modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
KFlash/bert-finetuned-squad-accelerate
0dac3a32c91a90958186430695443f35ed72f802
2022-06-02T16:14:58.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
KFlash
null
KFlash/bert-finetuned-squad-accelerate
1
null
transformers
32,500
Entry not found
neelan-elucidate-ai/baseline
9681bc925d7e7dc08252ed964b6de0819c4e9f95
2022-05-30T06:45:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
neelan-elucidate-ai
null
neelan-elucidate-ai/baseline
1
null
transformers
32,501
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 207.6048 - Wer: 1.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3
e5597f83d6f7333ed212c24921be53daa86f54f7
2022-05-30T07:31:14.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3
1
null
transformers
32,502
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: arxiv metrics: - name: Rouge1 type: rouge value: 41.9656 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3-arxiv2o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.1265 - Rouge1: 41.9656 - Rouge2: 15.3793 - Rougel: 24.0382 - Rougelsum: 37.6057 - Gen Len: 130.8531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.1485 | 1.0 | 33840 | 2.1265 | 41.9656 | 15.3793 | 24.0382 | 37.6057 | 130.8531 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs16_forMINDS.en.all2
0f01637c7fc217052423f3c91be2de1f6e10a6d2
2022-05-30T07:38:51.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs16_forMINDS.en.all2
1
null
transformers
32,503
wav2vec2 -> t5lephone bs = 16 dropout = 0.3 performance : 29% { "architectures": [ "SpeechMixEEDT5" ], "decoder": { "_name_or_path": "voidful/phoneme_byt5", "add_cross_attention": true, "architectures": [ "T5ForConditionalGeneration" ], "bad_words_ids": null, "bos_token_id": null, "chunk_size_feed_forward": 0, "cross_attention_hidden_size": null, "d_ff": 3584, "d_kv": 64, "d_model": 1472, "decoder_start_token_id": 0, "diversity_penalty": 0.0, "do_sample": false, "dropout_rate": 0.1, "early_stopping": false, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 1, "feed_forward_proj": "gated-gelu", "finetuning_task": null, "forced_bos_token_id": null, "forced_eos_token_id": null, "gradient_checkpointing": false, "id2label": { "0": "LABEL_0", "1": "LABEL_1" }, "initializer_factor": 1.0, "is_decoder": true, "is_encoder_decoder": true, "label2id": { "LABEL_0": 0, "LABEL_1": 1 }, "layer_norm_epsilon": 1e-06, "length_penalty": 1.0, "max_length": 20, "min_length": 0, "model_type": "t5", "no_repeat_ngram_size": 0, "num_beam_groups": 1, "num_beams": 1, "num_decoder_layers": 4, "num_heads": 6, "num_layers": 12, "num_return_sequences": 1, "output_attentions": false, "output_hidden_states": false, "output_scores": false, "pad_token_id": 0, "prefix": null, "problem_type": null, "pruned_heads": {}, "relative_attention_max_distance": 128, "relative_attention_num_buckets": 32, "remove_invalid_values": false, "repetition_penalty": 1.0, "return_dict": true, "return_dict_in_generate": false, "sep_token_id": null, "task_specific_params": null, "temperature": 1.0, "tie_encoder_decoder": false, "tie_word_embeddings": false, "tokenizer_class": "ByT5Tokenizer", "top_k": 50, "top_p": 1.0, "torch_dtype": "float32", "torchscript": false, "transformers_version": "4.17.0", "typical_p": 1.0, "use_bfloat16": false, "use_cache": true, "vocab_size": 384 }, "encoder": { "_name_or_path": "facebook/wav2vec2-large-lv60", "activation_dropout": 0.1, "adapter_kernel_size": 3, "adapter_stride": 2, "add_adapter": false, "add_cross_attention": false, "apply_spec_augment": true, "architectures": [ "Wav2Vec2ForPreTraining" ], "attention_dropout": 0.1, "bad_words_ids": null, "bos_token_id": 1, "chunk_size_feed_forward": 0, "classifier_proj_size": 256, "codevector_dim": 768, "contrastive_logits_temperature": 0.1, "conv_bias": true, "conv_dim": [ 512, 512, 512, 512, 512, 512, 512 ], "conv_kernel": [ 10, 3, 3, 3, 3, 2, 2 ], "conv_stride": [ 5, 2, 2, 2, 2, 2, 2 ], "cross_attention_hidden_size": null, "ctc_loss_reduction": "sum", "ctc_zero_infinity": false, "decoder_start_token_id": null, "diversity_loss_weight": 0.1, "diversity_penalty": 0.0, "do_sample": false, "do_stable_layer_norm": true, "early_stopping": false, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 2, "feat_extract_activation": "gelu", "feat_extract_dropout": 0.0, "feat_extract_norm": "layer", "feat_proj_dropout": 0.1, "feat_quantizer_dropout": 0.0, "final_dropout": 0.1, "finetuning_task": null, "forced_bos_token_id": null, "forced_eos_token_id": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout": 0.1, "hidden_dropout_prob": 0.1, "hidden_size": 1024, "id2label": { "0": "LABEL_0", "1": "LABEL_1" }, "initializer_range": 0.02, "intermediate_size": 4096, "is_decoder": false, "is_encoder_decoder": false, "label2id": { "LABEL_0": 0, "LABEL_1": 1 }, "layer_norm_eps": 1e-05, "layerdrop": 0.0, "length_penalty": 1.0, "mask_feature_length": 10, "mask_feature_min_masks": 0, "mask_feature_prob": 0.0, "mask_time_length": 10, "mask_time_min_masks": 2, "mask_time_prob": 0.05, "max_length": 20, "min_length": 0, "model_type": "wav2vec2", "no_repeat_ngram_size": 0, "num_adapter_layers": 3, "num_attention_heads": 16, "num_beam_groups": 1, "num_beams": 1, "num_codevector_groups": 2, "num_codevectors_per_group": 320, "num_conv_pos_embedding_groups": 16, "num_conv_pos_embeddings": 128, "num_feat_extract_layers": 7, "num_hidden_layers": 24, "num_negatives": 100, "num_return_sequences": 1, "output_attentions": false, "output_hidden_size": 1024, "output_hidden_states": false, "output_scores": false, "pad_token_id": 0, "prefix": null, "problem_type": null, "proj_codevector_dim": 768, "pruned_heads": {}, "remove_invalid_values": false, "repetition_penalty": 1.0, "return_dict": true, "return_dict_in_generate": false, "sep_token_id": null, "task_specific_params": null, "tdnn_dilation": [ 1, 2, 3, 1, 1 ], "tdnn_dim": [ 512, 512, 512, 512, 1500 ], "tdnn_kernel": [ 5, 3, 3, 1, 1 ], "temperature": 1.0, "tie_encoder_decoder": false, "tie_word_embeddings": true, "tokenizer_class": null, "top_k": 50, "top_p": 1.0, "torch_dtype": null, "torchscript": false, "transformers_version": "4.17.0", "typical_p": 1.0, "use_bfloat16": false, "use_weighted_layer_sum": false, "vocab_size": 32, "xvector_output_dim": 512 }, "is_encoder_decoder": true, "model_type": "speechmix", "torch_dtype": "float32", "transformers_version": null }
cwchengtw/wav2vec2-large-xls-r-300m-turkish-colab
5158323a10fb3930a9b86b3b538b9b41a76c804e
2022-05-30T07:11:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cwchengtw
null
cwchengtw/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
32,504
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3873 - Wer: 0.3224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0846 | 3.67 | 400 | 0.7488 | 0.7702 | | 0.4487 | 7.34 | 800 | 0.4428 | 0.5255 | | 0.1926 | 11.01 | 1200 | 0.4218 | 0.4667 | | 0.1302 | 14.68 | 1600 | 0.3957 | 0.4269 | | 0.0989 | 18.35 | 2000 | 0.4321 | 0.4085 | | 0.0748 | 22.02 | 2400 | 0.4067 | 0.3904 | | 0.0615 | 25.69 | 2800 | 0.3914 | 0.3557 | | 0.0485 | 29.36 | 3200 | 0.3873 | 0.3224 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
stevemobs/deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch
78389ddf96e600333a5d436a9ef5582724c58dd1
2022-05-30T07:04:49.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch
1
null
transformers
32,505
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-1epoch-and-newsqa-2epoch This model is a fine-tuned version of [stevemobs/deberta-base-combined-squad1-aqa-1epoch](https://huggingface.co/stevemobs/deberta-base-combined-squad1-aqa-1epoch) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6693 | 1.0 | 17307 | 0.7171 | | 0.4723 | 2.0 | 34614 | 0.7521 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AbhilashDatta/T5_qgen-squad-marco
884ef88563d3d84508907056317e02075005f18f
2022-05-30T05:52:35.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
AbhilashDatta
null
AbhilashDatta/T5_qgen-squad-marco
1
null
transformers
32,506
--- license: afl-3.0 --- # Question generation using T5 transformer <h2> <i>Input format: context: "..." answer: "..." </i></h2> Import the pretrained model as well as tokenizer: ``` from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained('AbhilashDatta/T5_qgen-squad-marco') tokenizer = T5Tokenizer.from_pretrained('AbhilashDatta/T5_qgen-squad-marco') ``` Then use the tokenizer to encode/decode and model to generate: ``` input = "context: My name is Abhilash Datta. answer: Abhilash" batch = tokenizer(input, padding='longest', max_length=512, return_tensors='pt') inputs_batch = batch['input_ids'][0] inputs_batch = torch.unsqueeze(inputs_batch, 0) ques_id = model.generate(inputs_batch, max_length=100, early_stopping=True) ques_batch = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in ques_id] print(ques_batch) ``` Output: ``` ['what is my name'] ```
cwchengtw/wav2vec2-large-xls-r-300m-turkish-colab2
ba3e6035bbfc4813fa96ea1229f44e729fca4483
2022-05-31T00:51:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cwchengtw
null
cwchengtw/wav2vec2-large-xls-r-300m-turkish-colab2
1
null
transformers
32,507
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3738 - Wer: 0.3532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9022 | 3.7 | 400 | 0.6778 | 0.7414 | | 0.4106 | 7.4 | 800 | 0.4123 | 0.5049 | | 0.1862 | 11.11 | 1200 | 0.4260 | 0.4232 | | 0.1342 | 14.81 | 1600 | 0.3951 | 0.4097 | | 0.0997 | 18.51 | 2000 | 0.4100 | 0.3999 | | 0.0782 | 22.22 | 2400 | 0.3918 | 0.3875 | | 0.059 | 25.92 | 2800 | 0.3803 | 0.3698 | | 0.0474 | 29.63 | 3200 | 0.3738 | 0.3532 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ruselkomp/deeppavlov-framebank-50size
da1d54ed87555d26af603ee3c7068a46b51ccf45
2022-05-30T14:11:08.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deeppavlov-framebank-50size
1
null
transformers
32,508
--- tags: - generated_from_trainer model-index: - name: deeppavlov-framebank-50size results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deeppavlov-framebank-50size This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0733 | 1.0 | 2827 | 1.0076 | | 0.7875 | 2.0 | 5654 | 1.0309 | | 0.6003 | 3.0 | 8481 | 1.1007 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Aktsvigun/bert-base-cnndm
2b45217070f7098b3007358636a2082cda9d0da4
2022-05-30T10:54:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Aktsvigun
null
Aktsvigun/bert-base-cnndm
1
null
transformers
32,509
Entry not found
y05uk/wav2vec2-base-timit-demo-google-colab
3682a11fbbfa342aeeeefd26648df677d2c9ebe1
2022-05-30T13:32:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
y05uk
null
y05uk/wav2vec2-base-timit-demo-google-colab
1
null
transformers
32,510
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5353 - Wer: 0.3360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5345 | 1.0 | 500 | 1.8229 | 0.9810 | | 0.8731 | 2.01 | 1000 | 0.5186 | 0.5165 | | 0.4455 | 3.01 | 1500 | 0.4386 | 0.4572 | | 0.3054 | 4.02 | 2000 | 0.4396 | 0.4286 | | 0.2354 | 5.02 | 2500 | 0.4454 | 0.4051 | | 0.1897 | 6.02 | 3000 | 0.4465 | 0.3925 | | 0.1605 | 7.03 | 3500 | 0.4776 | 0.3974 | | 0.1413 | 8.03 | 4000 | 0.5254 | 0.4062 | | 0.1211 | 9.04 | 4500 | 0.5123 | 0.3913 | | 0.1095 | 10.04 | 5000 | 0.4171 | 0.3711 | | 0.1039 | 11.04 | 5500 | 0.4258 | 0.3732 | | 0.0932 | 12.05 | 6000 | 0.4879 | 0.3701 | | 0.0867 | 13.05 | 6500 | 0.4725 | 0.3637 | | 0.0764 | 14.06 | 7000 | 0.5041 | 0.3636 | | 0.0661 | 15.06 | 7500 | 0.4692 | 0.3646 | | 0.0647 | 16.06 | 8000 | 0.4804 | 0.3612 | | 0.0576 | 17.07 | 8500 | 0.5545 | 0.3628 | | 0.0577 | 18.07 | 9000 | 0.5004 | 0.3557 | | 0.0481 | 19.08 | 9500 | 0.5341 | 0.3558 | | 0.0466 | 20.08 | 10000 | 0.5056 | 0.3514 | | 0.0433 | 21.08 | 10500 | 0.4864 | 0.3481 | | 0.0362 | 22.09 | 11000 | 0.4994 | 0.3473 | | 0.0325 | 23.09 | 11500 | 0.5327 | 0.3446 | | 0.0351 | 24.1 | 12000 | 0.5360 | 0.3445 | | 0.0284 | 25.1 | 12500 | 0.5085 | 0.3399 | | 0.027 | 26.1 | 13000 | 0.5344 | 0.3426 | | 0.0247 | 27.11 | 13500 | 0.5310 | 0.3357 | | 0.0251 | 28.11 | 14000 | 0.5201 | 0.3355 | | 0.0228 | 29.12 | 14500 | 0.5353 | 0.3360 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios
f6ce56489d6637b7626ae5543752ed86ee406f37
2022-06-04T16:09:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:vivos_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tclong
null
tclong/wav2vec2-base-vios
1
null
transformers
32,511
--- license: apache-2.0 tags: - generated_from_trainer datasets: - vivos_dataset model-index: - name: wav2vec2-base-vios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the vivos_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3729 - Wer: 0.2427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.4755 | 1.37 | 500 | 0.7991 | 0.5957 | | 0.5424 | 2.75 | 1000 | 0.4290 | 0.3653 | | 0.3586 | 4.12 | 1500 | 0.3809 | 0.2890 | | 0.2824 | 5.49 | 2000 | 0.3808 | 0.2749 | | 0.2249 | 6.87 | 2500 | 0.3467 | 0.2389 | | 0.1745 | 8.24 | 3000 | 0.3688 | 0.2384 | | 0.1459 | 9.61 | 3500 | 0.3729 | 0.2427 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Aktsvigun/bert-base-pubmed
6b737c3fd72a62f274c8a602262594976101231a
2022-05-30T14:13:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Aktsvigun
null
Aktsvigun/bert-base-pubmed
1
null
transformers
32,512
Entry not found
ruselkomp/sber-framebank-50size
aadf535b6d6c45528bc907353e8528cde8ef9ccd
2022-05-31T05:01:42.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-framebank-50size
1
null
transformers
32,513
Entry not found
eslamxm/mT5_multilingual_XLSum-finetuned-en-cnn
78113aef7a97ad7705b62b44f241c49802edfdb1
2022-06-01T18:42:31.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eslamxm
null
eslamxm/mT5_multilingual_XLSum-finetuned-en-cnn
1
null
transformers
32,514
Entry not found
Jiexing/sparc_add_coref_t5_3b_order_0514_ckpt-4224
653b47845f8e9735562425db7646a9abaacec60c
2022-05-30T15:38:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Jiexing
null
Jiexing/sparc_add_coref_t5_3b_order_0514_ckpt-4224
1
null
transformers
32,515
Entry not found
nadiaqutaiba/bert-base-uncased-finetuned-swag
74f25c20049608bed50d49f1ffe95003b196ca3b
2022-05-30T21:54:57.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "dataset:swag", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
nadiaqutaiba
null
nadiaqutaiba/bert-base-uncased-finetuned-swag
1
null
transformers
32,516
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Damith/mwe-xlm-roberta-base
113bea9635590d9d285d3de6a731f5d8472ad22b
2022-05-30T15:45:05.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Damith
null
Damith/mwe-xlm-roberta-base
1
null
transformers
32,517
--- license: apache-2.0 ---
theojolliffe/bart-cnn-science-v3-e1
8add11a8812303d45021313de8161676b7ad96c1
2022-05-30T18:32:12.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science-v3-e1
1
null
transformers
32,518
--- license: mit tags: - generated_from_trainer model-index: - name: bart-cnn-science-v3-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e1 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 1.0643 | 51.6454 | 31.8213 | 33.7711 | 49.3471 | 141.5926 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stevemobs/deberta-base-combined-squad1-aqa-newsqa-50
bbe2d7df4531eb8d1965b895171d1d369b271ffd
2022-05-30T23:05:53.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-combined-squad1-aqa-newsqa-50
1
null
transformers
32,519
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-newsqa-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-newsqa-50 This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9401 | 1.0 | 18532 | 0.8266 | | 0.6811 | 2.0 | 37064 | 0.7756 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Adapting/t5-small-finetuned-xsum
9abb1b724ad7fee458c615130ce1cdf2947419f3
2022-05-31T08:31:11.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Adapting
null
Adapting/t5-small-finetuned-xsum
1
null
transformers
32,520
Entry not found
haritzpuerto/MiniLM-L12-H384-uncased-squad
6097056a8e564ae8d0c0897615f113027a50848e
2022-06-05T12:25:22.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
haritzpuerto
null
haritzpuerto/MiniLM-L12-H384-uncased-squad
1
null
transformers
32,521
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the squad dataset. It achieves the following results on the evaluation set: - exact_match: 77.57805108798486 - f1: 85.73943867549627 - Loss: 1.0744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1738 | 1.0 | 5475 | 1.0744 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
haritzpuerto/xtremedistil-squad
5fd914007ef9ada5c9eb7f84af46fd461d28ed95
2022-05-30T21:36:34.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
haritzpuerto
null
haritzpuerto/xtremedistil-squad
1
null
transformers
32,522
Entry not found
stevemobs/deberta-base-combined-squad1-aqa-newsqa-50-and-newsqa-50
be4f7a0fcb48cdc0ea0e2bfdb233d5a45909a6ad
2022-05-31T03:31:35.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-combined-squad1-aqa-newsqa-50-and-newsqa-50
1
null
transformers
32,523
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-newsqa-50-and-newsqa-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-newsqa-50-and-newsqa-50 This model is a fine-tuned version of [stevemobs/deberta-base-combined-squad1-aqa-newsqa-50](https://huggingface.co/stevemobs/deberta-base-combined-squad1-aqa-newsqa-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6957 | 1.0 | 8681 | 0.5072 | | 0.4264 | 2.0 | 17362 | 0.4881 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
eabayed/wav2vec2emiratidialict_1
a589e3e60ff482ade837623f52643c6fe385b5a1
2022-05-31T02:57:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "license:gpl-3.0" ]
automatic-speech-recognition
false
eabayed
null
eabayed/wav2vec2emiratidialict_1
1
null
transformers
32,524
--- license: gpl-3.0 --- Wav2vec2 model trained with audio clips from Arabic shows using the Emirati dialect.
N0NAne/DialoGPT-small-harrypotter
c29032a0973c5daa9c0fbc9420cdf16490bb386f
2022-05-31T05:51:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
N0NAne
null
N0NAne/DialoGPT-small-harrypotter
1
null
transformers
32,525
--- tags: - conversational --- # Harry Potter DialoGPT Model
hunkim/sentence-transformersklue-bert-base
b899b71522dd0f8ea8c3f68c3d3f0be9077534c8
2022-05-31T06:39:28.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
hunkim
null
hunkim/sentence-transformersklue-bert-base
1
null
sentence-transformers
32,526
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # hunkim/sentence-transformersklue-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('hunkim/sentence-transformersklue-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hunkim/sentence-transformersklue-bert-base') model = AutoModel.from_pretrained('hunkim/sentence-transformersklue-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hunkim/sentence-transformersklue-bert-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 146, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
chrisvinsen/wav2vec2-15
d1fb441732dda02c63efac575cbe412722b1d290
2022-05-31T11:13:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-15
1
null
transformers
32,527
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-15 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Wer: 0.8585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6808 | 1.37 | 200 | 3.7154 | 1.0 | | 3.0784 | 2.74 | 400 | 3.1542 | 1.0 | | 2.8919 | 4.11 | 600 | 2.9918 | 1.0 | | 2.8317 | 5.48 | 800 | 2.8971 | 1.0 | | 2.7958 | 6.85 | 1000 | 2.8409 | 1.0 | | 2.7699 | 8.22 | 1200 | 2.8278 | 1.0 | | 2.6365 | 9.59 | 1400 | 2.4657 | 1.0 | | 2.1096 | 10.96 | 1600 | 1.8358 | 0.9988 | | 1.6485 | 12.33 | 1800 | 1.4525 | 0.9847 | | 1.3967 | 13.7 | 2000 | 1.2467 | 0.9532 | | 1.2492 | 15.07 | 2200 | 1.1261 | 0.9376 | | 1.1543 | 16.44 | 2400 | 1.0654 | 0.9194 | | 1.0863 | 17.81 | 2600 | 1.0136 | 0.9161 | | 1.0275 | 19.18 | 2800 | 0.9601 | 0.8827 | | 0.9854 | 20.55 | 3000 | 0.9435 | 0.8878 | | 0.9528 | 21.92 | 3200 | 0.9170 | 0.8807 | | 0.926 | 23.29 | 3400 | 0.9121 | 0.8783 | | 0.9025 | 24.66 | 3600 | 0.8884 | 0.8646 | | 0.8909 | 26.03 | 3800 | 0.8836 | 0.8690 | | 0.8717 | 27.4 | 4000 | 0.8810 | 0.8646 | | 0.8661 | 28.77 | 4200 | 0.8623 | 0.8585 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
creynier/wav2vec2-base-swbd-turn-eos-long_short2s_utt_removed_4percent
8ded6c2993c3782dc8253ded987111288aa8e601
2022-06-01T01:11:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short2s_utt_removed_4percent
1
null
transformers
32,528
Entry not found
changjin/distilbert-base-uncased-finetuned-squad
3d5f2d8cfaaed9f31241867424ee935d29b7b567
2022-05-31T08:40:38.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
changjin
null
changjin/distilbert-base-uncased-finetuned-squad
1
null
transformers
32,529
Entry not found
moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64
cf660fa4e0c5bc1462e457c3e97d231ca988bfc2
2022-05-31T09:24:16.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
moshew
null
moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64
1
null
sentence-transformers
32,530
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64') model = AutoModel.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=moshew/paraphrase-mpnet-base-v2_SetFit_sst2_nun_training_64) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Splend1dchan/xtreme_s_w2v2_t5lephone-small_minds14.en-all
74856bb8f5d4f49a8d4a007004c0b6b0c216d5c7
2022-05-31T11:37:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/xtreme_s_w2v2_t5lephone-small_minds14.en-all
1
null
transformers
32,531
Entry not found
mikehemberger/tests
da0621cee932c70ec6772ba97e496ba9b5613346
2022-05-31T09:44:42.000Z
[ "pytorch", "vit", "image-classification", "transformers" ]
image-classification
false
mikehemberger
null
mikehemberger/tests
1
null
transformers
32,532
Entry not found
chrisvinsen/wav2vec2-16
ba820a1bc74ca9f96d13e4a483f28560f7b53a83
2022-06-01T02:12:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-16
1
null
transformers
32,533
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-16 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1016 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.6682 | 1.37 | 200 | 3.3138 | 1.0 | | 2.8751 | 2.74 | 400 | 2.9984 | 1.0 | | 2.8697 | 4.11 | 600 | 3.0827 | 1.0 | | 2.866 | 5.48 | 800 | 3.0697 | 1.0 | | 2.8655 | 6.85 | 1000 | 3.1083 | 1.0 | | 2.8629 | 8.22 | 1200 | 3.0888 | 1.0 | | 2.8651 | 9.59 | 1400 | 3.2852 | 1.0 | | 2.8601 | 10.96 | 1600 | 3.1155 | 1.0 | | 2.8617 | 12.33 | 1800 | 3.1958 | 1.0 | | 2.8595 | 13.7 | 2000 | 3.1070 | 1.0 | | 2.858 | 15.07 | 2200 | 3.1483 | 1.0 | | 2.8564 | 16.44 | 2400 | 3.0906 | 1.0 | | 2.8561 | 17.81 | 2600 | 3.1412 | 1.0 | | 2.8574 | 19.18 | 2800 | 3.0783 | 1.0 | | 2.8543 | 20.55 | 3000 | 3.0624 | 1.0 | | 2.8549 | 21.92 | 3200 | 3.0914 | 1.0 | | 2.8556 | 23.29 | 3400 | 3.0735 | 1.0 | | 2.8557 | 24.66 | 3600 | 3.1791 | 1.0 | | 2.8576 | 26.03 | 3800 | 3.0645 | 1.0 | | 2.8528 | 27.4 | 4000 | 3.1190 | 1.0 | | 2.8551 | 28.77 | 4200 | 3.1016 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Splend1dchan/xtreme_s_w2v2_minds14.en-all
9e69c03342fe2d67ef1cfddaff520e2e39b47eab
2022-05-31T14:07:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/xtreme_s_w2v2_minds14.en-all
1
null
transformers
32,534
Entry not found
MeshalAlamr/wav2vec2-xls-r-300m-ar-12
8b5784abeee04f5380c474c304c86e8e32ed4ee7
2022-06-20T02:48:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-xls-r-300m-ar-12
1
null
transformers
32,535
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ar-12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar-12 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 77.9014 - Wer: 0.1633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 16832.9559 | 1.0 | 85 | 1596.5383 | 1.0 | | 4748.8934 | 2.0 | 170 | 698.8426 | 1.0 | | 2939.1952 | 3.0 | 255 | 633.2770 | 1.0 | | 2833.7857 | 4.0 | 340 | 615.9734 | 1.0 | | 2778.75 | 5.0 | 425 | 609.7852 | 1.0 | | 2603.4421 | 6.0 | 510 | 435.0911 | 0.9998 | | 1420.6594 | 7.0 | 595 | 165.1980 | 0.7542 | | 811.7357 | 8.0 | 680 | 117.7532 | 0.5570 | | 582.7924 | 9.0 | 765 | 93.8724 | 0.4447 | | 469.1885 | 10.0 | 850 | 87.4084 | 0.3961 | | 399.7348 | 11.0 | 935 | 78.7740 | 0.3562 | | 348.0169 | 12.0 | 1020 | 72.9545 | 0.3278 | | 314.0225 | 13.0 | 1105 | 70.8449 | 0.3149 | | 281.4823 | 14.0 | 1190 | 66.1416 | 0.3013 | | 263.0267 | 15.0 | 1275 | 66.6624 | 0.2761 | | 238.7656 | 16.0 | 1360 | 66.3659 | 0.2742 | | 227.9712 | 17.0 | 1445 | 65.1213 | 0.2616 | | 209.4785 | 18.0 | 1530 | 66.3502 | 0.2600 | | 198.6275 | 19.0 | 1615 | 66.7867 | 0.2589 | | 189.7333 | 20.0 | 1700 | 65.1457 | 0.2499 | | 183.3984 | 21.0 | 1785 | 68.7480 | 0.2534 | | 174.6036 | 22.0 | 1870 | 67.8124 | 0.2480 | | 167.1744 | 23.0 | 1955 | 70.3643 | 0.2438 | | 160.6194 | 24.0 | 2040 | 68.3434 | 0.2387 | | 154.096 | 25.0 | 2125 | 69.3449 | 0.2391 | | 148.2008 | 26.0 | 2210 | 66.6332 | 0.2359 | | 143.9339 | 27.0 | 2295 | 67.2253 | 0.2292 | | 143.2862 | 28.0 | 2380 | 68.5232 | 0.2299 | | 136.5192 | 29.0 | 2465 | 71.3180 | 0.2286 | | 138.1667 | 30.0 | 2550 | 68.1166 | 0.2241 | | 129.6961 | 31.0 | 2635 | 69.9885 | 0.2270 | | 125.0034 | 32.0 | 2720 | 68.5696 | 0.2288 | | 122.382 | 33.0 | 2805 | 69.9053 | 0.2237 | | 121.4687 | 34.0 | 2890 | 72.5378 | 0.2325 | | 121.637 | 35.0 | 2975 | 74.0948 | 0.2302 | | 114.8182 | 36.0 | 3060 | 71.6004 | 0.2236 | | 114.9692 | 37.0 | 3145 | 73.0708 | 0.2215 | | 111.2695 | 38.0 | 3230 | 70.1939 | 0.2172 | | 109.1332 | 39.0 | 3315 | 73.6910 | 0.2216 | | 109.5747 | 40.0 | 3400 | 73.0911 | 0.2192 | | 112.0337 | 41.0 | 3485 | 72.5238 | 0.2285 | | 102.5452 | 42.0 | 3570 | 73.1730 | 0.2156 | | 104.4951 | 43.0 | 3655 | 70.9824 | 0.2116 | | 100.2483 | 44.0 | 3740 | 77.4810 | 0.2141 | | 100.7275 | 45.0 | 3825 | 70.5330 | 0.2131 | | 97.4453 | 46.0 | 3910 | 69.3713 | 0.2117 | | 97.4768 | 47.0 | 3995 | 78.6786 | 0.2150 | | 97.9564 | 48.0 | 4080 | 74.7395 | 0.2080 | | 95.7626 | 49.0 | 4165 | 73.5510 | 0.2165 | | 94.4995 | 50.0 | 4250 | 71.3337 | 0.2152 | | 92.4394 | 51.0 | 4335 | 74.3506 | 0.2091 | | 89.1442 | 52.0 | 4420 | 71.3629 | 0.2076 | | 89.8932 | 53.0 | 4505 | 70.2986 | 0.2119 | | 88.6913 | 54.0 | 4590 | 71.3645 | 0.2077 | | 91.1411 | 55.0 | 4675 | 74.9795 | 0.2166 | | 87.5678 | 56.0 | 4760 | 77.4106 | 0.2081 | | 83.0826 | 57.0 | 4845 | 75.1502 | 0.2099 | | 83.7437 | 58.0 | 4930 | 74.9253 | 0.2071 | | 85.8112 | 59.0 | 5015 | 70.0373 | 0.2067 | | 81.7675 | 60.0 | 5100 | 76.5425 | 0.2156 | | 81.6714 | 61.0 | 5185 | 75.3845 | 0.2083 | | 81.9356 | 62.0 | 5270 | 74.8665 | 0.2069 | | 77.8237 | 63.0 | 5355 | 74.6538 | 0.2036 | | 79.3037 | 64.0 | 5440 | 73.3461 | 0.2006 | | 81.3878 | 65.0 | 5525 | 72.3601 | 0.2022 | | 77.7095 | 66.0 | 5610 | 72.7715 | 0.2034 | | 76.6013 | 67.0 | 5695 | 78.5694 | 0.2073 | | 74.7015 | 68.0 | 5780 | 72.6246 | 0.2032 | | 76.637 | 69.0 | 5865 | 73.9210 | 0.2095 | | 74.1983 | 70.0 | 5950 | 75.4212 | 0.1995 | | 73.328 | 71.0 | 6035 | 76.0840 | 0.1958 | | 73.2174 | 72.0 | 6120 | 75.8443 | 0.2006 | | 73.2776 | 73.0 | 6205 | 80.3562 | 0.2058 | | 69.7834 | 74.0 | 6290 | 77.4640 | 0.2018 | | 70.2896 | 75.0 | 6375 | 75.3303 | 0.1989 | | 67.4863 | 76.0 | 6460 | 76.7881 | 0.2021 | | 69.5997 | 77.0 | 6545 | 73.3460 | 0.1990 | | 66.8822 | 78.0 | 6630 | 76.5326 | 0.2000 | | 68.8483 | 79.0 | 6715 | 75.6460 | 0.1996 | | 64.6421 | 80.0 | 6800 | 73.5708 | 0.1966 | | 65.7658 | 81.0 | 6885 | 79.4043 | 0.1981 | | 68.3581 | 82.0 | 6970 | 74.2181 | 0.1995 | | 66.8769 | 83.0 | 7055 | 74.5230 | 0.1970 | | 63.3021 | 84.0 | 7140 | 78.5190 | 0.1968 | | 61.6227 | 85.0 | 7225 | 77.4760 | 0.1974 | | 62.5638 | 86.0 | 7310 | 79.0764 | 0.1979 | | 63.4932 | 87.0 | 7395 | 77.3330 | 0.1938 | | 60.8015 | 88.0 | 7480 | 74.0066 | 0.1913 | | 60.5176 | 89.0 | 7565 | 76.4915 | 0.1930 | | 61.0698 | 90.0 | 7650 | 76.3846 | 0.1936 | | 61.2012 | 91.0 | 7735 | 77.7306 | 0.1916 | | 59.9138 | 92.0 | 7820 | 74.8689 | 0.1904 | | 59.955 | 93.0 | 7905 | 77.6994 | 0.1921 | | 60.1327 | 94.0 | 7990 | 77.2062 | 0.1896 | | 57.2662 | 95.0 | 8075 | 78.6637 | 0.1926 | | 60.3225 | 96.0 | 8160 | 79.5939 | 0.1921 | | 56.1769 | 97.0 | 8245 | 79.2807 | 0.1917 | | 56.4212 | 98.0 | 8330 | 76.9330 | 0.1904 | | 55.0239 | 99.0 | 8415 | 76.5063 | 0.1890 | | 54.8932 | 100.0 | 8500 | 76.7235 | 0.1866 | | 55.0942 | 101.0 | 8585 | 74.4022 | 0.1875 | | 53.9534 | 102.0 | 8670 | 76.1983 | 0.1855 | | 54.8974 | 103.0 | 8755 | 74.1427 | 0.1834 | | 53.0833 | 104.0 | 8840 | 74.4284 | 0.1845 | | 54.4095 | 105.0 | 8925 | 73.8318 | 0.1840 | | 53.0103 | 106.0 | 9010 | 75.3837 | 0.1858 | | 52.1488 | 107.0 | 9095 | 75.4422 | 0.1845 | | 52.6274 | 108.0 | 9180 | 81.5232 | 0.1882 | | 49.8969 | 109.0 | 9265 | 76.7468 | 0.1905 | | 50.2353 | 110.0 | 9350 | 77.5954 | 0.1889 | | 48.6322 | 111.0 | 9435 | 77.4254 | 0.1868 | | 49.8443 | 112.0 | 9520 | 75.5615 | 0.1834 | | 48.3942 | 113.0 | 9605 | 75.4467 | 0.1829 | | 50.5596 | 114.0 | 9690 | 76.4219 | 0.1894 | | 49.3698 | 115.0 | 9775 | 74.8749 | 0.1846 | | 49.8104 | 116.0 | 9860 | 77.8855 | 0.1846 | | 46.308 | 117.0 | 9945 | 77.7105 | 0.1877 | | 48.2955 | 118.0 | 10030 | 75.8736 | 0.1887 | | 48.086 | 119.0 | 10115 | 78.3174 | 0.1856 | | 47.3039 | 120.0 | 10200 | 77.9972 | 0.1818 | | 44.4335 | 121.0 | 10285 | 77.9906 | 0.1831 | | 44.79 | 122.0 | 10370 | 77.6622 | 0.1829 | | 45.2491 | 123.0 | 10455 | 74.7864 | 0.1788 | | 43.4817 | 124.0 | 10540 | 79.8335 | 0.1840 | | 42.8565 | 125.0 | 10625 | 77.1184 | 0.1823 | | 43.3137 | 126.0 | 10710 | 78.8980 | 0.1806 | | 47.5019 | 127.0 | 10795 | 76.0757 | 0.1802 | | 42.8448 | 128.0 | 10880 | 74.3782 | 0.1805 | | 43.371 | 129.0 | 10965 | 75.9817 | 0.1763 | | 42.5875 | 130.0 | 11050 | 75.2765 | 0.1790 | | 41.3362 | 131.0 | 11135 | 76.6064 | 0.1771 | | 42.0271 | 132.0 | 11220 | 75.4263 | 0.1784 | | 39.8784 | 133.0 | 11305 | 77.8300 | 0.1794 | | 40.6921 | 134.0 | 11390 | 78.6296 | 0.1792 | | 39.4606 | 135.0 | 11475 | 79.6816 | 0.1778 | | 37.5287 | 136.0 | 11560 | 78.0326 | 0.1782 | | 41.5487 | 137.0 | 11645 | 77.2891 | 0.1758 | | 41.2244 | 138.0 | 11730 | 75.5363 | 0.1758 | | 38.8745 | 139.0 | 11815 | 78.4477 | 0.1757 | | 39.4361 | 140.0 | 11900 | 74.8600 | 0.1745 | | 37.9799 | 141.0 | 11985 | 74.5921 | 0.1767 | | 40.0375 | 142.0 | 12070 | 75.4366 | 0.1755 | | 38.1776 | 143.0 | 12155 | 76.9755 | 0.1757 | | 39.0457 | 144.0 | 12240 | 78.5006 | 0.1783 | | 36.8371 | 145.0 | 12325 | 74.9189 | 0.1755 | | 36.6938 | 146.0 | 12410 | 78.4304 | 0.1746 | | 35.208 | 147.0 | 12495 | 79.0332 | 0.1774 | | 36.08 | 148.0 | 12580 | 77.9339 | 0.1746 | | 37.4205 | 149.0 | 12665 | 76.0473 | 0.1748 | | 36.1532 | 150.0 | 12750 | 77.6417 | 0.1740 | | 36.4478 | 151.0 | 12835 | 77.7077 | 0.1740 | | 35.2669 | 152.0 | 12920 | 77.4225 | 0.1728 | | 33.9716 | 153.0 | 13005 | 76.0476 | 0.1722 | | 33.7335 | 154.0 | 13090 | 75.8777 | 0.1717 | | 33.2638 | 155.0 | 13175 | 78.7736 | 0.1716 | | 32.744 | 156.0 | 13260 | 75.9818 | 0.1692 | | 33.7618 | 157.0 | 13345 | 77.9544 | 0.1705 | | 32.5823 | 158.0 | 13430 | 74.5033 | 0.1710 | | 32.435 | 159.0 | 13515 | 77.1456 | 0.1703 | | 32.631 | 160.0 | 13600 | 75.2885 | 0.1706 | | 31.8537 | 161.0 | 13685 | 76.6699 | 0.1674 | | 32.7374 | 162.0 | 13770 | 77.5112 | 0.1679 | | 31.7985 | 163.0 | 13855 | 77.2261 | 0.1686 | | 33.4709 | 164.0 | 13940 | 77.0829 | 0.1688 | | 32.5837 | 165.0 | 14025 | 81.3337 | 0.1688 | | 31.3551 | 166.0 | 14110 | 77.3803 | 0.1672 | | 30.5367 | 167.0 | 14195 | 79.0103 | 0.1689 | | 30.7095 | 168.0 | 14280 | 77.3184 | 0.1683 | | 31.0545 | 169.0 | 14365 | 77.5170 | 0.1675 | | 29.7835 | 170.0 | 14450 | 76.5517 | 0.1661 | | 24.643 | 171.0 | 14535 | 77.7856 | 0.1684 | | 29.8659 | 172.0 | 14620 | 78.2275 | 0.1689 | | 29.8893 | 173.0 | 14705 | 76.9425 | 0.1677 | | 29.0071 | 174.0 | 14790 | 76.2374 | 0.1674 | | 28.8064 | 175.0 | 14875 | 77.7253 | 0.1657 | | 28.1371 | 176.0 | 14960 | 77.0664 | 0.1666 | | 28.3809 | 177.0 | 15045 | 77.4184 | 0.1659 | | 27.953 | 178.0 | 15130 | 77.5284 | 0.1651 | | 29.4455 | 179.0 | 15215 | 76.8801 | 0.1647 | | 27.7792 | 180.0 | 15300 | 75.6964 | 0.1638 | | 29.7077 | 181.0 | 15385 | 77.7636 | 0.1648 | | 28.0373 | 182.0 | 15470 | 77.2047 | 0.1655 | | 27.5775 | 183.0 | 15555 | 77.2836 | 0.1631 | | 26.3244 | 184.0 | 15640 | 77.2574 | 0.1645 | | 27.4902 | 185.0 | 15725 | 77.4289 | 0.1649 | | 27.4503 | 186.0 | 15810 | 76.1098 | 0.1636 | | 25.7041 | 187.0 | 15895 | 77.4126 | 0.1627 | | 26.0029 | 188.0 | 15980 | 77.8391 | 0.1640 | | 26.2039 | 189.0 | 16065 | 77.9678 | 0.1644 | | 25.3233 | 190.0 | 16150 | 77.9595 | 0.1636 | | 26.3017 | 191.0 | 16235 | 77.7247 | 0.1640 | | 25.3848 | 192.0 | 16320 | 77.0303 | 0.1631 | | 26.489 | 193.0 | 16405 | 77.0221 | 0.1632 | | 24.5612 | 194.0 | 16490 | 77.1831 | 0.1632 | | 24.3228 | 195.0 | 16575 | 77.3499 | 0.1638 | | 24.7961 | 196.0 | 16660 | 77.6399 | 0.1633 | | 26.368 | 197.0 | 16745 | 77.8759 | 0.1639 | | 26.0979 | 198.0 | 16830 | 77.9501 | 0.1634 | | 26.2053 | 199.0 | 16915 | 77.8439 | 0.1633 | | 25.9718 | 200.0 | 17000 | 77.9014 | 0.1633 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_mt5-base_nofreeze_bs64_drop.3
1b1f510ac52865f5a42fcc0bcf43c6fce5eaef15
2022-06-02T16:25:05.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_mt5-base_nofreeze_bs64_drop.3
1
null
transformers
32,536
Entry not found
wrice/wav2vec2-large-robust-ft-timit
37e41734af51fd8806a57b872cdf139ccef58d97
2022-05-31T22:17:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
wrice
null
wrice/wav2vec2-large-robust-ft-timit
1
null
transformers
32,537
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-robust-ft-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-robust-ft-timit This model is a fine-tuned version of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2768 - Wer: 0.2321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.6175 | 1.0 | 500 | 3.3025 | 1.0 | | 3.0746 | 2.01 | 1000 | 2.9598 | 1.0 | | 1.967 | 3.01 | 1500 | 0.6760 | 0.5607 | | 0.7545 | 4.02 | 2000 | 0.4500 | 0.4567 | | 0.5415 | 5.02 | 2500 | 0.3702 | 0.3882 | | 0.4445 | 6.02 | 3000 | 0.3421 | 0.3584 | | 0.3601 | 7.03 | 3500 | 0.2947 | 0.3096 | | 0.3098 | 8.03 | 4000 | 0.2740 | 0.2894 | | 0.2606 | 9.04 | 4500 | 0.2725 | 0.2787 | | 0.238 | 10.04 | 5000 | 0.2549 | 0.2617 | | 0.2142 | 11.04 | 5500 | 0.2485 | 0.2530 | | 0.1787 | 12.05 | 6000 | 0.2683 | 0.2514 | | 0.1652 | 13.05 | 6500 | 0.2559 | 0.2476 | | 0.1569 | 14.06 | 7000 | 0.2777 | 0.2470 | | 0.1443 | 15.06 | 7500 | 0.2661 | 0.2431 | | 0.1335 | 16.06 | 8000 | 0.2717 | 0.2422 | | 0.1291 | 17.07 | 8500 | 0.2672 | 0.2428 | | 0.1192 | 18.07 | 9000 | 0.2684 | 0.2395 | | 0.1144 | 19.08 | 9500 | 0.2770 | 0.2411 | | 0.1052 | 20.08 | 10000 | 0.2831 | 0.2379 | | 0.1004 | 21.08 | 10500 | 0.2847 | 0.2375 | | 0.1053 | 22.09 | 11000 | 0.2851 | 0.2360 | | 0.1005 | 23.09 | 11500 | 0.2807 | 0.2361 | | 0.0904 | 24.1 | 12000 | 0.2764 | 0.2346 | | 0.0876 | 25.1 | 12500 | 0.2774 | 0.2325 | | 0.0883 | 26.1 | 13000 | 0.2768 | 0.2313 | | 0.0848 | 27.11 | 13500 | 0.2840 | 0.2307 | | 0.0822 | 28.11 | 14000 | 0.2812 | 0.2316 | | 0.09 | 29.12 | 14500 | 0.2768 | 0.2321 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.8.2+cu111 - Datasets 1.17.0 - Tokenizers 0.11.6
meghazisofiane/opus-mt-en-ar-finetuned-en-to-ar
cad0f31af8c513863b0dcacab285c162f194d9ef
2022-06-03T17:27:04.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:un_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
meghazisofiane
null
meghazisofiane/opus-mt-en-ar-finetuned-en-to-ar
1
null
transformers
32,538
--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-finetuned-en-to-ar results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 64.6767 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-finetuned-en-to-ar This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8133 - Bleu: 64.6767 - Gen Len: 17.595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 50 | 0.7710 | 64.3416 | 17.4 | | No log | 2.0 | 100 | 0.7569 | 63.9546 | 17.465 | | No log | 3.0 | 150 | 0.7570 | 64.7484 | 17.385 | | No log | 4.0 | 200 | 0.7579 | 65.4073 | 17.305 | | No log | 5.0 | 250 | 0.7624 | 64.8939 | 17.325 | | No log | 6.0 | 300 | 0.7696 | 65.1257 | 17.45 | | No log | 7.0 | 350 | 0.7747 | 65.527 | 17.395 | | No log | 8.0 | 400 | 0.7791 | 65.1357 | 17.52 | | No log | 9.0 | 450 | 0.7900 | 65.3812 | 17.415 | | 0.3982 | 10.0 | 500 | 0.7925 | 65.7346 | 17.39 | | 0.3982 | 11.0 | 550 | 0.7951 | 65.1267 | 17.62 | | 0.3982 | 12.0 | 600 | 0.8040 | 64.6874 | 17.495 | | 0.3982 | 13.0 | 650 | 0.8069 | 64.7788 | 17.52 | | 0.3982 | 14.0 | 700 | 0.8105 | 64.6701 | 17.585 | | 0.3982 | 15.0 | 750 | 0.8120 | 64.7111 | 17.58 | | 0.3982 | 16.0 | 800 | 0.8133 | 64.6767 | 17.595 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ThePixOne/SeconBERTa
427aec37ecc469cd938478c8e859219059a3c5f8
2022-05-31T19:53:48.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ThePixOne
null
ThePixOne/SeconBERTa
1
null
sentence-transformers
32,539
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 20799 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4159.8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Dizzykong/test-recipe
a37f3e6909adecb86352087eb986506b8cfff9ea
2022-05-31T21:17:01.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/test-recipe
1
null
transformers
32,540
--- tags: - generated_from_trainer model-index: - name: test-recipe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-recipe This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.001 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Dizzykong/test-charles-dickens
279d9599376fc7810330faf288957980a524ded3
2022-05-31T21:22:30.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/test-charles-dickens
1
null
transformers
32,541
--- license: mit tags: - generated_from_trainer model-index: - name: test-charles-dickens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-charles-dickens This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
erickfm/t5-small-finetuned-bias
220a1ca3ce75e905419adc5b63019a60f39401f0
2022-06-01T02:02:16.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WNC", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias
1
null
transformers
32,542
--- language: - en license: apache-2.0 datasets: - WNC metrics: - accuracy --- This model is a fine-tune checkpoint of [T5-small](https://huggingface.co/t5-small), fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://github.com/rpryzant/neutralizing-bias), a labeled dataset composed of 180,000 biased and neutralized sentence pairs that are generated from Wikipedia edits tagged for “neutral point of view”. This model reaches an accuracy of 0.32 on a dev split of the WNC. For more details about T5, check out this [model card](https://huggingface.co/t5-small).
adache/xlm-roberta-base-finetuned-panx-de-fr
a5eae7931cccc52060eb0e5dee56db98d9a36286
2022-06-01T06:47:31.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
adache
null
adache/xlm-roberta-base-finetuned-panx-de-fr
1
null
transformers
32,543
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-fr
203bd4b69cce6af55fad956613622d925c277b2a
2022-06-01T07:13:59.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
adache
null
adache/xlm-roberta-base-finetuned-panx-fr
1
null
transformers
32,544
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8053736356003358 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3196 - F1: 0.8054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7741 | 1.0 | 96 | 0.3784 | 0.7542 | | 0.3235 | 2.0 | 192 | 0.3267 | 0.7947 | | 0.2164 | 3.0 | 288 | 0.3196 | 0.8054 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-it
174d2bd46cb9245329203339321236bfdd7782bc
2022-06-01T07:33:52.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
adache
null
adache/xlm-roberta-base-finetuned-panx-it
1
null
transformers
32,545
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8247845711940912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - F1: 0.8248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.809 | 1.0 | 70 | 0.3380 | 0.7183 | | 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 | | 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-en
259010ef20fc52b81d38c8e730f437d13b5af321
2022-06-01T07:53:50.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
adache
null
adache/xlm-roberta-base-finetuned-panx-en
1
null
transformers
32,546
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.692179700499168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ceggian/sbart_pt_reddit_softmax_64
a74d53c35fd8879f9d10dff1f28a32ea114ecf01
2022-06-01T07:46:44.000Z
[ "pytorch", "bart", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbart_pt_reddit_softmax_64
1
null
sentence-transformers
32,547
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
adache/xlm-roberta-base-finetuned-panx-all
33243f743e186cc7a5918122a0d3d25d47cdda12
2022-06-01T08:20:34.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
adache
null
adache/xlm-roberta-base-finetuned-panx-all
1
null
transformers
32,548
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1782 - F1: 0.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2995 | 1.0 | 739 | 0.1891 | 0.8085 | | 0.1552 | 2.0 | 1478 | 0.1798 | 0.8425 | | 0.1008 | 3.0 | 2217 | 0.1782 | 0.8541 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
elisabethvonoswald/wav2vec2-large-xls-r-300m-2022-06-01
3042e0c8ee9d24dfe958412e85e0a25d72968f84
2022-06-01T10:05:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
elisabethvonoswald
null
elisabethvonoswald/wav2vec2-large-xls-r-300m-2022-06-01
1
null
transformers
32,549
Entry not found
KM4STfulltext/SSCI-BERT-e4
55e70d3368e38378e06474002dd78f03f074cc9e
2022-06-01T09:25:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
KM4STfulltext
null
KM4STfulltext/SSCI-BERT-e4
1
null
transformers
32,550
--- license: apache-2.0 --- # SSCI-BERT: A pretrained language model for social scientific text ## Introduction The research for social science texts needs the support natural language processing tools. The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in social science. We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed [SSCI-BERT and SSCI-SciBERT](https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py). We designed four downstream tasks of Text Classification on different social scientific article corpus to verify the performance of the model. - SSCI-BERT and SSCI-SciBERT are trained on the abstract of articles published in SSCI journals from 1986 to 2021. The training set involved in the experiment included a total of `503910614 words`. - Based on the idea of Domain-Adaptive Pretraining, `SSCI-BERT` and `SSCI-SciBERT` combine a large amount of abstracts of scientific articles based on the BERT structure, and continue to train the BERT and SSCI-SciBERT models respectively to obtain pre-training models for the automatic processing of Social science research texts. ## News - 2022-03-24 : SSCIBERT and SSCI-SciBERT has been put forward for the first time. ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain SSCI-BERT and SSCI-SciBERT models online. - SSCI-BERT ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-BERT-e2") model = AutoModel.from_pretrained("KM4STfulltext/SSCI-BERT-e2") ``` - SSCI-SciBERT ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2") model = AutoModel.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2") ``` ### Download Models - The version of the model we provide is `PyTorch`. ### From Huggingface - Download directly through Huggingface's official website. - [KM4STfulltext/SSCI-BERT-e2](https://huggingface.co/KM4STfulltext/SSCI-BERT-e2) - [KM4STfulltext/SSCI-SciBERT-e2](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e2) - [KM4STfulltext/SSCI-BERT-e4 ](https://huggingface.co/KM4STfulltext/SSCI-BERT-e4) - [KM4STfulltext/SSCI-SciBERT-e4](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e4) ### From Google Drive We have put the model on Google Drive for users. | Model | DATASET(year) | Base Model | | ------------------------------------------------------------ | ------------- | ---------------------- | | [SSCI-BERT-e2](https://drive.google.com/drive/folders/1xEDnovlwGO2JxqCaf3rdjS2cB6DOxhj4?usp=sharing) | 1986-2021 | Bert-base-cased | | [SSCI-SciBERT-e2](https://drive.google.com/drive/folders/16DtIvnHvbrR_92MwgthRRsULW6An9te1?usp=sharing) (recommended) | 1986-2021 | Scibert-scivocab-cased | | [SSCI-BERT-e4](https://drive.google.com/drive/folders/1sr6Av8p904Jrjps37g7E8aj4HnAHXSxW?usp=sharing) | 1986-2021 | Bert-base-cased | | [SSCI-SciBERT-e4](https://drive.google.com/drive/folders/1ty-b4TIFu8FbilgC4VcI7Bgn_O5MDMVe?usp=sharing) | 1986-2021 | Scibert-scivocab-cased | ## Evaluation & Results - We use SSCI-BERT and SSCI-SciBERT to perform Text Classificationon different social science research corpus. The experimental results are as follows. Relevant data sets are available for download in the **Verification task datasets** folder of this project. #### JCR Title Classify Dataset | Model | accuracy | macro avg | weighted avg | | ---------------------- | -------- | --------- | ------------ | | Bert-base-cased | 28.43 | 22.06 | 21.86 | | Scibert-scivocab-cased | 38.48 | 33.89 | 33.92 | | SSCI-BERT-e2 | 40.43 | 35.37 | 35.33 | | SSCI-SciBERT-e2 | 41.35 | 37.27 | 37.25 | | SSCI-BERT-e4 | 40.65 | 35.49 | 35.40 | | SSCI-SciBERT-e4 | 41.13 | 36.96 | 36.94 | | Support | 2300 | 2300 | 2300 | #### JCR Abstract Classify Dataset | Model | accuracy | macro avg | weighted avg | | ---------------------- | -------- | --------- | ------------ | | Bert-base-cased | 48.59 | 42.8 | 42.82 | | Scibert-scivocab-cased | 55.59 | 51.4 | 51.81 | | SSCI-BERT-e2 | 58.05 | 53.31 | 53.73 | | SSCI-SciBERT-e2 | 59.95 | 56.51 | 57.12 | | SSCI-BERT-e4 | 59.00 | 54.97 | 55.59 | | SSCI-SciBERT-e4 | 60.00 | 56.38 | 56.90 | | Support | 2200 | 2200 | 2200 | #### JCR Mixed Titles and Abstracts Dataset | **Model** | **accuracy** | **macro avg** | **weighted avg** | | ---------------------- | ------------ | -------------- | ----------------- | | Bert-base-cased | 58.24 | 57.27 | 57.25 | | Scibert-scivocab-cased | 59.58 | 58.65 | 58.68 | | SSCI-BERT-e2 | 60.89 | 60.24 | 60.30 | | SSCI-SciBERT-e2 | 60.96 | 60.54 | 60.51 | | SSCI-BERT-e4 | 61.00 | 60.48 | 60.43 | | SSCI-SciBERT-e4 | 61.24 | 60.71 | 60.75 | | Support | 4500 | 4500 | 4500 | #### SSCI Abstract Structural Function Recognition (Classify Dataset) | | Bert-base-cased | SSCI-BERT-e2 | SSCI-BERT-e4 | support | | ------------ | -------------------------- | ------------------- | ------------------- | ----------- | | B | 63.77 | 64.29 | 64.63 | 224 | | P | 53.66 | 57.14 | 57.99 | 95 | | M | 87.63 | 88.43 | 89.06 | 323 | | R | 86.81 | 88.28 | **88.47** | 419 | | C | 78.32 | 79.82 | 78.95 | 316 | | accuracy | 79.59 | 80.9 | 80.97 | 1377 | | macro avg | 74.04 | 75.59 | 75.82 | 1377 | | weighted avg | 79.02 | 80.32 | 80.44 | 1377 | | | **Scibert-scivocab-cased** | **SSCI-SciBERT-e2** | **SSCI-SciBERT-e4** | **support** | | B | 69.98 | **70.95** | **70.95** | 224 | | P | 58.89 | **60.12** | 58.96 | 95 | | M | 89.37 | **90.12** | 88.11 | 323 | | R | 87.66 | 88.07 | 87.44 | 419 | | C | 80.7 | 82.61 | **82.94** | 316 | | accuracy | 81.63 | **82.72** | 82.06 | 1377 | | macro avg | 77.32 | **78.37** | 77.68 | 1377 | | weighted avg | 81.6 | **82.58** | 81.92 | 1377 | ## Cited - If our content is helpful for your research work, please quote our research in your article. - If you want to quote our research, you can use this url (https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) as an alternative before our paper is published. ## Disclaimer - The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment. - **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment - SSCI-BERT was trained based on [BERT-Base-Cased]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)). - SSCI-SciBERT was trained based on [scibert-scivocab-cased]([allenai/scibert: A BERT model for scientific text. (github.com)](https://github.com/allenai/scibert))
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_seed2_epoch1
a46a68439c78a8514ddabdf6a7ec75fbc6288ee7
2022-06-01T11:29:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_seed2_epoch1
1
null
transformers
32,551
Entry not found
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_seed1_epoch1
882a1f30925727618c010e62f2fff712f1fe828f
2022-06-01T11:33:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_seed1_epoch1
1
null
transformers
32,552
Entry not found
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_seed1_epoch1
a5ff8d209fbad5c5205d671f3b575886c0baa945
2022-06-01T11:39:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_seed1_epoch1
1
null
transformers
32,553
Entry not found
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_seed2_epoch1
b398f785e6a4213a0c3ac69a3e158e1beb7a15aa
2022-06-01T11:43:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_seed2_epoch1
1
null
transformers
32,554
Entry not found
jxm/u-PMLM-R
a973b1c9b0909c18d88e0c2f66c75a2d1546272b
2022-06-01T16:12:46.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
jxm
null
jxm/u-PMLM-R
1
null
transformers
32,555
Entry not found
VanessaSchenkel/unicamp-finetuned-en-to-pt-dataset-ted
0e7242ac5f9b5500d5e7d685537ea542bb2f5365
2022-06-01T22:38:09.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:ted_iwlst2013", "transformers", "translation", "generated_from_trainer", "model-index", "autotrain_compatible" ]
translation
false
VanessaSchenkel
null
VanessaSchenkel/unicamp-finetuned-en-to-pt-dataset-ted
1
null
transformers
32,556
--- tags: - translation - generated_from_trainer datasets: - ted_iwlst2013 metrics: - bleu model-index: - name: unicamp-finetuned-en-to-pt-dataset-ted results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ted_iwlst2013 type: ted_iwlst2013 args: en-pt metrics: - name: Bleu type: bleu value: 25.65030250145235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unicamp-finetuned-en-to-pt-dataset-ted This model is a fine-tuned version of [unicamp-dl/translation-pt-en-t5](https://huggingface.co/unicamp-dl/translation-pt-en-t5) on the ted_iwlst2013 dataset. It achieves the following results on the evaluation set: - Loss: 1.8861 - Bleu: 25.6503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sagnikrayc/prajjwal-bert-small-mnli
aaae6430ff7a2b7f1d98af5bb10c447a1677fda7
2022-06-01T18:23:28.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sagnikrayc
null
sagnikrayc/prajjwal-bert-small-mnli
1
null
transformers
32,557
Entry not found
SoulCaliber/DialoGPT-small-Saber111
6a7abb01e925ecb7ad9dd63c65f014dbacecb3e0
2022-06-01T18:26:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
SoulCaliber
null
SoulCaliber/DialoGPT-small-Saber111
1
null
transformers
32,558
--- tags: - conversational --- # My Awesome Model
lmqg/t5-base-subjqa-books
691fe2e3f8ee03b10e8543416bd3fb8127b32ab9
2022-06-02T13:12:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-books
1
null
transformers
32,559
Entry not found
lmqg/t5-base-subjqa-electronics
a633448f62b7b9a5b5ff72fbe6293a283638b806
2022-06-02T15:16:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-electronics
1
null
transformers
32,560
Entry not found
income/jpq-question_encoder-base-msmarco-roberta-star
cfc6591f05688ba65cd8601ac303ce73b30e886a
2022-06-01T22:36:58.000Z
[ "pytorch", "roberta", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-question_encoder-base-msmarco-roberta-star
1
null
transformers
32,561
--- license: apache-2.0 ---
income/jpq-document_encoder-base-msmarco-roberta-star
5537b8dcd62f49d2eff98c478b0d4e974c8bad6a
2022-06-01T22:40:09.000Z
[ "pytorch", "roberta", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-document_encoder-base-msmarco-roberta-star
1
null
transformers
32,562
--- license: apache-2.0 ---
lmqg/t5-small-subjqa-movies
6f2db90e569d4e94f07f903f5e79c0f2d94cca56
2022-06-02T18:51:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-movies
1
null
transformers
32,563
Entry not found
dkasti/xlm-roberta-base-finetuned-panx-de-fr
d4fda6b3c93fb034881ccf5873a8092467ff19ae
2022-06-02T01:56:17.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
dkasti
null
dkasti/xlm-roberta-base-finetuned-panx-de-fr
1
null
transformers
32,564
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 - F1: 0.8555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2883 | 1.0 | 715 | 0.1818 | 0.8286 | | 0.1461 | 2.0 | 1430 | 0.1539 | 0.8511 | | 0.095 | 3.0 | 2145 | 0.1649 | 0.8555 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-fr
ecea0cd8b5ecc7b2c3fcc3aaf662f1d83f851f55
2022-06-02T02:03:12.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
dkasti
null
dkasti/xlm-roberta-base-finetuned-panx-fr
1
null
transformers
32,565
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.839946200403497 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2789 - F1: 0.8399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.587 | 1.0 | 191 | 0.3355 | 0.7929 | | 0.274 | 2.0 | 382 | 0.2977 | 0.8283 | | 0.1836 | 3.0 | 573 | 0.2789 | 0.8399 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-it
dfc6757ccb03dc43f8891a7d861876834b84198c
2022-06-02T02:05:41.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
dkasti
null
dkasti/xlm-roberta-base-finetuned-panx-it
1
null
transformers
32,566
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8233360723089564 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 - F1: 0.8233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8099 | 1.0 | 70 | 0.3035 | 0.7333 | | 0.2766 | 2.0 | 140 | 0.2661 | 0.7948 | | 0.1792 | 3.0 | 210 | 0.2388 | 0.8233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-en
3972042d00b1120703a46edfcef27759421bb05a
2022-06-02T02:07:48.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
dkasti
null
dkasti/xlm-roberta-base-finetuned-panx-en
1
null
transformers
32,567
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6885793871866295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3996 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1301 | 1.0 | 50 | 0.5666 | 0.4857 | | 0.5143 | 2.0 | 100 | 0.4469 | 0.6449 | | 0.3723 | 3.0 | 150 | 0.3996 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-all
71d4282424f3205e5eedb943ad800a71d5165936
2022-06-02T02:24:54.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
dkasti
null
dkasti/xlm-roberta-base-finetuned-panx-all
1
null
transformers
32,568
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1769 - F1: 0.8533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3049 | 1.0 | 835 | 0.1873 | 0.8139 | | 0.1576 | 2.0 | 1670 | 0.1722 | 0.8403 | | 0.1011 | 3.0 | 2505 | 0.1769 | 0.8533 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
PSW/samsum_reverse_train_distilbart_xsum_12-3_epoch3
19f4c32b635a818c9d327db34e2c1cd3fdc3e328
2022-06-02T04:42:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_12-3_epoch3
1
null
transformers
32,569
Entry not found
callmefons/t5-small
9bea3749b7dfcd3a8e8b92a2d73a5055faa58cc9
2022-06-02T05:25:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
callmefons
null
callmefons/t5-small
1
null
transformers
32,570
--- tags: - generated_from_trainer model-index: - name: t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 12 | 3.1840 | 3.5714 | 1.7857 | 3.5714 | 3.5714 | 19.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
callmefons/mt5-small
f9d0131ab764891c3c6bc3bcefb580a740b82651
2022-06-02T05:28:09.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
callmefons
null
callmefons/mt5-small
1
null
transformers
32,571
--- tags: - generated_from_trainer model-index: - name: mt5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 12 | 3.0287 | 2.7473 | 1.9481 | 2.7473 | 2.7473 | 19.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
PSW/samsum_reverse_train_distilbart_xsum_12-3_minlen10_epoch3
018ab62fb6adeb41aaa90b2a7ce2407c13c712ec
2022-06-02T06:11:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_12-3_minlen10_epoch3
1
null
transformers
32,572
Entry not found
erickfm/t5-large-finetuned-bias-m
c4fc3cfcce6cb91fa9b252a32de4d5818e2140a8
2022-06-02T06:07:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias-m
1
null
transformers
32,573
--- license: apache-2.0 ---
202015004/UA_low_training_shreya
7f1e203c75db72acb80d15d5e84b20ebf0707709
2022-06-02T12:45:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/UA_low_training_shreya
1
null
transformers
32,574
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_sampling_min10max2000_epoch3
0ef7b13f941fe6f83208337448e110300f0db219
2022-06-02T07:46:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_sampling_min10max2000_epoch3
1
null
transformers
32,575
Entry not found
Splend1dchan/xtreme_s_xlsr_byt5-small_minds14.en-all
7ca5a0c2bb04433549b8033ed7252baeee8a1212
2022-06-02T21:59:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/xtreme_s_xlsr_byt5-small_minds14.en-all
1
null
transformers
32,576
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_epoch3
5dd6ea33b3f97300dfb08c5ba8514c8b2b552abe
2022-06-02T09:13:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_epoch3
1
null
transformers
32,577
Entry not found
creynier/wav2vec2-base-swbd-turn-eos-long_short1-8s_utt_removed_4percent2
e2def4c876c75a75458f1dca319ae73746152d4f
2022-06-02T10:06:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short1-8s_utt_removed_4percent2
1
null
transformers
32,578
Entry not found
Lolaibrin/distilbert-base-uncased-finetuned-squad
6eb4ddf658a1188f4c6fbb47d66d69f1631a2c24
2022-06-02T13:43:10.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Lolaibrin
null
Lolaibrin/distilbert-base-uncased-finetuned-squad
1
null
transformers
32,579
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.4952 | 1.0 | 5533 | 1.3895 | | 1.3024 | 2.0 | 11066 | 1.2490 | | 1.2087 | 3.0 | 16599 | 1.2108 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
PSW/samsum_reverse_train_distilbart_xsum_9-6_sampling_min40max2000_epoch3
8ec1d3125a5e58295607429c967e9b33b1bf0656
2022-06-02T11:27:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_sampling_min40max2000_epoch3
1
null
transformers
32,580
Entry not found
AAkhilesh/wav2vec2-large-xls-r-300m-hsb-colab
b073acc518bab7499294b09a8d0cfac58c04dd35
2022-06-02T13:57:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AAkhilesh
null
AAkhilesh/wav2vec2-large-xls-r-300m-hsb-colab
1
null
transformers
32,581
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hsb-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
brindap/wav2vec2-large-xls-r-300m-hsb-colab
e453861ac8979745ba1f40edcc1cab81cf3702d5
2022-06-03T06:56:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
brindap
null
brindap/wav2vec2-large-xls-r-300m-hsb-colab
1
null
transformers
32,582
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hsb-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.2283 - Wer: 0.9818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 17.2414 | 5.56 | 50 | 7.6790 | 1.0 | | 5.5913 | 11.11 | 100 | 4.1167 | 1.0 | | 3.8478 | 16.67 | 150 | 3.3965 | 1.0 | | 3.3442 | 22.22 | 200 | 3.2828 | 1.0 | | 3.2219 | 27.78 | 250 | 3.2283 | 0.9818 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Danastos/squad_bert_el_4
90cd86ebfa62aae6b2b3cef739255b97d452878a
2022-06-19T12:57:10.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/squad_bert_el_4
1
null
transformers
32,583
Entry not found
ducnapa/apes
cb370421c2b070ee356a2703366ceb02385c61db
2022-06-02T15:17:57.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
ducnapa
null
ducnapa/apes
1
null
transformers
32,584
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: apes results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8999999761581421 --- # apes Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chimpanzee ![chimpanzee](images/chimpanzee.jpg) #### gibbon ![gibbon](images/gibbon.jpg) #### gorilla ![gorilla](images/gorilla.jpg) #### orangutan ![orangutan](images/orangutan.jpg)
vftnr/ar_en
d8f5f5f0462c03d7c66a676e417c6e7b14a162db
2022-06-02T15:44:07.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vftnr
null
vftnr/ar_en
1
null
transformers
32,585
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_epoch6
aa5018e08420ad746d05ad26114edb26523d4c85
2022-06-02T16:08:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_epoch6
1
null
transformers
32,586
Entry not found
Bistolero/nl_one_ep
fe143ebc3acf913eb73ec921ffd50ce70a48d203
2022-06-02T16:52:02.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/nl_one_ep
1
null
transformers
32,587
Entry not found
huggingtweets/davemomi
daf969d4a269b6a6b9b8c6cf7b7050612d277fee
2022-06-02T18:30:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/davemomi
1
null
transformers
32,588
--- language: en thumbnail: http://www.huggingtweets.com/davemomi/1654194627703/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1171375301768744961/QZbLbdu8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Davide Momi</div> <div style="text-align: center; font-size: 14px;">@davemomi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Davide Momi. | Data | Davide Momi | | --- | --- | | Tweets downloaded | 273 | | Retweets | 56 | | Short tweets | 31 | | Tweets kept | 186 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4crkiv7x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @davemomi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oh3qlzu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oh3qlzu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/davemomi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Mudassar/wav2vec2-base-timit-demo-colab53
47d1c840a7c5ba305c43d16e5d2415c1f773e739
2022-06-02T23:03:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Mudassar
null
Mudassar/wav2vec2-base-timit-demo-colab53
1
null
transformers
32,589
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab53 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sanamoin/wav2vec2-base-timit-demo-google-colab
f7dff0d850ed580407d6253c6e0e578c30fe88d1
2022-06-07T09:13:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sanamoin
null
sanamoin/wav2vec2-base-timit-demo-google-colab
1
null
transformers
32,590
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
victorlee071200/distilbert-base-cased-finetuned-squad
e2047f77f61817e74e01f97d6d7dfdd9b9f50543
2022-06-09T04:54:55.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
victorlee071200
null
victorlee071200/distilbert-base-cased-finetuned-squad
1
null
transformers
32,591
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2357 | 1.0 | 5546 | 1.1985 | | 0.9525 | 2.0 | 11092 | 1.1285 | | 0.744 | 3.0 | 16638 | 1.1755 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jmilic/model_name
13ce63bfcc2895d9b9ac8ba4f7673bfe330d0441
2022-06-02T23:19:41.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
jmilic
null
jmilic/model_name
1
null
transformers
32,592
Entry not found
huggingtweets/chewschaper
5370fea7c36ea6571f46017e72e0d1bcbcf59d0b
2022-06-02T23:07:07.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chewschaper
1
null
transformers
32,593
--- language: en thumbnail: http://www.huggingtweets.com/chewschaper/1654211222982/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1443195119218343937/dNb48XD2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Benjamin Schaper</div> <div style="text-align: center; font-size: 14px;">@chewschaper</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Benjamin Schaper. | Data | Benjamin Schaper | | --- | --- | | Tweets downloaded | 449 | | Retweets | 106 | | Short tweets | 17 | | Tweets kept | 326 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2kzh1jag/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chewschaper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/113fsajt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/113fsajt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chewschaper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Splend1dchan/xtreme_s_xlsr_t5lephone-small_minds14.en-all
9035164de2cef006e8b6ae985562121c05ed4845
2022-06-03T12:19:36.000Z
[ "pytorch", "tensorboard", "wav2vec2", "all", "transformers", "minds14", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
Splend1dchan
null
Splend1dchan/xtreme_s_xlsr_t5lephone-small_minds14.en-all
1
null
transformers
32,594
--- language: - all license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_t5lephone-small_minds14.en-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_t5lephone-small_minds14.en-all This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set: - Loss: 0.5979 - F1: 0.8918 - Accuracy: 0.8921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:------:|:--------:| | 2.3561 | 2.98 | 200 | 2.5464 | 0.0681 | 0.1334 | | 1.1851 | 5.97 | 400 | 1.5056 | 0.5583 | 0.5861 | | 1.2805 | 8.95 | 600 | 1.1397 | 0.7106 | 0.7044 | | 1.0801 | 11.94 | 800 | 0.9863 | 0.7132 | 0.7198 | | 0.9285 | 14.92 | 1000 | 0.9912 | 0.7037 | 0.7139 | | 0.4164 | 17.91 | 1200 | 0.8226 | 0.7743 | 0.7741 | | 0.7669 | 20.89 | 1400 | 0.8131 | 0.7783 | 0.7788 | | 0.4606 | 23.88 | 1600 | 0.8314 | 0.7879 | 0.7792 | | 0.6975 | 26.86 | 1800 | 0.7667 | 0.7927 | 0.7939 | | 0.9913 | 29.85 | 2000 | 0.9207 | 0.7734 | 0.7707 | | 0.2307 | 32.83 | 2200 | 0.7651 | 0.8072 | 0.8086 | | 0.1412 | 35.82 | 2400 | 0.7132 | 0.8352 | 0.8311 | | 0.2141 | 38.8 | 2600 | 0.7551 | 0.8276 | 0.8262 | | 0.2169 | 41.79 | 2800 | 0.7900 | 0.8148 | 0.8160 | | 0.3942 | 44.77 | 3000 | 0.8621 | 0.8130 | 0.8042 | | 0.2306 | 47.76 | 3200 | 0.6788 | 0.8264 | 0.8253 | | 0.0975 | 50.74 | 3400 | 0.7236 | 0.8295 | 0.8289 | | 0.0062 | 53.73 | 3600 | 0.6872 | 0.8286 | 0.8277 | | 0.1781 | 56.71 | 3800 | 0.6990 | 0.8393 | 0.8390 | | 0.0309 | 59.7 | 4000 | 0.6348 | 0.8496 | 0.8500 | | 0.0026 | 62.68 | 4200 | 0.6737 | 0.8585 | 0.8566 | | 0.0043 | 65.67 | 4400 | 0.7780 | 0.8416 | 0.8387 | | 0.0032 | 68.65 | 4600 | 0.6899 | 0.8482 | 0.8461 | | 0.0302 | 71.64 | 4800 | 0.6813 | 0.8515 | 0.8495 | | 0.0027 | 74.62 | 5000 | 0.7163 | 0.8530 | 0.8529 | | 0.1165 | 77.61 | 5200 | 0.6249 | 0.8603 | 0.8595 | | 0.0021 | 80.59 | 5400 | 0.6747 | 0.8588 | 0.8578 | | 0.2558 | 83.58 | 5600 | 0.7514 | 0.8581 | 0.8581 | | 0.0162 | 86.57 | 5800 | 0.6782 | 0.8667 | 0.8664 | | 0.1929 | 89.55 | 6000 | 0.6371 | 0.8615 | 0.8600 | | 0.0621 | 92.54 | 6200 | 0.8079 | 0.8600 | 0.8607 | | 0.0017 | 95.52 | 6400 | 0.7072 | 0.8678 | 0.8669 | | 0.0008 | 98.51 | 6600 | 0.7323 | 0.8572 | 0.8541 | | 0.1655 | 101.49 | 6800 | 0.6953 | 0.8521 | 0.8505 | | 0.01 | 104.48 | 7000 | 0.7149 | 0.8665 | 0.8674 | | 0.0135 | 107.46 | 7200 | 0.8990 | 0.8523 | 0.8488 | | 0.0056 | 110.45 | 7400 | 0.7320 | 0.8673 | 0.8664 | | 0.0023 | 113.43 | 7600 | 0.7108 | 0.8700 | 0.8705 | | 0.0025 | 116.42 | 7800 | 0.6464 | 0.8818 | 0.8820 | | 0.0003 | 119.4 | 8000 | 0.6985 | 0.8706 | 0.8713 | | 0.0048 | 122.39 | 8200 | 0.6620 | 0.8765 | 0.8740 | | 0.2335 | 125.37 | 8400 | 0.6515 | 0.8832 | 0.8828 | | 0.0005 | 128.36 | 8600 | 0.6961 | 0.8776 | 0.8762 | | 0.0003 | 131.34 | 8800 | 0.5990 | 0.8878 | 0.8882 | | 0.0002 | 134.33 | 9000 | 0.6236 | 0.8887 | 0.8889 | | 0.002 | 137.31 | 9200 | 0.6671 | 0.8847 | 0.8845 | | 0.0002 | 140.3 | 9400 | 0.5970 | 0.8931 | 0.8935 | | 0.0002 | 143.28 | 9600 | 0.6095 | 0.8906 | 0.8913 | | 0.0002 | 146.27 | 9800 | 0.6056 | 0.8910 | 0.8913 | | 0.0002 | 149.25 | 10000 | 0.5979 | 0.8918 | 0.8921 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_mt5-base_nofreeze_bs64
78c18cbd88adb12b7ed4996f910dce4c0bb6e621
2022-06-05T02:54:04.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_mt5-base_nofreeze_bs64
1
null
transformers
32,595
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min40max2000_epoch3
3d5c083ab71fbaf9d40536636f348b9a501ffba4
2022-06-03T01:40:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min40max2000_epoch3
1
null
transformers
32,596
Entry not found
erickfm/t5-large-finetuned-bias-v3
df1406fb83239ff3e4132ae0b09079df7914c9dc
2022-06-03T02:24:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias-v3
1
null
transformers
32,597
Entry not found
erickfm/t5-large-finetuned-bias-v4
51a1034d581b289d60f24cb70783373fe45e3f4a
2022-06-03T03:55:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias-v4
1
null
transformers
32,598
Entry not found
erickfm/t5-large-finetuned-bias-v5
bf0bba4d47e435675d9669879eae4985431f1948
2022-06-03T06:13:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias-v5
1
null
transformers
32,599
Entry not found