modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ricardo-filho/sbertimbau-base-quora-multitask
7e221ad52d85bf9e30da1dc568e585967e31fc2c
2021-08-17T10:20:30.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ricardo-filho
null
ricardo-filho/sbertimbau-base-quora-multitask
1
null
sentence-transformers
30,200
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3227 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4333 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
richiellei/DialoGPT-small-rick
9ca65d88dbc656c7f1fff6a8b0f4bba658b693f7
2022-01-17T18:48:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
richiellei
null
richiellei/DialoGPT-small-rick
1
null
transformers
30,201
--- tags: - conversational --- # Rick DialoGPT Model
ridwanpratama/DialoGPT-small-misaki
54477dc7564b9efb80e0dbf286db78139e78be46
2021-09-19T15:22:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ridwanpratama
null
ridwanpratama/DialoGPT-small-misaki
1
null
transformers
30,202
--- tags: - conversational --- # Misaki Ayuzawa Model
rifkat/pubchem_1M
89e2ba6fccb0871c0e8e917be68bc241c731af58
2021-07-23T11:42:19.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
rifkat
null
rifkat/pubchem_1M
1
null
transformers
30,203
Ushbu model, HuggingFace-da RoBERTa transformatorini amalga oshirishga asoslangan. Bizning RoBERTa dasturimiz 12 ta diqqat boshi va 6 ta qatlamdan foydalanadi, natijada 72 ta aniq e'tibor mexanizmlari paydo bo'ladi. Biz har bir kirish satridagi tokenlarning 15 foizini niqoblaydigan RoBERTa-dan dastlabki tekshirish protsedurasini qabul qildik. Biz maksimal 52K tokenli lug'atdan va maksimal 512 ta ketma-ketlik uzunligidan foydalanganmiz. Biz 1M PubChem to'plamlarida 10 ta davr uchun o'qitdik. Loss funksiya 2.9 dan 0.33 gacha tushdi. Ushbu modelni sizga taqdim qilamiz.
rifkat/uztext_568Mb_Roberta_BPE
fe72ec3c6d77ecda296d88dea39b81320236c0b8
2021-10-18T05:32:18.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
rifkat
null
rifkat/uztext_568Mb_Roberta_BPE
1
null
transformers
30,204
<p><b>UzRoBerta model.</b> Pre-prepared model in Uzbek (Cyrillic script) to model the masked language and predict the next sentences. <p><b>Training data.</b> UzBERT model was pretrained on &asymp;167K news articles (&asymp;568Mb).
ringabelle/bert-base-cased-finetuned-COVID-tweets
f28bef2c9bc6c5e43fea1f9ce71c80da066b5333
2021-10-19T11:38:14.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ringabelle
null
ringabelle/bert-base-cased-finetuned-COVID-tweets
1
null
transformers
30,205
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-COVID-tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-COVID-tweets This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 194 | 2.4419 | | No log | 2.0 | 388 | 2.4230 | | 2.5821 | 3.0 | 582 | 2.3678 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
riteshsinha/distilgpt2-fine-tuned-001
1bbfe60ef1de3052f3fcd57e2169b751ea45cd12
2021-05-23T12:16:18.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
riteshsinha
null
riteshsinha/distilgpt2-fine-tuned-001
1
null
transformers
30,206
Entry not found
rjrohit/wav2vec2-base-rj-try-4
a3937be443ef37351088ff8921b90d78a5ea1585
2022-02-07T09:34:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rjrohit
null
rjrohit/wav2vec2-base-rj-try-4
1
null
transformers
30,207
Entry not found
rkmt/wav2vec2-base-timit-demo-colab
6fcbae8be8ebe23674770d7d40cb3c5ac411b755
2021-12-30T00:39:31.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
rkmt
null
rkmt/wav2vec2-base-timit-demo-colab
1
null
transformers
30,208
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0280 - Wer: 0.0082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1152 | 1.42 | 500 | 0.0416 | 0.0159 | | 0.0803 | 2.83 | 1000 | 0.0372 | 0.0144 | | 0.0672 | 4.25 | 1500 | 0.0345 | 0.0119 | | 0.0564 | 5.67 | 2000 | 0.0338 | 0.0106 | | 0.0513 | 7.08 | 2500 | 0.0307 | 0.0100 | | 0.0448 | 8.5 | 3000 | 0.0343 | 0.0098 | | 0.0374 | 9.92 | 3500 | 0.0300 | 0.0084 | | 0.0368 | 11.33 | 4000 | 0.0314 | 0.0086 | | 0.0388 | 12.75 | 4500 | 0.0283 | 0.0089 | | 0.0277 | 14.16 | 5000 | 0.0302 | 0.0089 | | 0.0298 | 15.58 | 5500 | 0.0298 | 0.0089 | | 0.0271 | 17.0 | 6000 | 0.0320 | 0.0098 | | 0.024 | 18.41 | 6500 | 0.0286 | 0.0088 | | 0.0236 | 19.83 | 7000 | 0.0284 | 0.0084 | | 0.0238 | 21.25 | 7500 | 0.0290 | 0.0086 | | 0.0227 | 22.66 | 8000 | 0.0284 | 0.0093 | | 0.0198 | 24.08 | 8500 | 0.0280 | 0.0088 | | 0.0225 | 25.5 | 9000 | 0.0281 | 0.0086 | | 0.018 | 26.91 | 9500 | 0.0280 | 0.0082 | | 0.0178 | 28.33 | 10000 | 0.0280 | 0.0082 | | 0.0209 | 29.75 | 10500 | 0.0280 | 0.0082 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
roivian/manningLp
97926e8c8632c122be45439fdb80456e2b16352f
2021-10-24T00:36:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
roivian
null
roivian/manningLp
1
null
transformers
30,209
Entry not found
ronanki/ml_mpnet_768_MNR
002e2b581e4fa271e801405b0bec5d4e8b93cf11
2022-02-22T18:16:43.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ronanki
null
ronanki/ml_mpnet_768_MNR
1
null
sentence-transformers
30,210
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ronanki/ml_mpnet_768_MNR This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/ml_mpnet_768_MNR') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ronanki/ml_mpnet_768_MNR') model = AutoModel.from_pretrained('ronanki/ml_mpnet_768_MNR') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/ml_mpnet_768_MNR) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 29 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rossanez/t5-small-finetuned-de-en-256-epochs2
78e0dcfc21b1500f75f105738c119940410e7dd0
2021-12-01T01:08:03.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-256-epochs2
1
null
transformers
30,211
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: t5-small-finetuned-de-en-256-epochs2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 args: de-en metrics: - name: Bleu type: bleu value: 7.8579 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-256-epochs2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 2.1073 - Bleu: 7.8579 - Gen Len: 17.3896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.1179 | 7.8498 | 17.382 | | No log | 2.0 | 376 | 2.1073 | 7.8579 | 17.3896 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-256
033cd7d3512409b5f43ee9a9d5b1f633fbedd318
2021-12-01T11:08:44.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-256
1
null
transformers
30,212
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-small-finetuned-de-en-256 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-256 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.2663 | 4.5343 | 17.698 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-64
a70b7324f1211ddb990dc66c5e441af875586dec
2021-12-01T11:02:01.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-64
1
null
transformers
30,213
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-small-finetuned-de-en-64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.3808 | 3.1482 | 17.8019 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-batch8
799dc17fd1e0955aab6af063d31659a74fd9e912
2021-12-04T14:31:59.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-batch8
1
null
transformers
30,214
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: t5-small-finetuned-de-en-batch8 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 args: de-en metrics: - name: Bleu type: bleu value: 10.039 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-batch8 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 2.1282 - Bleu: 10.039 - Gen Len: 17.3839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 375 | 2.0912 | 9.9147 | 17.3084 | | 1.5593 | 2.0 | 750 | 2.0858 | 9.9386 | 17.4299 | | 1.4383 | 3.0 | 1125 | 2.1137 | 9.9804 | 17.34 | | 1.3562 | 4.0 | 1500 | 2.1198 | 9.9685 | 17.367 | | 1.3562 | 5.0 | 1875 | 2.1282 | 10.039 | 17.3839 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-epochs5
54a49201943cd21eba9094fc1380cdbf75452d7f
2021-12-04T12:47:11.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-epochs5
1
null
transformers
30,215
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: t5-small-finetuned-de-en-epochs5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 args: de-en metrics: - name: Bleu type: bleu value: 5.8913 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-epochs5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 2.2040 - Bleu: 5.8913 - Gen Len: 17.5408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.3366 | 2.8075 | 17.8188 | | No log | 2.0 | 376 | 2.2557 | 4.8765 | 17.626 | | 2.6928 | 3.0 | 564 | 2.2246 | 5.5454 | 17.5534 | | 2.6928 | 4.0 | 752 | 2.2086 | 5.8511 | 17.5461 | | 2.6928 | 5.0 | 940 | 2.2040 | 5.8913 | 17.5408 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-final
f4cf1256d3c9d6d91ed95bb22a67ec757baa362e
2021-12-04T14:59:44.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-final
1
null
transformers
30,216
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: t5-small-finetuned-de-en-final results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 args: de-en metrics: - name: Bleu type: bleu value: 9.8394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-final This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 2.3285 - Bleu: 9.8394 - Gen Len: 17.325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.3867 | 9.7928 | 17.2581 | | No log | 2.0 | 376 | 2.3942 | 9.7222 | 17.4186 | | 0.7948 | 3.0 | 564 | 2.3909 | 9.6495 | 17.3513 | | 0.7948 | 4.0 | 752 | 2.3496 | 9.7376 | 17.3417 | | 0.7948 | 5.0 | 940 | 2.3285 | 9.8394 | 17.325 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-lr2e-4
1d56f514e487cfbfd56f893ecdda8555fd9effa2
2021-12-04T13:15:11.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-lr2e-4
1
null
transformers
30,217
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: t5-small-finetuned-de-en-lr2e-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 args: de-en metrics: - name: Bleu type: bleu value: 9.12 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-lr2e-4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 2.0115 - Bleu: 9.12 - Gen Len: 17.4026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.0701 | 8.1225 | 17.4542 | | No log | 2.0 | 376 | 2.0316 | 8.5741 | 17.4229 | | 2.2224 | 3.0 | 564 | 2.0229 | 8.9227 | 17.3703 | | 2.2224 | 4.0 | 752 | 2.0105 | 9.0764 | 17.4053 | | 2.2224 | 5.0 | 940 | 2.0115 | 9.12 | 17.4026 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-wd-01
334a9d8bc5fd052478932088f5d357772e450fb2
2021-12-04T13:43:20.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-wd-01
1
null
transformers
30,218
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 metrics: - bleu model-index: - name: t5-small-finetuned-de-en-wd-01 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt14 type: wmt14 args: de-en metrics: - name: Bleu type: bleu value: 9.6027 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-wd-01 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. It achieves the following results on the evaluation set: - Loss: 2.0482 - Bleu: 9.6027 - Gen Len: 17.3776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.0502 | 9.3675 | 17.3983 | | No log | 2.0 | 376 | 2.0590 | 9.4393 | 17.3869 | | 1.6509 | 3.0 | 564 | 2.0639 | 9.3886 | 17.3806 | | 1.6509 | 4.0 | 752 | 2.0498 | 9.5802 | 17.3846 | | 1.6509 | 5.0 | 940 | 2.0482 | 9.6027 | 17.3776 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rpowalski/layoutlm-base-qa
90cae1b6785c3c99ee863484f35151e100eb3762
2021-06-17T09:44:07.000Z
[ "pytorch" ]
null
false
rpowalski
null
rpowalski/layoutlm-base-qa
1
null
null
30,219
Entry not found
rsvp-AI-ca/bert-uncased-base-50k
08fd47e6c69e3e15a4b3edefe79055ce8e362823
2020-12-13T03:01:46.000Z
[ "pytorch", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
rsvp-AI-ca
null
rsvp-AI-ca/bert-uncased-base-50k
1
null
transformers
30,220
Entry not found
rsvp-AI-ca/segabert-large
adc4283be00ae6fb56610a23d310b7959f1fc856
2021-05-20T04:34:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
rsvp-AI-ca
null
rsvp-AI-ca/segabert-large
1
null
transformers
30,221
Entry not found
rtoguchi/t5-small-finetuned-en-to-ro-weight_decay_0.001
074d838571d26ad65204f36110cffaa0cfec109e
2021-12-02T17:46:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rtoguchi
null
rtoguchi/t5-small-finetuned-en-to-ro-weight_decay_0.001
1
null
transformers
30,222
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-weight_decay_0.001 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3524 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-weight_decay_0.001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4509 - Bleu: 7.3524 - Gen Len: 18.2581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6488 | 1.0 | 7629 | 1.4509 | 7.3524 | 18.2581 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ruiqi-zhong/verifier11b
7bbeb4899016bcdd55461251bbc98fec5576fd98
2022-01-27T23:19:15.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
ruiqi-zhong
null
ruiqi-zhong/verifier11b
1
null
transformers
30,223
Entry not found
ruishan-lin/investopedia-QnA
f5d3e5cc67471f480c195497ccb5cfeaf2e80d63
2021-01-09T00:22:09.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruishan-lin
null
ruishan-lin/investopedia-QnA
1
null
transformers
30,224
---hello
ruriko/konoaqua
b5641bcd2ee96a73ba8479bf0493181c94c9bea6
2021-10-10T15:12:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ruriko
null
ruriko/konoaqua
1
null
transformers
30,225
--- tags: - conversational --- #hope it works
russab0/distilbert-qa
b54e28314538cfb598144e50936291f945a99ae1
2021-04-27T16:27:50.000Z
[ "pytorch", "distilbert", "multiple-choice", "english", "dataset:race", "transformers", "license:mit" ]
multiple-choice
false
russab0
null
russab0/distilbert-qa
1
null
transformers
30,226
--- language: "english" license: "mit" datasets: - race metrics: - accuracy --- # MCQ with Distilbert
rwightman/test_model_rnv250
e1fe21ba65825e29ddcde1edc6b0abb9ee80c2a4
2021-11-24T00:49:15.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
rwightman
null
rwightman/test_model_rnv250
1
null
timm
30,227
--- tags: - image-classification - timm library_tag: timm --- # Model card for test_model_rnv250
rwightman/test_model_rnv250b
62a161cef93a9c96be887fd573250ab005c6685f
2021-11-24T00:52:34.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
rwightman
null
rwightman/test_model_rnv250b
1
null
timm
30,228
--- tags: - image-classification - timm library_tag: timm --- # Model card for test_model_rnv250b
ryo0634/xlm-roberta-base-with-extra-training
5e03ef79a1ee41ecd6e761a0eab4b3702a337820
2022-01-12T13:53:25.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
ryo0634
null
ryo0634/xlm-roberta-base-with-extra-training
1
null
transformers
30,229
Entry not found
s3h/opus-mt-ar-en-finetuned-src-to-trg-testing
b761c05d1b10afe37a30856259bb128250298829
2021-12-22T20:20:22.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
s3h
null
s3h/opus-mt-ar-en-finetuned-src-to-trg-testing
1
null
transformers
30,230
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-src-to-trg-testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-src-to-trg-testing This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3973 - Bleu: 0.1939 - Gen Len: 37.6364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 5 | 3.4353 | 0.1994 | 36.6364 | | No log | 2.0 | 10 | 3.4015 | 0.1994 | 36.0909 | | No log | 3.0 | 15 | 3.3973 | 0.1939 | 37.6364 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.5.0 - Datasets 1.17.0 - Tokenizers 0.10.3
saattrupdan/icebert-texas-squad-is
e0446a8e2ed9a28c328cfffc8202cf89b8d56c49
2022-02-01T13:15:57.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
saattrupdan
null
saattrupdan/icebert-texas-squad-is
1
null
transformers
30,231
--- license: mit tags: - generated_from_trainer model-index: - name: icebert-texas-squad-is results: [] widget: - text: "Hvenær var Halldór Laxness í menntaskóla ?" context: "Halldór Laxness ( Halldór Kiljan ) fæddist í Reykjavík 23. apríl árið 1902 og átti í fyrstu heima við Laugaveg en árið 1905 settist fjölskyldan að í Laxnesi í Mosfellssveit . Þar ólst Halldór upp en sótti skóla í Reykjavík á unglingsárum . Ungur hélt hann síðan utan og var langdvölum erlendis um árabil – í ýmsum Evrópulöndum og síðar í Ameríku . Þegar hann var heima bjó hann í Reykjavík þar til hann og kona hans , Auður Sveinsdóttir , byggðu sér húsið Gljúfrastein í Mosfellssveit og fluttu þangað árið 1945 . Þar var heimili þeirra alla tíð síðan og þar er nú safn til minningar um þau . Halldór lést 8. febrúar 1998 . Skólaganga Halldórs varð ekki löng . Árið 1918 hóf hann nám við Menntaskólann í Reykjavík en hafði lítinn tíma til að læra , enda var hann að skrifa skáldsögu , Barn náttúrunnar , sem kom út haustið 1919 – þá þegar var höfundurinn ungi farinn af landi brott . Sagan vakti þó nokkra athygli og í Alþýðublaðinu sagði m.a. : „ Og hver veit nema að Halldór frá Laxnesi eigi eftir að verða óskabarn íslensku þjóðarinnar . “ Upp frá þessu sendi Halldór frá sér bók nánast á hverju ári , stundum fleiri en eina , í yfir sex áratugi . Afköst hans voru með eindæmum ; hann skrifaði fjölda skáldsagna , sumar í nokkrum hlutum , leikrit , kvæði , smásagnasöfn og endurminningabækur og gaf auk þess út mörg greinasöfn og ritgerðir . Bækurnar eru fjölbreyttar en eiga það sameiginlegt að vera skrifaðar af einstakri stílgáfu , djúpum mannskilningi og víðtækri þekkingu á sögu og samfélagi . Þar birtast oft afgerandi skoðanir á þjóðfélagsmálum og sögupersónur eru margar einkar eftirminnilegar ; tilsvör þeirra og lunderni hafa orðið samofin þjóðarsálinni . Þekktustu verk Halldórs eru eflaust skáldsögurnar stóru og rismiklu , s.s. Salka Valka , Sjálfstætt fólk , Heimsljós , Íslandsklukkan og Gerpla , og raunar mætti telja upp mun fleiri ; Kvæðabók hans er í uppáhaldi hjá mörgum sem og minningabækurnar sem hann skrifaði á efri árum um æskuár sín ; af þekktum greinasöfnum og ritgerðum má nefna Alþýðubókina og Skáldatíma . Mikið hefur verið skrifað um verk og ævi skáldsins , en hér skal aðeins bent á ítarlega frásögn og greiningu Halldórs Guðmundssonar í bókinni Halldór Laxness – ævisaga ." --- # TExAS-SQuAD-is This model is a fine-tuned version of [IceBERT](https://huggingface.co/vesteinn/IceBERT) on the TExAS-SQuAD-is dataset. It achieves the following results on the evaluation set: - Exact match: xx.xx% - F1-score: xx.xx% ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5353 | 0.12 | 500 | 2.2356 | | 2.364 | 0.24 | 1000 | 2.0607 | | 2.2243 | 0.36 | 1500 | 2.0617 | | 2.1403 | 0.49 | 2000 | 1.9934 | | 2.1491 | 0.61 | 2500 | 2.0515 | | 2.0604 | 0.73 | 3000 | 1.9602 | | 2.0232 | 0.85 | 3500 | 1.8954 | | 2.0905 | 0.97 | 4000 | 1.9474 | | 1.9229 | 1.09 | 4500 | 1.9814 | | 1.9162 | 1.22 | 5000 | 1.9053 | | 1.8937 | 1.34 | 5500 | 1.9501 | | 1.9085 | 1.46 | 6000 | 1.8882 | | 1.8671 | 1.58 | 6500 | 1.8996 | | 1.8997 | 1.7 | 7000 | 1.8340 | | 1.8546 | 1.82 | 7500 | 1.8883 | | 1.8935 | 1.95 | 8000 | 1.8567 | | 1.7031 | 2.07 | 8500 | 1.9206 | | 1.7699 | 2.19 | 9000 | 1.8790 | | 1.7016 | 2.31 | 9500 | 1.8670 | | 1.7744 | 2.43 | 10000 | 1.8951 | | 1.7518 | 2.55 | 10500 | 1.9550 | | 1.7503 | 2.68 | 11000 | 1.9120 | | 1.7818 | 2.8 | 11500 | 1.8820 | | 1.6955 | 2.92 | 12000 | 1.8908 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
saattrupdan/xlmr-base-texas-squad-fr
3d4eaded28cec9d31aa6beb0d136697ee6c22821
2022-03-18T16:56:07.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
saattrupdan
null
saattrupdan/xlmr-base-texas-squad-fr
1
null
transformers
30,232
--- license: mit tags: - generated_from_trainer model-index: - name: xlmr-base-texas-squad-fr results: [] widget: - text: "Comment obtenir la coagulation?" context: "La coagulation peut être obtenue soit par action d'une enzyme, la présure, soit par fermentation provoquée par des bactéries lactiques (le lactose est alors transformé en acide lactique), soit très fréquemment par combinaison des deux méthodes précédentes, soit par chauffage associé à une acidification directe (vinaigre…). On procède ensuite à l'égouttage. On obtient alors le caillé et le lactosérum. Le lactosérum peut aussi être utilisé directement : fromage de lactosérum comme le sérac, ou par réincorporation de ses composants." --- # TExAS-SQuAD-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the TExAS-SQuAD-fr dataset. It achieves the following results on the evaluation set: - Exact match: xx.xx% - F1-score: xx.xx% ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1478 | 0.23 | 1000 | 1.8543 | | 1.9827 | 0.46 | 2000 | 1.7643 | | 1.8427 | 0.69 | 3000 | 1.6789 | | 1.8372 | 0.92 | 4000 | 1.6137 | | 1.7318 | 1.15 | 5000 | 1.6093 | | 1.6603 | 1.38 | 6000 | 1.7157 | | 1.6334 | 1.61 | 7000 | 1.6302 | | 1.6716 | 1.84 | 8000 | 1.5845 | | 1.5192 | 2.06 | 9000 | 1.6690 | | 1.5174 | 2.29 | 10000 | 1.6669 | | 1.4611 | 2.52 | 11000 | 1.6301 | | 1.4648 | 2.75 | 12000 | 1.6009 | | 1.5052 | 2.98 | 13000 | 1.6133 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
sachdevkartik/DialoGPT-small-rick
0a14ed0f58b0d6937208a10ecc37edec3a42893e
2021-10-20T20:14:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sachdevkartik
null
sachdevkartik/DialoGPT-small-rick
1
null
transformers
30,233
--- tags: - conversational --- # Rick and Morty DialoGPT Model
saibo/random-albert-base-v2
4347f4131d6a2fdbc5f085dca70dd64077b550bb
2021-07-18T18:33:22.000Z
[ "pytorch", "tf", "albert", "feature-extraction", "transformers" ]
feature-extraction
false
saibo
null
saibo/random-albert-base-v2
1
null
transformers
30,234
# random-albert-base-v2 We introduce random-albert-base-v2, which is a unpretrained version of Albert model. The weight of random-albert-base-v2 is randomly initiated and this can be particularly useful when we aim to train a language model from scratch or benchmark the effect of pretraining. It's important to note that tokenizer of random-albert-base-v2 is the same as albert-base-v2 because it's not a trivial task to get a random tokenizer and it's less meaningful compared to the random weight. A debatable advantage of pulling random-albert-base-v2 from Huggingface is to avoid using random seed in order to obtain the same randomness at each time. The code to obtain a such random model: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification def get_blank_model_from_hf(model_name="bert-base-cased"): model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5) tokenizer = AutoTokenizer.from_pretrained(model_name) model.base_model.init_weights() model_name = "random-" + model_name base_model= model.base_model return base_model, tokenizer, model_name ```
saibo/random-bert-base-cased
e883999974f1b35861b8e6c31b61f19c94ec9de2
2021-07-08T12:50:14.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
saibo
null
saibo/random-bert-base-cased
1
null
transformers
30,235
Entry not found
sail/poolformer_m36
d8dbe79affcac9d5bbe80c702d327c8af09523ec
2022-04-08T07:49:03.000Z
[ "pytorch", "poolformer", "image-classification", "dataset:imagenet", "arxiv:2111.11418", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
sail
null
sail/poolformer_m36
1
null
transformers
30,236
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet --- # PoolFormer (M36 model) PoolFormer model trained on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu et al. and first released in [this repository](https://github.com/sail-sg/poolformer). ## Model description PoolFormer is a model that replaces attention token mixer in transfomrers with extremely simple operator, pooling. Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token mixer module contributes most to their competence. However, recent works show the attention-based module in transformers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation, we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more essential to the model's performance. To verify this, we deliberately replace the attention module in transformers with an embarrassingly simple spatial pooling operator to conduct only the most basic token mixing. Surprisingly, we observe that the derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For example, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned vision transformer/MLP-like baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 48%/60% fewer MACs. The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of "MetaFormer", a general architecture abstracted from transformers without specifying the token mixer. Based on the extensive experiments, we argue that MetaFormer is the key player in achieving superior results for recent transformer and MLP-like models on vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer architecture design. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=sail/poolformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import PoolFormerFeatureExtractor, PoolFormerForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = PoolFormerFeatureExtractor.from_pretrained('sail/poolformer_m36') model = PoolFormerForImageClassification.from_pretrained('sail/poolformer_m36') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The poolformer model was trained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/sail-sg/poolformer/blob/main/train.py#L529-L572). ### Pretraining The model was trained on TPU-v3s. Training resolution is 224. For all hyperparameters (such as batch size and learning rate), please refer to the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | # params | URL | |---------------------------------------|-------------------------|----------|------------------------------------------------------------------| | PoolFormer-S12 | 77.2 | 12M | https://huggingface.co/sail/poolformer_s12 | | PoolFormer-S24 | 80.3 | 21M | https://huggingface.co/sail/poolformer_s24 | | PoolFormer-S36 | 81.4 | 31M | https://huggingface.co/sail/poolformer_s36 | | **PoolFormer-M36** | **82.1** | **56M** | **https://huggingface.co/sail/poolformer_m36** | | PoolFormer-M48 | 82.5 | 73M | https://huggingface.co/sail/poolformer_m48 | ### BibTeX entry and citation info ```bibtex @article{yu2021metaformer, title={MetaFormer is Actually What You Need for Vision}, author={Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng}, journal={arXiv preprint arXiv:2111.11418}, year={2021} } ```
sakai026/Mizuhara
8d3d6eca7f9641efad53eb48cfd4aa67365b1143
2022-02-08T16:56:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sakai026
null
sakai026/Mizuhara
1
null
transformers
30,237
--- tags: - conversational --- # Mizuhara Chizuru bot
sakharok/lapka
5d24dd5e4c2173d668b4d5775a34aad723fac09d
2021-11-16T11:12:36.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
sakharok
null
sakharok/lapka
1
null
transformers
30,238
Entry not found
sam213/DialoGPT-small-harrypotter
73ec39dfbc1c07d3369ddd195fe1c53afc2625ca
2021-11-25T13:11:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sam213
null
sam213/DialoGPT-small-harrypotter
1
null
transformers
30,239
--- tags: - conversational --- # Harry Potter DialoGPT model
samantharhay/wav2vec2-base-myst-demo-colab
c3f26ddf868463479c07deaaab79bb7796e8c1d1
2021-11-22T18:15:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
samantharhay
null
samantharhay/wav2vec2-base-myst-demo-colab
1
null
transformers
30,240
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-base-myst-demo-colab --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-myst-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3125 - eval_wer: 0.3139 - eval_runtime: 57.3226 - eval_samples_per_second: 9.996 - eval_steps_per_second: 1.256 - epoch: 18.68 - step: 17000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
sammy786/wav2vec2-xlsr-Basaa
8326b66e9bf276f93f862f575e4bd70b3b7be395
2022-03-24T11:54:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "bas", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-Basaa
1
null
transformers
30,241
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - bas - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-basaa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 41.23 - name: Test CER type: cer value: 13.54 --- # sammy786/wav2vec2-xlsr-basaa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - bas dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 21.39 - Wer: 30.99 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 6.734100 | 1.605006 | 0.980456 | | 400 | 1.011200 | 0.364686 | 0.442997 | | 600 | 0.709300 | 0.300204 | 0.377850 | | 800 | 0.469800 | 0.315612 | 0.405537 | | 1000 | 0.464700 | 0.352494 | 0.372964 | | 1200 | 0.421900 | 0.342533 | 0.368078 | | 1400 | 0.401900 | 0.351398 | 0.343648 | | 1600 | 0.429800 | 0.350570 | 0.348534 | | 1800 | 0.352600 | 0.356601 | 0.358306 | | 2000 | 0.387200 | 0.355814 | 0.356678 | | 2200 | 0.362400 | 0.345573 | 0.355049 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-basaa --dataset mozilla-foundation/common_voice_8_0 --config bas --split test ```
sammy786/wav2vec2-xlsr-estonian
5632b09e7541f463292eebcaced783a4c7ebc643
2022-03-24T11:56:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-estonian
1
null
transformers
30,242
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - et - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-estonian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 23.61 - name: Test CER type: cer value: 4.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 61.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 67.43 --- # sammy786/wav2vec2-xlsr-estonian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - et dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 17.94 - Wer: 30.38 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 3.729100 | 1.096018 | 0.959867 | | 400 | 0.996900 | 0.310228 | 0.443600 | | 600 | 0.762900 | 0.210873 | 0.346117 | | 800 | 0.621400 | 0.200381 | 0.331513 | | 1000 | 0.408000 | 0.196382 | 0.322014 | | 1200 | 0.320200 | 0.176281 | 0.312515 | | 1400 | 0.315300 | 0.179433 | 0.303847 | | 1600 | 0.445800 | 0.420985 | 0.315839 | | 1800 | 0.644600 | 0.433833 | 0.354904 | | 2000 | 0.550900 | 0.327117 | 0.336500 | | 2200 | 0.498600 | 0.289830 | 0.325457 | | 2400 | 0.488300 | 0.294309 | 0.314177 | | 2600 | 0.491700 | 0.311175 | 0.318689 | | 2800 | 0.508500 | 0.314744 | 0.320470 | | 3000 | 0.499900 | 0.314834 | 0.320589 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-estonian --dataset mozilla-foundation/common_voice_8_0 --config et --split test ```
sammy786/wav2vec2-xlsr-kyrgyz
1a6f3fd9bed2e342576e0d2f4ffe4e1d7b9a0843
2022-03-24T11:58:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ky", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-kyrgyz
1
null
transformers
30,243
--- language: - ky license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ky - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-kyrgyz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ky metrics: - name: Test WER type: wer value: 25.24 - name: Test CER type: cer value: 6.25 --- # sammy786/wav2vec2-xlsr-kyrgyz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ky dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 43.06 - Wer: 39.19 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 5.357800 | 2.700367 | 1.000000 | | 400 | 1.513600 | 0.642542 | 0.598820 | | 600 | 0.961900 | 0.530665 | 0.502739 | | 800 | 0.776000 | 0.507709 | 0.462705 | | 1000 | 0.646100 | 0.453115 | 0.444164 | | 1200 | 0.581200 | 0.454797 | 0.438264 | | 1400 | 0.437900 | 0.459389 | 0.426464 | | 1600 | 0.348600 | 0.401247 | 0.416351 | | 1800 | 0.312800 | 0.436135 | 0.409608 | | 2000 | 0.294100 | 0.440911 | 0.398651 | | 2200 | 0.281400 | 0.432729 | 0.394016 | | 2400 | 0.258400 | 0.429860 | 0.393595 | | 2600 | 0.263700 | 0.432689 | 0.395280 | | 2800 | 0.256900 | 0.430672 | 0.391909 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-kyrgyz --dataset mozilla-foundation/common_voice_8_0 --config ky --split test ```
sana-ngu/HaT5
040a358618e63a31b4d1683d847354850c152394
2022-05-20T16:53:35.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2202.05690", "transformers", "autotrain_compatible" ]
text2text-generation
false
sana-ngu
null
sana-ngu/HaT5
1
null
transformers
30,244
### HaT5(T5-base) This is a fine-tuned model of T5 (base) on the hate speech detection dataset. It is intended to be used as a classification model for identifying Tweets (0 - HOF(hate/offensive); 1 - NOT). The task prefix we used for the T5 model is 'classification: '. More information about the original pre-trained model can be found [here](https://huggingface.co/t5-base) Classification examples: |Prediction|Tweet| |-----|--------| |0 |Why the fuck I got over 1000 views on my story 😂😂 nothing new over here | |1. |first of all there is no vaccine to cure , whthr it is capsules, tablets, or injections, they just support to fight with d virus. I do not support people taking any kind of home remedies n making fun of an ayurvedic medicine..😐 | # More Details For more details about the datasets and eval results, see [our paper for this work here](https://arxiv.org/abs/2202.05690) The paper was accepted at the International Joint Conference on Neural Networks (IJCNN) conference 2022. # How to use ```python from transformers import T5ForConditionalGeneration, T5Tokenizer import torch model = T5ForConditionalGeneration.from_pretrained("sana-ngu/HaT5") tokenizer = T5Tokenizer.from_pretrained("t5-base") tokenizer.pad_token = tokenizer.eos_token input_ids = tokenizer("Old lions in the wild lay down and die with dignity when they can't hunt anymore. If a government is having 'teething problems' handling aid supplies one full year into a pandemic, maybe it should take a cue and get the fuck out of the way? ", padding=True, truncation=True, return_tensors='pt').input_ids outputs = model.generate(input_ids) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) print(pred) ```
santhoshkolloju/t5_qg_model_with_answer2
08976aaa3aaddd5c2203bb8ff3874b173a49d924
2021-06-23T14:08:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
santhoshkolloju
null
santhoshkolloju/t5_qg_model_with_answer2
1
null
transformers
30,245
Entry not found
santhoshkolloju/t5_qg_multi2
612f9d9bd7c970af8daec596ff5ab1140b6df6e0
2020-07-05T11:13:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
santhoshkolloju
null
santhoshkolloju/t5_qg_multi2
1
null
transformers
30,246
Entry not found
saraks/cuad-distil-agreement_date-08-25
92b7b3ea9fdbf178bbace3d02b1c7a93bacc4612
2021-08-25T10:36:00.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-agreement_date-08-25
1
null
transformers
30,247
Entry not found
saraks/cuad-distil-agreement_date-08-31-v1
f866a149f696347c430770f542b37e66edb8a7c8
2021-08-31T07:17:51.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-agreement_date-08-31-v1
1
null
transformers
30,248
Entry not found
saraks/cuad-distil-effective_date-08-31-v1
45ed4e371f034918bb5787017cb011bad5ee73b1
2021-08-31T06:55:45.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-effective_date-08-31-v1
1
null
transformers
30,249
Entry not found
saraks/cuad-distil-multi_fields-08-29-v1
403caf349b9b2e6230850eb90b40e43f7d70bd01
2021-08-29T05:09:46.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-multi_fields-08-29-v1
1
2
transformers
30,250
Entry not found
saraks/cuad-distil-parties-dates-law-08-18-id-question2
bab00b8b33373d3f7e4f0d6e13ff077471df4582
2021-08-18T17:50:29.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-parties-dates-law-08-18-id-question2
1
null
transformers
30,251
Entry not found
saraks/cuad-distil-parties-dates-law-08-18
1b70e1425df24077ad0bc99e6ddf0e73bef7a478
2021-08-18T15:11:47.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-parties-dates-law-08-18
1
null
transformers
30,252
Entry not found
sardinaerum/mt5
8c51e6ffd1c617a726645c7cda7a54f326550cfd
2022-02-10T09:24:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sardinaerum
null
sardinaerum/mt5
1
null
transformers
30,253
Entry not found
sbiswal/odia-bert-classifier
518f78f3643441d69c886a0f2e41ed9e8fe98916
2021-05-20T05:06:25.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sbiswal
null
sbiswal/odia-bert-classifier
1
null
transformers
30,254
Entry not found
seantyh/CxLM
fe516648310f2f5a7b8766b4a133d6d7b6cc7665
2022-01-08T11:23:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seantyh
null
seantyh/CxLM
1
null
transformers
30,255
Entry not found
sebastiaan/sentence-BERT-combined
0a3beb11dcc3546788410da91efd7e8420d24e92
2021-12-17T12:56:43.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sebastiaan
null
sebastiaan/sentence-BERT-combined
1
null
transformers
30,256
Entry not found
seccily/wav2vec-lt-lite
c66faefa3b04ad2f016410567c8178544f531eaf
2021-04-06T05:40:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
seccily
null
seccily/wav2vec-lt-lite
1
null
transformers
30,257
--- language: lt datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Lithuanian by Seçilay KUTAL results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lt type: common_voice args: lt metrics: - name: Test WER type: wer --- # wav2vec-lt-lite ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("seccily/wav2vec-lt-lite") model = Wav2Vec2ForCTC.from_pretrained("seccily/wav2vec-lt-lite") resampler = torchaudio.transforms.Resample(48_000, 16_000) ``` Test Result: 59.47
seduerr/fuser
737620f6c3834fb7afb51841256df21b6329f712
2021-06-02T14:56:42.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/fuser
1
null
transformers
30,258
Entry not found
seduerr/pai_ei
591151505615a113f297e5f7735dbbb06d49c69c
2021-06-22T08:45:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/pai_ei
1
null
transformers
30,259
Entry not found
seduerr/pai_infi
49d45ac27ee3f9413f3333b2adbbb85c295f5d91
2021-05-23T12:49:38.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
seduerr
null
seduerr/pai_infi
1
null
transformers
30,260
Entry not found
seduerr/pai_splitter_short
1951495dd41c2c4187407b7a764444b712a66d0c
2021-05-09T20:32:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/pai_splitter_short
1
null
transformers
30,261
Entry not found
seduerr/pai_subject
b482f8fdf597430e547fa3f0bee8f0b0cd3914f2
2021-06-09T10:20:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/pai_subject
1
null
transformers
30,262
Entry not found
sergiyvl/just_first_try_to_my_diplom_onBert_10epoch
6abb7982e2a3379f293da4bd140732a483c8a19a
2021-05-20T05:38:45.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sergiyvl
null
sergiyvl/just_first_try_to_my_diplom_onBert_10epoch
1
null
transformers
30,263
Entry not found
sergiyvl/just_first_try_to_my_diplom_onBert_minea_2epoch
4d359c5bb98eb8aef440a99c695a8210714f8d04
2021-05-20T05:39:53.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sergiyvl
null
sergiyvl/just_first_try_to_my_diplom_onBert_minea_2epoch
1
null
transformers
30,264
Entry not found
sergiyvl/model_65000_20ep
dd49dbbf6df9dbfa996b6c61f0d7250e6702ef84
2021-05-20T05:41:04.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sergiyvl
null
sergiyvl/model_65000_20ep
1
null
transformers
30,265
Entry not found
severinsimmler/bert-adapted-german-press
0a1e53d77e98f2d4e46360b5ed3d791ac90e11d6
2021-05-20T05:44:48.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
severinsimmler
null
severinsimmler/bert-adapted-german-press
1
null
transformers
30,266
Entry not found
seyfullah/dummy-model
a322a025a1d2cbb656dca1986d147530eecce732
2021-07-12T16:59:02.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyfullah
null
seyfullah/dummy-model
1
null
transformers
30,267
Entry not found
seyonec/BPE_SELFIES_PubChem_shard00_120k
2a41924a40dd940465008bf81e965c208a9a0f96
2021-05-20T20:44:11.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/BPE_SELFIES_PubChem_shard00_120k
1
null
transformers
30,268
Entry not found
seyonec/ChemBERTA_PubChem1M_shard00_115k
490f098ed4077a874625aef90bacb3494fb3d4d6
2021-05-20T20:51:44.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/ChemBERTA_PubChem1M_shard00_115k
1
null
transformers
30,269
Entry not found
seyonec/PubChem10M_SMILES_BPE_120k
0604ff11516ea03ea790ba36c6baef8846b20de5
2021-05-20T20:58:35.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/PubChem10M_SMILES_BPE_120k
1
null
transformers
30,270
Entry not found
seyonec/PubChem10M_SMILES_BPE_180k
d753fc53e3b5ae376199f900485bdac78f2a402e
2021-05-20T20:59:23.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/PubChem10M_SMILES_BPE_180k
1
null
transformers
30,271
Entry not found
seyonec/PubChem10M_SMILES_BPE_240k
a5ca04e0b1cee48f89eb282586c6435b6df7fb81
2021-05-20T21:00:08.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/PubChem10M_SMILES_BPE_240k
1
null
transformers
30,272
Entry not found
seyonec/PubChem10M_SMILES_BPE_60k
067d49c4b502ebcefc6205601d5992ea90a8f705
2021-05-20T21:04:12.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/PubChem10M_SMILES_BPE_60k
1
null
transformers
30,273
Entry not found
seyonec/SMILES_tokenized_PubChem_shard00_100k
271fa63286458fadfe2466308bd609f14571ed52
2021-05-20T21:06:51.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/SMILES_tokenized_PubChem_shard00_100k
1
null
transformers
30,274
Entry not found
seyonec/SMILES_tokenized_PubChem_shard00_150k
70ede323955e42f3745e732f53a2a0c567942f8a
2021-05-20T21:07:44.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/SMILES_tokenized_PubChem_shard00_150k
1
null
transformers
30,275
Entry not found
seyonec/SMILES_tokenized_PubChem_shard00_40k
24d64e652bcbc361d0b062c99a8b63817c425be5
2021-05-20T21:09:40.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/SMILES_tokenized_PubChem_shard00_40k
1
null
transformers
30,276
Entry not found
seyonec/checkpoint-50000
b0f3f3897851c9f08129a003203e8069a2a73ba7
2021-05-20T21:12:19.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/checkpoint-50000
1
null
transformers
30,277
Entry not found
shacharm/wav2vec2-large-xls-r-300m-english-colab
82357556ddbe88c4f64f6d3fb65dbf10f4861b3e
2022-02-05T11:59:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shacharm
null
shacharm/wav2vec2-large-xls-r-300m-english-colab
1
null
transformers
30,278
Entry not found
shahukareem/xls-r-300m-dv
7a61c488dd8f3c22c41bac962266d7fc00f3ef0c
2022-03-23T18:34:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shahukareem
null
shahukareem/xls-r-300m-dv
1
null
transformers
30,279
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - dv - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 21.31 - name: Test CER type: cer value: 3.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3386 | 0.66 | 400 | 1.1411 | 0.9432 | | 0.6543 | 1.33 | 800 | 0.5099 | 0.6749 | | 0.4646 | 1.99 | 1200 | 0.4133 | 0.5968 | | 0.3748 | 2.65 | 1600 | 0.3534 | 0.5515 | | 0.3323 | 3.32 | 2000 | 0.3635 | 0.5527 | | 0.3269 | 3.98 | 2400 | 0.3587 | 0.5423 | | 0.2984 | 4.64 | 2800 | 0.3340 | 0.5073 | | 0.2841 | 5.31 | 3200 | 0.3279 | 0.5004 | | 0.2664 | 5.97 | 3600 | 0.3114 | 0.4845 | | 0.2397 | 6.63 | 4000 | 0.3174 | 0.4920 | | 0.2332 | 7.3 | 4400 | 0.3110 | 0.4911 | | 0.2304 | 7.96 | 4800 | 0.3123 | 0.4785 | | 0.2134 | 8.62 | 5200 | 0.2984 | 0.4557 | | 0.2066 | 9.29 | 5600 | 0.3013 | 0.4723 | | 0.1951 | 9.95 | 6000 | 0.2934 | 0.4487 | | 0.1806 | 10.61 | 6400 | 0.2802 | 0.4547 | | 0.1727 | 11.28 | 6800 | 0.2842 | 0.4333 | | 0.1666 | 11.94 | 7200 | 0.2873 | 0.4272 | | 0.1562 | 12.6 | 7600 | 0.3042 | 0.4373 | | 0.1483 | 13.27 | 8000 | 0.3122 | 0.4313 | | 0.1465 | 13.93 | 8400 | 0.2760 | 0.4226 | | 0.1335 | 14.59 | 8800 | 0.3112 | 0.4243 | | 0.1293 | 15.26 | 9200 | 0.3002 | 0.4133 | | 0.1264 | 15.92 | 9600 | 0.2985 | 0.4145 | | 0.1179 | 16.58 | 10000 | 0.2925 | 0.4012 | | 0.1171 | 17.25 | 10400 | 0.3127 | 0.4012 | | 0.1141 | 17.91 | 10800 | 0.2980 | 0.3908 | | 0.108 | 18.57 | 11200 | 0.3108 | 0.3951 | | 0.1045 | 19.24 | 11600 | 0.3269 | 0.3908 | | 0.1047 | 19.9 | 12000 | 0.2998 | 0.3868 | | 0.0937 | 20.56 | 12400 | 0.2918 | 0.3875 | | 0.0949 | 21.23 | 12800 | 0.2906 | 0.3657 | | 0.0879 | 21.89 | 13200 | 0.2974 | 0.3731 | | 0.0854 | 22.55 | 13600 | 0.2943 | 0.3711 | | 0.0851 | 23.22 | 14000 | 0.2919 | 0.3580 | | 0.0789 | 23.88 | 14400 | 0.2983 | 0.3560 | | 0.0796 | 24.54 | 14800 | 0.3131 | 0.3544 | | 0.0761 | 25.21 | 15200 | 0.2996 | 0.3616 | | 0.0755 | 25.87 | 15600 | 0.2972 | 0.3506 | | 0.0726 | 26.53 | 16000 | 0.2902 | 0.3474 | | 0.0707 | 27.2 | 16400 | 0.3083 | 0.3480 | | 0.0669 | 27.86 | 16800 | 0.3035 | 0.3330 | | 0.0637 | 28.52 | 17200 | 0.2963 | 0.3370 | | 0.0596 | 29.19 | 17600 | 0.2830 | 0.3326 | | 0.0583 | 29.85 | 18000 | 0.2969 | 0.3287 | | 0.0566 | 30.51 | 18400 | 0.3002 | 0.3480 | | 0.0574 | 31.18 | 18800 | 0.2916 | 0.3296 | | 0.0536 | 31.84 | 19200 | 0.2933 | 0.3225 | | 0.0548 | 32.5 | 19600 | 0.2900 | 0.3179 | | 0.0506 | 33.17 | 20000 | 0.3073 | 0.3225 | | 0.0511 | 33.83 | 20400 | 0.2925 | 0.3275 | | 0.0483 | 34.49 | 20800 | 0.2919 | 0.3245 | | 0.0456 | 35.16 | 21200 | 0.2859 | 0.3105 | | 0.0445 | 35.82 | 21600 | 0.2864 | 0.3080 | | 0.0437 | 36.48 | 22000 | 0.2989 | 0.3084 | | 0.04 | 37.15 | 22400 | 0.2887 | 0.3060 | | 0.0406 | 37.81 | 22800 | 0.2870 | 0.3013 | | 0.0397 | 38.47 | 23200 | 0.2793 | 0.3020 | | 0.0383 | 39.14 | 23600 | 0.2955 | 0.2943 | | 0.0345 | 39.8 | 24000 | 0.2813 | 0.2905 | | 0.0331 | 40.46 | 24400 | 0.2845 | 0.2845 | | 0.0338 | 41.13 | 24800 | 0.2832 | 0.2925 | | 0.0333 | 41.79 | 25200 | 0.2889 | 0.2849 | | 0.0325 | 42.45 | 25600 | 0.2808 | 0.2847 | | 0.0314 | 43.12 | 26000 | 0.2867 | 0.2801 | | 0.0288 | 43.78 | 26400 | 0.2865 | 0.2834 | | 0.0291 | 44.44 | 26800 | 0.2863 | 0.2806 | | 0.0269 | 45.11 | 27200 | 0.2941 | 0.2736 | | 0.0275 | 45.77 | 27600 | 0.2897 | 0.2736 | | 0.0271 | 46.43 | 28000 | 0.2857 | 0.2695 | | 0.0251 | 47.1 | 28400 | 0.2881 | 0.2702 | | 0.0243 | 47.76 | 28800 | 0.2901 | 0.2684 | | 0.0244 | 48.42 | 29200 | 0.2849 | 0.2679 | | 0.0232 | 49.09 | 29600 | 0.2849 | 0.2677 | | 0.0224 | 49.75 | 30000 | 0.2855 | 0.2665 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
shaina/covid_qa_distillBert
d892b228dc4efc5854ffae894407ce6758bfe751
2022-01-06T15:41:08.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
shaina
null
shaina/covid_qa_distillBert
1
null
transformers
30,280
--- license: apache-2.0 tags: - generated_from_trainer datasets: - covid_qa_deepset widget: - text: "What is COVID-19?" context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic." - text: "Where was COVID-19 first discovered?" context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event." - text: "What is Post-COVID syndrome?" context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction." model-index: - name: CoQUAD_DistilBERT_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_distillBert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2537 | 1.0 | 3880 | 0.1871 | | 0.2005 | 2.0 | 7760 | 0.1257 | | 0.1395 | 3.0 | 11640 | 0.0971 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
shaina/covid_qa_mpnet
ddb1b7263ac1b28fe2bd0bed48b103bc1c97e636
2022-02-02T14:33:18.000Z
[ "pytorch", "tensorboard", "mpnet", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
shaina
null
shaina/covid_qa_mpnet
1
null
transformers
30,281
--- tags: - generated_from_trainer widget: - text: "What is COVID-19?" context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic." - text: "Where was COVID-19 first discovered?" context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event." - text: "What is Post-COVID syndrome?" context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction." --- # covid_qa_mpnet This model is a fine-tuned version of [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on our COVID-19 dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2477 | 1.0 | 3895 | 0.1869 | | 0.1838 | 2.0 | 7790 | 0.1352 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
shashank2123/t5-base-fine-tuned-for-Punctuation-Restoration
66639f6e58e23592ed8d599d8ccb4a69df581502
2021-09-13T14:42:51.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
shashank2123
null
shashank2123/t5-base-fine-tuned-for-Punctuation-Restoration
1
1
transformers
30,282
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-fine-tuned-for-Punctuation-Restoration results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-fine-tuned-for-Punctuation-Restoration This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1796 | 1.0 | 1431 | 0.1097 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
shibli/wav2vec2-large-xls-r-300m-pun-colab
d13f57a036ddbef66443c833385ce1ddc162b3e9
2022-02-22T18:51:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shibli
null
shibli/wav2vec2-large-xls-r-300m-pun-colab
1
null
transformers
30,283
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pun-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pun-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
shields/wav2vec2-base-dementiabank
300e1183477c829246f5cde34e5156857c4ca8a8
2022-02-08T02:53:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shields
null
shields/wav2vec2-base-dementiabank
1
null
transformers
30,284
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-dementiabank results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-dementiabank This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 11.0473 - eval_wer: 1.0 - eval_runtime: 3.3353 - eval_samples_per_second: 2.399 - eval_steps_per_second: 0.3 - epoch: 3.12 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.5 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
shields/wav2vec2-xl-960h-dementiabank
e7d4fabf2abb2408456754a1b38283c229652a4f
2022-01-21T06:00:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shields
null
shields/wav2vec2-xl-960h-dementiabank
1
null
transformers
30,285
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xl-960h-dementiabank results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xl-960h-dementiabank This model is a fine-tuned version of [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3483.2146 - Wer: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13934.5266 | 0.31 | 10 | 71265.4531 | 1.0 | | 13443.6406 | 0.62 | 20 | 69977.6016 | 1.0 | | 9336.9562 | 0.94 | 30 | 13763.1484 | 0.9843 | | 2970.977 | 1.25 | 40 | 17587.7656 | 0.9860 | | 1916.3354 | 1.56 | 50 | 4328.4521 | 1.0 | | 1417.5775 | 1.88 | 60 | 4486.8071 | 0.9860 | | 1841.7689 | 2.19 | 70 | 2988.0303 | 1.0 | | 1355.0265 | 2.5 | 80 | 2972.6094 | 0.9860 | | 1359.7979 | 2.81 | 90 | 3483.2146 | 0.9860 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
shimu/bert_base_uncased_finetuning
ea75e5227d3ab70c585d7b8f36824d3956ff1ce4
2021-09-08T02:57:36.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
shimu
null
shimu/bert_base_uncased_finetuning
1
null
transformers
30,286
Entry not found
shivam/mbart-large-50-finetuned-en-mr
e390f334da0aa48527b18c4dc6123d2fc249c242
2021-04-18T10:19:52.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
shivam
null
shivam/mbart-large-50-finetuned-en-mr
1
null
transformers
30,287
--- Language Pair Finetuned: - en-mr Metrics: - sacrebleu - WAT 2021: 16.11 # mbart-large-finetuned-en-mr ## Model Description This is the mbart-large-50 model finetuned on En-Mr corpus. ## Intended uses and limitations Mostly useful for English to Marathi translation but the mbart-large-50 model also supports other language pairs ### How to use ```python from transformers import MBartForConditionalGeneration, MBart50TokenizerFast model = MBartForConditionalGeneration.from_pretrained("shivam/mbart-large-50-finetuned-en-mr") tokenizer = MBart50TokenizerFast.from_pretrained("shivam/mbart-large-50-finetuned-en-mr", src_lang="en_XX", tgt_lang="mr_IN") english_input_sentence = "The Prime Minister said that cleanliness, or Swachhta, is one of the most important aspects of preventive healthcare." model_inputs = tokenizer(english_input_sentence, return_tensors="pt") generated_tokens = model.generate( **model_inputs, forced_bos_token_id=tokenizer.lang_code_to_id["mr_IN"] ) marathi_output_sentence = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(marathi_output_sentence) #स्वच्छता हा प्रतिबंधात्मक आरोग्य सेवेतील सर्वात महत्त्वाचा पैलू आहे, असे पंतप्रधान म्हणाले. ``` #### Limitations The model was trained on Google Colab and as the training takes a lot of time the model was trained for small time and small number of epochs. ## Eval results WAT 2021: 16.11
shivam/wav2vec2-xls-r-300m-marathi
d09e94a1b4a8d83d38de876e857d3b2e528893fa
2022-02-07T15:40:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shivam
null
shivam/wav2vec2-xls-r-300m-marathi
1
null
transformers
30,288
Entry not found
shivangi/distilgpt2
b4f81c40ef99f1cec62044be8ca7fc98ad560211
2021-05-23T12:52:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
shivangi
null
shivangi/distilgpt2
1
null
transformers
30,289
Entry not found
shivkumarganesh/distilbert-base-uncased-finetuned-squad
7e1a7d2641c0184c5221f8be1691840ec8413c3f
2021-11-05T07:25:27.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
shivkumarganesh
null
shivkumarganesh/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,290
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3036 | 1.0 | 4427 | 1.2414 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
shiyue/wav2vec2-common_voice-tr-demo
93e63e22dd7eb500978fe1f4dc71a1f99b9e0175
2021-10-05T01:04:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shiyue
null
shiyue/wav2vec2-common_voice-tr-demo
1
null
transformers
30,291
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 1.12.1 - Tokenizers 0.10.3
shonuff/DialoGPT-medium-konosuba
eeca8d035c55a40d2b5871e83c53b63ec7d451a7
2021-08-28T00:56:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
shonuff
null
shonuff/DialoGPT-medium-konosuba
1
null
transformers
30,292
--- tags: - conversational --- #Konosuba DialoGPT Model
shoubhik/Wav2Vec2_XLSR_Bengali_10500_it
fb6715c14822dce81eebd872fe15e349513d95b8
2022-01-27T12:19:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shoubhik
null
shoubhik/Wav2Vec2_XLSR_Bengali_10500_it
1
null
transformers
30,293
Entry not found
shoubhik/wav2vec2-xls-r-300m-hindi
ed0ae52c905c272821a5b8b33de7d9d49b9af3fa
2022-02-04T17:49:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shoubhik
null
shoubhik/wav2vec2-xls-r-300m-hindi
1
null
transformers
30,294
Entry not found
shpotes/xls-r-et
63823ebec8cd7d1f3b94dfb96944892c6e002e9f
2022-03-24T11:54:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shpotes
null
shpotes/xls-r-et
1
null
transformers
30,295
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: et metrics: - name: Test WER type: wer value: 0.34753420299077314 - name: Test CER type: cer value: 0.07542956089330906 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 47.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 54.72 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 - Wer: 0.3475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3825 | 12.5 | 500 | 0.4022 | 0.5059 | | 0.1592 | 25.0 | 1000 | 0.4585 | 0.4456 | | 0.1215 | 37.5 | 1500 | 0.4550 | 0.4164 | | 0.0972 | 50.0 | 2000 | 0.4725 | 0.4088 | | 0.0731 | 62.5 | 2500 | 0.4568 | 0.3824 | | 0.0527 | 75.0 | 3000 | 0.4712 | 0.3653 | | 0.0428 | 87.5 | 3500 | 0.4813 | 0.3520 | | 0.0383 | 100.0 | 4000 | 0.4835 | 0.3475 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
shpotes/xls-r-eus
63d381ae33eeaf69cf84c52d13f58e48650fae38
2022-03-24T11:54:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "eu", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "et", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shpotes
null
shpotes/xls-r-eus
1
null
transformers
30,296
--- language: - eu license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-eus results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: eu metrics: - name: Test WER type: wer value: 0.17871523648578164 - name: Test CER type: cer value: 0.032624506085144 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set: - Loss: 0.2278 - Wer: 0.1787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2548 | 4.24 | 500 | 0.2470 | 0.3663 | | 0.1435 | 8.47 | 1000 | 0.2000 | 0.2791 | | 0.1158 | 12.71 | 1500 | 0.2030 | 0.2652 | | 0.1094 | 16.95 | 2000 | 0.2096 | 0.2605 | | 0.1004 | 21.19 | 2500 | 0.2150 | 0.2477 | | 0.0945 | 25.42 | 3000 | 0.2072 | 0.2369 | | 0.0844 | 29.66 | 3500 | 0.1981 | 0.2328 | | 0.0877 | 33.89 | 4000 | 0.2041 | 0.2425 | | 0.0741 | 38.14 | 4500 | 0.2353 | 0.2421 | | 0.0676 | 42.37 | 5000 | 0.2092 | 0.2213 | | 0.0623 | 46.61 | 5500 | 0.2217 | 0.2250 | | 0.0574 | 50.84 | 6000 | 0.2152 | 0.2179 | | 0.0583 | 55.08 | 6500 | 0.2207 | 0.2186 | | 0.0488 | 59.32 | 7000 | 0.2225 | 0.2159 | | 0.0456 | 63.56 | 7500 | 0.2293 | 0.2031 | | 0.041 | 67.79 | 8000 | 0.2277 | 0.2013 | | 0.0379 | 72.03 | 8500 | 0.2287 | 0.1991 | | 0.0381 | 76.27 | 9000 | 0.2233 | 0.1954 | | 0.0308 | 80.51 | 9500 | 0.2195 | 0.1835 | | 0.0291 | 84.74 | 10000 | 0.2266 | 0.1825 | | 0.0266 | 88.98 | 10500 | 0.2285 | 0.1801 | | 0.0266 | 93.22 | 11000 | 0.2292 | 0.1801 | | 0.0262 | 97.46 | 11500 | 0.2278 | 0.1788 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
shreyasgite/wav2vec2-large-xls-r-300m-dementianet
9e9abdb32361d84e99d3af97db28f23423471a75
2021-12-19T09:11:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
shreyasgite
null
shreyasgite/wav2vec2-large-xls-r-300m-dementianet
1
null
transformers
30,297
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xls-r-300m-dementianet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dementianet This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3430 - Accuracy: 0.4062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 22 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3845 | 3.33 | 40 | 1.3556 | 0.3125 | | 1.3659 | 6.67 | 80 | 1.3602 | 0.3125 | | 1.3619 | 10.0 | 120 | 1.3569 | 0.3125 | | 1.3575 | 13.33 | 160 | 1.3509 | 0.3125 | | 1.3356 | 16.67 | 200 | 1.3599 | 0.3125 | | 1.3166 | 20.0 | 240 | 1.3430 | 0.4062 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
shreyasgite/wav2vec2-large-xls-r-300m-dm32
64602323f168caab94d4a7e81f9567441f13210b
2022-02-04T14:53:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
shreyasgite
null
shreyasgite/wav2vec2-large-xls-r-300m-dm32
1
null
transformers
30,298
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xls-r-300m-dm32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dm32 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5688 - Accuracy: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 22 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 2.41 | 34 | 0.6769 | 0.6458 | | No log | 4.83 | 68 | 0.6864 | 0.5208 | | No log | 7.28 | 102 | 0.6596 | 0.6042 | | 0.7106 | 9.69 | 136 | 0.6208 | 0.6875 | | 0.7106 | 12.14 | 170 | 0.6152 | 0.6875 | | 0.7106 | 14.55 | 204 | 0.6167 | 0.6875 | | 0.6464 | 16.97 | 238 | 0.5782 | 0.7708 | | 0.6464 | 19.41 | 272 | 0.6011 | 0.7292 | | 0.6464 | 21.83 | 306 | 0.5688 | 0.7917 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
shreyasgite/wav2vec2-large-xls-r-300m-sanitycheck
b89e51d2251824509f292d4463f5b572eeef3efe
2022-01-06T05:37:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
shreyasgite
null
shreyasgite/wav2vec2-large-xls-r-300m-sanitycheck
1
null
transformers
30,299
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xls-r-300m-sanitycheck results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sanitycheck This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0092 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.14 | 8 | 0.8034 | 0.4737 | | No log | 2.29 | 16 | 0.6803 | 0.5263 | | No log | 3.43 | 24 | 0.4867 | 1.0 | | 0.5907 | 4.57 | 32 | 0.1781 | 0.9474 | | 0.5907 | 5.71 | 40 | 0.2168 | 0.9474 | | 0.5907 | 6.86 | 48 | 0.2403 | 0.9474 | | 0.5907 | 8.0 | 56 | 0.0143 | 1.0 | | 0.0932 | 9.14 | 64 | 0.0124 | 1.0 | | 0.0932 | 10.29 | 72 | 0.0089 | 1.0 | | 0.0932 | 11.43 | 80 | 0.0092 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3