modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
justin871030/bert-base-uncased-goemotions-group
563fe8872f8e18bf9e54873b5e85a6bb2227a7fa
2022-01-08T09:56:30.000Z
[ "pytorch", "bert", "transformers" ]
null
false
justin871030
null
justin871030/bert-base-uncased-goemotions-group
1
null
transformers
29,800
Entry not found
kSaluja/autonlp-tele_red_data_model-585716433
8cba1cd27d0246f06388ecab85b3db7fe1278df2
2022-02-21T12:46:27.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:kSaluja/autonlp-data-tele_red_data_model", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/autonlp-tele_red_data_model-585716433
1
null
transformers
29,801
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kSaluja/autonlp-data-tele_red_data_model co2_eq_emissions: 2.379476355147211 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 585716433 - CO2 Emissions (in grams): 2.379476355147211 ## Validation Metrics - Loss: 0.15210922062397003 - Accuracy: 0.9724770642201835 - Precision: 0.950836820083682 - Recall: 0.9625838333921638 - F1: 0.9566742676723382 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_red_data_model-585716433 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
kaesve/SciBERT_patent_reference_extraction
ab1be42fc29592f087cf15b65c75482c4a01ccee
2021-01-12T14:59:37.000Z
[ "pytorch", "arxiv:2101.01039", "transformers" ]
null
false
kaesve
null
kaesve/SciBERT_patent_reference_extraction
1
null
transformers
29,802
# Reference extraction in patents This repository contains a finetuned SciBERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
kagennotsuki/DialoGPT-medium-radion
a3e8a9cf8016ba330f989699c7e8e4211c167af4
2021-09-10T04:41:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kagennotsuki
null
kagennotsuki/DialoGPT-medium-radion
1
null
transformers
29,803
--- tags: - conversational --- #Radion DialoGPT Model
kaggleodin/distilbert-base-uncased-finetuned-squad
9008e98ccd2f1018b1ca4ec9bbec13cc35b6353b
2021-11-22T04:08:36.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
kaggleodin
null
kaggleodin/distilbert-base-uncased-finetuned-squad
1
null
transformers
29,804
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2291 | 1.0 | 5533 | 1.1581 | | 0.9553 | 2.0 | 11066 | 1.1249 | | 0.7767 | 3.0 | 16599 | 1.1639 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
kapilkd13/xls-r-hi-test
1a708a34bdd61cbb89ea5be65df5071b274baec1
2022-03-24T11:55:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kapilkd13
null
kapilkd13/xls-r-hi-test
1
null
transformers
29,805
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - robust-speech-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 38.18 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7346 - Wer: 1.0479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.36 | 400 | 1.4595 | 1.0039 | | 4.7778 | 2.71 | 800 | 0.8082 | 1.0115 | | 0.6408 | 4.07 | 1200 | 0.7032 | 1.0079 | | 0.3937 | 5.42 | 1600 | 0.6889 | 1.0433 | | 0.3 | 6.78 | 2000 | 0.6820 | 1.0069 | | 0.3 | 8.14 | 2400 | 0.6670 | 1.0196 | | 0.226 | 9.49 | 2800 | 0.7216 | 1.0422 | | 0.197 | 10.85 | 3200 | 0.7669 | 1.0534 | | 0.165 | 12.2 | 3600 | 0.7517 | 1.0200 | | 0.1486 | 13.56 | 4000 | 0.7125 | 1.0357 | | 0.1486 | 14.92 | 4400 | 0.7447 | 1.0347 | | 0.122 | 16.27 | 4800 | 0.6899 | 1.0440 | | 0.1069 | 17.63 | 5200 | 0.7212 | 1.0350 | | 0.0961 | 18.98 | 5600 | 0.7417 | 1.0408 | | 0.086 | 20.34 | 6000 | 0.7402 | 1.0356 | | 0.086 | 21.69 | 6400 | 0.7761 | 1.0420 | | 0.0756 | 23.05 | 6800 | 0.7346 | 1.0369 | | 0.0666 | 24.41 | 7200 | 0.7506 | 1.0449 | | 0.0595 | 25.76 | 7600 | 0.7319 | 1.0476 | | 0.054 | 27.12 | 8000 | 0.7346 | 1.0479 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
karthik19967829/XLM-R-ar-model
3b66431518d57148341c93d2462388af05376367
2022-02-03T08:14:18.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
karthik19967829
null
karthik19967829/XLM-R-ar-model
1
null
transformers
29,806
Entry not found
karthik19967829/XLM-R-en-model
596e564b3bc65774835d7af80e80a2695a4b5b7e
2022-02-03T08:22:14.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
karthik19967829
null
karthik19967829/XLM-R-en-model
1
null
transformers
29,807
Entry not found
katrin-kc/dummy-model
8660d3151eec5d4aa6a53951caf706b583788274
2022-01-26T11:53:44.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
katrin-kc
null
katrin-kc/dummy-model
1
null
transformers
29,808
Entry not found
kdo6301/DongwoongKim-test-model
45e0b7c5254298ccf1672f79a3c2c0c85cf3ae38
2022-02-11T14:20:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kdo6301
null
kdo6301/DongwoongKim-test-model
1
null
transformers
29,809
Entry not found
kenlevine/distilbert-base-uncased-finetuned-squad
89dc60e4764c4e3094043d54d120799e7142fe24
2021-11-30T18:04:35.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
kenlevine
null
kenlevine/distilbert-base-uncased-finetuned-squad
1
null
transformers
29,810
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
khady/wolof-ASR
0122b1be76d7032209469522a3adc4f644717f1b
2022-02-14T16:56:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
khady
null
khady/wolof-ASR
1
null
transformers
29,811
khursani8/distilgpt2-finetuned-wikitext2
4a39e4c0e07dd3b85a21e152f170ad9ec554e037
2021-12-28T18:10:00.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
khursani8
null
khursani8/distilgpt2-finetuned-wikitext2
1
null
transformers
29,812
Entry not found
kika2000/wav2vec2-large-xls-r-300m-kika10
3ed906c782c2106d0b0892ee78b56774204e34b3
2022-01-21T00:02:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-kika10
1
null
transformers
29,813
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-georgian2-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-georgian2-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4317 - Wer: 0.4280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7071 | 4.76 | 400 | 0.6897 | 0.7844 | | 0.2908 | 9.52 | 800 | 0.4630 | 0.5582 | | 0.1392 | 14.29 | 1200 | 0.4501 | 0.5006 | | 0.0977 | 19.05 | 1600 | 0.4593 | 0.4755 | | 0.075 | 23.81 | 2000 | 0.4340 | 0.4401 | | 0.0614 | 28.57 | 2400 | 0.4317 | 0.4280 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
kika2000/wav2vec2-large-xls-r-300m-kika4_my-colab
f65da4879cc13402ca124bb685875268ca39ea19
2022-01-28T01:03:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-kika4_my-colab
1
null
transformers
29,814
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-kika4_my-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kika4_my-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
kika2000/wav2vec2-large-xls-r-300m-kika5_my-colab
805ad0abd616e6217a555e8eaf56c4c7a9ba09c0
2022-01-29T12:28:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kika2000
null
kika2000/wav2vec2-large-xls-r-300m-kika5_my-colab
1
null
transformers
29,815
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-kika5_my-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kika5_my-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3860 - Wer: 0.3505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0007 | 4.82 | 400 | 0.6696 | 0.8283 | | 0.2774 | 9.64 | 800 | 0.4231 | 0.5476 | | 0.1182 | 14.46 | 1200 | 0.4253 | 0.5102 | | 0.0859 | 19.28 | 1600 | 0.4600 | 0.4866 | | 0.0693 | 24.1 | 2000 | 0.4030 | 0.4533 | | 0.0611 | 28.92 | 2400 | 0.4189 | 0.4412 | | 0.0541 | 33.73 | 2800 | 0.4272 | 0.4380 | | 0.0478 | 38.55 | 3200 | 0.4537 | 0.4505 | | 0.0428 | 43.37 | 3600 | 0.4349 | 0.4181 | | 0.038 | 48.19 | 4000 | 0.4562 | 0.4199 | | 0.0345 | 53.01 | 4400 | 0.4209 | 0.4310 | | 0.0316 | 57.83 | 4800 | 0.4336 | 0.4058 | | 0.0288 | 62.65 | 5200 | 0.4004 | 0.3920 | | 0.025 | 67.47 | 5600 | 0.4115 | 0.3857 | | 0.0225 | 72.29 | 6000 | 0.4296 | 0.3948 | | 0.0182 | 77.11 | 6400 | 0.3963 | 0.3772 | | 0.0165 | 81.93 | 6800 | 0.3921 | 0.3687 | | 0.0152 | 86.75 | 7200 | 0.3969 | 0.3592 | | 0.0133 | 91.57 | 7600 | 0.3803 | 0.3527 | | 0.0118 | 96.39 | 8000 | 0.3860 | 0.3505 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
kingabzpro/wav2vec2-large-xls-r-1b-Irish
a606fcf82b75e992321bfe44b79dc7e8fe789d77
2022-03-24T11:52:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ga-IE", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xls-r-1b-Irish
1
null
transformers
29,816
--- language: - ga-IE license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-1b-Irish-Abid results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ga-IE args: ga-IE metrics: - type: wer value: 38.45 name: Test WER With LM - type: cer value: 16.52 name: Test CER With LM --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-Irish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.3599 - Wer: 0.4236 - Cer: 0.1768 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Irish --dataset mozilla-foundation/common_voice_8_0 --config ga-IE --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Irish" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ga-IE", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 6.3955 | 12.48 | 100 | 2.9897 | 1.0 | 1.0 | | 2.3811 | 24.97 | 200 | 1.2304 | 0.7140 | 0.3106 | | 1.0476 | 37.48 | 300 | 1.0661 | 0.5597 | 0.2407 | | 0.7014 | 49.97 | 400 | 1.1788 | 0.4799 | 0.1947 | | 0.4409 | 62.48 | 500 | 1.2649 | 0.4658 | 0.1997 | | 0.4839 | 74.97 | 600 | 1.3259 | 0.4450 | 0.1868 | | 0.3643 | 87.48 | 700 | 1.3506 | 0.4312 | 0.1760 | | 0.3468 | 99.97 | 800 | 1.3599 | 0.4236 | 0.1768 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
kingabzpro/wav2vec2-large-xls-r-300m-Tatar
1106e4ea122cd413aa004b0b45f554f91281494f
2022-03-24T11:58:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xls-r-300m-Tatar
1
null
transformers
29,817
--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-300m-Tatar results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice tt args: tt metrics: - type: wer value: 42.71 name: Test WER With LM - type: cer value: 11.18 name: Test CER With LM --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5068 - Wer: 0.4263 - Cer: 0.1117 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "kingabzpro/wav2vec2-large-xls-r-300m-Tatar" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "tt", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 8.4116 | 12.19 | 500 | 3.4118 | 1.0 | 1.0 | | 2.5829 | 24.39 | 1000 | 0.7150 | 0.6151 | 0.1582 | | 0.4492 | 36.58 | 1500 | 0.5378 | 0.4577 | 0.1210 | | 0.3007 | 48.77 | 2000 | 0.5068 | 0.4263 | 0.1117 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
kiyoung2/koelectra-small
3fdd6a8e51c780b7b001740d99e690863be58c2a
2021-12-09T19:03:35.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
kiyoung2
null
kiyoung2/koelectra-small
1
null
transformers
29,818
Entry not found
kizunasunhy/distilbert-base-uncased-finetuned-ner
33ae7d9182eec9ebe6530a0586d3bc6b20d73c94
2021-10-15T09:16:11.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kizunasunhy
null
kizunasunhy/distilbert-base-uncased-finetuned-ner
1
null
transformers
29,819
Entry not found
knightbat/harry-potter
5ad3f7860ab40a2596c8af45d89e83ba7da01697
2021-09-18T20:41:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
knightbat
null
knightbat/harry-potter
1
null
transformers
29,820
--- tags: - conversational --- #Harry Potter model
knkarthick/TRIAL_RUN
3a627766b1677e1703c0b558143e44f2fd17b3d8
2021-09-17T11:53:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
knkarthick
null
knkarthick/TRIAL_RUN
1
null
transformers
29,821
Entry not found
knlu1016/albert-base-v2-finetuned-squad
6f04ead53ee9d037db76192c83c106a920545d39
2021-12-10T00:08:26.000Z
[ "pytorch", "tensorboard", "albert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
knlu1016
null
knlu1016/albert-base-v2-finetuned-squad
1
null
transformers
29,822
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8695 | 1.0 | 5540 | 0.9092 | | 0.6594 | 2.0 | 11080 | 0.9148 | | 0.5053 | 3.0 | 16620 | 0.9641 | | 0.3477 | 4.0 | 22160 | 1.1607 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
koala/bert-large-cased-en
50f573214d09cb4c7ea7306aabe514ad139878f6
2021-11-29T20:05:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-cased-en
1
null
transformers
29,823
Entry not found
koala/bert-large-uncased-bn
9e9bbc00f5a4361e5b1c6c09d2f3f2c2b108cec5
2021-12-21T13:03:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-bn
1
null
transformers
29,824
Entry not found
koala/bert-large-uncased-de
67064e8fe4e42b43586514a2217eaf3ffc644a73
2021-11-30T07:55:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-de
1
null
transformers
29,825
Entry not found
koala/bert-large-uncased-en
1ca0876dcace6dc0705d4d07ef2558461ae7433c
2021-11-29T19:08:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-en
1
null
transformers
29,826
Entry not found
koala/bert-large-uncased-fa
d3f97a2d531d692e3223898856bfa8d35a60b7f0
2021-12-17T07:44:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-fa
1
null
transformers
29,827
Entry not found
koala/bert-large-uncased-hi
bbe128e8575539bcb270a91acec9d1687f09d738
2021-12-17T07:52:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-hi
1
null
transformers
29,828
Entry not found
koala/bert-large-uncased-zh
dcf8efbde5f00ab076fbc4b73799e583999476a8
2021-12-10T08:47:42.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-large-uncased-zh
1
null
transformers
29,829
Entry not found
koala/xlm-roberta-large-fa
58643f6ace95a6056c19a28acee89ab04deb0617
2021-12-21T13:08:02.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/xlm-roberta-large-fa
1
null
transformers
29,830
Entry not found
kobkrit/wangchanberta-ner-2
fd7575859bbea7bb187fa6fa61509dd7ea2d3019
2022-02-15T03:46:11.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kobkrit
null
kobkrit/wangchanberta-ner-2
1
null
transformers
29,831
Entry not found
kornesh/roberta-large-wechsel-tamil
3e5fac40ca5bdeefb9c9a1583191e16cbab7b3d9
2021-11-14T04:40:24.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kornesh
null
kornesh/roberta-large-wechsel-tamil
1
null
transformers
29,832
Entry not found
kornwtp/sup-consert-large
0b3976d1e662917c970d3bf6102ee7c8f025158f
2021-12-25T05:46:59.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
kornwtp
null
kornwtp/sup-consert-large
1
null
transformers
29,833
Entry not found
kornwtp/unsup-consert-large
9cd453330c5dccf272066c8e7bb4f46cfe5491d1
2021-12-25T05:40:02.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
kornwtp
null
kornwtp/unsup-consert-large
1
null
transformers
29,834
Entry not found
kris/DialoGPT-small-spock3
1cede3bb4cae40548995ec6c362c489d606a65c4
2021-09-18T17:33:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kris
null
kris/DialoGPT-small-spock3
1
null
transformers
29,835
--- tags: - conversational --- #Spock model
ksmcg/push_hub_test
bc529d06fc8c97dc5050eb3e30e08a891b5e07ef
2021-08-23T12:56:57.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ksmcg
null
ksmcg/push_hub_test
1
null
transformers
29,836
Entry not found
kwang1993/wav2vec2-base-timit-demo
0f87226db754a22e3a98ad153484c5a58cd0e60f
2021-12-21T04:54:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
kwang1993
null
kwang1993/wav2vec2-base-timit-demo
1
null
transformers
29,837
https://huggingface.co/blog/fine-tune-wav2vec2-english Use the processor from https://huggingface.co/facebook/wav2vec2-base
kwang2049/TSDAE-cqadupstack2nli_stsb
7caae3852b6916417df296271bf5145a4c56eebb
2021-10-25T16:14:19.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "transformers" ]
feature-extraction
false
kwang2049
null
kwang2049/TSDAE-cqadupstack2nli_stsb
1
null
transformers
29,838
# kwang2049/TSDAE-cqadupstack2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain cqadupstack. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on cqadupstack with the TSDAE objective; 3. Supervised training on the NLI data with cross-entropy loss; 4. Supervised training on the STSb data with MSE loss. The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
l41n/c3rbs
24b89edfb82103c67838d61b8919b32ce0e2cd14
2021-08-24T02:40:57.000Z
[ "pytorch", "conversational" ]
conversational
false
l41n
null
l41n/c3rbs
1
null
null
29,839
--- tags: - conversational --- # <3
lagodw/plotly_gpt
daa1a13bc6416269e62245882358bf42230f973d
2021-10-03T21:52:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/plotly_gpt
1
null
transformers
29,840
Entry not found
lagodw/redditbot
72c28ef74178fb13aaa91e625136d65406253ca8
2021-08-20T05:14:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/redditbot
1
null
transformers
29,841
Entry not found
lagodw/redditbot_gpt2
294a88532e56b2d82b0cb1cb86abad6aab97a7cf
2021-09-10T02:01:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/redditbot_gpt2
1
null
transformers
29,842
Entry not found
lagodw/redditbot_gpt2_v2
d56603157b5621b697b9379a7ccc90e4551e95a5
2021-09-19T07:34:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/redditbot_gpt2_v2
1
null
transformers
29,843
Entry not found
leeeki/roberta-large_Explainable
7979ed64d811bd9f5a1223628077bfda6eb13c0b
2022-02-19T13:16:29.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
leeeki
null
leeeki/roberta-large_Explainable
1
null
transformers
29,844
Entry not found
leolin12345/ft-lr-cu
8f539b20b51ab692aa733332546714cf4dbfa1fe
2022-02-24T22:29:14.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
leolin12345
null
leolin12345/ft-lr-cu
1
null
transformers
29,845
lewtun/distilbert-base-uncased-finetuned-imdb-accelerate
fa4ee8880f431cf14bf0b8b5b4d5b9297d009841
2021-10-04T21:03:16.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lewtun
null
lewtun/distilbert-base-uncased-finetuned-imdb-accelerate
1
null
transformers
29,846
Entry not found
lewtun/distilbert-base-uncased-finetuned-squad-d5716d28
d52f97cfce2a6c9bd0c43e8656263f4b7f278513
2021-09-30T18:36:45.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:1910.01108", "question-answering", "license:apache-2.0" ]
question-answering
false
lewtun
null
lewtun/distilbert-base-uncased-finetuned-squad-d5716d28
1
1
null
29,847
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lewtun/distilbert-base-uncased-finetuned-squad-v1
7642ba53217922c326598ce47ae3360fd8ef27ee
2021-01-31T11:55:20.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
lewtun
null
lewtun/distilbert-base-uncased-finetuned-squad-v1
1
null
transformers
29,848
Entry not found
lewtun/dummy-model
b4ef4abc8cbb57f16007704cd97ea436d1914153
2021-07-07T08:37:39.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lewtun
null
lewtun/dummy-model
1
null
transformers
29,849
Entry not found
lewtun/metnet-test-4
03a2e3eeb1630277bae5c625d7945272928a80bd
2021-09-06T11:00:39.000Z
[ "pytorch", "transformers", "satflow", "license:mit" ]
null
false
lewtun
null
lewtun/metnet-test-4
1
null
transformers
29,850
--- license: mit tags: - satflow --- # Model Card for MetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
lewtun/perceriver-test-01
f421ebcea62d9c1296d2e144e8b255ee72b684f3
2021-09-14T14:07:26.000Z
[ "pytorch", "transformers", "satflow", "forecasting", "timeseries", "remote-sensing", "license:mit" ]
null
false
lewtun
null
lewtun/perceriver-test-01
1
null
transformers
29,851
--- license: mit tags: - satflow - forecasting - timeseries - remote-sensing --- # Perceiver ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
lg/fexp_3
551b8017dab44820b84e05acdac4a74bde80af15
2021-05-01T06:03:40.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_3
1
null
transformers
29,852
Entry not found
lg/fexp_4
df7dc4afbc29060e86e5b0b3933c1ead1f0a6244
2021-05-01T17:25:46.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_4
1
null
transformers
29,853
Entry not found
lg/fexp_5
3f555517b2dca438c05d80505e6a511abe13b106
2021-05-01T23:26:00.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/fexp_5
1
null
transformers
29,854
Entry not found
lg/ghpy_20k
e39db64349d4cebf48ec8fd142e39e71ec1ce2e8
2021-07-20T23:55:56.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/ghpy_20k
1
2
transformers
29,855
**This model is provided with no guarantees whatsoever; use at your own risk.** This is a Neo2.7B model fine tuned on github data scraped by an EleutherAI member (filtered for python-only) for 20k steps. A better code model is coming soon™ (hopefully, maybe); this model was created mostly as a test of infrastructure code.
lg/ghpy_4k
54f17c5a7f0a0bccd088ac66ab5a60fab095306d
2021-05-14T22:15:12.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/ghpy_4k
1
null
transformers
29,856
Entry not found
lg/ghpy_8k
c768029bfb46696e5e34b664ddfc68d734ef781a
2021-05-15T15:58:11.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
lg
null
lg/ghpy_8k
1
null
transformers
29,857
Entry not found
lgris/WavLM-large-CORAA-pt
b93637676546c6f75ed2e9b37d16dafbfc3493cb
2022-02-10T23:21:45.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "pt", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/WavLM-large-CORAA-pt
1
null
transformers
29,858
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - pt model-index: - name: WavLM-large-CORAA-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # WavLM-large-CORAA-pt This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on [CORAA dataset](https://github.com/nilc-nlp/CORAA). It achieves the following results on the evaluation set: - Loss: 0.6144 - Wer: 0.3840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.04 | 1000 | 1.9230 | 0.9960 | | 5.153 | 0.08 | 2000 | 1.3733 | 0.8444 | | 5.153 | 0.13 | 3000 | 1.1992 | 0.7362 | | 1.367 | 0.17 | 4000 | 1.1289 | 0.6957 | | 1.367 | 0.21 | 5000 | 1.0357 | 0.6470 | | 1.1824 | 0.25 | 6000 | 1.0216 | 0.6201 | | 1.1824 | 0.29 | 7000 | 0.9338 | 0.6036 | | 1.097 | 0.33 | 8000 | 0.9149 | 0.5760 | | 1.097 | 0.38 | 9000 | 0.8885 | 0.5541 | | 1.0254 | 0.42 | 10000 | 0.8678 | 0.5366 | | 1.0254 | 0.46 | 11000 | 0.8349 | 0.5323 | | 0.9782 | 0.5 | 12000 | 0.8230 | 0.5155 | | 0.9782 | 0.54 | 13000 | 0.8245 | 0.5049 | | 0.9448 | 0.59 | 14000 | 0.7802 | 0.4990 | | 0.9448 | 0.63 | 15000 | 0.7650 | 0.4900 | | 0.9092 | 0.67 | 16000 | 0.7665 | 0.4796 | | 0.9092 | 0.71 | 17000 | 0.7568 | 0.4795 | | 0.8764 | 0.75 | 18000 | 0.7403 | 0.4615 | | 0.8764 | 0.8 | 19000 | 0.7219 | 0.4644 | | 0.8498 | 0.84 | 20000 | 0.7180 | 0.4502 | | 0.8498 | 0.88 | 21000 | 0.7017 | 0.4436 | | 0.8278 | 0.92 | 22000 | 0.6992 | 0.4395 | | 0.8278 | 0.96 | 23000 | 0.7021 | 0.4329 | | 0.8077 | 1.0 | 24000 | 0.6892 | 0.4265 | | 0.8077 | 1.05 | 25000 | 0.6940 | 0.4248 | | 0.7486 | 1.09 | 26000 | 0.6767 | 0.4202 | | 0.7486 | 1.13 | 27000 | 0.6734 | 0.4150 | | 0.7459 | 1.17 | 28000 | 0.6650 | 0.4152 | | 0.7459 | 1.21 | 29000 | 0.6559 | 0.4078 | | 0.7304 | 1.26 | 30000 | 0.6536 | 0.4088 | | 0.7304 | 1.3 | 31000 | 0.6537 | 0.4025 | | 0.7183 | 1.34 | 32000 | 0.6462 | 0.4008 | | 0.7183 | 1.38 | 33000 | 0.6381 | 0.3973 | | 0.7059 | 1.42 | 34000 | 0.6266 | 0.3930 | | 0.7059 | 1.46 | 35000 | 0.6280 | 0.3921 | | 0.6983 | 1.51 | 36000 | 0.6248 | 0.3897 | | 0.6983 | 1.55 | 37000 | 0.6275 | 0.3872 | | 0.6892 | 1.59 | 38000 | 0.6199 | 0.3852 | | 0.6892 | 1.63 | 39000 | 0.6180 | 0.3842 | | 0.691 | 1.67 | 40000 | 0.6144 | 0.3840 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
lgris/bp-commonvoice100-xlsr
5f31471894f0f6a5b8d2187e0bb3c919841e65bd
2021-11-27T21:04:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-commonvoice100-xlsr
1
null
transformers
29,859
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # commonvoice100-xlsr: Wav2vec 2.0 with Common Voice Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [Common Voice 7.0](https://commonvoice.mozilla.org/pt) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | 37.8h | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total | | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | commonvoice\_100 (demonstration below) |0.088 | 0.126 | 0.121 | 0.173 | 0.177 | 0.424 | 0.145 | 0.179 | | commonvoice\_100 + 4-gram (demonstration below) |0.057 | 0.095 | 0.076 | 0.138 | 0.146 | 0.382 | 0.130 | 0.146| ## Demonstration ```python MODEL_NAME = "lgris/commonvoice100-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.08868880057404624 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.12601035333655114 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.12149621212121209 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.173594387890256 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.1775290775992294 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.4245704568241374 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.14541801948051947 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.05764220069547976 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.09569130510737103 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.07688131313131312 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.13814768877494732 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.14652459944499036 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.38196090002435623 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.13054112554112554
lgris/bp-mls100-xlsr
c0ab58085e26fa3802b1d259f64e2b51cca933ad
2022-01-02T23:54:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-mls100-xlsr
1
null
transformers
29,860
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # mls100-xlsr: Wav2vec 2.0 with MLS Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [Multilingual Librispeech in Portuguese (MLS)](http://www.openslr.org/94/) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | 161h | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total | 161h | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | mls100 (demonstration below) | 0.192 | 0.260 | 0.162 | 0.163 | 0.268 | 0.492 | 0.268 | 0.258 | | mls100 + 4-gram (demonstration below) | 0.087 | 0.173 | 0.077 | 0.126 | 0.245 | 0.415 | 0.218 | 0.191 | ## Demonstration ```python MODEL_NAME = "lgris/mls100-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ```python %cd bp_dataset/ ``` /content/bp_dataset ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.192586382955233 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.2604333640312866 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.16259469696969692 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.16343014413283674 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.2682880375992515 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.49252836581485837 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.2686972402597403 ### Tests with LM ```python !rm -rf ~/.cache %cd /content/ # !gdown --id '1d13Onxy9ubmJZORZ8FO2vnsnl36QMiUc' # trained with wikipedia; stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') %cd bp_dataset/ ``` /content/bp_dataset #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.0878818926974661 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.173303354010221 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.07691919191919189 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.12624377042839321 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.24545473435776916 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.4156272215612955 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.21832386363636366
lgris/bp-tedx100-xlsr
5a584f0a42628cf030bd6f1c802e9ac73a6ff468
2021-11-27T21:12:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-tedx100-xlsr
1
null
transformers
29,861
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # tedx100-xlsr: Wav2vec 2.0 with TEDx Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [TEDx multilingual in Portuguese](http://www.openslr.org/100) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | 148.8h| -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | | -- | 0.1h | | Total |148.8h | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | tedx\_100 (demonstration below) |0.138 | 0.369 | 0.169 | 0.165 | 0.794 | 0.222 | 0.395 | 0.321| | tedx\_100 + 4-gram (demonstration below) |0.123 | 0.414 | 0.171 | 0.152 | 0.982 | 0.215 | 0.395 | 0.350| ## Demonstration ```python MODEL_NAME = "lgris/tedx100-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.13846663354859937 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.36960721735520236 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.16941287878787875 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.16586103382107384 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.7943364822145216 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.22221476803982182 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.39486066017315996 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.12338749517028079 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.4146185693398481 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.17142676767676762 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.15212081808962674 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.982518441309493 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.21567860841157235 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.3952218614718614
lgris/sew-tiny-pt
c58850627b1f7b2ed8d9a7f487c40449ec0a7dde
2021-12-30T17:37:50.000Z
[ "pytorch", "sew", "feature-extraction", "pt", "arxiv:2109.06870", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
lgris
null
lgris/sew-tiny-pt
1
1
transformers
29,862
--- language: pt tags: - speech license: apache-2.0 --- # SEW-tiny-pt This is a pretrained version of [SEW tiny by ASAPP Research](https://github.com/asappresearch/sew) trained over Brazilian Portuguese audio. The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWForCTC`.
lgris/wav2vec2-xls-r-1b-portuguese-CORAA-3
d5c6d89fcd434f1b1a3475dbcd5f507c33f2ab57
2022-03-24T11:55:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-xls-r-1b-portuguese-CORAA-3
1
null
transformers
29,863
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - pt - robust-speech-event - hf-asr-leaderboard model-index: - name: wav2vec2-xls-r-1b-portuguese-CORAA-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 71.67 - name: Test CER type: cer value: 30.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 68.18 - name: Test CER type: cer value: 28.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.76 - name: Test CER type: cer value: 23.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-portuguese-CORAA-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on [CORAA dataset](https://github.com/nilc-nlp/CORAA). It achieves the following results on the evaluation set: - Loss: 1.0029 - Wer: 0.6020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.0169 | 0.21 | 5000 | 1.9582 | 0.9283 | | 1.8561 | 0.42 | 10000 | 1.6144 | 0.8554 | | 1.6823 | 0.63 | 15000 | 1.4165 | 0.7710 | | 1.52 | 0.84 | 20000 | 1.2441 | 0.7289 | | 1.3757 | 1.05 | 25000 | 1.1061 | 0.6491 | | 1.2377 | 1.26 | 30000 | 1.0029 | 0.6020 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-gn-cv7
47c960412a1b1e1a572012712441a0e1406923b3
2022-03-24T11:58:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gn", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-xls-r-gn-cv7
1
null
transformers
29,864
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-gn-cv7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Validation WER type: wer value: 73.02 - name: Validation CER type: cer value: 17.79 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gn metrics: - name: Test WER type: wer value: 62.65 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-gn-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7197 - Wer: 0.7434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 13000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.4669 | 6.24 | 100 | 3.3003 | 1.0 | | 3.3214 | 12.48 | 200 | 3.2090 | 1.0 | | 3.1619 | 18.73 | 300 | 2.6322 | 1.0 | | 1.751 | 24.97 | 400 | 1.4089 | 0.9803 | | 0.7997 | 31.24 | 500 | 0.9996 | 0.9211 | | 0.4996 | 37.48 | 600 | 0.9879 | 0.8553 | | 0.3677 | 43.73 | 700 | 0.9543 | 0.8289 | | 0.2851 | 49.97 | 800 | 1.0627 | 0.8487 | | 0.2556 | 56.24 | 900 | 1.0933 | 0.8355 | | 0.2268 | 62.48 | 1000 | 0.9191 | 0.8026 | | 0.1914 | 68.73 | 1100 | 0.9582 | 0.7961 | | 0.1749 | 74.97 | 1200 | 1.0502 | 0.8092 | | 0.157 | 81.24 | 1300 | 0.9998 | 0.7632 | | 0.1505 | 87.48 | 1400 | 1.0076 | 0.7303 | | 0.1278 | 93.73 | 1500 | 0.9321 | 0.75 | | 0.1078 | 99.97 | 1600 | 1.0383 | 0.7697 | | 0.1156 | 106.24 | 1700 | 1.0302 | 0.7763 | | 0.1107 | 112.48 | 1800 | 1.0419 | 0.7763 | | 0.091 | 118.73 | 1900 | 1.0694 | 0.75 | | 0.0829 | 124.97 | 2000 | 1.0257 | 0.7829 | | 0.0865 | 131.24 | 2100 | 1.2108 | 0.7368 | | 0.0907 | 137.48 | 2200 | 1.0458 | 0.7697 | | 0.0897 | 143.73 | 2300 | 1.1504 | 0.7895 | | 0.0766 | 149.97 | 2400 | 1.1663 | 0.7237 | | 0.0659 | 156.24 | 2500 | 1.1320 | 0.7632 | | 0.0699 | 162.48 | 2600 | 1.2586 | 0.7434 | | 0.0613 | 168.73 | 2700 | 1.1815 | 0.8158 | | 0.0598 | 174.97 | 2800 | 1.3299 | 0.75 | | 0.0577 | 181.24 | 2900 | 1.2035 | 0.7171 | | 0.0576 | 187.48 | 3000 | 1.2134 | 0.7434 | | 0.0518 | 193.73 | 3100 | 1.3406 | 0.7566 | | 0.0524 | 199.97 | 3200 | 1.4251 | 0.75 | | 0.0467 | 206.24 | 3300 | 1.3533 | 0.7697 | | 0.0428 | 212.48 | 3400 | 1.2463 | 0.7368 | | 0.0453 | 218.73 | 3500 | 1.4532 | 0.7566 | | 0.0473 | 224.97 | 3600 | 1.3152 | 0.7434 | | 0.0451 | 231.24 | 3700 | 1.2232 | 0.7368 | | 0.0361 | 237.48 | 3800 | 1.2938 | 0.7171 | | 0.045 | 243.73 | 3900 | 1.4148 | 0.7434 | | 0.0422 | 249.97 | 4000 | 1.3786 | 0.7961 | | 0.036 | 256.24 | 4100 | 1.4488 | 0.7697 | | 0.0352 | 262.48 | 4200 | 1.2294 | 0.6776 | | 0.0326 | 268.73 | 4300 | 1.2796 | 0.6974 | | 0.034 | 274.97 | 4400 | 1.3805 | 0.7303 | | 0.0305 | 281.24 | 4500 | 1.4994 | 0.7237 | | 0.0325 | 287.48 | 4600 | 1.4330 | 0.6908 | | 0.0338 | 293.73 | 4700 | 1.3091 | 0.7368 | | 0.0306 | 299.97 | 4800 | 1.2174 | 0.7171 | | 0.0299 | 306.24 | 4900 | 1.3527 | 0.7763 | | 0.0287 | 312.48 | 5000 | 1.3651 | 0.7368 | | 0.0274 | 318.73 | 5100 | 1.4337 | 0.7368 | | 0.0258 | 324.97 | 5200 | 1.3831 | 0.6908 | | 0.022 | 331.24 | 5300 | 1.3556 | 0.6974 | | 0.021 | 337.48 | 5400 | 1.3836 | 0.7237 | | 0.0241 | 343.73 | 5500 | 1.4352 | 0.7039 | | 0.0229 | 349.97 | 5600 | 1.3904 | 0.7105 | | 0.026 | 356.24 | 5700 | 1.4131 | 0.7171 | | 0.021 | 362.48 | 5800 | 1.5426 | 0.6974 | | 0.0191 | 368.73 | 5900 | 1.5960 | 0.7632 | | 0.0227 | 374.97 | 6000 | 1.6240 | 0.7368 | | 0.0204 | 381.24 | 6100 | 1.4301 | 0.7105 | | 0.0175 | 387.48 | 6200 | 1.5554 | 0.75 | | 0.0183 | 393.73 | 6300 | 1.6044 | 0.7697 | | 0.0183 | 399.97 | 6400 | 1.5963 | 0.7368 | | 0.016 | 406.24 | 6500 | 1.5679 | 0.7829 | | 0.0178 | 412.48 | 6600 | 1.5928 | 0.7697 | | 0.014 | 418.73 | 6700 | 1.7000 | 0.7632 | | 0.0182 | 424.97 | 6800 | 1.5340 | 0.75 | | 0.0148 | 431.24 | 6900 | 1.9274 | 0.7368 | | 0.0148 | 437.48 | 7000 | 1.6437 | 0.7697 | | 0.0173 | 443.73 | 7100 | 1.5468 | 0.75 | | 0.0109 | 449.97 | 7200 | 1.6083 | 0.75 | | 0.0167 | 456.24 | 7300 | 1.6732 | 0.75 | | 0.0139 | 462.48 | 7400 | 1.5097 | 0.7237 | | 0.013 | 468.73 | 7500 | 1.5947 | 0.7171 | | 0.0128 | 474.97 | 7600 | 1.6260 | 0.7105 | | 0.0166 | 481.24 | 7700 | 1.5756 | 0.7237 | | 0.0127 | 487.48 | 7800 | 1.4506 | 0.6908 | | 0.013 | 493.73 | 7900 | 1.4882 | 0.7368 | | 0.0125 | 499.97 | 8000 | 1.5589 | 0.7829 | | 0.0141 | 506.24 | 8100 | 1.6328 | 0.7434 | | 0.0115 | 512.48 | 8200 | 1.6586 | 0.7434 | | 0.0117 | 518.73 | 8300 | 1.6043 | 0.7105 | | 0.009 | 524.97 | 8400 | 1.6508 | 0.7237 | | 0.0108 | 531.24 | 8500 | 1.4507 | 0.6974 | | 0.011 | 537.48 | 8600 | 1.5942 | 0.7434 | | 0.009 | 543.73 | 8700 | 1.8121 | 0.7697 | | 0.0112 | 549.97 | 8800 | 1.6923 | 0.7697 | | 0.0073 | 556.24 | 8900 | 1.7096 | 0.7368 | | 0.0098 | 562.48 | 9000 | 1.7052 | 0.7829 | | 0.0088 | 568.73 | 9100 | 1.6956 | 0.7566 | | 0.0099 | 574.97 | 9200 | 1.4909 | 0.7171 | | 0.0075 | 581.24 | 9300 | 1.6307 | 0.7697 | | 0.0077 | 587.48 | 9400 | 1.6196 | 0.7961 | | 0.0088 | 593.73 | 9500 | 1.6119 | 0.7566 | | 0.0085 | 599.97 | 9600 | 1.4512 | 0.7368 | | 0.0086 | 606.24 | 9700 | 1.5992 | 0.7237 | | 0.0109 | 612.48 | 9800 | 1.4706 | 0.7368 | | 0.0098 | 618.73 | 9900 | 1.3824 | 0.7171 | | 0.0091 | 624.97 | 10000 | 1.4776 | 0.6974 | | 0.0072 | 631.24 | 10100 | 1.4896 | 0.7039 | | 0.0087 | 637.48 | 10200 | 1.5467 | 0.7368 | | 0.007 | 643.73 | 10300 | 1.5493 | 0.75 | | 0.0076 | 649.97 | 10400 | 1.5706 | 0.7303 | | 0.0085 | 656.24 | 10500 | 1.5748 | 0.7237 | | 0.0075 | 662.48 | 10600 | 1.5081 | 0.7105 | | 0.0068 | 668.73 | 10700 | 1.4967 | 0.6842 | | 0.0117 | 674.97 | 10800 | 1.4986 | 0.7105 | | 0.0054 | 681.24 | 10900 | 1.5587 | 0.7303 | | 0.0059 | 687.48 | 11000 | 1.5886 | 0.7171 | | 0.0071 | 693.73 | 11100 | 1.5746 | 0.7171 | | 0.0048 | 699.97 | 11200 | 1.6166 | 0.7237 | | 0.0048 | 706.24 | 11300 | 1.6098 | 0.7237 | | 0.0056 | 712.48 | 11400 | 1.5834 | 0.7237 | | 0.0048 | 718.73 | 11500 | 1.5653 | 0.7171 | | 0.0045 | 724.97 | 11600 | 1.6252 | 0.7237 | | 0.0068 | 731.24 | 11700 | 1.6794 | 0.7171 | | 0.0044 | 737.48 | 11800 | 1.6881 | 0.7039 | | 0.008 | 743.73 | 11900 | 1.7393 | 0.75 | | 0.0045 | 749.97 | 12000 | 1.6869 | 0.7237 | | 0.0047 | 756.24 | 12100 | 1.7105 | 0.7303 | | 0.0057 | 762.48 | 12200 | 1.7439 | 0.7303 | | 0.004 | 768.73 | 12300 | 1.7871 | 0.7434 | | 0.0061 | 774.97 | 12400 | 1.7812 | 0.7303 | | 0.005 | 781.24 | 12500 | 1.7410 | 0.7434 | | 0.0056 | 787.48 | 12600 | 1.7220 | 0.7303 | | 0.0064 | 793.73 | 12700 | 1.7141 | 0.7434 | | 0.0042 | 799.97 | 12800 | 1.7139 | 0.7368 | | 0.0049 | 806.24 | 12900 | 1.7211 | 0.7434 | | 0.0044 | 812.48 | 13000 | 1.7197 | 0.7434 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
li666/wav2vec2-large-xls-r-300m-zh-CN-colab
c0bf86ae29e64101f1add0b77cb3589fa5876d03
2021-12-13T11:30:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
li666
null
li666/wav2vec2-large-xls-r-300m-zh-CN-colab
1
null
transformers
29,865
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-zh-CN-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-zh-CN-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
liaad/ud_srl-pt_xlmr-large
123fb87b8991706fc99d0b689d372ebbadcee246
2021-09-22T08:56:46.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "multilingual", "pt", "dataset:PropBank.Br", "dataset:CoNLL-2012", "dataset:Universal Dependencies", "arxiv:2101.01213", "transformers", "xlm-roberta-large", "semantic role labeling", "finetuned", "dependency parsing", "license:apache-2.0" ]
feature-extraction
false
liaad
null
liaad/ud_srl-pt_xlmr-large
1
null
transformers
29,866
--- language: - multilingual - pt tags: - xlm-roberta-large - semantic role labeling - finetuned - dependency parsing license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 - Universal Dependencies metrics: - F1 Measure --- # XLM-R large fine-tune in Portuguese Universal Dependencies and semantic role labeling ## Model description This model is the [`xlm-roberta-large`](https://huggingface.co/xlm-roberta-large) fine-tuned first on the Universal Dependencies Portuguese dataset and then fine-tuned on the PropBank.Br data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/ud_srl-pt_xlmr-large") model = AutoModel.from_pretrained("liaad/ud_srl-pt_xlmr-large") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. - The model was trained only for 10 epochs in the Universal Dependencies dataset. ## Training procedure The model was trained on the Universal Dependencies Portuguese dataset; then on the CoNLL formatted OntoNotes v5.0; then on Portuguese semantic role labeling data (PropBank.Br) using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
life4free96/DialogGPT-med-TeiaMoranta3
f9bd49b0a9b0289bdb50f454b02767bffa5d3808
2021-11-14T20:06:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
life4free96
null
life4free96/DialogGPT-med-TeiaMoranta3
1
null
transformers
29,867
--- tags: - conversational ---
ligolab/DxRoberta
e5d6cbc25a0a0e8cc90f8ae2c25e07d7069d2dd9
2021-06-24T13:47:03.000Z
[ "pytorch", "roberta", "fill-mask", "sentence-transformers", "feature-extraction" ]
feature-extraction
false
ligolab
null
ligolab/DxRoberta
1
null
sentence-transformers
29,868
--- pipeline_tag: feature-extraction tags: - sentence-transformers --- ## Testing Sentence Transformer This Roberta model is trained from scratch using Masked Language Modelling task on a collection of medical reports
limter/DialoGPT-medium-krish
da8e2bbdff277d299bcab3bafff59833d9238bd0
2021-06-10T04:28:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
limter
null
limter/DialoGPT-medium-krish
1
null
transformers
29,869
Entry not found
lonePatient/albert_chinese_small
9fae890b5b646258f046e9b86e40b4b79c300916
2020-04-24T16:02:11.000Z
[ "pytorch", "albert", "transformers" ]
null
false
lonePatient
null
lonePatient/albert_chinese_small
1
null
transformers
29,870
Entry not found
lonewanderer27/YuriBot
aa359ff8c960ad64f4b56ceeb4544b2a5db40df6
2022-02-08T12:30:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lonewanderer27
null
lonewanderer27/YuriBot
1
null
transformers
29,871
--- tags: - conversational --- # Camp Buddy - Yuri - DialoGPTMedium Model
longcld/t5_small_checkpoint
41f9e4e2dadbb51ba924bcd9f705c3258fdf07d7
2021-07-14T21:49:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5_small_checkpoint
1
null
transformers
29,872
Entry not found
longcld/t5_small_squad_trans_old
0b6e5f5c0a55c6629cfe1bd14564ca4b7e6c5b85
2021-07-25T14:15:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5_small_squad_trans_old
1
null
transformers
29,873
Entry not found
loodos/albert-base-turkish-uncased
3275004703c3ea35b5dcde5b684b707d32e5a69e
2020-12-11T21:49:21.000Z
[ "pytorch", "tf", "albert", "tr", "transformers" ]
null
false
loodos
null
loodos/albert-base-turkish-uncased
1
null
transformers
29,874
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish ALBERT-Base (uncased) This is ALBERT-Base model which has 12 repeated encoder layers with 768 hidden layer size trained on uncased Turkish dataset. ## Usage Using AutoModel and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("loodos/albert-base-turkish-uncased", do_lower_case=False, keep_accents=True) model = AutoModel.from_pretrained("loodos/albert-base-turkish-uncased") normalizer = TextNormalization() normalized_text = normalizer.normalize(text, do_lower_case=True, is_turkish=True) tokenizer.tokenize(normalized_text) ``` ### Notes on Tokenizers Currently, Huggingface's tokenizers (which were written in Python) have a bug concerning letters "ı, i, I, İ" and non-ASCII Turkish specific letters. There are two reasons. 1- Vocabulary and sentence piece model is created with NFC/NFKC normalization but tokenizer uses NFD/NFKD. NFD/NFKD normalization changes text that contains Turkish characters I-ı, İ-i, Ç-ç, Ö-ö, Ş-ş, Ğ-ğ, Ü-ü. This causes wrong tokenization, wrong training and loss of information. Some tokens are never trained.(like "şanlıurfa", "öğün", "çocuk" etc.) NFD/NFKD normalization is not proper for Turkish. 2- Python's default ```string.lower()``` and ```string.upper()``` make the conversions - "I" and "İ" to 'i' - 'i' and 'ı' to 'I' respectively. However, in Turkish, 'I' and 'İ' are two different letters. We opened an [issue](https://github.com/huggingface/transformers/issues/6680) in Huggingface's github repo about this bug. Until it is fixed, in case you want to train your model with uncased data, we provide a simple text normalization module (`TextNormalization()` in the code snippet above) in our [repo](https://github.com/Loodos/turkish-language-models). ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
ltrctelugu/roberta_ltrc_telugu
72c75264ab3d2a07a4a95cf50023508e3e30165c
2021-05-20T17:39:55.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ltrctelugu
null
ltrctelugu/roberta_ltrc_telugu
1
null
transformers
29,875
Entry not found
lucio/xls-r-uyghur-cv7
c6145a275ebf4b96ab19743a3e8126dd4d9c2187
2022-03-24T11:58:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ug", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lucio
null
lucio/xls-r-uyghur-cv7
1
1
transformers
29,876
--- language: - ug license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ug - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M Uyghur CV7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ug metrics: - name: Test WER type: wer value: 25.845 - name: Test CER type: cer value: 4.795 --- # XLS-R-300M Uyghur CV7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UG dataset. It achieves the following results on the evaluation set: - Loss: 0.1772 - Wer: 0.2589 ## Model description For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) The model vocabulary consists of the alphabetic characters of the [Perso-Arabic script for the Uyghur language](https://omniglot.com/writing/uyghur.htm), with punctuation removed. ## Intended uses & limitations This model is expected to be of some utility for low-fidelity use cases such as: - Draft video captions - Indexing of recorded broadcasts The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers. ## Training and evaluation data The combination of `train` and `dev` of common voice official splits were used as training data. The official `test` split was used as validation data as well as for final evaluation. ## Training procedure The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Uyghur CV7 example sentences. A ramped learning rate is used with an initial warmup phase of 2000 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 18500 steps (100 epochs). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3043 | 2.73 | 500 | 3.2415 | 1.0 | | 3.0482 | 5.46 | 1000 | 2.9591 | 1.0 | | 1.4767 | 8.2 | 1500 | 0.4779 | 0.5777 | | 1.3152 | 10.93 | 2000 | 0.3697 | 0.4938 | | 1.2246 | 13.66 | 2500 | 0.3084 | 0.4459 | | 1.1781 | 16.39 | 3000 | 0.2842 | 0.4154 | | 1.1351 | 19.13 | 3500 | 0.2615 | 0.3929 | | 1.1052 | 21.86 | 4000 | 0.2462 | 0.3747 | | 1.0711 | 24.59 | 4500 | 0.2366 | 0.3652 | | 1.035 | 27.32 | 5000 | 0.2268 | 0.3557 | | 1.0277 | 30.05 | 5500 | 0.2243 | 0.3450 | | 1.002 | 32.79 | 6000 | 0.2204 | 0.3389 | | 0.9837 | 35.52 | 6500 | 0.2156 | 0.3349 | | 0.9773 | 38.25 | 7000 | 0.2127 | 0.3289 | | 0.9807 | 40.98 | 7500 | 0.2142 | 0.3274 | | 0.9582 | 43.72 | 8000 | 0.2004 | 0.3142 | | 0.9548 | 46.45 | 8500 | 0.2022 | 0.3050 | | 0.9251 | 49.18 | 9000 | 0.2019 | 0.3035 | | 0.9103 | 51.91 | 9500 | 0.1964 | 0.3021 | | 0.915 | 54.64 | 10000 | 0.1970 | 0.3032 | | 0.8962 | 57.38 | 10500 | 0.2007 | 0.3046 | | 0.8729 | 60.11 | 11000 | 0.1967 | 0.2942 | | 0.8744 | 62.84 | 11500 | 0.1952 | 0.2885 | | 0.874 | 65.57 | 12000 | 0.1894 | 0.2895 | | 0.8457 | 68.31 | 12500 | 0.1895 | 0.2828 | | 0.8519 | 71.04 | 13000 | 0.1912 | 0.2875 | | 0.8301 | 73.77 | 13500 | 0.1878 | 0.2760 | | 0.8226 | 76.5 | 14000 | 0.1808 | 0.2701 | | 0.8071 | 79.23 | 14500 | 0.1849 | 0.2741 | | 0.7999 | 81.97 | 15000 | 0.1808 | 0.2717 | | 0.7947 | 84.7 | 15500 | 0.1821 | 0.2716 | | 0.7783 | 87.43 | 16000 | 0.1824 | 0.2661 | | 0.7729 | 90.16 | 16500 | 0.1773 | 0.2639 | | 0.7759 | 92.9 | 17000 | 0.1767 | 0.2629 | | 0.7713 | 95.63 | 17500 | 0.1780 | 0.2621 | | 0.7628 | 98.36 | 18000 | 0.1773 | 0.2594 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
lucius/distilgpt2-finetuned-wikitext2
da3a83b55ce483b31da75c922e035c5e21a6a964
2021-10-17T09:45:49.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
lucius
null
lucius/distilgpt2-finetuned-wikitext2
1
null
transformers
29,877
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-f2d1db
c79f845cc397f67a1f45d3c280be96cb7b3ee87e
2021-07-03T02:07:16.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-f2d1db
1
null
transformers
29,878
Entry not found
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-68f3ff
60c74a6ede4b8b9fbf1665fb78b57c68afd4b986
2021-07-02T15:40:46.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-68f3ff
1
null
transformers
29,879
Entry not found
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-a4da87
cdd8607162cee66c73f52b88fea90e5805789b02
2021-07-06T13:34:14.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-a4da87
1
null
transformers
29,880
Entry not found
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-97f2fb
5e3731cc7d8a950eb2e67595b9ace5601d2930cd
2021-07-04T01:49:04.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-97f2fb
1
null
transformers
29,881
Entry not found
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-cf5b17
419aa1985f9ad94cfe8911eeab4812465c9b2252
2021-07-03T08:12:30.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-cf5b17
1
null
transformers
29,882
Entry not found
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-7c4c0c
76bd4806772aaa2f463be06ca8d5367da59f9fda
2021-07-07T18:43:05.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-7c4c0c
1
null
transformers
29,883
Entry not found
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-a504ec
70de3165c13c66be7dc46e923331aa5640647913
2021-07-03T01:29:32.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_d-truncated-a504ec
1
null
transformers
29,884
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_7k_grad_adam
fd55c2c1ab2442280fde975e506152dd0165e6d9
2021-10-29T21:12:12.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_7k_grad_adam
1
null
transformers
29,885
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_3e6_bb_lr_3e6_wu_7k_grad_adam_mask
d8e960d41bc19c9ab454c7efa84be4b82ecc5258
2021-11-03T04:45:59.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_3e6_bb_lr_3e6_wu_7k_grad_adam_mask
1
null
transformers
29,886
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_32_bb_bsz_32_nli_lr_1e5_bb_lr_1e5_wu_7k_grad_adam_mask
f1dab40f1c76b2b2f590d3cf0d15b1089660b564
2021-10-30T05:59:04.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_32_bb_bsz_32_nli_lr_1e5_bb_lr_1e5_wu_7k_grad_adam_mask
1
null
transformers
29,887
Entry not found
luffycodes/mrpc_luffy_mnli_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_250_ep_10
3ee6a0e7d3a59922c60a5b5ad965f399e2364df9
2021-11-08T06:09:34.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/mrpc_luffy_mnli_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_wu_250_ep_10
1
null
transformers
29,888
Entry not found
luffycodes/om_roberta_mnli_lr1e5_ep_10.model
6b481bcff7ed6337e52cb179aae4514bb2dac791
2021-12-02T06:43:47.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/om_roberta_mnli_lr1e5_ep_10.model
1
null
transformers
29,889
Entry not found
luigisbrother/wav2vec2-common_voice-mls-dist
1db5719635b63e20cc1c8fa117ea6ec5f0f6a861
2021-10-20T11:07:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
luigisbrother
null
luigisbrother/wav2vec2-common_voice-mls-dist
1
null
transformers
29,890
Entry not found
lukabor/europarl-mlm
fbb4348311fd0e2bdb1a0414047a71bfef4d6358
2021-05-19T22:10:58.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lukabor
null
lukabor/europarl-mlm
1
null
transformers
29,891
Entry not found
lulueve3/DialoGPT-medium-Kokkoro
157ea40b8f98f53c8460e0cb92cdd0c276bb25c0
2021-09-19T15:55:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lulueve3
null
lulueve3/DialoGPT-medium-Kokkoro
1
null
transformers
29,892
--- tags: - conversational --- # Kokkoro DialoGPT Model
lulueve3/DialoGPT-medium-Kokkoro2
f95021a62959c75f12e46d3908fe9ce8be38609d
2021-09-20T01:57:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
lulueve3
null
lulueve3/DialoGPT-medium-Kokkoro2
1
null
transformers
29,893
--- tags: - conversational --- # Kokkoro DialoGPT Model
lysandre/test_dynamic_model
ea81e34daf7f331ee8807664804dc5957ca6582a
2022-01-27T14:44:29.000Z
[ "pytorch", "new-model", "transformers" ]
null
false
lysandre
null
lysandre/test_dynamic_model
1
null
transformers
29,894
Entry not found
lysandre/tiny-random-detr
ec0aa259c2c0e0707a490f540c5bda2c799e917c
2021-07-24T15:02:13.000Z
[ "pytorch", "detr", "transformers" ]
null
false
lysandre
null
lysandre/tiny-random-detr
1
null
transformers
29,895
Entry not found
lyx10290516/model202109
f16c0b69208658f349fb8de6d4af3e1e1f13b070
2021-09-03T03:12:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lyx10290516
null
lyx10290516/model202109
1
null
transformers
29,896
Entry not found
lyx10290516/model_cntest
aa1d8febafdf365a959c508bf3a2ac9adb38fb17
2021-09-04T11:09:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lyx10290516
null
lyx10290516/model_cntest
1
null
transformers
29,897
Entry not found
m3hrdadfi/icelandic-ner-distilbert
209c24ea56f570bc2daf9582e3db5c357d1c45fa
2021-05-27T17:17:28.000Z
[ "pytorch", "tf", "distilbert", "token-classification", "is", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
m3hrdadfi
null
m3hrdadfi/icelandic-ner-distilbert
1
null
transformers
29,898
--- language: is license: apache-2.0 widget: - text: "Kristin manneskja getur ekki lagt frásagnir af Jesú Kristi á hilluna vegna þess að hún sé búin að lesa þær ." - text: "Til hvers að kjósa flokk , sem þykist vera Jafnaðarmannaflokkur rétt fyrir kosningar , þegar að það er hægt að kjósa sannnan jafnaðarmannaflokk , sjálfan Jafnaðarmannaflokk Íslands - Samfylkinguna ." - text: "Það sannaðist svo eftirminnilega á plötunni Það þarf fólk eins og þig sem kom út fyrir þremur árum , en á henni hann Fálka úr Keflavík og Gáluna , son sinn , til að útsetja lög hans og spila inn ." - text: "Lögin hafa áður komið út sem aukalög á smáskífum af Hail to the Thief , en á disknum er líka myndband og fleira efni fyrir tölvur ." - text: "Britney gerði honum viðvart og hann ók henni á UCLA-sjúkrahúsið í Santa Monica en það er í nágrenni hljóðversins ." --- # IcelandicNER DistilBERT This model was fine-tuned on the MIM-GOLD-NER dataset for the Icelandic language. The [MIM-GOLD-NER](http://hdl.handle.net/20.500.12537/42) corpus was developed at [Reykjavik University](https://en.ru.is/) in 2018–2020 that covered eight types of entities: - Date - Location - Miscellaneous - Money - Organization - Percent - Person - Time ## Dataset Information | | Records | B-Date | B-Location | B-Miscellaneous | B-Money | B-Organization | B-Percent | B-Person | B-Time | I-Date | I-Location | I-Miscellaneous | I-Money | I-Organization | I-Percent | I-Person | I-Time | |:------|----------:|---------:|-------------:|------------------:|----------:|-----------------:|------------:|-----------:|---------:|---------:|-------------:|------------------:|----------:|-----------------:|------------:|-----------:|---------:| | Train | 39988 | 3409 | 5980 | 4351 | 729 | 5754 | 502 | 11719 | 868 | 2112 | 516 | 3036 | 770 | 2382 | 50 | 5478 | 790 | | Valid | 7063 | 570 | 1034 | 787 | 100 | 1078 | 103 | 2106 | 147 | 409 | 76 | 560 | 104 | 458 | 7 | 998 | 136 | | Test | 8299 | 779 | 1319 | 935 | 153 | 1315 | 108 | 2247 | 172 | 483 | 104 | 660 | 167 | 617 | 10 | 1089 | 158 | ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | entity | precision | recall | f1-score | support | |:-------------:|:---------:|:--------:|:--------:|:-------:| | Date | 0.969309 | 0.973042 | 0.971172 | 779.0 | | Location | 0.941221 | 0.946929 | 0.944067 | 1319.0 | | Miscellaneous | 0.848283 | 0.819251 | 0.833515 | 935.0 | | Money | 0.928571 | 0.934641 | 0.931596 | 153.0 | | Organization | 0.874147 | 0.876806 | 0.875475 | 1315.0 | | Percent | 1.000000 | 1.000000 | 1.000000 | 108.0 | | Person | 0.956674 | 0.972853 | 0.964695 | 2247.0 | | Time | 0.965318 | 0.970930 | 0.968116 | 172.0 | | micro avg | 0.926110 | 0.929141 | 0.927623 | 7028.0 | | macro avg | 0.935441 | 0.936807 | 0.936079 | 7028.0 | | weighted avg | 0.925578 | 0.929141 | 0.927301 | 7028.0 | ## How To Use You use this model with Transformers pipeline for NER. ### Installing requirements ```bash pip install transformers ``` ### How to predict using pipeline ```python from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification # for pytorch from transformers import TFAutoModelForTokenClassification # for tensorflow from transformers import pipeline model_name_or_path = "m3hrdadfi/icelandic-ner-distilbert" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch # model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path) # Tensorflow nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Kristin manneskja getur ekki lagt frásagnir af Jesú Kristi á hilluna vegna þess að hún sé búin að lesa þær ." ner_results = nlp(example) print(ner_results) ``` ## Questions? Post a Github issue on the [IcelandicNER Issues](https://github.com/m3hrdadfi/icelandic-ner/issues) repo.
madbuda/DialoGPT-got-skippy
9cb293f4f24ddcf29ffa932e4dc23c94d7077764
2021-11-25T04:17:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
madbuda
null
madbuda/DialoGPT-got-skippy
1
null
transformers
29,899
--- tags: - conversational --- # My Awesome Model