modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d4niel92/distilbert-base-uncased-finetuned-emotion | 8ba8777a06b417e15dbb36f7ab757b678066a333 | 2022-07-29T09:31:15.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"dataset:emotion",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | text-classification | false | d4niel92 | null | d4niel92/distilbert-base-uncased-finetuned-emotion | 1 | null | transformers | 33,200 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.924
- name: F1
type: f1
value: 0.9238434600787808
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2259
- Accuracy: 0.924
- F1: 0.9238
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8417 | 1.0 | 250 | 0.3291 | 0.9005 | 0.8962 |
| 0.2551 | 2.0 | 500 | 0.2259 | 0.924 | 0.9238 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
Konstantine4096/bart-pizza-50K | 28c4265d6112fbabd76d4ec6fa951310bee439d9 | 2022-07-22T20:03:21.000Z | [
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Konstantine4096 | null | Konstantine4096/bart-pizza-50K | 1 | null | transformers | 33,201 | Entry not found |
Lvxue/distilled_test_0ddd | d380ff987824377e8cd62c08a3d03f45d716a37c | 2022-07-28T07:04:50.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Lvxue | null | Lvxue/distilled_test_0ddd | 1 | null | transformers | 33,202 | lalala |
rajistics/auditor-test | 28533934ef99bfff13771fc67068dcf14184c0ea | 2022-07-25T13:21:49.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers",
"generated_from_trainer",
"model-index"
] | text-classification | false | rajistics | null | rajistics/auditor-test | 1 | null | transformers | 33,203 | ---
tags:
- generated_from_trainer
model-index:
- name: auditor-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# auditor-test
This model is a fine-tuned version of [demo-org/finbert-pretrain](https://huggingface.co/demo-org/finbert-pretrain) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|
tmgondal/bert-finetuned-squad | c79cfe2e17552103523f24f263c60e3bd8e91332 | 2022-07-22T21:13:25.000Z | [
"pytorch",
"tensorboard",
"bert",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | question-answering | false | tmgondal | null | tmgondal/bert-finetuned-squad | 1 | null | transformers | 33,204 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/deepleffen-falco-tsm_leffen | f8dc49051ea6dcb83c24341c13bc41ba24479010 | 2022-07-22T19:10:49.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/deepleffen-falco-tsm_leffen | 1 | null | transformers | 33,205 | ---
language: en
thumbnail: http://www.huggingtweets.com/deepleffen-falco-tsm_leffen/1658517045179/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1527824997388935168/-Ohf5n-I_400x400.png')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1547974425718300675/wvQuPBGR_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & nick & TSM FTX Leffen</div>
<div style="text-align: center; font-size: 14px;">@deepleffen-falco-tsm_leffen</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Deep Leffen Bot & nick & TSM FTX Leffen.
| Data | Deep Leffen Bot | nick | TSM FTX Leffen |
| --- | --- | --- | --- |
| Tweets downloaded | 591 | 3249 | 3221 |
| Retweets | 14 | 180 | 285 |
| Short tweets | 27 | 582 | 282 |
| Tweets kept | 550 | 2487 | 2654 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13ch35ln/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-falco-tsm_leffen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pw6etfi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pw6etfi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deepleffen-falco-tsm_leffen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
sudo-s/robot2 | 16460965298d72b44ac2c82d1e892c30aad8f86f | 2022-07-23T00:49:29.000Z | [
"pytorch",
"tensorboard",
"vit",
"image-classification",
"transformers"
] | image-classification | false | sudo-s | null | sudo-s/robot2 | 1 | null | transformers | 33,206 | Entry not found |
szj/distilbert-base-uncased-finetuned-cola | 47eb283a2b3de7cd216282b44ae3198e540a4ab1 | 2022-07-26T08:27:47.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"transformers"
] | text-classification | false | szj | null | szj/distilbert-base-uncased-finetuned-cola | 1 | null | transformers | 33,207 | Entry not found |
sudo-s/robot22 | d2f10a8ae7e97fe5c64c65865c4158fa5e40cdfe | 2022-07-23T10:42:11.000Z | [
"pytorch",
"tensorboard",
"vit",
"image-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | image-classification | false | sudo-s | null | sudo-s/robot22 | 1 | null | transformers | 33,208 | ---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: robot22
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robot22
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem6 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5674
- Accuracy: 0.5077
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.9154 | 0.23 | 100 | 3.8417 | 0.2213 |
| 3.1764 | 0.47 | 200 | 3.2243 | 0.3201 |
| 2.8186 | 0.7 | 300 | 2.7973 | 0.4284 |
| 2.632 | 0.93 | 400 | 2.5674 | 0.5077 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.3.2
- Tokenizers 0.12.1
|
sudo-s/modeversion1_m6_e4 | 6c185c6ed098881254f6620a9a1814a7b67a75cf | 2022-07-24T05:08:50.000Z | [
"pytorch",
"tensorboard",
"vit",
"image-classification",
"transformers"
] | image-classification | false | sudo-s | null | sudo-s/modeversion1_m6_e4 | 1 | null | transformers | 33,209 | Entry not found |
Siyong/M_RN | a039c579c3aef47812bb2a16f6eda68d291368ef | 2022-07-23T14:00:34.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | Siyong | null | Siyong/M_RN | 1 | null | transformers | 33,210 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: MilladRN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MilladRN
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4355
- Wer: 0.4907
- Cer: 0.2802
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4000
- num_epochs: 750
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
| 3.3347 | 33.9 | 2000 | 2.2561 | 0.9888 | 0.6087 |
| 1.3337 | 67.8 | 4000 | 1.8137 | 0.6877 | 0.3407 |
| 0.6504 | 101.69 | 6000 | 2.0718 | 0.6245 | 0.3229 |
| 0.404 | 135.59 | 8000 | 2.2246 | 0.6004 | 0.3221 |
| 0.2877 | 169.49 | 10000 | 2.2624 | 0.5836 | 0.3107 |
| 0.2149 | 203.39 | 12000 | 2.3788 | 0.5279 | 0.2802 |
| 0.1693 | 237.29 | 14000 | 1.8928 | 0.5502 | 0.2937 |
| 0.1383 | 271.19 | 16000 | 2.7520 | 0.5725 | 0.3103 |
| 0.1169 | 305.08 | 18000 | 2.2552 | 0.5446 | 0.2968 |
| 0.1011 | 338.98 | 20000 | 2.6794 | 0.5725 | 0.3119 |
| 0.0996 | 372.88 | 22000 | 2.4704 | 0.5595 | 0.3142 |
| 0.0665 | 406.78 | 24000 | 2.9073 | 0.5836 | 0.3194 |
| 0.0538 | 440.68 | 26000 | 3.1357 | 0.5632 | 0.3213 |
| 0.0538 | 474.58 | 28000 | 2.5639 | 0.5613 | 0.3091 |
| 0.0493 | 508.47 | 30000 | 3.3801 | 0.5613 | 0.3119 |
| 0.0451 | 542.37 | 32000 | 3.5469 | 0.5428 | 0.3158 |
| 0.0307 | 576.27 | 34000 | 4.2243 | 0.5390 | 0.3126 |
| 0.0301 | 610.17 | 36000 | 3.6666 | 0.5297 | 0.2929 |
| 0.0269 | 644.07 | 38000 | 3.2164 | 0.5 | 0.2838 |
| 0.0182 | 677.97 | 40000 | 3.0557 | 0.4963 | 0.2779 |
| 0.0191 | 711.86 | 42000 | 3.5190 | 0.5130 | 0.2921 |
| 0.0133 | 745.76 | 44000 | 3.4355 | 0.4907 | 0.2802 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.12.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
Aktsvigun/bart-base_abssum_wikihow_all_9478495 | 1a4abba61f248088b6750761d912ee873c0c6e96 | 2022-07-23T11:46:37.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Aktsvigun | null | Aktsvigun/bart-base_abssum_wikihow_all_9478495 | 1 | null | transformers | 33,211 | Entry not found |
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s3 | 40430559aa8c5320631cc9ce0acb4729d2a37ce4 | 2022-07-23T14:28:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s3 | 1 | null | transformers | 33,212 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s3
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s803 | b7fdeb1bc1b87cba95f4422394659a37d756defc | 2022-07-23T14:32:51.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s803 | 1 | null | transformers | 33,213 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s803
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s95 | 1da1bb22b7b20b1d86402b57ed65afa43df9777b | 2022-07-23T14:37:47.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s95 | 1 | null | transformers | 33,214 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-5_austria-5_s95
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s103 | 4b16a69d73f3789f8c8265c737a4f0932d2d4913 | 2022-07-25T02:46:08.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s103 | 1 | null | transformers | 33,215 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s103
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
techsword/ASCEND-wav2vec2-chinese-zh-cn | 3f0297278ad56380d678480e921985b0f1957b91 | 2022-07-23T20:11:41.000Z | [
"pytorch",
"wav2vec2",
"feature-extraction",
"transformers"
] | feature-extraction | false | techsword | null | techsword/ASCEND-wav2vec2-chinese-zh-cn | 1 | null | transformers | 33,216 | Entry not found |
techsword/wav2vec-fame-dutch | 71f3e89873186b624a849793282b5cfafcc2de2c | 2022-07-23T21:01:48.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | techsword | null | techsword/wav2vec-fame-dutch | 1 | null | transformers | 33,217 | Entry not found |
huggingtweets/vgdunkey-vgdunkeybot-videobotdunkey | d498b3fa5f92969c120f642b67c585db3d64bd9e | 2022-07-23T21:11:28.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/vgdunkey-vgdunkeybot-videobotdunkey | 1 | null | transformers | 33,218 | ---
language: en
thumbnail: http://www.huggingtweets.com/vgdunkey-vgdunkeybot-videobotdunkey/1658610683659/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/676614171849453568/AZd1Bh-s_400x400.png')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/727879199931944961/vkkeC6d2_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/889145771760680960/F3g-pbn2_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">dunkey & dunkey bot & dunkey bot</div>
<div style="text-align: center; font-size: 14px;">@vgdunkey-vgdunkeybot-videobotdunkey</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from dunkey & dunkey bot & dunkey bot.
| Data | dunkey | dunkey bot | dunkey bot |
| --- | --- | --- | --- |
| Tweets downloaded | 1282 | 3200 | 911 |
| Retweets | 147 | 0 | 1 |
| Short tweets | 327 | 526 | 33 |
| Tweets kept | 808 | 2674 | 877 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gs4ik1d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vgdunkey-vgdunkeybot-videobotdunkey's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qqqwy9dp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qqqwy9dp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vgdunkey-vgdunkeybot-videobotdunkey')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bicyclingmag-bike24net-planetcyclery | 4cd8ea253bc32506e28a607dadaba5b36e1513e4 | 2022-07-23T21:47:24.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/bicyclingmag-bike24net-planetcyclery | 1 | null | transformers | 33,219 | ---
language: en
thumbnail: http://www.huggingtweets.com/bicyclingmag-bike24net-planetcyclery/1658612826681/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/596705203358801920/mQ6ZGz9R_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/781477479332577280/OOud15hY_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/837440117505585152/kquV327z_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bicycling Magazine & BIKE24 & Planet Cyclery</div>
<div style="text-align: center; font-size: 14px;">@bicyclingmag-bike24net-planetcyclery</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bicycling Magazine & BIKE24 & Planet Cyclery.
| Data | Bicycling Magazine | BIKE24 | Planet Cyclery |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3200 | 1636 |
| Retweets | 3 | 42 | 48 |
| Short tweets | 31 | 231 | 22 |
| Tweets kept | 3216 | 2927 | 1566 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dpmz7fyw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bicyclingmag-bike24net-planetcyclery's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15ynynm2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15ynynm2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bicyclingmag-bike24net-planetcyclery')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Aktsvigun/bart-base_abssum_wikihow_all_7629317 | 1ef3eae3874e713ddd32261bb0bd7cbb4a97bea8 | 2022-07-23T22:14:37.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Aktsvigun | null | Aktsvigun/bart-base_abssum_wikihow_all_7629317 | 1 | null | transformers | 33,220 | Entry not found |
circulus/kobart-trans-gyeongsang-v1 | ed0cc46f35935ef934c5ecf58867fd621f310e6d | 2022-07-25T06:48:10.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | circulus | null | circulus/kobart-trans-gyeongsang-v1 | 1 | null | transformers | 33,221 | KoBART 기반 경상도 사투리 스타일 변경
- AI-HUB 의 경상도 사투리 데이터 셋을 통해 훈련되었습니다.
- 사용방법은 곧 올리도록 하겠습니다. |
circulus/kobart-trans-formal-v1 | bc629a353f4a711c60852cee583e1244f9d16a8f | 2022-07-24T01:59:24.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | circulus | null | circulus/kobart-trans-formal-v1 | 1 | null | transformers | 33,222 | Entry not found |
circulus/kobart-trans-jeolla-v1 | 1dbb72e7d2695d4c24c4261b1392907d317d35ce | 2022-07-25T06:47:52.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | circulus | null | circulus/kobart-trans-jeolla-v1 | 1 | null | transformers | 33,223 | KoBART 기반 전라도 사투리 스타일 변경
- AI-HUB 의 전라도 사투리 데이터 셋을 통해 훈련되었습니다.
- 사용방법은 곧 올리도록 하겠습니다. |
Aktsvigun/bart-base_abssum_wikihow_all_8653685 | 1ae7c3d13cd3d51c082c91775ca569ec24c95ca1 | 2022-07-24T08:27:53.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Aktsvigun | null | Aktsvigun/bart-base_abssum_wikihow_all_8653685 | 1 | null | transformers | 33,224 | Entry not found |
ArnavL/roberta-one_mil-imdb-0 | c9e9a507a3d895ef0caecc8cffbc3083296e191b | 2022-07-24T11:32:23.000Z | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | ArnavL | null | ArnavL/roberta-one_mil-imdb-0 | 1 | null | transformers | 33,225 | Entry not found |
SummerChiam/pond_image_classification_1 | e98e59cfff05f96a9a7255080a4fc81bf864ee1b | 2022-07-24T14:18:14.000Z | [
"pytorch",
"tensorboard",
"vit",
"image-classification",
"transformers",
"huggingpics",
"model-index"
] | image-classification | false | SummerChiam | null | SummerChiam/pond_image_classification_1 | 1 | null | transformers | 33,226 | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: pond_image_classification
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9948979616165161
---
# pond_image_classification
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### Algae

#### Boiling

#### BoilingNight

#### Normal

#### NormalCement

#### NormalNight

#### NormalRain
 |
phamvanlinh143/dummy-model | 48be254e772b4155c52dff6a8fb705d7f7b546ee | 2022-07-24T16:11:05.000Z | [
"pytorch",
"camembert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | phamvanlinh143 | null | phamvanlinh143/dummy-model | 1 | null | transformers | 33,227 | Entry not found |
Aktsvigun/bart-base_abssum_wikihow_all_5893459 | f5070d415310b8b8dd28332520aebb2eead719f5 | 2022-07-24T18:14:32.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Aktsvigun | null | Aktsvigun/bart-base_abssum_wikihow_all_5893459 | 1 | null | transformers | 33,228 | Entry not found |
Konstantine4096/bart-large-pizza-50K | b607f4fed71262292d48dd2a4ff463c825f22f6f | 2022-07-24T20:15:04.000Z | [
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Konstantine4096 | null | Konstantine4096/bart-large-pizza-50K | 1 | null | transformers | 33,229 | Entry not found |
Konstantine4096/bart-large-pizza-20K | 5ebe1dbb03e6832dfd669a32c24bd4086b390b2c | 2022-07-25T01:06:26.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | Konstantine4096 | null | Konstantine4096/bart-large-pizza-20K | 1 | null | transformers | 33,230 | Entry not found |
muhtasham/bertiny-finetuned-finer | 5ade233d838dad2a8de8f9fcb48b2c970f4fbf01 | 2022-07-25T01:33:49.000Z | [
"pytorch",
"bert",
"token-classification",
"dataset:finer-139",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | muhtasham | null | muhtasham/bertiny-finetuned-finer | 1 | 1 | transformers | 33,231 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- finer-139
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bertiny-finetuned-finer
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: finer-139
type: finer-139
args: finer-139
metrics:
- name: Precision
type: precision
value: 0.5339285714285714
- name: Recall
type: recall
value: 0.036011080332409975
- name: F1
type: f1
value: 0.06747151077513258
- name: Accuracy
type: accuracy
value: 0.9847166143263048
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertiny-finetuned-finer
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the finer-139 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0882
- Precision: 0.5339
- Recall: 0.0360
- F1: 0.0675
- Accuracy: 0.9847
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0871 | 1.0 | 11255 | 0.0952 | 0.0 | 0.0 | 0.0 | 0.9843 |
| 0.0864 | 2.0 | 22510 | 0.0895 | 0.7640 | 0.0082 | 0.0162 | 0.9844 |
| 0.0929 | 3.0 | 33765 | 0.0882 | 0.5339 | 0.0360 | 0.0675 | 0.9847 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
muhtasham/bertiny-finetuned-finer-longer | 055180146c0f172b3f2b204b20f39560b528f4b0 | 2022-07-27T04:36:44.000Z | [
"pytorch",
"bert",
"token-classification",
"dataset:finer-139",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | muhtasham | null | muhtasham/bertiny-finetuned-finer-longer | 1 | null | transformers | 33,232 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- finer-139
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bertiny-finetuned-finer-full
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: finer-139
type: finer-139
args: finer-139
metrics:
- name: Precision
type: precision
value: 0.555368475586064
- name: Recall
type: recall
value: 0.5164398410213176
- name: F1
type: f1
value: 0.5351972041937094
- name: Accuracy
type: accuracy
value: 0.988733187308122
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertiny-finetuned-finer-full
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the 10% of finer-139 dataset for 40 epochs according to paper.
It achieves the following results on the evaluation set:
- Loss: 0.0788
- Precision: 0.5554
- Recall: 0.5164
- F1: 0.5352
- Accuracy: 0.9887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0852 | 1.0 | 11255 | 0.0929 | 1.0 | 0.0001 | 0.0002 | 0.9843 |
| 0.08 | 2.0 | 22510 | 0.0840 | 0.4626 | 0.0730 | 0.1261 | 0.9851 |
| 0.0759 | 3.0 | 33765 | 0.0750 | 0.5113 | 0.2035 | 0.2912 | 0.9865 |
| 0.0569 | 4.0 | 45020 | 0.0673 | 0.4973 | 0.3281 | 0.3953 | 0.9872 |
| 0.0488 | 5.0 | 56275 | 0.0635 | 0.5289 | 0.3749 | 0.4388 | 0.9878 |
| 0.0422 | 6.0 | 67530 | 0.0606 | 0.5258 | 0.4068 | 0.4587 | 0.9880 |
| 0.0364 | 7.0 | 78785 | 0.0600 | 0.5588 | 0.4186 | 0.4787 | 0.9883 |
| 0.0307 | 8.0 | 90040 | 0.0589 | 0.5223 | 0.4916 | 0.5065 | 0.9883 |
| 0.0284 | 9.0 | 101295 | 0.0595 | 0.5588 | 0.4813 | 0.5171 | 0.9887 |
| 0.0255 | 10.0 | 112550 | 0.0597 | 0.5606 | 0.4944 | 0.5254 | 0.9888 |
| 0.0223 | 11.0 | 123805 | 0.0600 | 0.5533 | 0.4998 | 0.5252 | 0.9888 |
| 0.0228 | 12.0 | 135060 | 0.0608 | 0.5290 | 0.5228 | 0.5259 | 0.9885 |
| 0.0225 | 13.0 | 146315 | 0.0612 | 0.5480 | 0.5111 | 0.5289 | 0.9887 |
| 0.0204 | 14.0 | 157570 | 0.0634 | 0.5646 | 0.5120 | 0.5370 | 0.9890 |
| 0.0176 | 15.0 | 168825 | 0.0639 | 0.5611 | 0.5135 | 0.5363 | 0.9889 |
| 0.0167 | 16.0 | 180080 | 0.0647 | 0.5631 | 0.5120 | 0.5363 | 0.9888 |
| 0.0161 | 17.0 | 191335 | 0.0665 | 0.5607 | 0.5081 | 0.5331 | 0.9889 |
| 0.0145 | 18.0 | 202590 | 0.0673 | 0.5437 | 0.5280 | 0.5357 | 0.9887 |
| 0.0166 | 19.0 | 213845 | 0.0687 | 0.5722 | 0.5008 | 0.5341 | 0.9889 |
| 0.0155 | 20.0 | 225100 | 0.0685 | 0.5325 | 0.5337 | 0.5331 | 0.9885 |
| 0.0142 | 21.0 | 236355 | 0.0705 | 0.5626 | 0.5166 | 0.5386 | 0.9890 |
| 0.0127 | 22.0 | 247610 | 0.0694 | 0.5426 | 0.5358 | 0.5392 | 0.9887 |
| 0.0112 | 23.0 | 258865 | 0.0721 | 0.5591 | 0.5129 | 0.5351 | 0.9888 |
| 0.0123 | 24.0 | 270120 | 0.0733 | 0.5715 | 0.5081 | 0.5380 | 0.9889 |
| 0.0116 | 25.0 | 281375 | 0.0735 | 0.5621 | 0.5123 | 0.5361 | 0.9888 |
| 0.0112 | 26.0 | 292630 | 0.0739 | 0.5634 | 0.5181 | 0.5398 | 0.9889 |
| 0.0108 | 27.0 | 303885 | 0.0753 | 0.5548 | 0.5155 | 0.5344 | 0.9887 |
| 0.0125 | 28.0 | 315140 | 0.0746 | 0.5507 | 0.5221 | 0.5360 | 0.9886 |
| 0.0093 | 29.0 | 326395 | 0.0762 | 0.5602 | 0.5156 | 0.5370 | 0.9888 |
| 0.0094 | 30.0 | 337650 | 0.0762 | 0.5625 | 0.5157 | 0.5381 | 0.9889 |
| 0.0117 | 31.0 | 348905 | 0.0767 | 0.5519 | 0.5195 | 0.5352 | 0.9887 |
| 0.0091 | 32.0 | 360160 | 0.0772 | 0.5501 | 0.5198 | 0.5345 | 0.9887 |
| 0.0109 | 33.0 | 371415 | 0.0775 | 0.5635 | 0.5097 | 0.5353 | 0.9888 |
| 0.0094 | 34.0 | 382670 | 0.0776 | 0.5467 | 0.5216 | 0.5339 | 0.9887 |
| 0.009 | 35.0 | 393925 | 0.0782 | 0.5601 | 0.5139 | 0.5360 | 0.9889 |
| 0.0093 | 36.0 | 405180 | 0.0780 | 0.5568 | 0.5156 | 0.5354 | 0.9888 |
| 0.0087 | 37.0 | 416435 | 0.0783 | 0.5588 | 0.5143 | 0.5356 | 0.9888 |
| 0.009 | 38.0 | 427690 | 0.0785 | 0.5483 | 0.5178 | 0.5326 | 0.9887 |
| 0.0094 | 39.0 | 438945 | 0.0787 | 0.5541 | 0.5154 | 0.5340 | 0.9887 |
| 0.0088 | 40.0 | 450200 | 0.0788 | 0.5554 | 0.5164 | 0.5352 | 0.9887 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
eclat12450/fine-tuned-NSPbert-14 | 3a8548cc2c607d6d31862202e2480684516ebaf0 | 2022-07-25T02:35:01.000Z | [
"pytorch",
"bert",
"next-sentence-prediction",
"transformers"
] | null | false | eclat12450 | null | eclat12450/fine-tuned-NSPbert-14 | 1 | null | transformers | 33,233 | Entry not found |
gciaffoni/wav2vec2-large-xls-r-300m-it-colab6up | 3cf50f21f8461af8a0f0b6f3107cfef48ae2b394 | 2022-07-25T03:06:40.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | gciaffoni | null | gciaffoni/wav2vec2-large-xls-r-300m-it-colab6up | 1 | null | transformers | 33,234 | Entry not found |
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s377 | fcd4f586ae7dcf4bcc4043f581b169c17dce7efb | 2022-07-25T02:51:01.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s377 | 1 | null | transformers | 33,235 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s377
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s756 | 65e0ca1ba053193d0c66e433a58676ecc05b78b6 | 2022-07-25T02:56:11.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s756 | 1 | null | transformers | 33,236 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s756
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s527 | 8bd3b236e57897baca97c54340371031d9d96dfc | 2022-07-25T03:01:24.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s527 | 1 | null | transformers | 33,237 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s527
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545 | 563008878c4348d9cb111fd65dd771be24edc0eb | 2022-07-25T03:06:09.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545 | 1 | null | transformers | 33,238 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s779 | 9be197aec34871f08a856ab90ad8828438ee9ccb | 2022-07-25T03:11:07.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s779 | 1 | null | transformers | 33,239 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s779
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s468 | 1ff231fac5344e247ebae3333bbd58e14b376dfa | 2022-07-25T03:15:54.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s468 | 1 | null | transformers | 33,240 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s468
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s732 | 7f9f60a64b20391c474fdbb0886fec52cbed26d4 | 2022-07-25T03:20:42.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s732 | 1 | null | transformers | 33,241 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s732
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s957 | 4be65f445785f68ed6f0a0c113952d68d257c7bf | 2022-07-25T03:25:15.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s957 | 1 | null | transformers | 33,242 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s957
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s445 | 73446115c40c3307da8da03e98b7cc8379c1d523 | 2022-07-25T03:29:52.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s445 | 1 | null | transformers | 33,243 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s445
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s807 | a8f9c00e5d0e220a41069eb8fa9ffd37ca082bec | 2022-07-25T03:34:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s807 | 1 | null | transformers | 33,244 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s807
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953 | e559d6c2f4eaa6510a28f4e52a44e60ee8fc587e | 2022-07-25T03:39:23.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953 | 1 | null | transformers | 33,245 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s286 | 62f007feb57a4905a99968873fc584c7008e32e3 | 2022-07-25T03:44:19.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s286 | 1 | null | transformers | 33,246 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-5_female-5_s286
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s34 | a2843107530c5396614e6897c7568c4fba6b3373 | 2022-07-25T03:49:16.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s34 | 1 | null | transformers | 33,247 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-5_female-5_s34
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s841 | 362a0435572ab4565d3703fc4c425e2851108cd6 | 2022-07-25T03:53:42.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s841 | 1 | null | transformers | 33,248 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-5_female-5_s841
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601 | 402a0545d4a37c341c4ca29835c8208cf32813ac | 2022-07-25T03:58:35.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601 | 1 | null | transformers | 33,249 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801 | b3a7eecd42404ebbf84009bc5b07855fd46fd791 | 2022-07-25T04:04:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801 | 1 | null | transformers | 33,250 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s889 | d94735ba9ca3a271e32b6f60515306131ee3bdc2 | 2022-07-25T04:09:25.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s889 | 1 | null | transformers | 33,251 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-0_female-10_s889
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325 | 456948235bd4d3b32e791da2a91fb4e5c96f9f68 | 2022-07-25T04:14:27.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325 | 1 | null | transformers | 33,252 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
Maxaontrix/distilbert-base-uncased-finetuned-ner-finetuned-ner | 890b93e8554782f57c23166ebac39bc57a5ff893 | 2022-07-25T06:39:25.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"dataset:skript",
"transformers",
"generated_from_trainer",
"model-index",
"autotrain_compatible"
] | token-classification | false | Maxaontrix | null | Maxaontrix/distilbert-base-uncased-finetuned-ner-finetuned-ner | 1 | null | transformers | 33,253 | ---
tags:
- generated_from_trainer
datasets:
- skript
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: skript
type: skript
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.058091286307053944
- name: Recall
type: recall
value: 0.04498714652956298
- name: F1
type: f1
value: 0.05070626584570808
- name: Accuracy
type: accuracy
value: 0.7974446689319497
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner-finetuned-ner
This model was trained from scratch on the skript dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6713
- Precision: 0.0581
- Recall: 0.0450
- F1: 0.0507
- Accuracy: 0.7974
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 44 | 0.8207 | 0.0 | 0.0 | 0.0 | 0.7748 |
| No log | 2.0 | 88 | 0.7113 | 0.0405 | 0.0231 | 0.0294 | 0.7889 |
| No log | 3.0 | 132 | 0.6713 | 0.0581 | 0.0450 | 0.0507 | 0.7974 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s504 | 3aca13a9d569eb44617833436623ea15344d32fb | 2022-07-25T04:19:07.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s504 | 1 | null | transformers | 33,254 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-10_female-0_s504
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s75 | 622cdcf76e791430e76133fe84f39daad737dac6 | 2022-07-25T04:24:10.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s75 | 1 | null | transformers | 33,255 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-10_female-0_s75
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108 | f1c5bf0ecd6d4e5a28dc2a378823d739112908de | 2022-07-25T04:29:06.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108 | 1 | null | transformers | 33,256 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211 | 82d11a9492858ef88494c24fd919869262db555b | 2022-07-25T04:33:58.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211 | 1 | null | transformers | 33,257 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364 | 2d701aa315f515f5ef07293a841a9b91b246021c | 2022-07-25T04:38:52.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364 | 1 | null | transformers | 33,258 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
emilylearning/cond_ft_none_on_reddit__prcnt_na__test_run_True__bert-base-uncased | 1b398433a27a0fcdb98a86f605ee089f5e796dbd | 2022-07-26T05:20:57.000Z | [
"pytorch",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | emilylearning | null | emilylearning/cond_ft_none_on_reddit__prcnt_na__test_run_True__bert-base-uncased | 1 | null | transformers | 33,259 | Entry not found |
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129 | fd84eb02049b36d248a007de1605bf5a40c3562c | 2022-07-25T04:43:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129 | 1 | null | transformers | 33,260 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
emilylearning/cond_ft_subreddit_on_reddit__prcnt_na__test_run_True__bert-base-uncased | ee3010046f5f5486c83af4563437f187865ad45c | 2022-07-26T05:51:24.000Z | [
"pytorch",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | emilylearning | null | emilylearning/cond_ft_subreddit_on_reddit__prcnt_na__test_run_True__bert-base-uncased | 1 | null | transformers | 33,261 | Entry not found |
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s874 | 83cbe97200a5d1b51fbd4e2da327598a98db26d2 | 2022-07-25T04:53:00.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s874 | 1 | null | transformers | 33,262 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_de_vp-100k_gender_male-8_female-2_s874
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203 | b26c5f9d8a116b438296ff8cab2c51f6ab35a73d | 2022-07-25T04:57:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203 | 1 | null | transformers | 33,263 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s878 | 5b7cab82550c1e407012f26e3f0928c746f40de4 | 2022-07-25T05:02:23.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s878 | 1 | null | transformers | 33,264 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-5_england-5_s878
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924 | 9b1fb231bc6cdf0ca9dba85d11e4995e71254117 | 2022-07-25T05:07:34.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924 | 1 | null | transformers | 33,265 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-0_england-10_s227 | cf0be16e9f289702999eb917b985b98d4893a87f | 2022-07-25T05:13:29.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-0_england-10_s227 | 1 | null | transformers | 33,266 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-0_england-10_s227
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-0_england-10_s809 | e27543b82bb81062cae0a3b05fd8dfec5095ce3d | 2022-07-25T05:19:31.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-0_england-10_s809 | 1 | null | transformers | 33,267 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-0_england-10_s809
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s44 | 77f7d355d0ba7b78480d107de52163f00790c09c | 2022-07-25T05:28:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s44 | 1 | null | transformers | 33,268 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-10_england-0_s44
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s863 | 332dfe16370779fb97cf552f30404bab6aeca771 | 2022-07-25T05:33:32.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s863 | 1 | null | transformers | 33,269 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-10_england-0_s863
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s93 | 986b714d459e7a3481604323b0f789e8a7fc27b4 | 2022-07-25T05:38:05.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s93 | 1 | null | transformers | 33,270 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-10_england-0_s93
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s251 | 16f688f9efadf7bf3b7a8628628e1f46e237a4a9 | 2022-07-25T05:43:01.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s251 | 1 | null | transformers | 33,271 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-2_england-8_s251
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456 | 5001490469a04f5a68ecab29428e9db7d58b26b0 | 2022-07-25T05:47:42.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456 | 1 | null | transformers | 33,272 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459 | f3b51edc4ebd1b90a70e64354464e7bcdfb6f27a | 2022-07-25T05:52:22.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459 | 1 | null | transformers | 33,273 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s596 | eca30b88ee67209c0c87de3562b7d3eeb4b5192e | 2022-07-25T05:57:09.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s596 | 1 | null | transformers | 33,274 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-8_england-2_s596
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s875 | 5273ec30b9a4b3924a4942fd7d91f9881369fb46 | 2022-07-25T06:01:57.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s875 | 1 | null | transformers | 33,275 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-8_england-2_s875
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s877 | a727243b0b3f9a3ccfe953626e17b4d6d2ab8c53 | 2022-07-25T06:06:45.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-8_england-2_s877 | 1 | null | transformers | 33,276 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_accent_us-8_england-2_s877
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s186 | 96ea658d491e850b1a309d2709eabab8d6dc6ab7 | 2022-07-25T06:11:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s186 | 1 | null | transformers | 33,277 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-5_female-5_s186
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s474 | 9ca7ccf56f836f2952a6a69cf15052704e511245 | 2022-07-25T06:16:18.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s474 | 1 | null | transformers | 33,278 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-5_female-5_s474
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s952 | b5355dbc604b6cf622529524ca62bbae1292e9e6 | 2022-07-25T06:20:57.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s952 | 1 | null | transformers | 33,279 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-5_female-5_s952
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169 | 7e739c2b38c70a0cc89e704f075466d60a9d49eb | 2022-07-25T06:25:38.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169 | 1 | null | transformers | 33,280 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s281 | b9fe50b8c153d88720d9c44c93654c8c5731116c | 2022-07-25T06:30:15.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s281 | 1 | null | transformers | 33,281 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-0_female-10_s281
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s980 | a023e0e2a0e6ddf4aa842b0035bf792ade19ad7b | 2022-07-25T06:35:05.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s980 | 1 | null | transformers | 33,282 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-0_female-10_s980
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s118 | d004c4d4d5b0c91155ac95fc970d8f8c4c1ad7fd | 2022-07-25T06:39:36.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s118 | 1 | null | transformers | 33,283 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-10_female-0_s118
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s51 | aefd80f3ca2de037fe971d2d3baa17d4ea42ce24 | 2022-07-25T06:44:24.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s51 | 1 | null | transformers | 33,284 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-10_female-0_s51
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s691 | 39f384b4d870b634d68efe8518749b742977c5af | 2022-07-25T06:50:06.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-10_female-0_s691 | 1 | null | transformers | 33,285 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-10_female-0_s691
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s179 | 9123953ba5064436afc6fd2aea4ebd103637e15f | 2022-07-25T06:54:39.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s179 | 1 | null | transformers | 33,286 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-2_female-8_s179
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320 | 33d7a393ff5d3bf72466d419bcfbf05185f92e96 | 2022-07-25T06:59:14.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320 | 1 | null | transformers | 33,287 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s438 | 716b91bbedc410c085a776774cd4ec6ce7d679b8 | 2022-07-25T07:03:55.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s438 | 1 | null | transformers | 33,288 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-2_female-8_s438
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s250 | cca7e048962051c28111a6dcbab81180f9d7607b | 2022-07-25T07:08:25.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s250 | 1 | null | transformers | 33,289 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-8_female-2_s250
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s515 | dc0994d881c641daa64afc48d9f37ae19d6018bb | 2022-07-25T07:13:08.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s515 | 1 | null | transformers | 33,290 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-8_female-2_s515
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859 | 57d141fb881984a934c4dfae2f4bb285f795f6fe | 2022-07-25T07:18:00.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859 | 1 | null | transformers | 33,291 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_en_vp-100k_gender_male-8_female-2_s859
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324 | f844665b7bf7982d67a9c535074e70cebfd16cd3 | 2022-07-25T07:22:43.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324 | 1 | null | transformers | 33,292 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s411 | 629ce01723e29fc75d939433942f0f211d1ff1f9 | 2022-07-25T07:29:05.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s411 | 1 | null | transformers | 33,293 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s411
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
thu-coai/EVA1.0 | 6fa708325eabba8d7f014557bedfb3cd87e1b185 | 2022-07-25T09:17:23.000Z | [
"pytorch",
"zh",
"arxiv:2108.01547",
"arxiv:2203.09313",
"transformers",
"license:mit"
] | null | false | thu-coai | null | thu-coai/EVA1.0 | 1 | null | transformers | 33,294 | ---
language: zh
tags:
- pytorch
license: mit
---
# EVA
## Model Description
EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0.
## Model Configuration
| Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale |
| ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- |
| EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No |
| EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes |
| EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes |
| EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes |
## How to use
Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface).
## Performance
We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set:
| | | | | |
| ---- | ---- | ---- | ---- | ---- |
| | loss | BLEU-4 | Dist-4 | f1 |
| eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 |
| eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 |
| eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 |
| eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 |
We also use beam search to run the interactive inference of EVA2.0:
```[]
Usr >>> 你好
Sys >>> 你好,请问你是?
Usr >>> 我是小明
Sys >>> 好的,小明,我是新来的,请多关照
Usr >>> 你了解人工智能吗?
Sys >>> 不了解,我只知道我是机器人
Usr >>> 那你很聪明
Sys >>> 谢谢夸奖,我会继续努力的
Usr >>> 你是学什么专业的呀
Sys >>> 计算机科学与技术,你呢?
Usr >>> 我也是学计算机的
Sys >>> 哦,那你有什么想知道的,可以问我
Usr >>> 编程语言你学过哪些?
Sys >>> java,c,c+都学过
Usr >>> 你学的真多
Sys >>> 呵呵,还好吧,我比较喜欢写代码
Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流
Sys >>> 嗯,好的
Usr >>> 拜拜喽
Sys >>> 拜~
```
**NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much.
## Disclaimer
The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model.
## Citation
```
@article{coai2021eva,
title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training},
author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie},
journal={arXiv preprint arXiv:2108.01547},
year={2021}
}
@article{coai2022eva2,
title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training},
author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie},
journal={arXiv preprint arXiv:2203.09313},
year={2022}
}
``` |
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s965 | 1d350b935e40330be4acb770c52406cd0d41287d | 2022-07-25T07:33:45.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s965 | 1 | null | transformers | 33,295 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s965
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211 | f3187bf67407b08204f66a4a6a4dd777a13c61b4 | 2022-07-25T07:38:20.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211 | 1 | null | transformers | 33,296 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s609 | ce7a19564b311380c78bc0826269a50439122a29 | 2022-07-25T07:46:02.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s609 | 1 | null | transformers | 33,297 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s609
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s692 | 67fd3a0127b995e50c43ff25c6750f4d17b6f929 | 2022-07-25T07:50:51.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s692 | 1 | null | transformers | 33,298 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s692
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s222 | ef59112ce59d2e79af567f431d9e062e0e9dbcac | 2022-07-25T07:55:31.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"es",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s222 | 1 | null | transformers | 33,299 | ---
language:
- es
license: apache-2.0
tags:
- automatic-speech-recognition
- es
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2r_es_vp-100k_accent_surpeninsular-10_nortepeninsular-0_s222
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.