modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
moumeneb1/testing
6cbd9df758093c988a3d7c41fba96790b081b3d0
2022-01-11T09:16:45.000Z
[ "wav2vec2", "feature-extraction", "rw", "dataset:commonvoice", "arxiv:2106.04624", "speechbrain", "CTC", "Attention", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
moumeneb1
null
moumeneb1/testing
1
null
speechbrain
30,000
--- language: "rw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on CommonVoice Kinyarwanda (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (Kinyarwanda Language) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test WER | GPUs | |:--------------:|:--------------:| :--------:| | 03-06-21 | 18.91 | 2xV100 32GB | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (RW). - Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice En. The obtained final acoustic representation is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Kinyarwanda) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-rw", savedir="pretrained_models/asr-wav2vec2-commonvoice-rw") asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-rw/example.mp3") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/CommonVoice/ASR/seq2seq python train_with_wav2vec.py hparams/train_rw_with_wav2vec.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1tjz6IZmVRkuRE97E7h1cXFoGTer7pT73?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
mpoyraz/wav2vec2-xls-r-300m-cv7-turkish
708639f50559d7970f462e13ec64d3f059ca89f6
2022-03-23T18:28:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
mpoyraz
null
mpoyraz/wav2vec2-xls-r-300m-cv7-turkish
1
null
transformers
30,001
--- license: cc-by-4.0 language: tr tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv7-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 8.62 - name: Test CER type: cer value: 2.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 30.87 - name: Test CER type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 32.09 --- # wav2vec2-xls-r-300m-cv7-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.05 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.05 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv7-turkish --dataset mozilla-foundation/common_voice_7_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv7-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 7 TR test split| 8.62 | 2.26 | |Speech Recognition Community dev data| 30.87 | 10.69 |
mrm8488/GuaPeTe-2-tiny-finetuned-eubookshop
6b7e11344f86ea4a4cfd47f966d4c23b2ce70892
2021-05-23T10:15:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "es", "transformers", "spanish", "gpt-2" ]
text-generation
false
mrm8488
null
mrm8488/GuaPeTe-2-tiny-finetuned-eubookshop
1
null
transformers
30,002
--- language: es tags: - spanish - gpt-2 widget: - text: "El objetivo de la Unión Europea es" --- # GuaPeTe-2-tiny fine-tuned on eubookshop dataset for CLM
mrm8488/GuaPeTe-2-tiny
1d9fd2d951421a4678cd68bc092635269464d1c0
2021-05-23T10:17:59.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "es", "transformers", "spanish", "gpt-2", "spanish gpt2" ]
text-generation
false
mrm8488
null
mrm8488/GuaPeTe-2-tiny
1
null
transformers
30,003
--- language: es tags: - spanish - gpt-2 - spanish gpt2 widget: - text: "Murcia es la huerta de Europa porque" --- # GuaPeTe-2-tiny: A proof of concept tiny GPT-2 like model trained on Spanish Wikipedia corpus
mrm8488/RuPERTa-base-finetuned-squadv2
8041b75737a070b9384f36417fdf88a5832ecd1b
2021-05-20T18:14:42.000Z
[ "pytorch", "jax", "roberta", "question-answering", "es", "dataset:squad_v2", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/RuPERTa-base-finetuned-squadv2
1
null
transformers
30,004
--- language: es datasets: - squad_v2 ---
mrm8488/byt5-small-finetuned-tweet-qa
ac4b0d1c8e1494253179c0103247aa1f251c9d4f
2021-06-23T12:37:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/byt5-small-finetuned-tweet-qa
1
null
transformers
30,005
Entry not found
mrm8488/codebert2codebert-finetuned-code-refinement
189002e253e1443b672286480129a44de9e6cbe0
2021-06-11T10:30:26.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/codebert2codebert-finetuned-code-refinement
1
null
transformers
30,006
Entry not found
mrm8488/distilroberta-finetuned-squadv1
c0846fed86ce606538e41bcfc7ff9e9175062519
2021-05-20T18:24:24.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/distilroberta-finetuned-squadv1
1
null
transformers
30,007
Entry not found
mrm8488/electra-small-finetuned-squadv1
ca872f41563e92907289f224a08d9a0b8cc46567
2020-12-11T21:53:59.000Z
[ "pytorch", "electra", "question-answering", "en", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/electra-small-finetuned-squadv1
1
null
transformers
30,008
--- language: en --- # Electra small ⚡ + SQuAD v1 ❓ [Electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) fine-tuned on [SQUAD v1.1 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type electra \ --model_name_or_path 'google/electra-small-discriminator' \ --do_eval \ --do_train \ --do_lower_case \ --train_file '/content/dataset/train-v1.1.json' \ --predict_file '/content/dataset/dev-v1.1.json' \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir '/content/output' \ --overwrite_output_dir \ --save_steps 1000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **77.70** | | **F1** | **85.74** | | **Size**| **50 MB** | Very good metrics for such a "small" model! ```json { 'exact': 77.70104068117313, 'f1': 85.73991234187997, 'total': 10570, 'HasAns_exact': 77.70104068117313, 'HasAns_f1': 85.73991234187997, 'HasAns_total': 10570, 'best_exact': 77.70104068117313, 'best_exact_thresh': 0.0, 'best_f1': 85.73991234187997, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/electra-small-finetuned-squadv1') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.7950334108113424, 'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/electrovid19-small
75f963c638ccbebcef60eb92b1caa7860052cff5
2020-06-01T07:50:12.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
mrm8488
null
mrm8488/electrovid19-small
1
null
transformers
30,009
Entry not found
mrm8488/prunebert-multi-uncased-finepruned-l0-reg-tydiqa-for-xqa
fb35737463863cf3b1d81122af062bfca37e5437
2020-06-13T10:57:01.000Z
[ "pytorch", "masked_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/prunebert-multi-uncased-finepruned-l0-reg-tydiqa-for-xqa
1
null
transformers
30,010
Entry not found
mrm8488/prunebert-multi-uncased-finepruned-topK-tydiqa-for-xqa
54b5eda03a9eebd16ccc2387f8930c64616653b1
2020-06-15T12:20:19.000Z
[ "pytorch", "masked_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/prunebert-multi-uncased-finepruned-topK-tydiqa-for-xqa
1
null
transformers
30,011
Entry not found
mrm8488/prunebert-multi-uncased-finepruned-tydiqa-for-xqa
6d888587a13f784c8e1fa5d33a2bc5cf9d85f8e0
2020-06-02T12:12:53.000Z
[ "pytorch", "masked_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/prunebert-multi-uncased-finepruned-tydiqa-for-xqa
1
null
transformers
30,012
Entry not found
mrm8488/t5-base-finetuned-quoref
c3aa691b2446e2f20b9b178370fbc297db1d9030
2020-11-04T19:59:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-quoref
1
null
transformers
30,013
Entry not found
mrm8488/t5-base-finetuned-race
4b90957d233e72f2d3dcb1f6f8bcaacbd62cea63
2020-11-07T02:18:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-race
1
null
transformers
30,014
Entry not found
mrm8488/t5-small-finetuned-squadv1
d83792bec03360d76a31099c6dbf5fdb91ae6b64
2020-12-11T21:56:34.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "arxiv:1910.10683", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-squadv1
1
null
transformers
30,015
--- language: en datasets: - squad --- # T5-small fine-tuned on SQuAD [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) [(small)](https://huggingface.co/t5-small) fine-tuned on [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓ Dataset ID: ```squad``` from [Huggingface/NLP](https://github.com/huggingface/nlp) | Dataset | Split | # samples | | -------- | ----- | --------- | | squad | train | 87599 | | squad | valid | 10570 | How to load it from [nlp](https://github.com/huggingface/nlp) ```python train_dataset = nlp.load_dataset('squad, split=nlp.Split.TRAIN) valid_dataset = nlp.load_dataset('squad', split=nlp.Split.VALIDATION) ``` Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/) ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28) ## Results 📝 | Metric | # Value | | ------ | --------- | | **EM** | **76.95** | | **F1** | **85.71** | ## Model in Action 🚀 ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-small-finetuned-squadv1") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-small-finetuned-squadv1") def get_answer(question, context): input_text = "question: %s context: %s </s>" % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask']) return tokenizer.decode(output[0]) context = "Manuel have created RuPERTa-base (a Spanish RoBERTa) with the support of HF-Transformers and Google" question = "Who has supported Manuel?" get_answer(question, context) # output: 'HF-Transformers and Google' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/t5-small-finetuned-translation-es-to-pt
04daf6a7619f78e4e3602bb209fba95390211a21
2020-08-04T16:39:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-translation-es-to-pt
1
null
transformers
30,016
Entry not found
mrp/bert-finetuned-squad
46ad6764ebb3d07ad79aa1dbb626126e856c81d0
2022-06-28T05:22:47.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
mrp
null
mrp/bert-finetuned-squad
1
null
transformers
30,017
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Loss type: loss value: 1.073493242263794 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mtr0930/i-manual_integrated_tokenizer
bb5bb339c2a0d130d01003847129f8ef2319c5a1
2021-10-14T03:54:03.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mtr0930
null
mtr0930/i-manual_integrated_tokenizer
1
null
transformers
30,018
Entry not found
mujerry/bert-base-uncased-finetuned-QnA-v1
2fb2ee12d7a47e688a4b1e575619aa1c224b4a2f
2021-10-26T09:19:02.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
mujerry
null
mujerry/bert-base-uncased-finetuned-QnA-v1
1
null
transformers
30,019
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-QnA-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-QnA-v1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 39 | 3.3668 | | No log | 2.0 | 78 | 3.2134 | | No log | 3.0 | 117 | 3.1685 | | No log | 4.0 | 156 | 3.1042 | | No log | 5.0 | 195 | 3.1136 | | No log | 6.0 | 234 | 2.9051 | | No log | 7.0 | 273 | 2.9077 | | No log | 8.0 | 312 | 2.9774 | | No log | 9.0 | 351 | 2.9321 | | No log | 10.0 | 390 | 2.9501 | | No log | 11.0 | 429 | 2.8544 | | No log | 12.0 | 468 | 2.8761 | | 3.0255 | 13.0 | 507 | 2.8152 | | 3.0255 | 14.0 | 546 | 2.8046 | | 3.0255 | 15.0 | 585 | 2.6979 | | 3.0255 | 16.0 | 624 | 2.6379 | | 3.0255 | 17.0 | 663 | 2.7091 | | 3.0255 | 18.0 | 702 | 2.6914 | | 3.0255 | 19.0 | 741 | 2.7403 | | 3.0255 | 20.0 | 780 | 2.7479 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
mussoguy/han-kogpt
a697d5014fcc406183f0aee4f516e1233822b7e5
2021-12-28T13:37:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
mussoguy
null
mussoguy/han-kogpt
1
null
transformers
30,020
Entry not found
naleraphael/rasr_base_zhtw
876f9a61f0f8e2c5b524ec98526903c36d14ffaa
2022-02-01T23:40:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
naleraphael
null
naleraphael/rasr_base_zhtw
1
null
transformers
30,021
Entry not found
naleraphael/rasr_sample
9b22df545f73dfd07db15719c7d75e5044f0280c
2022-02-01T18:18:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sv-SE", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
naleraphael
null
naleraphael/rasr_sample
1
null
transformers
30,022
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: rasr_sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rasr_sample This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3147 - Wer: 0.2676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3332 | 1.45 | 500 | 3.3031 | 1.0 | | 2.9272 | 2.91 | 1000 | 2.9353 | 0.9970 | | 2.0736 | 4.36 | 1500 | 1.1565 | 0.8714 | | 1.7339 | 5.81 | 2000 | 0.7156 | 0.6688 | | 1.5989 | 7.27 | 2500 | 0.5791 | 0.5519 | | 1.4916 | 8.72 | 3000 | 0.5038 | 0.5169 | | 1.4562 | 10.17 | 3500 | 0.4861 | 0.4805 | | 1.3893 | 11.63 | 4000 | 0.4584 | 0.4761 | | 1.3797 | 13.08 | 4500 | 0.4298 | 0.4686 | | 1.3508 | 14.53 | 5000 | 0.4138 | 0.3744 | | 1.3165 | 15.99 | 5500 | 0.4015 | 0.3578 | | 1.281 | 17.44 | 6000 | 0.3883 | 0.3472 | | 1.2682 | 18.89 | 6500 | 0.3904 | 0.3434 | | 1.2477 | 20.35 | 7000 | 0.3726 | 0.3321 | | 1.2364 | 21.8 | 7500 | 0.3685 | 0.3281 | | 1.2041 | 23.26 | 8000 | 0.3597 | 0.3194 | | 1.1901 | 24.71 | 8500 | 0.3542 | 0.3203 | | 1.1903 | 26.16 | 9000 | 0.3500 | 0.3138 | | 1.1677 | 27.61 | 9500 | 0.3458 | 0.3067 | | 1.1718 | 29.07 | 10000 | 0.3595 | 0.3112 | | 1.1562 | 30.52 | 10500 | 0.3433 | 0.3022 | | 1.1392 | 31.97 | 11000 | 0.3440 | 0.2936 | | 1.1258 | 33.43 | 11500 | 0.3396 | 0.2950 | | 1.1067 | 34.88 | 12000 | 0.3379 | 0.2939 | | 1.0953 | 36.34 | 12500 | 0.3370 | 0.2868 | | 1.0835 | 37.79 | 13000 | 0.3317 | 0.2860 | | 1.0772 | 39.24 | 13500 | 0.3302 | 0.2854 | | 1.0853 | 40.7 | 14000 | 0.3265 | 0.2783 | | 1.0689 | 42.15 | 14500 | 0.3306 | 0.2770 | | 1.0394 | 43.6 | 15000 | 0.3233 | 0.2757 | | 1.0581 | 45.06 | 15500 | 0.3199 | 0.2713 | | 1.0362 | 46.51 | 16000 | 0.3154 | 0.2683 | | 1.0406 | 47.96 | 16500 | 0.3176 | 0.2688 | | 1.0082 | 49.42 | 17000 | 0.3149 | 0.2679 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
napoler/bart-chinese-4-768
000e0eaed5b6692d0b3feb1deee8aa0ac29ae2a6
2021-11-08T13:57:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
napoler
null
napoler/bart-chinese-4-768
1
null
transformers
30,023
Entry not found
narabzad/passage_reranker_large_bert
b3830411aa535ef491d1c04072ac4b639523c1a7
2020-08-16T23:35:58.000Z
[ "pytorch", "transformers" ]
null
false
narabzad
null
narabzad/passage_reranker_large_bert
1
null
transformers
30,024
Entry not found
nateraw/resnext101_32x8d
6b0545618826c87ae25f3c004dbdeb5f849fa951
2021-04-13T10:12:21.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
nateraw
null
nateraw/resnext101_32x8d
1
null
transformers
30,025
Entry not found
nateraw/timm-resnet50
c2acdcaf324d2b4766ef3b0d7d6a359882d060ba
2021-09-01T05:24:59.000Z
[ "pytorch", "transformers" ]
null
false
nateraw
null
nateraw/timm-resnet50
1
null
transformers
30,026
Entry not found
nates-test-org/cait_m48_448
dc1644707428a3758321be7fb3747da0c5bdd3df
2021-10-29T04:04:25.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_m48_448
1
null
timm
30,027
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_m48_448
nates-test-org/cait_xxs24_224
b8406e79b6dec6b85536fe5c66f8110deb597187
2021-10-29T04:32:59.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_xxs24_224
1
null
timm
30,028
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_xxs24_224
nates-test-org/cait_xxs36_384
9a94261b58051babc8cb7bb24ecece7095817a3f
2021-10-29T04:35:50.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_xxs36_384
1
null
timm
30,029
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_xxs36_384
natsuo/ja_rome
e6189c9d79b21da4f64259bfb7db244f0176d9e2
2021-07-08T08:14:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
natsuo
null
natsuo/ja_rome
1
null
transformers
30,030
Entry not found
navid-rekabsaz/advbert_ranker_l2
d1f8a569e86015143901aba880d8ca190f61c0da
2021-06-04T17:00:02.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
navid-rekabsaz
null
navid-rekabsaz/advbert_ranker_l2
1
null
transformers
30,031
## Welcome
ncduy/bert-base-cased-wikitext2
e9bd1d739bdc09a4a765b44e4388703ff4af5838
2021-08-06T15:08:09.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
ncduy
null
ncduy/bert-base-cased-wikitext2
1
null
transformers
30,032
--- tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-cased-wikitext2 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0916 | 1.0 | 2346 | 7.0492 | | 6.9074 | 2.0 | 4692 | 6.8727 | | 6.8588 | 3.0 | 7038 | 6.8914 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ncduy/distilbert-base-uncased-finetuned-imdb
1f58040ec3e7220172a19f449f53650e2ae72d0c
2021-12-06T07:11:03.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ncduy
null
ncduy/distilbert-base-uncased-finetuned-imdb
1
null
transformers
30,033
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4883 | | 2.572 | 2.0 | 314 | 2.4240 | | 2.5377 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ncduy/marian-finetuned-kde4-en-to-fr
626712bbd3baee1acf094c15c1c016308da4c0fa
2021-12-06T08:46:30.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
ncduy
null
ncduy/marian-finetuned-kde4-en-to-fr
1
null
transformers
30,034
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.8691179414982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Bleu: 52.8691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0a0+0aef44c - Datasets 1.16.1 - Tokenizers 0.10.3
ncduy/opus-mt-en-ro-finetuned-en-to-ro
262baea1b5bb423ef77662a96ec8e65b18aa69e8
2021-08-06T15:55:10.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
false
ncduy
null
ncduy/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
30,035
--- tags: - generated_from_trainer datasets: - wmt16 model_index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 382 | 1.4067 | 27.6209 | 33.5648 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ncduy/opus-mt-en-vi-own-finetuned-en-to-vi
bcaae13a7d65c06909fc4eb7e40828b57c779472
2022-01-11T09:21:10.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ncduy
null
ncduy/opus-mt-en-vi-own-finetuned-en-to-vi
1
null
transformers
30,036
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-vi-own-finetuned-en-to-vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-vi-own-finetuned-en-to-vi This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.4416 - Bleu: 2.1189 - Gen Len: 25.153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 6.2513 | 1.0 | 1563 | 6.0147 | 0.7038 | 29.165 | | 5.7184 | 2.0 | 3126 | 5.5631 | 1.9803 | 23.915 | | 5.5248 | 3.0 | 4689 | 5.4416 | 2.1189 | 25.153 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ncduy/xlm-roberta-base-squad2-distilled-finetuned-chaii
0aee8a23665702c0c1b3e47f640c4398764dd833
2021-12-09T14:41:35.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ncduy
null
ncduy/xlm-roberta-base-squad2-distilled-finetuned-chaii
1
null
transformers
30,037
Entry not found
ncoop57/codeformer-code-java
f7e58829e2a2781a752eeb0d4f6c62bbde11b2d5
2021-06-07T02:35:04.000Z
[ "pytorch", "transformers" ]
null
false
ncoop57
null
ncoop57/codeformer-code-java
1
null
transformers
30,038
Entry not found
nehamj/distilbert-base-uncased-finetuned-squad
3f7a3195c8f36ad12b2b52544cd218e5a84f1b95
2021-12-26T04:39:21.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
nehamj
null
nehamj/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,039
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
nepp1d0/Bert-pretrained-smilesBindingDB
c9dc2af167847af9f3510e018e512186e625248b
2022-01-11T13:23:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nepp1d0
null
nepp1d0/Bert-pretrained-smilesBindingDB
1
null
transformers
30,040
Entry not found
newsha/PQuAD
b3826130c9ddb743ac7599f6626f1eae4e258a59
2022-01-06T19:04:26.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
newsha
null
newsha/PQuAD
1
null
transformers
30,041
Entry not found
newsha/PQuAD_2
8e7121134d147bdc1d95730c7bc323838206323f
2022-01-06T14:06:13.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
newsha
null
newsha/PQuAD_2
1
null
transformers
30,042
Entry not found
nfliu/roberta_s2orc_bpe_47k
5fcad82761b089536b711bcded6b3f303923ba81
2021-12-08T22:11:18.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nfliu
null
nfliu/roberta_s2orc_bpe_47k
1
null
transformers
30,043
Entry not found
nhrony/bert-final
faa497c7f5bb600542cd4904cec7c3146845b576
2022-01-16T19:05:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nhrony
null
nhrony/bert-final
1
null
transformers
30,044
Entry not found
nickmuchi/kde4-marian-finetuned-en-fr
4415c4bb47e882dc1258721e8d203fd0ee180854
2022-01-08T03:34:47.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
nickmuchi
null
nickmuchi/kde4-marian-finetuned-en-fr
1
null
transformers
30,045
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: kde4-marian-finetuned-en-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.83986563041003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kde4-marian-finetuned-en-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8555 - Bleu: 52.8399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
niclas/model_sv_working
00b3e0a6089db717979e2ee744d46726bcdd76c5
2021-12-23T10:35:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
niclas
null
niclas/model_sv_working
1
null
transformers
30,046
Entry not found
nielsr/deformable-detr-single-scale-dc5
207ff2205bb988280049aec50ada3be80d38f7d2
2022-02-01T13:24:48.000Z
[ "pytorch", "deformable_detr", "transformers" ]
null
false
nielsr
null
nielsr/deformable-detr-single-scale-dc5
1
null
transformers
30,047
Entry not found
nielsr/dino_vitb8
3913fd2db1c2cba8a3fddaa5092e399fc4aa9c59
2021-05-03T08:00:43.000Z
[ "pytorch", "vit", "feature-extraction", "transformers" ]
feature-extraction
false
nielsr
null
nielsr/dino_vitb8
1
null
transformers
30,048
Entry not found
nielsr/enformer-preview
13c7fcfb765f220309331f4d549f823fe61a04bf
2022-02-23T22:03:51.000Z
[ "pytorch", "enformer", "transformers" ]
null
false
nielsr
null
nielsr/enformer-preview
1
null
transformers
30,049
Entry not found
nielsr/luke-large
6c3b1774a38ea41dc3f260d26d6c9f156384613c
2021-02-18T15:04:30.000Z
[ "pytorch", "luke", "transformers" ]
null
false
nielsr
null
nielsr/luke-large
1
null
transformers
30,050
Entry not found
nielsr/tapas-base
1e052baf074d968576839c6b61959d8663c6b87e
2020-12-11T11:12:17.000Z
[ "pytorch", "tapas", "feature-extraction", "en", "arxiv:2004.02349", "arxiv:2010.00571", "transformers", "sequence-classification", "license:apache-2.0" ]
feature-extraction
false
nielsr
null
nielsr/tapas-base
1
null
transformers
30,051
--- language: en tags: - tapas - sequence-classification license: apache-2.0 --- # TAPAS base model This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_inter_masklm_base_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training. It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `revision="v1"`, which corresponds to `tapas_inter_masklm_base` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding one or more classification heads on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on a downstream task. ## Intended uses & limitations You can use the raw model for getting hidden representatons about table-question pairs, but it's mostly intended to be fine-tuned on a downstream task such as question answering or sequence classification. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Pre-training The model was pre-trained on 32 Cloud TPU v3 cores for 1,000,000 steps with maximum sequence length 512 and batch size of 512. In this setup, pre-training on MLM only takes around 3 days. Aditionally, the model has been further pre-trained on a second task (table entailment). See the original TAPAS [paper](https://www.aclweb.org/anthology/2020.acl-main.398/) and the [follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27/) for more details. The optimizer used is Adam with a learning rate of 5e-5, and a warmup ratio of 0.01. ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
nielsr/tapex-large-finetuned-sqa
f3415a4d06011a0c17bdf859dbf7f43c841cec17
2022-01-13T14:41:16.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:msr_sqa", "arxiv:2107.07653", "transformers", "tapex", "table-question-answering", "license:apache-2.0", "autotrain_compatible" ]
table-question-answering
false
nielsr
null
nielsr/tapex-large-finetuned-sqa
1
null
transformers
30,052
--- language: en tags: - tapex - table-question-answering license: apache-2.0 datasets: - msr_sqa inference: false --- TAPEX-large model fine-tuned on SQA. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining). To load it and run inference, you can do the following: ``` from transformers import BartTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-sqa") model = BartForConditionalGeneration.from_pretrained("nielsr/tapex-large-finetuned-sqa") # create table data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) # turn into dict table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]} # turn into format TAPEX expects # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py linearizer = IndexedRowTableLinearize() linear_table = linearizer.process_table(table_dict) # add question question = "how many movies does George Clooney have?" joint_input = question + " " + linear_table # encode encoding = tokenizer(joint_input, return_tensors="pt") # forward pass outputs = model.generate(**encoding) # decode tokenizer.batch_decode(outputs, skip_special_tokens=True) ```
nikhil6041/wav2vec2-large-xlsr-hindi-demo-colab
96a53effc9af4522191408fa34d7f2a2a200feba
2021-11-04T09:21:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nikhil6041
null
nikhil6041/wav2vec2-large-xlsr-hindi-demo-colab
1
null
transformers
30,053
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hindi-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hindi-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
nikhil6041/wav2vec2-large-xlsr-tamil-commonvoice
b692d6d680b623d8a2efa828f1acd110412d1251
2021-11-07T11:46:12.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nikhil6041
null
nikhil6041/wav2vec2-large-xlsr-tamil-commonvoice
1
null
transformers
30,054
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-tamil-commonvoice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-tamil-commonvoice This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6145 - Wer: 0.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.0478 | 1.05 | 100 | 3.3867 | 1.0 | | 3.2522 | 2.11 | 200 | 3.2770 | 1.0 | | 3.1689 | 3.16 | 300 | 3.1135 | 1.0039 | | 2.9278 | 4.21 | 400 | 2.0485 | 1.3109 | | 1.3592 | 5.26 | 500 | 0.8044 | 1.0988 | | 0.7472 | 6.32 | 600 | 0.6571 | 0.9474 | | 0.5842 | 7.37 | 700 | 0.6079 | 0.9477 | | 0.4831 | 8.42 | 800 | 0.6083 | 0.9491 | | 0.4259 | 9.47 | 900 | 0.5916 | 0.8973 | | 0.3817 | 10.53 | 1000 | 0.6070 | 0.9147 | | 0.338 | 11.58 | 1100 | 0.5873 | 0.8617 | | 0.3123 | 12.63 | 1200 | 0.5983 | 0.8844 | | 0.287 | 13.68 | 1300 | 0.6146 | 0.8988 | | 0.2706 | 14.74 | 1400 | 0.6068 | 0.8754 | | 0.2505 | 15.79 | 1500 | 0.5996 | 0.8638 | | 0.2412 | 16.84 | 1600 | 0.6106 | 0.8481 | | 0.2176 | 17.89 | 1700 | 0.6152 | 0.8520 | | 0.2255 | 18.95 | 1800 | 0.6150 | 0.8540 | | 0.216 | 20.0 | 1900 | 0.6145 | 0.8512 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
nikhilnagaraj/german_gpt_small
e005a2ee4acea84aeb4ecee507b2db88b1998eaa
2021-05-23T10:49:10.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
nikhilnagaraj
null
nikhilnagaraj/german_gpt_small
1
null
transformers
30,055
Entry not found
nikitam/mbert-resp-en-de
2221017bec6937a49fa07234c60a1e1cfdd4329f
2021-10-25T20:28:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-resp-en-de
1
null
transformers
30,056
Entry not found
nikitam/mbert-resp-en-zh
c5d89c2ffb6e79733f795f8b4040e77e7e34e50d
2021-10-25T20:06:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-resp-en-zh
1
null
transformers
30,057
Entry not found
nikitam/mbert-tlm-chat-en-de
ccec8d2117636bb72917c23c219731f90ec5d6ba
2021-10-25T20:32:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-tlm-chat-en-de
1
null
transformers
30,058
Entry not found
nikitam/mbert-tlm-chat-en-it
572813d999ca2ceb4cb2c5332499d8a4fd4a34c8
2021-10-25T20:51:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-tlm-chat-en-it
1
null
transformers
30,059
Entry not found
nikitam/mbert-tlm-sent-en-de
95001bae2b795f5406bfc21ec7e612d5105e2e75
2021-11-13T15:14:26.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-tlm-sent-en-de
1
null
transformers
30,060
Entry not found
nikitam/mbert-tlm-sent-en-it
95451f272eb8b65677f094bbca616e48d80d94df
2021-10-25T20:51:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-tlm-sent-en-it
1
null
transformers
30,061
Entry not found
nikitam/mbert-tlm-sent-en-zh
1a07c3514258ed13deaf90b67f675621c94e6b0b
2021-10-25T20:12:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-tlm-sent-en-zh
1
null
transformers
30,062
Entry not found
nikitam/mbert-xdm-en-de
782b02ea36645ef3443751afd633cd7ee34d77f2
2021-10-25T20:12:19.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nikitam
null
nikitam/mbert-xdm-en-de
1
null
transformers
30,063
Entry not found
nithinholla/wav2vec2-large-xlsr-53-dutch
ab884eedad4f5a4dae89f0c32a36112c3641be6b
2021-03-28T10:48:00.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nithinholla
null
nithinholla/wav2vec2-large-xlsr-53-dutch
1
null
transformers
30,064
--- language: nl datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Dutch XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice nl type: common_voice args: nl metrics: - name: Test WER type: wer value: 21.59 --- # Wav2Vec2-Large-XLSR-53-Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "nl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("nithinholla/wav2vec2-large-xlsr-53-dutch") model = Wav2Vec2ForCTC.from_pretrained("nithinholla/wav2vec2-large-xlsr-53-dutch") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dutch test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "nl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("nithinholla/wav2vec2-large-xlsr-53-dutch") model = Wav2Vec2ForCTC.from_pretrained("nithinholla/wav2vec2-large-xlsr-53-dutch") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\'\�\(\)\&\–\—\=\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("´", "'").replace("’", "'") speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 21.59 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://github.com/Nithin-Holla/wav2vec2-sprint/blob/main/train_nl.sh).
nkul/dbert-rda
34d7525e9d12c72296bf227092a1ca3c16935427
2021-12-22T21:29:29.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nkul
null
nkul/dbert-rda
1
null
transformers
30,065
Entry not found
nlokam/Digibot
7e530e1b9a3bbe5f54ce6a81e481956d4b446e33
2021-10-26T21:12:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nlokam
null
nlokam/Digibot
1
null
transformers
30,066
--- tags: - conversational --- # Digimon DialoGPT Model
nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2
6a11b3a5e6d231ad35e9568b29ac6a6a034553d5
2021-12-29T04:54:26.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "transformers", "generated_from_keras_callback", "dpr", "license:apache-2.0", "model-index" ]
feature-extraction
false
nlpconnect
null
nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2
1
null
transformers
30,067
--- tags: - generated_from_keras_callback - dpr license: apache-2.0 model-index: - name: dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2 This model(google/bert_uncased_L-2_H-128_A-2) was trained from scratch on training data: data.retriever.nq-adv-hn-train(facebookresearch/DPR). It achieves the following results on the evaluation set: ## Evaluation data evaluation dataset: facebook-dpr-dev-dataset from official DPR github |model_name|data_name|num of queries|num of passages|R@10|R@20|R@50|R@100|R@100| |---|---|---|---|---|---|---|---|---| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our)|nq-dev dataset|6445|199795|60.53%|68.28%|76.07%|80.98%|91.45%| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our)|nq-dev dataset|6445|199795|65.43%|71.99%|79.03%|83.24%|92.11%| |*facebook/dpr-ctx_encoder-single-nq-base(hf/fb)|nq-dev dataset|6445|199795|40.94%|49.27%|59.05%|66.00%|82.00%| evaluation dataset: UKPLab/beir test data but we have used first 2lac passage only. |model_name|data_name|num of queries|num of passages|R@10|R@20|R@50|R@100|R@100| |---|---|---|---|---|---|---|---|---| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our)|nq-test dataset|3452|200001|49.68%|59.06%|69.40%|75.75%|89.28%| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our)|nq-test dataset|3452|200001|51.62%|61.09%|70.10%|76.07%|88.70%| |*facebook/dpr-ctx_encoder-single-nq-base(hf/fb)|nq-test dataset|3452|200001|32.93%|43.74%|56.95%|66.30%|83.92%| Note: * means we have evaluated on same eval dataset. ### Usage (HuggingFace Transformers) ```python passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") def get_title_text_combined(passage_dicts): res = [] for p in passage_dicts: res.append(tuple((p['title'], p['text']))) return res processed_passages = get_title_text_combined(passage_dicts) def extracted_passage_embeddings(processed_passages, model_config): passage_inputs = tokenizer.batch_encode_plus( processed_passages, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.passage_max_seq_len, return_token_type_ids=True ) passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), np.array(passage_inputs['token_type_ids'])], batch_size=512, verbose=1) return passage_embeddings passage_embeddings = extracted_passage_embeddings(processed_passages, model_config) def extracted_query_embeddings(queries, model_config): query_inputs = tokenizer.batch_encode_plus( queries, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.query_max_seq_len, return_token_type_ids=True ) query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), np.array(query_inputs['attention_mask']), np.array(query_inputs['token_type_ids'])], batch_size=512, verbose=1) return query_embeddings query_embeddings = extracted_query_embeddings(queries, model_config) ``` ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Tokenizers 0.10.3
nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2
c8fc85066f32803c97d271050b315cffbe8990db
2021-12-29T04:54:34.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "transformers", "generated_from_keras_callback", "dpr", "license:apache-2.0", "model-index" ]
feature-extraction
false
nlpconnect
null
nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2
1
null
transformers
30,068
--- tags: - generated_from_keras_callback - dpr license: apache-2.0 model-index: - name: dpr-question_encoder_bert_uncased_L-2_H-128_A-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dpr-question_encoder_bert_uncased_L-2_H-128_A-2 This model(google/bert_uncased_L-2_H-128_A-2) was trained from scratch on training data: data.retriever.nq-adv-hn-train(facebookresearch/DPR). It achieves the following results on the evaluation set: ## Evaluation data evaluation dataset: facebook-dpr-dev-dataset from official DPR github |model_name|data_name|num of queries|num of passages|R@10|R@20|R@50|R@100|R@100| |---|---|---|---|---|---|---|---|---| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our)|nq-dev dataset|6445|199795|60.53%|68.28%|76.07%|80.98%|91.45%| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our)|nq-dev dataset|6445|199795|65.43%|71.99%|79.03%|83.24%|92.11%| |*facebook/dpr-ctx_encoder-single-nq-base(hf/fb)|nq-dev dataset|6445|199795|40.94%|49.27%|59.05%|66.00%|82.00%| evaluation dataset: UKPLab/beir test data but we have used first 2lac passage only. |model_name|data_name|num of queries|num of passages|R@10|R@20|R@50|R@100|R@100| |---|---|---|---|---|---|---|---|---| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our)|nq-test dataset|3452|200001|49.68%|59.06%|69.40%|75.75%|89.28%| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our)|nq-test dataset|3452|200001|51.62%|61.09%|70.10%|76.07%|88.70%| |*facebook/dpr-ctx_encoder-single-nq-base(hf/fb)|nq-test dataset|3452|200001|32.93%|43.74%|56.95%|66.30%|83.92%| Note: * means we have evaluated on same eval dataset. ### Usage (HuggingFace Transformers) ```python passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") def get_title_text_combined(passage_dicts): res = [] for p in passage_dicts: res.append(tuple((p['title'], p['text']))) return res processed_passages = get_title_text_combined(passage_dicts) def extracted_passage_embeddings(processed_passages, model_config): passage_inputs = tokenizer.batch_encode_plus( processed_passages, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.passage_max_seq_len, return_token_type_ids=True ) passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), np.array(passage_inputs['token_type_ids'])], batch_size=512, verbose=1) return passage_embeddings passage_embeddings = extracted_passage_embeddings(processed_passages, model_config) def extracted_query_embeddings(queries, model_config): query_inputs = tokenizer.batch_encode_plus( queries, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.query_max_seq_len, return_token_type_ids=True ) query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), np.array(query_inputs['attention_mask']), np.array(query_inputs['token_type_ids'])], batch_size=512, verbose=1) return query_embeddings query_embeddings = extracted_query_embeddings(queries, model_config) ``` ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Tokenizers 0.10.3
nlplab/Verdict_Recognizer_Final
563dfa45e5f00382d51e5af3f75b544d7ad35e79
2021-11-25T06:11:16.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlplab
null
nlplab/Verdict_Recognizer_Final
1
null
transformers
30,069
Entry not found
nlpunibo/bert
f8e21745a1c74c3c301a28dfca07465f9ca24b43
2021-05-20T02:00:27.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/bert
1
null
transformers
30,070
Entry not found
nlpunibo/classifier
6e6f32f71ec16bd3ce46a3eb2128abc052102ef7
2021-03-19T14:24:16.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
nlpunibo
null
nlpunibo/classifier
1
null
transformers
30,071
Entry not found
nlpunibo/distilbert_base_config3
91dcd04c3d9617e3f797d808546dd29753956dcf
2021-02-19T14:40:29.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/distilbert_base_config3
1
null
transformers
30,072
Entry not found
nlpunibo/distilbert_classifier
daae4824f64c9ade883ff53b49ff570b65c29d37
2021-02-20T09:01:51.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
nlpunibo
null
nlpunibo/distilbert_classifier
1
null
transformers
30,073
Entry not found
nlpunibo/distilbert_config2
d7c72dbe64008a09d6f7cad1b02abe75111724b5
2021-02-19T14:49:49.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/distilbert_config2
1
null
transformers
30,074
Entry not found
nlpunibo/distilbert_config3
4e6a97d7a48aa68a618659f4d3e2123926d1375b
2021-02-18T08:52:42.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/distilbert_config3
1
null
transformers
30,075
Entry not found
nntadotzip/bert-base-cased-IUChatbot-ontologyDts
0bcf7cee970718f598cabd4535088fe203bdef3f
2022-01-20T16:21:21.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
nntadotzip
null
nntadotzip/bert-base-cased-IUChatbot-ontologyDts
1
null
transformers
30,076
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-IUChatbot-ontologyDts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-IUChatbot-ontologyDts This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 382 | 0.2686 | | 0.3946 | 2.0 | 764 | 0.2535 | | 0.2577 | 3.0 | 1146 | 0.2446 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
noelmathewisaac/inspirational-quotes-distilgpt2
89c5559cab2b7644617c3e9e50803bbf215504bc
2021-06-19T11:01:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
noelmathewisaac
null
noelmathewisaac/inspirational-quotes-distilgpt2
1
1
transformers
30,077
## About `Distilgpt2` model finetuned on a dataset of inspirational/motivational quotes taken from the [Quotes-500K](https://github.com/ShivaliGoel/Quotes-500K) dataset. The model can generate inspirational quotes, many of which sound quite realistic. ## Code for Training The code for fine-tuning the model can be found in this repo: https://github.com/Quotify-Bot/model-training. ## Training Details The model was fine-tuned for **50 epochs** on Google Colab's GPU using about **100,000 quotes** from the original dataset. ## Some Interesting Quotes **Prompt**: Friendship is like > Friendship is like a flower. when it blooms, it beautifies this world with its fragrance. **Prompt**: Life is like > Life is like travelling through time so stop being afraid of taking a chance and start appreciating where you are in life. **Prompt**: Motivation > Motivation will drive you to action, which in turn attracts inspiration from beyond. **Prompt**: In the end > In the end, it is necessary to discover your inner beauty and truth.
norie4/DialoGPT-small-memoji
9d78cb37f4d9481005aa51ee2132aabc5a4fd947
2022-02-01T02:58:57.000Z
[ "pytorch", "conversational" ]
conversational
false
norie4
null
norie4/DialoGPT-small-memoji
1
null
null
30,078
--- tags: - conversational --- # mremoji DialoGPT Model
nouamanetazi/cover-letter-distilgpt2
ec600bb35798a0d5d1453d0aaf2502d3d91df850
2021-11-24T01:06:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nouamanetazi
null
nouamanetazi/cover-letter-distilgpt2
1
1
transformers
30,079
Entry not found
nouamanetazi/cover-letter-t5-small
9a17fd2a2b9e7bea479feff2db3ed15109d4db63
2021-11-27T13:21:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
nouamanetazi
null
nouamanetazi/cover-letter-t5-small
1
1
transformers
30,080
Entry not found
novinsh/xlm-roberta-large-toxicomments-12k
4c171c95da874aae552e5eb1113165f2399a8c44
2020-05-26T15:25:05.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
novinsh
null
novinsh/xlm-roberta-large-toxicomments-12k
1
null
transformers
30,081
Entry not found
nsa-thatchai/test
84d89729a932d5da98dee8dab12e55a4e52c8a9b
2021-05-24T12:20:01.000Z
[ "pytorch", "text-generation", "transformers" ]
text-generation
false
nsa-thatchai
null
nsa-thatchai/test
1
null
transformers
30,082
Entry not found
nthoangcute/vibert-base-cased
398722e4b4136824444ab003ae4909fb73618452
2021-05-20T02:05:12.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
nthoangcute
null
nthoangcute/vibert-base-cased
1
null
transformers
30,083
Entry not found
nvshubhsharma/wav2vec2-large-xlsr-hindi-colab
3517a17739045cee3e85d22bccb4b8acc885fce5
2021-11-06T14:48:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nvshubhsharma
null
nvshubhsharma/wav2vec2-large-xlsr-hindi-colab
1
null
transformers
30,084
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
nwl/DialoGPT-small-enhypen
6555bc28f28b7cd4da1a59c28690edd69c305ac8
2021-12-31T13:38:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nwl
null
nwl/DialoGPT-small-enhypen
1
null
transformers
30,085
--- tags: - conversational ---
oakkas/Dialge-small-harrypotter-oguz
4e305c2ba954ec15274b41899029f238e6ecaf9b
2021-08-26T19:20:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
oakkas
null
oakkas/Dialge-small-harrypotter-oguz
1
null
transformers
30,086
--- tags: - conversational --- # Harry Potter Dialogue GPT Oguz
obiohagwu/Dialogpt-small-rick
08c918a7675f97911b7a7dcdd3b7be305ad41110
2021-07-12T20:55:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
obiohagwu
null
obiohagwu/Dialogpt-small-rick
1
null
transformers
30,087
Entry not found
obiohagwu/Dialogpt-small-rick01
7d0ba716127343df6379f01baa2514b3ac7d8acf
2021-07-13T14:47:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
obiohagwu
null
obiohagwu/Dialogpt-small-rick01
1
null
transformers
30,088
Entry not found
obss/mt5-base-3task-highlight-combined3
3a56e222938da89efd7e9485456504f5d5b51e51
2021-12-03T23:04:33.000Z
[ "pytorch", "mt5", "text2text-generation", "tr", "dataset:tquad1", "dataset:tquad2", "dataset:xquad", "arxiv:2111.06476", "transformers", "question-generation", "answer-extraction", "question-answering", "text-generation", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
obss
null
obss/mt5-base-3task-highlight-combined3
1
null
transformers
30,089
--- language: tr datasets: - tquad1 - tquad2 - xquad tags: - text2text-generation - question-generation - answer-extraction - question-answering - text-generation pipeline_tag: text2text-generation widget: - text: "generate question: Legendary Entertainment, 2016 yılında bilimkurgu romanı Dune'un <hl> film ve TV haklarını <hl> satın aldı. Geliştirme kısa bir süre sonra başladı. Villeneuve projeye olan ilgisini dile getirdi ve resmi olarak yönetmen olarak imza attı. Roth ve Spaihts ile birlikte çalışarak senaryoyu iki bölüme ayırdı ve 1965 romanının 21. yüzyıla güncellenmiş bir uyarlamasını ekledi." example_title: "Question Generation (Movie)" - text: "generate question: Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile <hl> Türkçe Soru Üretme / Soru Cevaplama <hl> konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir." example_title: "Question Generation (Open Domain)" - text: "generate question: Cenevizlilerin önemli üslerinden <hl> Amasra’yı <hl> aldı. 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi." example_title: "Question Generation (History)" - text: "extract answers: Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl> 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi. <hl>" example_title: "Answer Extraction (History)" - text: "question: Bu model ne ise yarar? context: Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir." example_title: "Question Answering (Open Domain)" license: cc-by-4.0 --- # mt5-base for Turkish Question Generation Automated question generation and question answering using text-to-text transformers by OBSS AI. ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-base-3task-highlight-combined3') ``` ## Citation 📜 ``` @article{akyon2021automated, title={Automated question generation and question answering from Turkish texts using text-to-text transformers}, author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin}, journal={arXiv preprint arXiv:2111.06476}, year={2021} } ``` ## Overview ✔️ **Language model:** mt5-base **Language:** Turkish **Downstream-task:** Extractive QA/QG, Answer Extraction **Training data:** TQuADv2-train, TQuADv2-val, XQuAD.tr **Code:** https://github.com/obss/turkish-question-generation **Paper:** https://arxiv.org/abs/2111.06476 ## Hyperparameters ``` batch_size = 256 n_epochs = 15 base_LM_model = "mt5-base" max_source_length = 512 max_target_length = 64 learning_rate = 1.0e-3 task_lisst = ["qa", "qg", "ans_ext"] qg_format = "highlight" ``` ## Performance Refer to [paper](https://arxiv.org/abs/2111.06476). ## Usage 🔥 ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-base-3task-highlight-combined3') context = """ Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır. Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir. """ # a) Fully Automated Question Generation generation_api(task='question-generation', context=context) # b) Question Answering question = "Bu model ne işe yarar?" generation_api(task='question-answering', context=context, question=question) # b) Answer Extraction generation_api(task='answer-extraction', context=context) ```
oda/music5
a7a146d12be636a844669ae324e0f6d8725fe3ac
2020-02-14T04:01:03.000Z
[ "pytorch", "transformers" ]
null
false
oda
null
oda/music5
1
null
transformers
30,090
Entry not found
odinmay/zackbotai
4bc1965f8f38fac6ee364c337514d5841950e8c7
2021-06-03T21:41:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
odinmay
null
odinmay/zackbotai
1
null
transformers
30,091
Entry not found
ojasaar/distilbert-sentence-msmarco-en-et
eae94400c0c0ff3c398de80d41ef72500026ad8a
2020-11-05T15:09:04.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
ojasaar
null
ojasaar/distilbert-sentence-msmarco-en-et
1
null
transformers
30,092
Entry not found
omkar1309/RickBot
ff0eaa4641134e3e134fdd45891b7b428b761142
2021-06-07T13:09:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
omkar1309
null
omkar1309/RickBot
1
null
transformers
30,093
--- tags: - conversational --- #My Awesome model
oo/distilbert-base-uncased-finetuned-squad
a4e16c7c9b48aab3e83a4ac001dbc8cd00d68c8a
2021-12-08T18:56:24.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
oo
null
oo/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,094
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
oododo/DialoGPT-small-elon
2ee4b1816571aee1afd53eb628c48b07d6445d90
2021-12-06T21:53:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
oododo
null
oododo/DialoGPT-small-elon
1
null
transformers
30,095
--- tags: - conversational --- # Elon Musk DialogGPT Model
orri/XLMR-ENIS-finetuned-ner
e27e9a5611a7af96c81397f02f92c4ca71c7f31f
2021-10-01T16:14:57.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
orri
null
orri/XLMR-ENIS-finetuned-ner
1
null
transformers
30,096
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8714268909540054 - name: Recall type: recall value: 0.842296759522456 - name: F1 type: f1 value: 0.8566142460684552 - name: Accuracy type: accuracy value: 0.9827189115812273 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Precision: 0.8714 - Recall: 0.8423 - F1: 0.8566 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0561 | 1.0 | 2904 | 0.0939 | 0.8481 | 0.8205 | 0.8341 | 0.9804 | | 0.031 | 2.0 | 5808 | 0.0917 | 0.8652 | 0.8299 | 0.8472 | 0.9819 | | 0.0186 | 3.0 | 8712 | 0.0955 | 0.8714 | 0.8423 | 0.8566 | 0.9827 | ### Framework versions - Transformers 4.11.1 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
osamajandali/dronies-stewart
6e85c0e522b754b522530c816d51c74d242b4cbf
2021-12-31T14:45:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
osamajandali
null
osamajandali/dronies-stewart
1
null
transformers
30,097
--- tags: - conversational --- # Dronies Stewart Model
osanseviero/clip-st
c6d3f44330bb3d082a97bc3cb2b3e7ff9acdeb84
2021-05-17T08:59:53.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers" ]
feature-extraction
false
osanseviero
null
osanseviero/clip-st
1
null
sentence-transformers
30,098
--- tags: - sentence-transformers - feature-extraction --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: DistilBertModel (1) Pooling mean (2) Dense 768x512 ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence"] model = SentenceTransformer(TODO) embeddings = model.encode(sentences) print(embeddings) ``` ## TODO: Training Procedure ## TODO: Evaluation Results ## TODO: Citing & Authors
osanseviero/dummy-model-test
01a35f92c70ade88b85008d16594199203c993bb
2021-07-05T16:23:56.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
osanseviero
null
osanseviero/dummy-model-test
1
null
transformers
30,099
Entry not found