischa2
1
null
transformers
32,796
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3425 - Rouge1: 65.7088 - Rouge2: 56.6701 - Rougel: 62.1926 - Rougelsum: 64.7727 - Gen Len: 140.8469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.3772 | 1.0 | 5403 | 0.3586 | 65.7702 | 56.7968 | 62.264 | 64.8605 | 140.268 | | 0.316 | 2.0 | 10806 | 0.3421 | 64.8238 | 55.8837 | 61.3245 | 63.8894 | 140.7472 | | 0.2397 | 3.0 | 16209 | 0.3425 | 65.7088 | 56.6701 | 62.1926 | 64.7727 | 140.8469 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
abdoutony207/m2m100_418M-evaluated-en-to-ar-4000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
b7fca3cb543639c16c368f80e8d2e8747ff01067
2022-06-11T19:20:41.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
abdoutony207
null
abdoutony207/m2m100_418M-evaluated-en-to-ar-4000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
1
null
transformers
32,797
Entry not found
huggingtweets/mdoukmas
32e81d430e16ee21ed1cee6ee6aab89d886fa060
2022-06-11T19:35:54.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mdoukmas
1
null
transformers
32,798
--- language: en thumbnail: http://www.huggingtweets.com/mdoukmas/1654976150184/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1098660288193269762/n5v9daol_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maya Dukmasova</div> <div style="text-align: center; font-size: 14px;">@mdoukmas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maya Dukmasova. | Data | Maya Dukmasova | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 896 | | Short tweets | 158 | | Tweets kept | 2187 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jwhv7l5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdoukmas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mdoukmas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
3f957df6afd40bd4e30555f6e00c8c104d9dc8a7
2022-06-11T21:27:25.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:opus100", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
meghazisofiane
null
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
1
null
transformers
32,799
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 26.2629 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Bleu: 26.2629 - Meteor: 0.1703 - Gen Len: 11.0925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 1.0519 | 0.5 | 100 | 0.1985 | 27.3525 | 0.1815 | 11.0725 | | 0.1947 | 1.0 | 200 | 0.1902 | 26.9728 | 0.1789 | 10.82 | | 0.1489 | 1.5 | 300 | 0.1910 | 27.7003 | 0.1811 | 10.975 | | 0.1665 | 2.0 | 400 | 0.1905 | 26.3739 | 0.1772 | 11.1075 | | 0.1321 | 2.5 | 500 | 0.1926 | 26.752 | 0.1772 | 10.975 | | 0.1271 | 3.0 | 600 | 0.1927 | 27.3663 | 0.1751 | 10.9725 | | 0.1105 | 3.5 | 700 | 0.1952 | 27.134 | 0.1738 | 10.9975 | | 0.109 | 4.0 | 800 | 0.1959 | 26.2629 | 0.1703 | 11.0925 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1