modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Mjollnir1996/dpr-question_encoder-bert-base-multilingual_mod
59f15e6f2917c0c0e3eb88436f42b27304a1448c
2022-06-27T11:10:20.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
Mjollnir1996
null
Mjollnir1996/dpr-question_encoder-bert-base-multilingual_mod
1
null
transformers
33,100
--- license: apache-2.0 ---
oceanpty/panx-xlmr-base
bccc0098d384315346368fdb89912f835151ff42
2022-06-27T13:10:33.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
oceanpty
null
oceanpty/panx-xlmr-base
1
null
transformers
33,101
Entry not found
cookpad/mt5-base-indonesia-recipe-query-generation_v3
e7328ec68eb864e661419c9981c1b9b1f1c1d270
2022-06-27T12:17:22.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cookpad
null
cookpad/mt5-base-indonesia-recipe-query-generation_v3
1
null
transformers
33,102
Entry not found
Rahulrr/opus-mt-en-ro-finetuned-en-to-ro
744f6b18f3c88efa99dc5ba9eccc3686cadbf5d8
2022-06-27T13:37:38.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Rahulrr
null
Rahulrr/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
33,103
Entry not found
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5
45ad6f6cf903f31cfb73e178e721dd99230d439f
2022-06-28T11:49:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5
1
null
transformers
33,104
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0163 - Wer: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8867 | 1.0 | 376 | 1.0382 | 0.6821 | | 0.8861 | 2.0 | 752 | 1.0260 | 0.6686 | | 0.8682 | 3.0 | 1128 | 1.0358 | 0.6604 | | 0.8662 | 4.0 | 1504 | 1.0234 | 0.6665 | | 0.8463 | 5.0 | 1880 | 1.0333 | 0.6666 | | 0.8573 | 6.0 | 2256 | 1.0163 | 0.6622 | | 0.8628 | 7.0 | 2632 | 1.0209 | 0.6551 | | 0.8493 | 8.0 | 3008 | 1.0525 | 0.6582 | | 0.8371 | 9.0 | 3384 | 1.0409 | 0.6515 | | 0.8229 | 10.0 | 3760 | 1.0597 | 0.6523 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
Abdelmageed95/distilgpt2-finetuned-wikitext2
026e2598ea2022b34a8a9f2853f718de4b84b8ca
2022-06-27T22:58:48.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Abdelmageed95
null
Abdelmageed95/distilgpt2-finetuned-wikitext2
1
null
transformers
33,105
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v2
7ff4dbe7ae20841ab31ba4b9453ab6ee5c70c481
2022-06-28T14:35:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v2
1
null
transformers
33,106
Entry not found
mmdjiji/bert-chinese-idioms
793f09944ef164b638a17bcdddd218135bd23801
2022-06-28T14:12:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
mmdjiji
null
mmdjiji/bert-chinese-idioms
1
null
transformers
33,107
--- license: gpl-3.0 --- For the detail, see [github:mmdjiji/bert-chinese-idioms](https://github.com/mmdjiji/bert-chinese-idioms).
Mindstorm314/AI-Camp-JS
d84f2d84fec964e30c53da5982620e5b69912c3a
2022-06-28T03:02:54.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
Mindstorm314
null
Mindstorm314/AI-Camp-JS
1
null
transformers
33,108
Entry not found
Monisha/opus-mt-en-de-finetuned-en-to-de
a114dc5fc5e05a53c08641f7e08f539b78ad6d43
2022-07-02T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Monisha
null
Monisha/opus-mt-en-de-finetuned-en-to-de
1
null
transformers
33,109
Entry not found
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6
74f0750e11e35899922bf43b493b25b2fc7e6b29
2022-06-29T12:06:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6
1
null
transformers
33,110
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0063 - Wer: 0.6580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8572 | 1.0 | 376 | 1.0508 | 0.6601 | | 0.8671 | 2.0 | 752 | 1.0755 | 0.6581 | | 0.8578 | 3.0 | 1128 | 1.0152 | 0.6787 | | 0.8552 | 4.0 | 1504 | 1.0537 | 0.6557 | | 0.8354 | 5.0 | 1880 | 1.0386 | 0.6606 | | 0.8543 | 6.0 | 2256 | 1.0063 | 0.6580 | | 0.8556 | 7.0 | 2632 | 1.0487 | 0.6499 | | 0.8356 | 8.0 | 3008 | 1.0407 | 0.6549 | | 0.8227 | 9.0 | 3384 | 1.0382 | 0.6506 | | 0.8148 | 10.0 | 3760 | 1.0440 | 0.6500 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
russellc/wav2vec2-large-xls-r-300m-tr
418a627bc7de6385c74ad24f1d40780d929ffaa1
2022-06-30T11:56:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr-TR", "dataset:common_voice, common_voice_6_1_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
russellc
null
russellc/wav2vec2-large-xls-r-300m-tr
1
1
transformers
33,111
--- license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard datasets: - common_voice, common_voice_6_1_0 model-index: - name: wav2vec2-large-xls-r-300m-tr results: [] language: - tr-TR --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2841 - Wer: 0.2904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 7 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0805 | 4.03 | 1000 | 3.0333 | 1.0 | | 1.5733 | 8.06 | 2000 | 0.5545 | 0.5080 | | 0.6238 | 12.1 | 3000 | 0.3861 | 0.3977 | | 0.4535 | 16.13 | 4000 | 0.3253 | 0.3408 | | 0.3682 | 20.16 | 5000 | 0.3042 | 0.3177 | | 0.3302 | 24.19 | 6000 | 0.2950 | 0.3015 | | 0.2985 | 28.23 | 7000 | 0.2841 | 0.2904 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
wandgibaut/opus-mt-en-de-finetuned-en-to-de
7a8e91d6a71279f3eff5298a38e1ab4e149b8621
2022-06-28T14:56:40.000Z
[ "pytorch", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
wandgibaut
null
wandgibaut/opus-mt-en-de-finetuned-en-to-de
1
null
transformers
33,112
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-de-finetuned-en-to-de results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 29.4312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-de-finetuned-en-to-de This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4083 - Bleu: 29.4312 - Gen Len: 24.746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 1.978 | 1.0 | 568611 | 1.4083 | 29.4312 | 24.746 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3
e87ffebbae0815299d79afacb750a150390d7949
2022-06-29T01:22:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3
1
null
transformers
33,113
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v3 This model is a fine-tuned version of [gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v2](https://huggingface.co/gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5265 - Wer: 0.2256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2546 | 1.0 | 280 | 0.6004 | 0.2796 | | 0.2325 | 2.0 | 560 | 0.6337 | 0.2729 | | 0.2185 | 3.0 | 840 | 0.5546 | 0.2299 | | 0.1988 | 4.0 | 1120 | 0.5265 | 0.2256 | | 0.1755 | 5.0 | 1400 | 0.5577 | 0.2212 | | 0.1474 | 6.0 | 1680 | 0.6353 | 0.2241 | | 0.1498 | 7.0 | 1960 | 0.5758 | 0.2086 | | 0.1252 | 8.0 | 2240 | 0.5738 | 0.2052 | | 0.1174 | 9.0 | 2520 | 0.5994 | 0.2048 | | 0.1035 | 10.0 | 2800 | 0.5988 | 0.2038 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
Konbai/DialoGPT-small-akagi2
5f131a1f8008be6fedcfc6bce7054c1c3a931c44
2022-06-28T21:11:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Konbai
null
Konbai/DialoGPT-small-akagi2
1
null
transformers
33,114
--- tags: - conversational --- # Azur Lane DialoGPT Model
alanwang8/dummy-model1
3f85ecf94a5ec018d8f57e494f4617528de617d7
2022-06-28T18:40:20.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
alanwang8
null
alanwang8/dummy-model1
1
null
transformers
33,115
Entry not found
gexai/marvin-optimized-base
2e9bd6eb0b49a66c6eefafa69156c1bff97c0c73
2022-06-28T23:56:11.000Z
[ "pytorch", "onnx", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gexai
null
gexai/marvin-optimized-base
1
null
transformers
33,116
Entry not found
prodm93/bert-rp-testmodel
06cc6b2fe302d9a30b408d8bf94b7b0324906cae
2022-06-29T05:43:34.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
prodm93
null
prodm93/bert-rp-testmodel
1
null
transformers
33,117
Entry not found
YuanWellspring/wav2vec2-nsc-final_2-google-colab
63fc26ec7683d2661817e716f95d78123ea73f5c
2022-06-29T03:09:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
YuanWellspring
null
YuanWellspring/wav2vec2-nsc-final_2-google-colab
1
null
transformers
33,118
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-nsc-final_2-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-nsc-final_2-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ryo0634/bert-base-log_linear-encoder-en-0
a771d54e15543ddc24cba7db546ffa88d699006c
2022-06-29T03:41:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/bert-base-log_linear-encoder-en-0
1
null
transformers
33,119
Entry not found
ryo0634/bert-base-log_linear-dependency-encoder-en-0
76cde8e8ec4aa1c4e5a279f0952c7f4133ac7ca2
2022-06-29T03:43:11.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/bert-base-log_linear-dependency-encoder-en-0
1
null
transformers
33,120
Entry not found
Nancyzzz/wav2vec2-base-timit-demo-google-colab
eb85ca757119ec3e09578676f38fff21e74ecea3
2022-06-29T11:15:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Nancyzzz
null
Nancyzzz/wav2vec2-base-timit-demo-google-colab
1
null
transformers
33,121
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5253 - Wer: 0.3406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4884 | 1.0 | 500 | 1.6139 | 1.0293 | | 0.8373 | 2.01 | 1000 | 0.5286 | 0.5266 | | 0.4394 | 3.01 | 1500 | 0.4933 | 0.4678 | | 0.2974 | 4.02 | 2000 | 0.4159 | 0.4268 | | 0.2268 | 5.02 | 2500 | 0.4288 | 0.4074 | | 0.1901 | 6.02 | 3000 | 0.4407 | 0.3852 | | 0.1627 | 7.03 | 3500 | 0.4599 | 0.3849 | | 0.1397 | 8.03 | 4000 | 0.4330 | 0.3803 | | 0.1342 | 9.04 | 4500 | 0.4661 | 0.3785 | | 0.1165 | 10.04 | 5000 | 0.4518 | 0.3745 | | 0.1 | 11.04 | 5500 | 0.4714 | 0.3899 | | 0.0881 | 12.05 | 6000 | 0.4985 | 0.3848 | | 0.0794 | 13.05 | 6500 | 0.5074 | 0.3672 | | 0.0707 | 14.06 | 7000 | 0.5692 | 0.3681 | | 0.0669 | 15.06 | 7500 | 0.4722 | 0.3814 | | 0.0589 | 16.06 | 8000 | 0.5738 | 0.3784 | | 0.0562 | 17.07 | 8500 | 0.5183 | 0.3696 | | 0.0578 | 18.07 | 9000 | 0.5473 | 0.3841 | | 0.0473 | 19.08 | 9500 | 0.4918 | 0.3655 | | 0.0411 | 20.08 | 10000 | 0.5258 | 0.3517 | | 0.0419 | 21.08 | 10500 | 0.5256 | 0.3501 | | 0.0348 | 22.09 | 11000 | 0.5511 | 0.3597 | | 0.0328 | 23.09 | 11500 | 0.5054 | 0.3560 | | 0.0314 | 24.1 | 12000 | 0.5327 | 0.3537 | | 0.0296 | 25.1 | 12500 | 0.5142 | 0.3446 | | 0.0251 | 26.1 | 13000 | 0.5155 | 0.3411 | | 0.0249 | 27.11 | 13500 | 0.5344 | 0.3414 | | 0.0225 | 28.11 | 14000 | 0.5193 | 0.3408 | | 0.0226 | 29.12 | 14500 | 0.5253 | 0.3406 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ashutoshyadav4/distilbert-base-uncased-finetuned-squad
8c0c74f4de74c24696ab553662f40bf87d7aba96
2022-06-29T10:36:49.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ashutoshyadav4
null
ashutoshyadav4/distilbert-base-uncased-finetuned-squad
1
null
transformers
33,122
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
roshnir/xlmr-finetuned-mlqa-dev-es-zh-hi
924e2db0bc45dc8d6e22230831b68f17da3fedd6
2022-06-29T11:00:37.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/xlmr-finetuned-mlqa-dev-es-zh-hi
1
null
transformers
33,123
Entry not found
roshnir/mBert-finetuned-mlqa-dev-es-zh-hi
4c78e96633364928c52916ed2d939055d3527986
2022-06-29T11:39:23.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/mBert-finetuned-mlqa-dev-es-zh-hi
1
null
transformers
33,124
Entry not found
ones/wav2vec2-base-timit-demo-google-colab
7103a7a2785a25554d5ac03f04fc5785edaeb0de
2022-06-30T20:46:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ones
null
ones/wav2vec2-base-timit-demo-google-colab
1
null
transformers
33,125
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5112 - Wer: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5557 | 1.0 | 500 | 1.6786 | 1.0 | | 0.8407 | 2.01 | 1000 | 0.5356 | 0.9988 | | 0.4297 | 3.01 | 1500 | 0.4431 | 0.9988 | | 0.2989 | 4.02 | 2000 | 0.4191 | 0.9988 | | 0.2338 | 5.02 | 2500 | 0.4251 | 0.9988 | | 0.1993 | 6.02 | 3000 | 0.4618 | 0.9988 | | 0.1585 | 7.03 | 3500 | 0.4577 | 0.9988 | | 0.1386 | 8.03 | 4000 | 0.4099 | 0.9982 | | 0.1234 | 9.04 | 4500 | 0.4945 | 0.9988 | | 0.1162 | 10.04 | 5000 | 0.4597 | 0.9988 | | 0.1008 | 11.04 | 5500 | 0.4563 | 0.9988 | | 0.0894 | 12.05 | 6000 | 0.5157 | 0.9988 | | 0.083 | 13.05 | 6500 | 0.5027 | 0.9988 | | 0.0735 | 14.06 | 7000 | 0.4905 | 0.9994 | | 0.0686 | 15.06 | 7500 | 0.4552 | 0.9988 | | 0.0632 | 16.06 | 8000 | 0.5522 | 0.9988 | | 0.061 | 17.07 | 8500 | 0.4874 | 0.9988 | | 0.0626 | 18.07 | 9000 | 0.5243 | 0.9988 | | 0.0475 | 19.08 | 9500 | 0.4798 | 0.9988 | | 0.0447 | 20.08 | 10000 | 0.5250 | 0.9988 | | 0.0432 | 21.08 | 10500 | 0.5195 | 0.9988 | | 0.0358 | 22.09 | 11000 | 0.5008 | 0.9988 | | 0.0319 | 23.09 | 11500 | 0.5376 | 0.9988 | | 0.0334 | 24.1 | 12000 | 0.5149 | 0.9988 | | 0.0269 | 25.1 | 12500 | 0.4911 | 0.9988 | | 0.0275 | 26.1 | 13000 | 0.4907 | 0.9988 | | 0.027 | 27.11 | 13500 | 0.4992 | 0.9988 | | 0.0239 | 28.11 | 14000 | 0.5021 | 0.9988 | | 0.0233 | 29.12 | 14500 | 0.5112 | 0.9988 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
jimypbr/cifar10_outputs
0f4baa399fae84642beac569a1490163d5eafa42
2022-06-29T14:48:46.000Z
[ "pytorch", "tensorboard", "vit", "dataset:cifar10", "transformers", "image-classification", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
jimypbr
null
jimypbr/cifar10_outputs
1
null
transformers
33,126
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: cifar10_outputs results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 args: plain_text metrics: - name: Accuracy type: accuracy value: 0.991421568627451 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cifar10_outputs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0806 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 17 - eval_batch_size: 17 - seed: 1337 - distributed_type: IPU - gradient_accumulation_steps: 128 - total_train_batch_size: 8704 - total_eval_batch_size: 272 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 100.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
elhamagk/distilbert-base-uncased-finetuned-imdb-accelerate
64f3d9d83ac0f3e4a4bf2e2d9f2ecf3baccbcc1c
2022-06-29T15:18:07.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
elhamagk
null
elhamagk/distilbert-base-uncased-finetuned-imdb-accelerate
1
null
transformers
33,127
Entry not found
freedomking/prompt-uie-medical-base
3ebb5ae870713af7595ac1941d21379af2c87f78
2022-06-29T16:47:06.000Z
[ "pytorch", "bert", "transformers" ]
null
false
freedomking
null
freedomking/prompt-uie-medical-base
1
null
transformers
33,128
## Introduction Universal Information Extraction More detail: https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v7
d4547d8e82ba5166c265508a58ba477a214196b2
2022-07-03T06:03:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v7
1
null
transformers
33,129
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v7 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0424 - Wer: 0.6512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.9303 | 1.0 | 12031 | 1.1160 | 0.6712 | | 0.8181 | 2.0 | 24062 | 1.0601 | 0.6608 | | 0.7861 | 3.0 | 36093 | 1.0478 | 0.6520 | | 0.767 | 4.0 | 48124 | 1.0617 | 0.6526 | | 0.797 | 5.0 | 60155 | 1.0424 | 0.6512 | | 0.834 | 6.0 | 72186 | 1.0519 | 0.6542 | | 0.7915 | 7.0 | 84217 | 1.0508 | 0.6494 | | 0.8106 | 8.0 | 96248 | 1.0753 | 0.6449 | | 0.7512 | 9.0 | 108279 | 1.1223 | 0.6592 | | 0.777 | 10.0 | 120310 | 1.1201 | 0.6535 | | 0.7631 | 11.0 | 132341 | 1.0780 | 0.6512 | | 0.7465 | 12.0 | 144372 | 1.0822 | 0.6499 | | 0.826 | 13.0 | 156403 | 1.0706 | 0.6445 | | 0.7552 | 14.0 | 168434 | 1.0862 | 0.6449 | | 0.8279 | 15.0 | 180465 | 1.1162 | 0.6461 | | 0.7769 | 16.0 | 192496 | 1.1023 | 0.6420 | | 0.7918 | 17.0 | 204527 | 1.1085 | 0.6456 | | 0.6941 | 18.0 | 216558 | 1.1139 | 0.6417 | | 0.7379 | 19.0 | 228589 | 1.1126 | 0.6410 | | 0.7467 | 20.0 | 240620 | 1.1102 | 0.6369 | | 0.8045 | 21.0 | 252651 | 1.1191 | 0.6376 | | 0.7059 | 22.0 | 264682 | 1.1285 | 0.6381 | | 0.7008 | 23.0 | 276713 | 1.1328 | 0.6377 | | 0.7816 | 24.0 | 288744 | 1.1326 | 0.6366 | | 0.7426 | 25.0 | 300775 | 1.1420 | 0.6362 | | 0.7226 | 26.0 | 312806 | 1.1326 | 0.6350 | | 0.665 | 27.0 | 324837 | 1.1419 | 0.6346 | | 0.7184 | 28.0 | 336868 | 1.1480 | 0.6346 | | 0.77 | 29.0 | 348899 | 1.1476 | 0.6343 | | 0.727 | 30.0 | 360930 | 1.1494 | 0.6348 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
jdang/distilbert-base-uncased-finetuned-imdb
829683aeeb45f90fd74fc18041dcb728ec12847d
2022-06-30T01:56:51.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
jdang
null
jdang/distilbert-base-uncased-finetuned-imdb
1
null
transformers
33,130
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jdang/distilbert-base-uncased-finetuned-imdb-accelerate
e803773eed5dfec854f48abfd5c3b5156fd4277c
2022-06-30T02:10:46.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jdang
null
jdang/distilbert-base-uncased-finetuned-imdb-accelerate
1
null
transformers
33,131
Entry not found
omunkhuush/dlub-2022-mlm-full
11bd1018028ff7fa884e03a11148776b463f50df
2022-06-30T04:07:53.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
omunkhuush
null
omunkhuush/dlub-2022-mlm-full
1
null
transformers
33,132
Entry not found
ganzorig/dlub-2022-mlm-full
a4be9fed09c8ecb11f22e92e10d8e08dedde633f
2022-06-30T05:31:39.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ganzorig
null
ganzorig/dlub-2022-mlm-full
1
null
transformers
33,133
Entry not found
sumitrsch/muril_base_multiconer22_bn
64f89dd42ef514c9418946a3cf7952616643253c
2022-07-06T12:33:20.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
sumitrsch
null
sumitrsch/muril_base_multiconer22_bn
1
2
transformers
33,134
--- license: afl-3.0 --- Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task for bangla track. https://colab.research.google.com/drive/1P9827acdS7i6eZTi4B0cOms5qLREqvUO
pannaga/wav2vec2-base-timit-demo-google-colab
a5da1b53b86f412c6e015e1a1708f1641eb4fa5c
2022-07-20T12:20:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pannaga
null
pannaga/wav2vec2-base-timit-demo-google-colab
1
null
transformers
33,135
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5480 - Wer: 0.3437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5237 | 1.0 | 500 | 1.7277 | 0.9752 | | 0.8339 | 2.01 | 1000 | 0.5413 | 0.5316 | | 0.4277 | 3.01 | 1500 | 0.4732 | 0.4754 | | 0.2907 | 4.02 | 2000 | 0.4571 | 0.4476 | | 0.2254 | 5.02 | 2500 | 0.4611 | 0.4105 | | 0.1911 | 6.02 | 3000 | 0.4448 | 0.4072 | | 0.1595 | 7.03 | 3500 | 0.4517 | 0.3843 | | 0.1377 | 8.03 | 4000 | 0.4551 | 0.3881 | | 0.1197 | 9.04 | 4500 | 0.4853 | 0.3772 | | 0.1049 | 10.04 | 5000 | 0.4617 | 0.3707 | | 0.097 | 11.04 | 5500 | 0.4633 | 0.3622 | | 0.0872 | 12.05 | 6000 | 0.4635 | 0.3690 | | 0.0797 | 13.05 | 6500 | 0.5196 | 0.3749 | | 0.0731 | 14.06 | 7000 | 0.5029 | 0.3639 | | 0.0667 | 15.06 | 7500 | 0.5053 | 0.3614 | | 0.0618 | 16.06 | 8000 | 0.5627 | 0.3638 | | 0.0562 | 17.07 | 8500 | 0.5484 | 0.3577 | | 0.0567 | 18.07 | 9000 | 0.5163 | 0.3560 | | 0.0452 | 19.08 | 9500 | 0.5012 | 0.3538 | | 0.044 | 20.08 | 10000 | 0.4931 | 0.3534 | | 0.0424 | 21.08 | 10500 | 0.5147 | 0.3519 | | 0.0356 | 22.09 | 11000 | 0.5540 | 0.3521 | | 0.0322 | 23.09 | 11500 | 0.5565 | 0.3509 | | 0.0333 | 24.1 | 12000 | 0.5315 | 0.3428 | | 0.0281 | 25.1 | 12500 | 0.5284 | 0.3425 | | 0.0261 | 26.1 | 13000 | 0.5101 | 0.3446 | | 0.0256 | 27.11 | 13500 | 0.5432 | 0.3415 | | 0.0229 | 28.11 | 14000 | 0.5484 | 0.3446 | | 0.0212 | 29.12 | 14500 | 0.5480 | 0.3437 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
haesun/xlm-roberta-base-finetuned-panx-de
a8e11ff8aad8d43baf829b1e0396ed33d0bf0c70
2022-07-05T00:00:02.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
haesun
null
haesun/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,136
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8611443210930829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - F1: 0.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2542 | 1.0 | 787 | 0.1788 | 0.8083 | | 0.1307 | 2.0 | 1574 | 0.1371 | 0.8488 | | 0.0784 | 3.0 | 2361 | 0.1405 | 0.8611 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/codyko-thenoelmiller
d667802323388ffc528e75a72bec14d83b2ef4b3
2022-06-30T17:40:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/codyko-thenoelmiller
1
null
transformers
33,137
--- language: en thumbnail: http://www.huggingtweets.com/codyko-thenoelmiller/1656610826736/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438687954285707265/aEtAZlbY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438687880101212170/nNi2oamd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">codyko & Noel Miller</div> <div style="text-align: center; font-size: 14px;">@codyko-thenoelmiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from codyko & Noel Miller. | Data | codyko | Noel Miller | | --- | --- | --- | | Tweets downloaded | 3184 | 3215 | | Retweets | 604 | 316 | | Short tweets | 762 | 712 | | Tweets kept | 1818 | 2187 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gyf1npk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @codyko-thenoelmiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31mulsnt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31mulsnt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/codyko-thenoelmiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tmoodley/rare-puppers
5ab324c6658247344dff036ea9af34925199aa94
2022-06-30T19:11:33.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
tmoodley
null
tmoodley/rare-puppers
1
null
transformers
33,138
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
luffycodes/t5_base_v52
898eac801dcc041c1c1cf35e36a6a23cce0950b7
2022-06-30T20:18:43.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
luffycodes
null
luffycodes/t5_base_v52
1
null
transformers
33,139
Entry not found
huggingtweets/enusec-lewisnwatson
fd9fe601e53567f1fc22e6665a79c6e56d971be7
2022-06-30T20:44:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/enusec-lewisnwatson
1
null
transformers
33,140
--- language: en thumbnail: http://www.huggingtweets.com/enusec-lewisnwatson/1656621875256/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433787116471869441/tk0vXZJb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509825675821301790/FCFan5I-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Edinburgh Napier University Security Society & Lewis N Watson 🇺🇦</div> <div style="text-align: center; font-size: 14px;">@enusec-lewisnwatson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Edinburgh Napier University Security Society & Lewis N Watson 🇺🇦. | Data | Edinburgh Napier University Security Society | Lewis N Watson 🇺🇦 | | --- | --- | --- | | Tweets downloaded | 1716 | 1711 | | Retweets | 554 | 797 | | Short tweets | 93 | 211 | | Tweets kept | 1069 | 703 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32zvb9ky/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @enusec-lewisnwatson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2a516nqq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2a516nqq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/enusec-lewisnwatson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
luffycodes/t5_base_v1
18d58ba7e09d602cb0fcc8195de2041fed00fdfe
2022-06-30T21:14:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
luffycodes
null
luffycodes/t5_base_v1
1
null
transformers
33,141
Entry not found
prodm93/bert-rp-sent-testmodel-grp
a07a1762d7406440aef0b5ddd597c410931c90e5
2022-07-01T03:40:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
prodm93
null
prodm93/bert-rp-sent-testmodel-grp
1
null
transformers
33,142
Entry not found
shimdx/wav2vec2-base-demo-sagemaker
996e4715cf4665447d7fcc2354b20c1ef177d0f0
2022-07-02T01:03:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shimdx
null
shimdx/wav2vec2-base-demo-sagemaker
1
null
transformers
33,143
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-sagemaker results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-sagemaker This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4713 - Wer: 0.3381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4274 | 4.0 | 500 | 1.2279 | 0.8902 | | 0.5778 | 8.0 | 1000 | 0.4838 | 0.4488 | | 0.2244 | 12.0 | 1500 | 0.4813 | 0.3793 | | 0.1299 | 16.0 | 2000 | 0.4878 | 0.3714 | | 0.0871 | 20.0 | 2500 | 0.4796 | 0.3539 | | 0.0635 | 24.0 | 3000 | 0.4554 | 0.3427 | | 0.0495 | 28.0 | 3500 | 0.4713 | 0.3381 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.14.0 - Tokenizers 0.10.3
scaccomatto/autotrain-120-0-1067937173
2c2144fd9b4cc35efb5e8b72e7724c69c0ec9698
2022-07-01T09:09:50.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:scaccomatto/autotrain-data-120-0", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
scaccomatto
null
scaccomatto/autotrain-120-0-1067937173
1
null
transformers
33,144
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - scaccomatto/autotrain-data-120-0 co2_eq_emissions: 0.08625442844190523 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1067937173 - CO2 Emissions (in grams): 0.08625442844190523 ## Validation Metrics - Loss: 0.502437174320221 - Rouge1: 83.7457 - Rouge2: 81.1714 - RougeL: 83.2649 - RougeLsum: 83.3018 - Gen Len: 78.7059 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/scaccomatto/autotrain-120-0-1067937173 ```
huggingtweets/tacticalmaid-the_ironsheik
41e8eae20c89e8b4d7efd6adf10de5a410a0dc11
2022-07-01T09:41:33.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tacticalmaid-the_ironsheik
1
null
transformers
33,145
--- language: en thumbnail: http://www.huggingtweets.com/tacticalmaid-the_ironsheik/1656668488177/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1320863459953750016/NlmHwu3b_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1498996796093509632/Z7VwFzOJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Iron Sheik & Maid POLadin 🎪 💙💛</div> <div style="text-align: center; font-size: 14px;">@tacticalmaid-the_ironsheik</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Iron Sheik & Maid POLadin 🎪 💙💛. | Data | The Iron Sheik | Maid POLadin 🎪 💙💛 | | --- | --- | --- | | Tweets downloaded | 3249 | 3225 | | Retweets | 287 | 2083 | | Short tweets | 253 | 291 | | Tweets kept | 2709 | 851 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27tu2deb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tacticalmaid-the_ironsheik's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34aavvcw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34aavvcw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tacticalmaid-the_ironsheik') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/the_ironsheik
991cd3e685f15698e9be3c64e48c09ed88a7fbdc
2022-07-01T10:13:34.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/the_ironsheik
1
null
transformers
33,146
--- language: en thumbnail: http://www.huggingtweets.com/the_ironsheik/1656670410014/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1320863459953750016/NlmHwu3b_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Iron Sheik</div> <div style="text-align: center; font-size: 14px;">@the_ironsheik</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Iron Sheik. | Data | The Iron Sheik | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 287 | | Short tweets | 253 | | Tweets kept | 2709 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ti6ikrg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @the_ironsheik's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2segcek8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2segcek8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/the_ironsheik') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
raedinkhaled/deit-base-mri
2c21709e3e09a34012bcd60c43f09c67a83b9a89
2022-07-02T00:09:31.000Z
[ "pytorch", "tensorboard", "deit", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
raedinkhaled
null
raedinkhaled/deit-base-mri
1
null
transformers
33,147
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-base-mri results: - task: name: Image Classification type: image-classification dataset: name: mriDataSet type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9900709219858156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-base-mri This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the mriDataSet dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0107 | 0.8 | 500 | 0.0782 | 0.9887 | | 0.0065 | 1.6 | 1000 | 0.0657 | 0.9901 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gaunernst/bert-L2-H512-uncased
fad174cf14c2b881a0942ea1486ab4b79f5fab58
2022-07-02T08:11:37.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L2-H512-uncased
1
null
transformers
33,148
--- license: apache-2.0 ---
gaunernst/bert-L2-H768-uncased
b103adc60de61482cb605294fae302c846e54cbb
2022-07-02T08:13:39.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L2-H768-uncased
1
null
transformers
33,149
--- license: apache-2.0 ---
gaunernst/bert-L4-H128-uncased
01db5bd3387202329294939a31a9ff61d766de46
2022-07-02T08:16:46.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L4-H128-uncased
1
null
transformers
33,150
--- license: apache-2.0 ---
gaunernst/bert-L4-H768-uncased
357fd40f63591226e74f2ba8c8be25aa01445ad6
2022-07-02T08:17:33.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L4-H768-uncased
1
null
transformers
33,151
--- license: apache-2.0 ---
gaunernst/bert-L6-H256-uncased
e8311a3dd339d61879567c16516bd4d9329b3e3b
2022-07-02T08:22:27.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L6-H256-uncased
1
null
transformers
33,152
--- license: apache-2.0 ---
gaunernst/bert-L6-H512-uncased
c7bdae9c0700380b8a3681c970c3e94911f58f8f
2022-07-02T08:23:32.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L6-H512-uncased
1
null
transformers
33,153
--- license: apache-2.0 ---
gaunernst/bert-L8-H128-uncased
887356755faf6b547e9bae46a5e77419900faddd
2022-07-02T08:32:44.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L8-H128-uncased
1
null
transformers
33,154
--- license: apache-2.0 ---
gaunernst/bert-L8-H256-uncased
a6a5c5a61ebf3ff689adf5a01d25718953563683
2022-07-02T08:33:36.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L8-H256-uncased
1
null
transformers
33,155
--- license: apache-2.0 ---
gaunernst/bert-L8-H768-uncased
ea8f515ca31bb6fd0409b04993caf1b6c67b2b96
2022-07-02T08:35:18.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L8-H768-uncased
1
null
transformers
33,156
--- license: apache-2.0 ---
gaunernst/bert-L10-H512-uncased
fcfdfa712878e8451d3c71e89a28dc0b7e0f7d12
2022-07-02T08:44:01.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L10-H512-uncased
1
null
transformers
33,157
--- license: apache-2.0 ---
gaunernst/bert-L12-H128-uncased
af7b2f8bb8e44b080da89b062736b5ba8e3c8530
2022-07-02T08:53:24.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
gaunernst
null
gaunernst/bert-L12-H128-uncased
1
null
transformers
33,158
--- license: apache-2.0 ---
solve/wav2vec2-base-timit-demo-sol
8001864be79f556340f81266e50bae8c76b12d0e
2022-07-16T19:27:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
solve
null
solve/wav2vec2-base-timit-demo-sol
1
null
transformers
33,159
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-sol results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-sol This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3922 - Wer: 0.2862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6222 | 6.85 | 500 | 1.5843 | 0.9627 | | 0.509 | 13.7 | 1000 | 0.4149 | 0.3417 | | 0.1221 | 20.55 | 1500 | 0.3692 | 0.2992 | | 0.0618 | 27.4 | 2000 | 0.3922 | 0.2862 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
zoha/wav2vec2-xlsr-persian-50p
e780f1e94a4b181fc88fef263281996c491cd60f
2022-07-03T01:24:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-xlsr-persian-50p
1
null
transformers
33,160
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xlsr-persian-50p results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-persian-50p This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6846 - Wer: 0.4339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.05 | 250 | 3.2104 | 1.0 | | 3.2437 | 2.11 | 500 | 2.9131 | 1.0 | | 3.2437 | 3.16 | 750 | 1.0335 | 0.7303 | | 1.4382 | 4.22 | 1000 | 0.8335 | 0.6155 | | 1.4382 | 5.27 | 1250 | 0.7640 | 0.5904 | | 0.6923 | 6.33 | 1500 | 0.6923 | 0.5468 | | 0.6923 | 7.38 | 1750 | 0.6627 | 0.5238 | | 0.5137 | 8.44 | 2000 | 0.6606 | 0.5112 | | 0.5137 | 9.49 | 2250 | 0.6600 | 0.5125 | | 0.4258 | 10.55 | 2500 | 0.6337 | 0.4939 | | 0.4258 | 11.6 | 2750 | 0.6454 | 0.4851 | | 0.362 | 12.66 | 3000 | 0.6481 | 0.4793 | | 0.362 | 13.71 | 3250 | 0.6487 | 0.4801 | | 0.3179 | 14.77 | 3500 | 0.6602 | 0.4668 | | 0.3179 | 15.82 | 3750 | 0.6757 | 0.4683 | | 0.2861 | 16.88 | 4000 | 0.6544 | 0.4591 | | 0.2861 | 17.93 | 4250 | 0.6659 | 0.4634 | | 0.2529 | 18.99 | 4500 | 0.6311 | 0.4556 | | 0.2529 | 20.04 | 4750 | 0.6574 | 0.4525 | | 0.235 | 21.1 | 5000 | 0.7019 | 0.4462 | | 0.235 | 22.15 | 5250 | 0.6783 | 0.4426 | | 0.2203 | 23.21 | 5500 | 0.6789 | 0.4361 | | 0.2203 | 24.26 | 5750 | 0.6779 | 0.4336 | | 0.2014 | 25.32 | 6000 | 0.6805 | 0.4406 | | 0.2014 | 26.37 | 6250 | 0.6918 | 0.4407 | | 0.1957 | 27.43 | 6500 | 0.6919 | 0.4360 | | 0.1957 | 28.48 | 6750 | 0.6795 | 0.4332 | | 0.1837 | 29.53 | 7000 | 0.6846 | 0.4339 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
tner/roberta-large-tweetner-selflabel2021
2c8f2b236c29ffe1f580b49d17c07775414df317
2022-07-02T19:14:44.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-large-tweetner-selflabel2021
1
null
transformers
33,161
Entry not found
gciaffoni/wav2vec2-large-xls-r-300m-it-colab6-with-LM-Ref
164b607fdd02c99c0f6cf12b30dcca870c9fb1a7
2022-07-03T01:31:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
gciaffoni
null
gciaffoni/wav2vec2-large-xls-r-300m-it-colab6-with-LM-Ref
1
null
transformers
33,162
--- license: apache-2.0 ---
pablocosta/bert-tweet-br-large
54e2a7d886bed1528158d9583add8b664454a688
2022-07-03T13:40:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
pablocosta
null
pablocosta/bert-tweet-br-large
1
1
transformers
33,163
--- license: gpl-3.0 ---
tner/roberta-base-tweetner-2020-2021-continuous
7bce2519554c53bf04e50f4a222eb8c578020a2e
2022-07-11T22:28:02.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-base-tweetner-2020-2021-continuous
1
null
transformers
33,164
Entry not found
ryo0634/luke-base-full-20181220
a684b74b35df93055cdc2c5351d35929d1d52f32
2022-07-03T16:17:32.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/luke-base-full-20181220
1
null
transformers
33,165
Entry not found
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_50
4d6416fb420691d1374222324f8eecc6304766de
2022-07-03T17:28:03.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
BBarbarestani
null
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_50
1
null
transformers
33,166
Entry not found
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_60
1a971ce0fbf60f5a0065c15493abb65dcabb9514
2022-07-03T18:58:43.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
BBarbarestani
null
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_60
1
null
transformers
33,167
Entry not found
xliu128/xlm-roberta-base-finetuned-panx-de
b4fdfeb5942fa395fce58ff164a55c7e1df31ca0
2022-07-03T19:50:43.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
xliu128
null
xliu128/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,168
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
josh-oo/german-easy-backtranslation
06ec725b29ab67bd1215e52918c6e9b8888fc27f
2022-07-03T20:09:05.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
josh-oo
null
josh-oo/german-easy-backtranslation
1
null
transformers
33,169
Entry not found
markrogersjr/codeparrot-ds
46085cea49a7f1cb98e797b7c181af8366823985
2022-07-03T21:58:46.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
markrogersjr
null
markrogersjr/codeparrot-ds
1
null
transformers
33,170
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
seoyoung/bart-base-samsum
792780accf0f026f4446fcdc696da9e45f663bef
2022-07-03T23:42:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seoyoung
null
seoyoung/bart-base-samsum
1
null
transformers
33,171
Entry not found
seoyoung/bart_r3f_sample
d420f03fced7217e2d13654a76b45e0406a52d8b
2022-07-04T00:15:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seoyoung
null
seoyoung/bart_r3f_sample
1
null
transformers
33,172
Entry not found
seoyoung/BART_BaseModel2
80ad5bad5a28e0cfc252952df0f9f4fb79ecdccf
2022-07-04T00:44:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seoyoung
null
seoyoung/BART_BaseModel2
1
null
transformers
33,173
Entry not found
yslee/wav2vec2-xlsr-libritts-notebook
aebb36ab4b645f074cedf3928df7b188c7324114
2022-07-04T05:23:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
yslee
null
yslee/wav2vec2-xlsr-libritts-notebook
1
null
transformers
33,174
Entry not found
huggingtweets/mattysino
603fc31f2aa175e7d70abc236924482292fe470e
2022-07-04T00:53:14.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mattysino
1
null
transformers
33,175
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1542286826819534849/KuQaXl___400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Graham</div> <div style="text-align: center; font-size: 14px;">@mattysino</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Graham. | Data | Matthew Graham | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 155 | | Short tweets | 980 | | Tweets kept | 2115 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bb84l50/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattysino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nj8ejqx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nj8ejqx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattysino') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
haesun/xlm-roberta-base-finetuned-panx-de-fr
c6c118b0016200a443b0d08b1e238756eda5f069
2022-07-05T00:26:38.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
haesun
null
haesun/xlm-roberta-base-finetuned-panx-de-fr
1
null
transformers
33,176
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1724 - F1: 0.8624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2837 | 1.0 | 1073 | 0.1858 | 0.8229 | | 0.1446 | 2.0 | 2146 | 0.1651 | 0.8467 | | 0.0917 | 3.0 | 3219 | 0.1724 | 0.8624 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
haesun/xlm-roberta-base-finetuned-panx-fr
61f4c060c1244b852d8a99bb1251d257a97d7df0
2022-07-05T00:43:44.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
haesun
null
haesun/xlm-roberta-base-finetuned-panx-fr
1
null
transformers
33,177
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.9324554986588638 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1031 - F1: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5618 | 1.0 | 287 | 0.2482 | 0.8121 | | 0.2582 | 2.0 | 574 | 0.1368 | 0.9068 | | 0.1653 | 3.0 | 861 | 0.1031 | 0.9325 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Renukswamy/roberta-base-squad2-finetuned-squad
756b21930541369d45ff5c301b11af9314268b07
2022-07-09T14:24:58.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
Renukswamy
null
Renukswamy/roberta-base-squad2-finetuned-squad
1
null
transformers
33,178
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-finetuned-squad This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2691 | 1.0 | 6795 | 0.2947 | | 0.1761 | 2.0 | 13590 | 0.3582 | | 0.0953 | 3.0 | 20385 | 0.4446 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
camilag/bert-finetuned-squad-accelerate-3
14c0e928d9f84926e119132d02d9fc6f7bee2430
2022-07-09T18:05:07.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
camilag
null
camilag/bert-finetuned-squad-accelerate-3
1
null
transformers
33,179
Entry not found
tner/roberta-base-tweetner-2020-2021-concat
94e344e68d3db9f1b2a577e4713485498d1b2959
2022-07-11T22:36:13.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-base-tweetner-2020-2021-concat
1
null
transformers
33,180
Entry not found
Siyong/MT
74c738e82895374497361078a4e95023e4520b93
2022-07-14T15:59:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/MT
1
null
transformers
33,181
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-base-Millad_TIMIT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-base-Millad_TIMIT This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3772 - Wer: 0.6859 - Cer: 0.3217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | No log | 2.36 | 2000 | 2.6233 | 1.0130 | 0.6241 | | No log | 4.73 | 4000 | 2.2206 | 0.9535 | 0.5032 | | No log | 7.09 | 6000 | 2.3036 | 0.9368 | 0.5063 | | 1.235 | 9.46 | 8000 | 1.9932 | 0.9275 | 0.5032 | | 1.235 | 11.82 | 10000 | 2.0207 | 0.8922 | 0.4498 | | 1.235 | 14.18 | 12000 | 1.6171 | 0.7993 | 0.3976 | | 1.235 | 16.55 | 14000 | 1.6729 | 0.8309 | 0.4209 | | 0.2779 | 18.91 | 16000 | 1.7043 | 0.8141 | 0.4340 | | 0.2779 | 21.28 | 18000 | 1.7426 | 0.7658 | 0.3960 | | 0.2779 | 23.64 | 20000 | 1.5230 | 0.7361 | 0.3830 | | 0.2779 | 26.0 | 22000 | 1.4286 | 0.7658 | 0.3794 | | 0.1929 | 28.37 | 24000 | 1.4450 | 0.7379 | 0.3644 | | 0.1929 | 30.73 | 26000 | 1.5922 | 0.7491 | 0.3826 | | 0.1929 | 33.1 | 28000 | 1.4443 | 0.7454 | 0.3617 | | 0.1929 | 35.46 | 30000 | 1.5450 | 0.7268 | 0.3621 | | 0.1394 | 37.83 | 32000 | 1.9268 | 0.7491 | 0.3763 | | 0.1394 | 40.19 | 34000 | 1.7094 | 0.7342 | 0.3783 | | 0.1394 | 42.55 | 36000 | 1.4024 | 0.7082 | 0.3494 | | 0.1394 | 44.92 | 38000 | 1.4467 | 0.6840 | 0.3395 | | 0.104 | 47.28 | 40000 | 1.4145 | 0.6933 | 0.3407 | | 0.104 | 49.65 | 42000 | 1.3901 | 0.6970 | 0.3403 | | 0.104 | 52.01 | 44000 | 1.3589 | 0.6636 | 0.3348 | | 0.104 | 54.37 | 46000 | 1.3716 | 0.6952 | 0.3340 | | 0.0781 | 56.74 | 48000 | 1.4025 | 0.6896 | 0.3312 | | 0.0781 | 59.1 | 50000 | 1.3772 | 0.6859 | 0.3217 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-parsing-ud-hindi-hdtb
46ab384e6585d9c19025514c4cc508a6f15698ec
2022-07-13T15:08:58.000Z
[ "pytorch", "pixel", "transformers" ]
null
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-parsing-ud-hindi-hdtb
1
null
transformers
33,182
Entry not found
Team-PIXEL/pixel-base-finetuned-parsing-ud-tamil-ttb
11af9376ea96e2c6802f7b3a6636c76149f1a631
2022-07-13T15:31:20.000Z
[ "pytorch", "pixel", "transformers" ]
null
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-parsing-ud-tamil-ttb
1
null
transformers
33,183
Entry not found
Team-PIXEL/pixel-base-finetuned-parsing-ud-vietnamese-vtb
bb33418ad0fcab79070039021427c08b5173f690
2022-07-13T15:38:52.000Z
[ "pytorch", "pixel", "transformers" ]
null
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-parsing-ud-vietnamese-vtb
1
null
transformers
33,184
Entry not found
Siyong/MC
096663fd9e3e802931936294fb74ce42dede500c
2022-07-14T10:48:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/MC
1
null
transformers
33,185
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-base-All results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-base-All This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0545 - Wer: 0.8861 - Cer: 0.5014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | No log | 3.33 | 500 | 4.0654 | 1.0 | 0.9823 | | No log | 6.67 | 1000 | 3.4532 | 1.0 | 0.9823 | | No log | 10.0 | 1500 | 3.0707 | 0.9992 | 0.9781 | | No log | 13.33 | 2000 | 2.7335 | 1.0017 | 0.9027 | | No log | 16.67 | 2500 | 2.5896 | 1.0690 | 0.7302 | | No log | 20.0 | 3000 | 2.3315 | 1.0690 | 0.6677 | | No log | 23.33 | 3500 | 2.2217 | 1.0150 | 0.5966 | | No log | 26.67 | 4000 | 2.3802 | 1.0549 | 0.5948 | | No log | 30.0 | 4500 | 2.2208 | 0.9975 | 0.5681 | | 2.4224 | 33.33 | 5000 | 2.2687 | 0.9800 | 0.5537 | | 2.4224 | 36.67 | 5500 | 2.3169 | 0.9476 | 0.5493 | | 2.4224 | 40.0 | 6000 | 2.5196 | 0.9900 | 0.5509 | | 2.4224 | 43.33 | 6500 | 2.4816 | 0.9501 | 0.5272 | | 2.4224 | 46.67 | 7000 | 2.4894 | 0.9485 | 0.5276 | | 2.4224 | 50.0 | 7500 | 2.4555 | 0.9418 | 0.5305 | | 2.4224 | 53.33 | 8000 | 2.7326 | 0.9559 | 0.5255 | | 2.4224 | 56.67 | 8500 | 2.5514 | 0.9227 | 0.5209 | | 2.4224 | 60.0 | 9000 | 2.9135 | 0.9717 | 0.5455 | | 2.4224 | 63.33 | 9500 | 3.0465 | 0.8346 | 0.5002 | | 0.8569 | 66.67 | 10000 | 2.8177 | 0.9302 | 0.5216 | | 0.8569 | 70.0 | 10500 | 2.9908 | 0.9310 | 0.5128 | | 0.8569 | 73.33 | 11000 | 3.1752 | 0.9235 | 0.5284 | | 0.8569 | 76.67 | 11500 | 2.7412 | 0.8886 | 0.5 | | 0.8569 | 80.0 | 12000 | 2.7362 | 0.9127 | 0.5040 | | 0.8569 | 83.33 | 12500 | 2.9636 | 0.9152 | 0.5093 | | 0.8569 | 86.67 | 13000 | 3.0139 | 0.9011 | 0.5097 | | 0.8569 | 90.0 | 13500 | 2.8325 | 0.8853 | 0.5032 | | 0.8569 | 93.33 | 14000 | 3.0383 | 0.8845 | 0.5056 | | 0.8569 | 96.67 | 14500 | 2.7931 | 0.8795 | 0.4965 | | 0.3881 | 100.0 | 15000 | 2.8972 | 0.8928 | 0.5012 | | 0.3881 | 103.33 | 15500 | 2.7780 | 0.8736 | 0.4947 | | 0.3881 | 106.67 | 16000 | 3.1081 | 0.9036 | 0.5109 | | 0.3881 | 110.0 | 16500 | 3.0078 | 0.8928 | 0.5032 | | 0.3881 | 113.33 | 17000 | 3.0245 | 0.8886 | 0.5009 | | 0.3881 | 116.67 | 17500 | 3.0739 | 0.8928 | 0.5065 | | 0.3881 | 120.0 | 18000 | 3.0545 | 0.8861 | 0.5014 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
affahrizain/xlm-roberta-base-finetuned-panx-de
0b97aa9bdad3cb40ea7114e3c58995ea549e0e4d
2022-07-16T06:56:45.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
affahrizain
null
affahrizain/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,186
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
PGT/orig-nystromformer-s-artificial-balanced-max500-490000-0
75cf330c50171411a5655327ff55fe52cc1d2dbc
2022-07-15T18:30:25.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
PGT
null
PGT/orig-nystromformer-s-artificial-balanced-max500-490000-0
1
null
transformers
33,187
Entry not found
kotter/bert-l18-2207-grad1
e166cd84a6515789968a53ee00826722864d18b5
2022-07-29T16:20:57.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kotter
null
kotter/bert-l18-2207-grad1
1
null
transformers
33,188
Entry not found
kotter/bert-base-2207-nogroup
1feb14c2803b83fe6c5c5aeefcd3831f8362da5e
2022-07-26T17:23:31.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kotter
null
kotter/bert-base-2207-nogroup
1
null
transformers
33,189
Entry not found
donggyukimc/retriever-220626-ict-mono
9b28bdcc2f967679f7a6c1d4396140e44c57ce3c
2022-07-20T11:52:05.000Z
[ "pytorch", "tensorboard", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
donggyukimc
null
donggyukimc/retriever-220626-ict-mono
1
null
transformers
33,190
Entry not found
mtreviso/ct5-small-en-wiki-l2r
eb6dda1c6431ebc3c67a8518096ceca9eef40213
2022-07-25T13:22:55.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "en", "dataset:wikipedia", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
mtreviso
null
mtreviso/ct5-small-en-wiki-l2r
1
null
transformers
33,191
--- license: afl-3.0 language: en tags: - t5 datasets: - wikipedia --- # cT5-small left-to-right Github: https://github.com/mtreviso/chunked-t5 This is a variant of [cT5](https://huggingface.co/mtreviso/ct5-small-en-wiki) that was trained with a left-to-right autoregressive decoding mask. As a consequence, it does not support parallel decoding, but it still predicts the end-of-chunk token `</c>` at the end of each chunk.
shengnan/visualize-v2-pre10w-preseed1
8833c4610a655641ad98ef7d85e53ca6515e8578
2022-07-18T02:55:57.000Z
[ "pytorch", "t5", "transformers" ]
null
false
shengnan
null
shengnan/visualize-v2-pre10w-preseed1
1
null
transformers
33,192
Entry not found
PGT/orig-graphnystromformer-artificial-balanced-max500-105000-0
d4d6611e5e389ccef2ba05d1e020561154588d46
2022-07-18T11:05:15.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
PGT
null
PGT/orig-graphnystromformer-artificial-balanced-max500-105000-0
1
null
transformers
33,193
Entry not found
PGT/orig-nystromformer-l-artificial-balanced-max500-105000-0
f38e04317ad9877c20fa6df7893a4e55a205a82f
2022-07-18T21:30:41.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
PGT
null
PGT/orig-nystromformer-l-artificial-balanced-max500-105000-0
1
null
transformers
33,194
Entry not found
f00d/Multilingual-MiniLM-L12-H384-MLM-finetuned-wikipedia_bn_custom
7b2099fce10f9106f65339aacefa9e2d345746b0
2022-07-21T12:28:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
f00d
null
f00d/Multilingual-MiniLM-L12-H384-MLM-finetuned-wikipedia_bn_custom
1
null
transformers
33,195
Entry not found
maesneako/ES_corlec
ff69ed6bb499332c761ee9e6ad69454c6cb2f4eb
2022-07-28T11:10:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
maesneako
null
maesneako/ES_corlec
1
null
transformers
33,196
--- license: mit tags: - generated_from_trainer model-index: - name: ES_corlec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ES_corlec This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
csmartins8/xlm-roberta-base-finetuned-panx-de
6c5a0b9dacc9ba0810da04ee6371fdba4ab3bb4b
2022-07-29T01:51:43.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
csmartins8
null
csmartins8/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,197
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8631507160718345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1374 - F1: 0.8632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.0 | 525 | 0.1594 | 0.8198 | | 0.125 | 2.0 | 1050 | 0.1390 | 0.8483 | | 0.08 | 3.0 | 1575 | 0.1374 | 0.8632 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
enoriega/rule_learning_1mm_many_negatives_spanpred_mse_attention
1068775631eba336f6bf852c68d9668d03a5a8e2
2022-07-22T20:29:54.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_1mm_many_negatives_spanpred_mse_attention
1
null
transformers
33,198
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_1mm_many_negatives_spanpred_avf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_1mm_many_negatives_spanpred_avf This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1215 | 0.16 | 20 | 0.1191 | | 0.1091 | 0.32 | 40 | 0.1079 | | 0.0993 | 0.48 | 60 | 0.0993 | | 0.0938 | 0.64 | 80 | 0.0952 | | 0.085 | 0.8 | 100 | 0.0858 | | 0.0837 | 0.96 | 120 | 0.0842 | | 0.0811 | 1.12 | 140 | 0.0827 | | 0.0799 | 1.28 | 160 | 0.0809 | | 0.078 | 1.44 | 180 | 0.0786 | | 0.0792 | 1.6 | 200 | 0.0781 | | 0.0797 | 1.76 | 220 | 0.0765 | | 0.0775 | 1.92 | 240 | 0.0758 | | 0.0735 | 2.08 | 260 | 0.0748 | | 0.0704 | 2.24 | 280 | 0.0744 | | 0.0744 | 2.4 | 300 | 0.0737 | | 0.0752 | 2.56 | 320 | 0.0733 | | 0.075 | 2.72 | 340 | 0.0738 | | 0.0701 | 2.88 | 360 | 0.0732 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
mhaegeman/wav2vec2-large-xls-r-300m-dutch-V2
2c94ee4cf3ef301e93a4a22e60aab01d90aad81d
2022-07-26T11:03:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mhaegeman
null
mhaegeman/wav2vec2-large-xls-r-300m-dutch-V2
1
null
transformers
33,199
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-dutch-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dutch-V2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4262 - eval_wer: 0.3052 - eval_runtime: 8417.9087 - eval_samples_per_second: 0.678 - eval_steps_per_second: 0.085 - epoch: 5.33 - step: 2400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3