modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
osanseviero/dummy-model
3b13361728535c178e4f14fb9d98dd96eb142a4f
2021-07-05T16:23:35.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
osanseviero
null
osanseviero/dummy-model
1
null
transformers
30,100
Entry not found
osanseviero/just-a-test
19599b0401f3370a835ed08bcd61e7943608c690
2022-07-01T13:51:55.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "sentence-transformers", "causal-lm", "license:cc-by-sa-4.0", "sentence-similarity" ]
sentence-similarity
false
osanseviero
null
osanseviero/just-a-test
1
null
sentence-transformers
30,101
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - causal-lm license: - cc-by-sa-4.0 --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence"] model = SentenceTransformer(TODO) embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch # The next step is optional if you want your own pooling function. # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] return max_over_time # Sentences we want sentence embeddings for sentences = ['This is an example sentence'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(TODO) model = AutoModel.from_pretrained(TODO) # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## TODO: Training Procedure ## TODO: Evaluation Results ## TODO: Citing & Authors
osanseviero/my-new-sentence-transformer
a2feea590b30db4c579a39a0a12372f6cb430c29
2021-06-28T10:36:13.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
osanseviero
null
osanseviero/my-new-sentence-transformer
1
null
sentence-transformers
30,102
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-xlm-r-multilingual-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-xlm-r-multilingual-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-xlm-r-multilingual-v1') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-xlm-r-multilingual-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-xlm-r-multilingual-v1) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
osyvokon/xslr-commonvoice
b078d4c6985e9277586fb9ee7c7055569d7c8a9d
2021-11-02T14:56:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
osyvokon
null
osyvokon/xslr-commonvoice
1
null
transformers
30,103
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: xslr-commonvoice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xslr-commonvoice This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3835 - Wer: 0.3450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.92 | 100 | 3.5761 | 1.0 | | No log | 1.83 | 200 | 3.0512 | 0.9999 | | No log | 2.75 | 300 | 1.0185 | 0.8188 | | No log | 3.67 | 400 | 0.5936 | 0.6411 | | 3.2139 | 4.59 | 500 | 0.4986 | 0.5267 | | 3.2139 | 5.5 | 600 | 0.4327 | 0.4732 | | 3.2139 | 6.42 | 700 | 0.4227 | 0.4462 | | 3.2139 | 7.34 | 800 | 0.4213 | 0.4291 | | 3.2139 | 8.26 | 900 | 0.4016 | 0.4033 | | 0.22 | 9.17 | 1000 | 0.3987 | 0.3825 | | 0.22 | 10.09 | 1100 | 0.4065 | 0.3867 | | 0.22 | 11.01 | 1200 | 0.3929 | 0.3842 | | 0.22 | 11.93 | 1300 | 0.3775 | 0.3687 | | 0.22 | 12.84 | 1400 | 0.3891 | 0.3536 | | 0.1005 | 13.76 | 1500 | 0.3850 | 0.3492 | | 0.1005 | 14.68 | 1600 | 0.3823 | 0.3441 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
othrif/wav2vec_test
7f73f6cff9dcc9fe8b4d144360b4e8600b53b4a0
2021-03-29T02:48:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:https://arabicspeech.org/", "transformers", "audio", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
othrif
null
othrif/wav2vec_test
1
null
transformers
30,104
--- language: ar datasets: - https://arabicspeech.org/ tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Egyptian by Zaid Alyafeai and Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: arabicspeech.org MGB-3 type: arabicspeech.org MGB-3 args: ar metrics: - name: Test WER type: wer value: 55.2 --- # Test Wav2Vec2 with egyptian arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Egyptian using the [arabicspeech.org MGB-3](https://arabicspeech.org/mgb3-asr/) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor dataset = load_dataset("arabic_speech_corpus", split="test") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec_test") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec_test") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
pablouribe/xls-r-ab-test
7cd3678c4a6a1c381afd67198aefabb8fed5092c
2022-01-30T05:13:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
pablouribe
null
pablouribe/xls-r-ab-test
1
null
transformers
30,105
--- language: - ab tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - AB dataset. It achieves the following results on the evaluation set: - Loss: 133.2596 - Wer: 19.1571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
pashin/DialoGPT-small-ironman-3
e15befb54d853aab93b5f52b55ea2b7152b1f140
2021-10-08T16:53:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pashin
null
pashin/DialoGPT-small-ironman-3
1
null
transformers
30,106
--- tags: - conversational --- # iron man 3
pashin/DialoGPT-small-ironman1
84c5d94ca232d1ea6527d1a12664db7d6b5a7c84
2021-10-06T06:19:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pashin
null
pashin/DialoGPT-small-ironman1
1
null
transformers
30,107
--- tags: - conversational --- #iron man 1 DialoGPT Model
patNike/baby_model
037a09cea683a2b7947a7919b258605b1b445ded
2021-11-02T14:23:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
patNike
null
patNike/baby_model
1
null
transformers
30,108
Entry not found
patrickvonplaten/data2vec-base-960h
807ee1e1102f40aa8f971a73558e65fddf594c10
2022-02-18T18:14:34.000Z
[ "pytorch", "data2vec-audio", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/data2vec-base-960h
1
1
transformers
30,109
Entry not found
patrickvonplaten/hello_2b
a17fddf29d666cf1b17dfb5fc62999ef6c57c886
2021-11-03T19:58:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/hello_2b
1
null
transformers
30,110
--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: hello_2b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hello_2b This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 1.2725 - Wer: 0.9531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1646 | 0.92 | 100 | 3.2106 | 1.0 | | 0.368 | 1.85 | 200 | 2.9963 | 1.0 | | 0.2252 | 2.77 | 300 | 2.8078 | 0.9999 | | 0.1546 | 3.7 | 400 | 2.3458 | 0.9996 | | 0.1468 | 4.63 | 500 | 2.0086 | 0.9986 | | 0.1261 | 5.55 | 600 | 1.8269 | 0.9985 | | 0.1206 | 6.48 | 700 | 1.7347 | 0.9956 | | 0.1959 | 7.4 | 800 | 1.6819 | 0.9955 | | 0.0502 | 8.33 | 900 | 1.6809 | 0.9965 | | 0.0811 | 9.26 | 1000 | 1.6674 | 0.9916 | | 0.0534 | 10.18 | 1100 | 1.5719 | 0.9898 | | 0.0402 | 11.11 | 1200 | 1.4620 | 0.9821 | | 0.057 | 12.04 | 1300 | 1.3015 | 0.9554 | | 0.0385 | 12.96 | 1400 | 1.3798 | 0.9600 | | 0.0422 | 13.88 | 1500 | 1.3538 | 0.9699 | | 0.014 | 14.81 | 1600 | 1.2507 | 0.9443 | | 0.0232 | 15.74 | 1700 | 1.3318 | 0.9465 | | 0.0554 | 16.66 | 1800 | 1.2784 | 0.9462 | | 0.0316 | 17.59 | 1900 | 1.2503 | 0.9481 | | 0.0524 | 18.51 | 2000 | 1.3920 | 0.9604 | | 0.0142 | 19.44 | 2100 | 1.4224 | 0.9698 | | 0.0288 | 20.37 | 2200 | 1.3475 | 0.9635 | | 0.0106 | 21.29 | 2300 | 1.2232 | 0.9264 | | 0.0396 | 22.22 | 2400 | 1.3323 | 0.9615 | | 0.0349 | 23.15 | 2500 | 1.2741 | 0.9587 | | 0.0121 | 24.07 | 2600 | 1.2671 | 0.9586 | | 0.0224 | 24.99 | 2700 | 1.3001 | 0.9611 | | 0.0449 | 25.92 | 2800 | 1.2777 | 0.9572 | | 0.0186 | 26.85 | 2900 | 1.2766 | 0.9607 | | 0.0365 | 27.77 | 3000 | 1.2935 | 0.9598 | | 0.0105 | 28.7 | 3100 | 1.2761 | 0.9588 | | 0.021 | 29.63 | 3200 | 1.2686 | 0.9528 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/hello_2b_2
bafcbc64e62a7992e26f73889c212e9ab1d39094
2021-11-04T05:07:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/hello_2b_2
1
null
transformers
30,111
--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: hello_2b_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hello_2b_2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5324 - Wer: 0.5109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3543 | 0.92 | 100 | 3.4342 | 1.0 | | 3.0521 | 1.85 | 200 | 3.1243 | 1.0 | | 1.4905 | 2.77 | 300 | 1.1760 | 0.9876 | | 0.5852 | 3.7 | 400 | 0.7678 | 0.7405 | | 0.4442 | 4.63 | 500 | 0.7637 | 0.7179 | | 0.3816 | 5.55 | 600 | 0.7114 | 0.6726 | | 0.2923 | 6.48 | 700 | 0.7109 | 0.6837 | | 0.2771 | 7.4 | 800 | 0.6800 | 0.6530 | | 0.1643 | 8.33 | 900 | 0.6031 | 0.6089 | | 0.2931 | 9.26 | 1000 | 0.6467 | 0.6308 | | 0.1495 | 10.18 | 1100 | 0.6042 | 0.6085 | | 0.2093 | 11.11 | 1200 | 0.5850 | 0.5889 | | 0.1329 | 12.04 | 1300 | 0.5557 | 0.5567 | | 0.1005 | 12.96 | 1400 | 0.5964 | 0.5814 | | 0.2162 | 13.88 | 1500 | 0.5692 | 0.5626 | | 0.0923 | 14.81 | 1600 | 0.5508 | 0.5462 | | 0.075 | 15.74 | 1700 | 0.5477 | 0.5307 | | 0.2029 | 16.66 | 1800 | 0.5501 | 0.5300 | | 0.0985 | 17.59 | 1900 | 0.5350 | 0.5303 | | 0.1674 | 18.51 | 2000 | 0.5429 | 0.5241 | | 0.1305 | 19.44 | 2100 | 0.5645 | 0.5443 | | 0.0774 | 20.37 | 2200 | 0.5313 | 0.5216 | | 0.1372 | 21.29 | 2300 | 0.5644 | 0.5392 | | 0.1095 | 22.22 | 2400 | 0.5577 | 0.5306 | | 0.0958 | 23.15 | 2500 | 0.5461 | 0.5273 | | 0.0544 | 24.07 | 2600 | 0.5290 | 0.5055 | | 0.0579 | 24.99 | 2700 | 0.5295 | 0.5150 | | 0.1213 | 25.92 | 2800 | 0.5311 | 0.5221 | | 0.0691 | 26.85 | 2900 | 0.5228 | 0.5095 | | 0.1729 | 27.77 | 3000 | 0.5340 | 0.5095 | | 0.0697 | 28.7 | 3100 | 0.5334 | 0.5139 | | 0.0734 | 29.63 | 3200 | 0.5323 | 0.5140 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/rag-sequence-gen-prev
9701fbc93993df55cda5f433d8563ada09500e10
2020-09-24T12:42:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/rag-sequence-gen-prev
1
null
transformers
30,112
Entry not found
patrickvonplaten/roberta2roberta-cnn_dailymail-fp16
c6a58c60c13bebca223a2d8ed7055dc73c4acc72
2020-12-11T21:59:23.000Z
[ "pytorch", "encoder_decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/roberta2roberta-cnn_dailymail-fp16
1
null
transformers
30,113
# Roberta2Roberta Summarization with 🤗 EncoderDecoder Framework This model is a Roberta2Roberta model fine-tuned on summarization. Roberta2Roberta is a `EncoderDecoderModel`, meaning that both the encoder and the decoder are `roberta-base` RoBERTa models. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python roberta2roberta = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``roberta2roberta`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `roberta2roberta-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import BertTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16") tokenizer = RobertaTokenizer.from_pretrained("roberta-base") article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David B oren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 185 6, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confede rate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking fu ll membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on t he fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more invol ved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members al legedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a frat ernity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity, ' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloy d's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing in cidents.""" input_ids = tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing racist chants. The fraternity's national chapter has had to close 12 in 18 months over hazing. # Sigma has had more than 130 chapters in 18 states. University of Oklahoma president says fraternity has been "deteriorated". ``` ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `roberta2roberta-cnn_dailymail-fp16 ` for reproducability. The training last ~9h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import RobertaTokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base") tokenizer = RobertaTokenizer.from_pretrained("roberta-base") # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=0) # set decoding params model.config.decoder_start_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 encoder_length = 512 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at Longformer at 2048 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 256 outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() # mask loss for padding batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = tokenizer.eos_token_id label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_attention_mask", "decoder_input_ids", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "decoder_attention_mask", "attention_mask", "decoder_input_ids", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=3, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp from transformers import RobertaTokenizer, EncoderDecoderModel tokenizer = RobertaTokenizer.from_pretrained("roberta-base") model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16") model.to("cuda") test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 128 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = model.generate(input_ids, attention_mask=attention_mask) # all special tokens including will be removed output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 15.79 | 19.05 | **16.79** |
patrickvonplaten/sat-base
94d99c42b44977b7cef9a6af66005ea306bc1053
2021-10-22T17:51:13.000Z
[ "pytorch", "tensorboard", "unispeech-sat", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/sat-base
1
null
transformers
30,114
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sat-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sat-base This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.7014 - Wer: 0.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9958 | 0.69 | 100 | 6.7171 | 1.0 | | 3.0453 | 1.38 | 200 | 3.0374 | 1.0 | | 2.9989 | 2.07 | 300 | 2.9807 | 1.0 | | 2.969 | 2.76 | 400 | 2.9579 | 1.0 | | 2.903 | 3.45 | 500 | 2.9072 | 1.0 | | 2.8565 | 4.14 | 600 | 2.8804 | 1.0 | | 2.8195 | 4.83 | 700 | 2.7916 | 1.0 | | 2.3134 | 5.52 | 800 | 2.1456 | 1.0004 | | 1.5475 | 6.21 | 900 | 1.4663 | 0.9549 | | 1.1295 | 6.9 | 1000 | 1.1140 | 0.7227 | | 1.0181 | 7.59 | 1100 | 0.9258 | 0.6497 | | 1.0252 | 8.28 | 1200 | 0.8430 | 0.6255 | | 0.835 | 8.97 | 1300 | 0.8063 | 0.6032 | | 0.662 | 9.66 | 1400 | 0.7595 | 0.5931 | | 0.5558 | 10.34 | 1500 | 0.7322 | 0.5819 | | 0.7596 | 11.03 | 1600 | 0.7120 | 0.5708 | | 0.6169 | 11.72 | 1700 | 0.7073 | 0.5606 | | 0.4565 | 12.41 | 1800 | 0.7124 | 0.5586 | | 0.4554 | 13.1 | 1900 | 0.6880 | 0.5501 | | 0.6216 | 13.79 | 2000 | 0.6783 | 0.5494 | | 0.5393 | 14.48 | 2100 | 0.7067 | 0.5499 | | 0.4095 | 15.17 | 2200 | 0.7014 | 0.5438 | | 0.3551 | 15.86 | 2300 | 0.7000 | 0.5426 | | 0.5112 | 16.55 | 2400 | 0.6866 | 0.5426 | | 0.5139 | 17.24 | 2500 | 0.7134 | 0.5446 | | 0.3638 | 17.93 | 2600 | 0.7130 | 0.5434 | | 0.3327 | 18.62 | 2700 | 0.6980 | 0.5377 | | 0.4385 | 19.31 | 2800 | 0.7017 | 0.5390 | | 0.4986 | 20.0 | 2900 | 0.7014 | 0.5374 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/unispeech-sat-base-timit-ft
3722323daab20f755e0cd1f2e5b3497db2aa4ab3
2021-10-27T10:51:18.000Z
[ "pytorch", "tensorboard", "unispeech-sat", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/unispeech-sat-base-timit-ft
1
null
transformers
30,115
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: unispeech-sat-base-timit-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-sat-base-timit-ft This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.6712 - Wer: 0.4101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2582 | 0.69 | 100 | 3.1651 | 1.0 | | 2.9542 | 1.38 | 200 | 2.9567 | 1.0 | | 2.9656 | 2.07 | 300 | 2.9195 | 1.0 | | 2.8946 | 2.76 | 400 | 2.8641 | 1.0 | | 1.9305 | 3.45 | 500 | 1.7680 | 1.0029 | | 1.0134 | 4.14 | 600 | 1.0184 | 0.6942 | | 0.8355 | 4.83 | 700 | 0.7769 | 0.6080 | | 0.8724 | 5.52 | 800 | 0.7182 | 0.6035 | | 0.5619 | 6.21 | 900 | 0.6823 | 0.5406 | | 0.4247 | 6.9 | 1000 | 0.6279 | 0.5237 | | 0.4257 | 7.59 | 1100 | 0.6056 | 0.5000 | | 0.5007 | 8.28 | 1200 | 0.5870 | 0.4918 | | 0.3854 | 8.97 | 1300 | 0.6200 | 0.4804 | | 0.264 | 9.66 | 1400 | 0.6030 | 0.4600 | | 0.1989 | 10.34 | 1500 | 0.6049 | 0.4588 | | 0.3196 | 11.03 | 1600 | 0.5946 | 0.4599 | | 0.2622 | 11.72 | 1700 | 0.6282 | 0.4422 | | 0.1697 | 12.41 | 1800 | 0.6559 | 0.4413 | | 0.1464 | 13.1 | 1900 | 0.6349 | 0.4328 | | 0.2277 | 13.79 | 2000 | 0.6133 | 0.4284 | | 0.221 | 14.48 | 2100 | 0.6617 | 0.4219 | | 0.1391 | 15.17 | 2200 | 0.6705 | 0.4235 | | 0.112 | 15.86 | 2300 | 0.6207 | 0.4218 | | 0.1717 | 16.55 | 2400 | 0.6749 | 0.4184 | | 0.2081 | 17.24 | 2500 | 0.6756 | 0.4169 | | 0.1244 | 17.93 | 2600 | 0.6750 | 0.4181 | | 0.0978 | 18.62 | 2700 | 0.6500 | 0.4115 | | 0.128 | 19.31 | 2800 | 0.6750 | 0.4106 | | 0.1791 | 20.0 | 2900 | 0.6712 | 0.4101 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-2-bart-base_test
00d996fa2fcdecf86bd1b8e22c73050c50437cbf
2021-12-28T12:28:49.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-2-bart-base_test
1
null
transformers
30,116
Entry not found
patrickvonplaten/wav2vec2-base-repro-timit
394cd6beb5ec40b779cf7cdbc954ef18f350cea7
2021-10-25T16:17:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base-repro-timit
1
null
transformers
30,117
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: wav2vec2-base-repro-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-repro-timit This model is a fine-tuned version of [patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps](https://huggingface.co/patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.8562 - Wer: 0.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.9793 | 0.69 | 100 | 5.4532 | 1.0 | | 2.9066 | 1.38 | 200 | 2.9070 | 1.0 | | 2.2562 | 2.07 | 300 | 2.0323 | 1.0 | | 1.5273 | 2.76 | 400 | 1.1510 | 0.8001 | | 1.1085 | 3.45 | 500 | 0.9521 | 0.7053 | | 0.813 | 4.14 | 600 | 0.8617 | 0.6702 | | 0.8434 | 4.83 | 700 | 0.8068 | 0.6393 | | 0.9631 | 5.52 | 800 | 0.7863 | 0.6248 | | 0.707 | 6.21 | 900 | 0.7476 | 0.5973 | | 0.5568 | 6.9 | 1000 | 0.7350 | 0.5911 | | 0.6171 | 7.59 | 1100 | 0.7171 | 0.5841 | | 0.7011 | 8.28 | 1200 | 0.7318 | 0.5798 | | 0.5546 | 8.97 | 1300 | 0.7447 | 0.5767 | | 0.4278 | 9.66 | 1400 | 0.7481 | 0.5650 | | 0.3576 | 10.34 | 1500 | 0.7443 | 0.5713 | | 0.5506 | 11.03 | 1600 | 0.7574 | 0.5664 | | 0.4127 | 11.72 | 1700 | 0.8043 | 0.5631 | | 0.3251 | 12.41 | 1800 | 0.7738 | 0.5550 | | 0.3119 | 13.1 | 1900 | 0.7829 | 0.5516 | | 0.4371 | 13.79 | 2000 | 0.8025 | 0.5556 | | 0.3772 | 14.48 | 2100 | 0.8451 | 0.5559 | | 0.2942 | 15.17 | 2200 | 0.8300 | 0.5556 | | 0.2503 | 15.86 | 2300 | 0.8417 | 0.5541 | | 0.3671 | 16.55 | 2400 | 0.8568 | 0.5528 | | 0.3867 | 17.24 | 2500 | 0.8521 | 0.5510 | | 0.2614 | 17.93 | 2600 | 0.8479 | 0.5523 | | 0.2441 | 18.62 | 2700 | 0.8558 | 0.5494 | | 0.3059 | 19.31 | 2800 | 0.8553 | 0.5474 | | 0.3734 | 20.0 | 2900 | 0.8562 | 0.5484 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-repro-960h-libri-120k-steps
3a62136561cf01744650fdc80d7fa8e79e5d26fa
2021-10-08T14:12:07.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-repro-960h-libri-120k-steps
1
null
transformers
30,118
https://wandb.ai/patrickvonplaten/pretraining-wav2vec2/reports/Wav2Vec2-Large--VmlldzoxMTAwODM4?accessToken=wm3qzcnldrwsa31tkvf2pdmilw3f63d4twtffs86ou016xjbyilh55uoi3mo1qzc
patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab
bb5da748d510b47d906ab7c19c40d11fe1e72022
2022-05-09T20:22:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
30,119
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3864 - Wer: 0.3570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8302 | 3.67 | 400 | 0.6702 | 0.6903 | | 0.4098 | 7.34 | 800 | 0.4574 | 0.4939 | | 0.1908 | 11.01 | 1200 | 0.4350 | 0.4557 | | 0.1279 | 14.68 | 1600 | 0.4204 | 0.4213 | | 0.0966 | 18.35 | 2000 | 0.4238 | 0.3991 | | 0.0782 | 22.02 | 2400 | 0.3822 | 0.3906 | | 0.0613 | 25.69 | 2800 | 0.3982 | 0.3714 | | 0.0477 | 29.36 | 3200 | 0.3864 | 0.3570 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-53-common_voice-tr-ft
9a65aae7291f105ca880d7c67c04f4294c8decb2
2021-11-14T16:47:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "xls_r_repro_common_voice_tr", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-xlsr-53-common_voice-tr-ft
1
null
transformers
30,120
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - xls_r_repro_common_voice_tr datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Wer: 0.3104 - Cer: 0.0737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results see under *Training Metrics* Tab. ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-random
9097b448acdad53da3e2741f1d56c300ca149154
2021-10-22T17:20:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-random
1
null
transformers
30,121
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: wav2vec2-random results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-random This model is a fine-tuned version of [patrickvonplaten/wav2vec2-base-random](https://huggingface.co/patrickvonplaten/wav2vec2-base-random) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.1593 - Wer: 0.8364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9043 | 0.69 | 100 | 2.9683 | 1.0 | | 2.8537 | 1.38 | 200 | 2.9281 | 0.9997 | | 2.7803 | 2.07 | 300 | 2.7330 | 0.9999 | | 2.6806 | 2.76 | 400 | 2.5792 | 1.0 | | 2.4136 | 3.45 | 500 | 2.4327 | 0.9948 | | 2.1682 | 4.14 | 600 | 2.3508 | 0.9877 | | 2.2577 | 4.83 | 700 | 2.2176 | 0.9773 | | 2.355 | 5.52 | 800 | 2.1753 | 0.9542 | | 1.8588 | 6.21 | 900 | 2.0650 | 0.8851 | | 1.6831 | 6.9 | 1000 | 2.0109 | 0.8618 | | 1.888 | 7.59 | 1100 | 1.9660 | 0.8418 | | 2.0066 | 8.28 | 1200 | 1.9847 | 0.8531 | | 1.7044 | 8.97 | 1300 | 1.9760 | 0.8527 | | 1.3168 | 9.66 | 1400 | 2.0708 | 0.8327 | | 1.2143 | 10.34 | 1500 | 2.0601 | 0.8419 | | 1.6189 | 11.03 | 1600 | 2.0960 | 0.8299 | | 1.13 | 11.72 | 1700 | 2.2540 | 0.8408 | | 0.8001 | 12.41 | 1800 | 2.4260 | 0.8306 | | 0.7769 | 13.1 | 1900 | 2.4182 | 0.8445 | | 1.2165 | 13.79 | 2000 | 2.3666 | 0.8284 | | 0.8026 | 14.48 | 2100 | 2.7118 | 0.8662 | | 0.5148 | 15.17 | 2200 | 2.7957 | 0.8526 | | 0.4921 | 15.86 | 2300 | 2.8244 | 0.8346 | | 0.7629 | 16.55 | 2400 | 2.8944 | 0.8370 | | 0.5762 | 17.24 | 2500 | 3.0335 | 0.8367 | | 0.4076 | 17.93 | 2600 | 3.0776 | 0.8358 | | 0.3395 | 18.62 | 2700 | 3.1572 | 0.8261 | | 0.4862 | 19.31 | 2800 | 3.1319 | 0.8414 | | 0.5061 | 20.0 | 2900 | 3.1593 | 0.8364 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-xlarge-dotdotdot-common_voice-tr-demo
ca52a9779bbd73a9ed34a736e86fbfcf3db8872c
2021-10-27T10:41:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-xlarge-dotdotdot-common_voice-tr-demo
1
0
transformers
30,122
--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xlarge-...-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlarge-...-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-xlarge-xlsr-...](https://huggingface.co/facebook/wav2vec2-xlarge-xlsr-...) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.2701 - Wer: 0.2309 - Cer: 0.0527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4388 | 3.7 | 400 | 1.366 | 0.9701 | | 0.3766 | 7.4 | 800 | 0.4914 | 0.5374 | | 0.2295 | 11.11 | 1200 | 0.3934 | 0.4125 | | 0.1121 | 14.81 | 1600 | 0.3264 | 0.2904 | | 0.1473 | 18.51 | 2000 | 0.3103 | 0.2671 | | 0.1013 | 22.22 | 2400 | 0.2589 | 0.2324 | | 0.0704 | 25.92 | 2800 | 0.2826 | 0.2339 | | 0.0537 | 29.63 | 3200 | 0.2704 | 0.2309 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wavlm-libri-clean-100h-base
4b5f3af55ea5c6fd93efb929912f3ea6da950474
2021-12-20T12:59:09.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wavlm-libri-clean-100h-base
1
null
transformers
30,123
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-libri-clean-100h-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0829 - Wer: 0.0675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8805 | 0.34 | 300 | 2.8686 | 1.0 | | 0.2459 | 0.67 | 600 | 0.1858 | 0.1554 | | 0.1114 | 1.01 | 900 | 0.1379 | 0.1191 | | 0.0867 | 1.35 | 1200 | 0.1130 | 0.0961 | | 0.0698 | 1.68 | 1500 | 0.1032 | 0.0877 | | 0.0663 | 2.02 | 1800 | 0.0959 | 0.0785 | | 0.0451 | 2.35 | 2100 | 0.0887 | 0.0748 | | 0.0392 | 2.69 | 2400 | 0.0859 | 0.0698 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/xls-r-300m-sv-phoneme
34a361c678f773c82fb00c24803141ed2948ee16
2021-12-21T11:15:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "mozilla-foundation/common_voice_3_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/xls-r-300m-sv-phoneme
1
1
transformers
30,124
--- tags: - automatic-speech-recognition - mozilla-foundation/common_voice_3_0 - generated_from_trainer model-index: - name: xls-r-300m-sv-phoneme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-sv-phoneme This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the mozilla-foundation/common_voice_3_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.4879 - Wer: 0.0997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000075 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/xprophetnet-large-wiki100-cased_old
afbabbb4702c28f7ac1a12a33f957855b8d90cd7
2020-10-16T13:05:43.000Z
[ "pytorch", "xlm-prophetnet", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/xprophetnet-large-wiki100-cased_old
1
null
transformers
30,125
Entry not found
pcuenq/wav2vec2-large-xlsr-53-eu
661b20f2b9756e322439f781b753d98dff62aec5
2021-03-28T19:35:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "eu", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pcuenq
null
pcuenq/wav2vec2-large-xlsr-53-eu
1
null
transformers
30,126
--- language: eu datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Basque by pcuenq results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eu type: common_voice args: eu metrics: - name: Test WER type: wer value: 15.34 --- # Wav2Vec2-Large-XLSR-53-EU Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Basque using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu") model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") model_name = "pcuenq/wav2vec2-large-xlsr-53-eu" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) model.to("cuda") ## Text pre-processing chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]' chars_to_ignore_pattern = re.compile(chars_to_ignore_regex) def remove_special_characters(batch): batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " " return batch ## Audio pre-processing import librosa def speech_file_to_array_fn(batch): speech_array, sample_rate = torchaudio.load(batch["path"]) batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000) return batch # Text transformation and audio resampling def cv_prepare(batch): batch = remove_special_characters(batch) batch = speech_file_to_array_fn(batch) return batch # Number of CPUs or None num_proc = 16 test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) # WER Metric computation print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 15.34 % ## Training The Common Voice `train` and `validation` datasets were used for training. Training was performed for 22 + 20 epochs with the following parameters: - Batch size 16, 2 gradient accumulation steps. - Learning rate: 2.5e-4 - Activation dropout: 0.05 - Attention dropout: 0.1 - Hidden dropout: 0.05 - Feature proj. dropout: 0.05 - Mask time probability: 0.08 - Layer dropout: 0.05
pelican/COMP0087_GPT2
0247b59d07b7fbf0e85ca8c6e47cd07f5d2ca941
2021-05-30T16:43:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
pelican
null
pelican/COMP0087_GPT2
1
null
transformers
30,127
Entry not found
pelican/COMP0087_GPT2_tokenizer
c43919ae6f19e8fa44b24de088aad4f741f7ea14
2021-05-30T16:32:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
pelican
null
pelican/COMP0087_GPT2_tokenizer
1
null
transformers
30,128
Entry not found
pere/norwegian-t5
e625264abd3cf382acd8f8da5d47bfb0a71aea10
2021-09-23T16:19:43.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "no", "dataset:oscar", "transformers", "summary", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
pere
null
pere/norwegian-t5
1
null
transformers
30,129
--- language: no license: cc-by-4.0 tags: - summary datasets: - oscar widget: - text: 'translate Bokmål to Nynorsk: Dette er en test!' --- # Norwegian T5 - small - Oscar ## Description This is a sample reference model trained only on the Oscar Corpus for a day on a TPU v3-8. Do not use this model as anything other than a simple reference point.
peril10/play_time
3cec9d4d7acb33d38ef51bdbd9ad588aae94308e
2021-05-23T10:58:48.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
peril10
null
peril10/play_time
1
null
transformers
30,130
Entry not found
peterhsu/dummy-model
37ca4166c8f7980e930d4fc4d59b3b0d72e7f470
2021-12-25T05:56:47.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
peterhsu
null
peterhsu/dummy-model
1
null
transformers
30,131
Entry not found
pgperrone/dummy-model
cb4a9d0323a021b18d42fa996961ddcdf0dcacba
2021-08-13T18:24:39.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pgperrone
null
pgperrone/dummy-model
1
null
transformers
30,132
Entry not found
phantomcoder1996/wav2vec2-large-xls-r-300m-arabic
0b8edcc3c527efbe8d889c7300802b52900de833
2022-03-23T18:30:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
phantomcoder1996
null
phantomcoder1996/wav2vec2-large-xls-r-300m-arabic
1
null
transformers
30,133
--- language: - ar thumbnail: wav2vec2-large-xls-r-300m-arabic fine-tuned for Modern Standard Arabic tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event license: apache-2.0 datasets: - mozilla-foundation/common_voice_7_0 metrics: - WER model-index: - name: wav2vec2-large-xls-r-300m-arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 57.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 95.07 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 93.58 --- # XLS-R-300m-Arabic
phdf33/trialbert-base
bdb4a744431c3bd6ea168b4c621f33e7c57fcbf6
2021-09-28T15:40:59.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
phdf33
null
phdf33/trialbert-base
1
1
transformers
30,134
Entry not found
philippelaban/summary_loop24
e6edf02e703b5e4efe0beb87520271038eb1eb11
2022-02-09T22:01:38.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:cnn_dailymail", "transformers", "summarization", "license:apache-2.0" ]
summarization
false
philippelaban
null
philippelaban/summary_loop24
1
2
transformers
30,135
--- language: - en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail --- # Try out in the Hosted inference API In the right panel, you can try to the model (although it only handles a short sequence length). Enter the document you want to summarize in the panel on the right. # Model Loading The model (based on a GPT2 base architecture) can be loaded in the following way: ``` from transformers import GPT2LMHeadModel, GPT2TokenizerFast model = GPT2LMHeadModel.from_pretrained("philippelaban/summary_loop46") tokenizer = GPT2TokenizerFast.from_pretrained("philippelaban/summary_loop46") ``` # Example Use ``` document = "Bouncing Boulders Point to Quakes on Mars. A preponderance of boulder tracks on the red planet may be evidence of recent seismic activity. If a rock falls on Mars, and no one is there to see it, does it leave a trace? Yes, and it's a beautiful herringbone-like pattern, new research reveals. Scientists have now spotted thousands of tracks on the red planet created by tumbling boulders. Delicate chevron-shaped piles of Martian dust and sand frame the tracks, the team showed, and most fade over the course of a few years. Rockfalls have been spotted elsewhere in the solar system, including on the moon and even a comet. But a big open question is the timing of these processes on other worlds — are they ongoing or did they predominantly occur in the past?" tokenized_document = tokenizer([document], max_length=300, truncation=True, return_tensors="pt")["input_ids"].cuda() input_shape = tokenized_document.shape outputs = model.generate(tokenized_document, do_sample=False, max_length=500, num_beams=4, num_return_sequences=4, no_repeat_ngram_size=6, return_dict_in_generate=True, output_scores=True) candidate_sequences = outputs.sequences[:, input_shape[1]:] # Remove the encoded text, keep only the summary candidate_scores = outputs.sequences_scores.tolist() for candidate_tokens, score in zip(candidate_sequences, candidate_scores): summary = tokenizer.decode(candidate_tokens) print("[Score: %.3f] %s" % (score, summary[:summary.index("END")])) ``` # Example output ``` [Score: -0.113] These tracks have been spotted elsewhere in the solar system, including on the red planet, and no one is there to see it, does it leave a trace? Yes, and [Score: -0.119] Now researchers have spotted thousands of tracks on the red planet created by tumbling boulders in Mars, and no one is there to see it, does it leave a trace? [Score: -0.214] Here are answers to those questions posed by scientists investigating the tracks discovered by scientists examining the tracks discovered by scientists exploring the tracks discovered by scientists exploring the tracks discovered by scientists exploring the [Score: -0.388] These are the kinds of questions swirling around whether these tracks exist on Mars, and whether they should be noticed sooner rather than later. Here are some answers: -- The tracks detected ``` # Github repo You can access more information, access to the scoring function, the training script, or an example training log on the Github repo: https://github.com/CannyLab/summary_loop
philschmid/distilroberta-base-ner-wikiann-conll2003-4-class
a5e552e199083d66542498375906d35e8a47bd40
2021-05-24T18:53:58.000Z
[ "pytorch", "roberta", "token-classification", "dataset:wikiann-conll2003", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
philschmid
null
philschmid/distilroberta-base-ner-wikiann-conll2003-4-class
1
null
transformers
30,136
--- license: apache-2.0 tags: - token-classification datasets: - wikiann-conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilroberta-base-ner-wikiann-conll2003-4-class results: - task: name: Token Classification type: token-classification dataset: name: wikiann-conll2003 type: wikiann-conll2003 metrics: - name: Precision type: precision value: 0.9492143658810326 - name: Recall type: recall value: 0.9585379675103891 - name: F1 type: f1 value: 0.9538533834586467 - name: Accuracy type: accuracy value: 0.9882022644288301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-ner-wikiann-conll2003-4-class This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the wikiann and conll2003 dataset. It consists out of the classes of conll2003. O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4) B-LOC (5), I-LOC (6) B-MISC (7), I-MISC (8). eval F1-Score: **95,39** (merged dataset) test F1-Score: **90,75** (merged dataset) ## Model Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-4-class") model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-4-class") nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True) example = "My name is Philipp and live in Germany" nlp(example) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9086903597787154e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results It achieves the following results on the evaluation set: - Loss: 0.0705 - Precision: 0.9492 - Recall: 0.9585 - F1: 0.9539 - Accuracy: 0.9882 It achieves the following results on the test set: - Loss: 0.239 - Precision: 0.8984 - Recall: 0.9168 - F1: 0.9075 - Accuracy: 0.9741 ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.2
phongdtd/wavLM-VLSP-vi-base
04ba95ee601120c3dad6a5100b7a6d294a172b0d
2022-02-21T13:01:14.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers", "phongdtd/VinDataVLSP", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
phongdtd
null
phongdtd/wavLM-VLSP-vi-base
1
null
transformers
30,137
--- tags: - automatic-speech-recognition - phongdtd/VinDataVLSP - generated_from_trainer model-index: - name: wavLM-VLSP-vi-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavLM-VLSP-vi-base This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the PHONGDTD/VINDATAVLSP - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.0390 - Wer: 0.9995 - Cer: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
phongdtd/wavLM-VLSP-vi
d547cbd08350ef490d482b6382e3ce6b085789b8
2022-02-19T00:36:24.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers", "phongdtd/VinDataVLSP", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
phongdtd
null
phongdtd/wavLM-VLSP-vi
1
null
transformers
30,138
--- tags: - automatic-speech-recognition - phongdtd/VinDataVLSP - generated_from_trainer model-index: - name: wavLM-VLSP-vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavLM-VLSP-vi This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the PHONGDTD/VINDATAVLSP - NA dataset. It achieves the following results on the evaluation set: - Loss: 45.8892 - Wer: 0.9999 - Cer: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 3.4482 | 9.41 | 40000 | 3.4480 | 0.9999 | 0.9974 | | 3.4619 | 18.81 | 80000 | 3.4514 | 0.9999 | 0.9974 | | 3.7961 | 28.22 | 120000 | 3.8732 | 0.9999 | 0.9974 | | 24.3843 | 37.62 | 160000 | 22.5457 | 0.9999 | 0.9973 | | 48.5691 | 47.03 | 200000 | 45.8892 | 0.9999 | 0.9973 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
phongdtd/wavlm-vindata-demo-dist
1b2ddf0f96f95de0faaa6712889bb5b72b45ead1
2022-02-17T05:00:57.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "dataset:vin_data_vlsp", "transformers", "phongdtd/VinDataVLSP", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
phongdtd
null
phongdtd/wavlm-vindata-demo-dist
1
null
transformers
30,139
--- tags: - automatic-speech-recognition - phongdtd/VinDataVLSP - generated_from_trainer datasets: - vin_data_vlsp model-index: - name: wavlm-vindata-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-vindata-demo-dist This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the PHONGDTD/VINDATAVLSP - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.4439 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:---:| | 4.0704 | 0.01 | 100 | 3.8768 | 1.0 | | 3.6236 | 0.01 | 200 | 3.4611 | 1.0 | | 6.597 | 0.02 | 300 | 3.4557 | 1.0 | | 3.4744 | 0.03 | 400 | 3.4567 | 1.0 | | 5.3992 | 0.04 | 500 | 3.4631 | 1.0 | | 4.5348 | 0.04 | 600 | 3.4651 | 1.0 | | 3.2457 | 0.05 | 700 | 3.4917 | 1.0 | | 3.9245 | 0.06 | 800 | 3.4680 | 1.0 | | 3.2904 | 0.07 | 900 | 3.4518 | 1.0 | | 3.4768 | 0.07 | 1000 | 3.4506 | 1.0 | | 3.2418 | 0.08 | 1100 | 3.4474 | 1.0 | | 3.3111 | 0.09 | 1200 | 3.4684 | 1.0 | | 3.986 | 0.09 | 1300 | 3.4465 | 1.0 | | 4.3206 | 0.1 | 1400 | 3.4723 | 1.0 | | 4.682 | 0.11 | 1500 | 3.4732 | 1.0 | | 4.858 | 0.12 | 1600 | 3.4416 | 1.0 | | 3.2949 | 0.12 | 1700 | 3.4481 | 1.0 | | 3.4435 | 0.13 | 1800 | 3.4570 | 1.0 | | 5.0695 | 0.14 | 1900 | 3.4448 | 1.0 | | 3.4962 | 0.14 | 2000 | 3.4416 | 1.0 | | 3.4891 | 0.15 | 2100 | 3.4455 | 1.0 | | 4.1281 | 0.16 | 2200 | 3.4447 | 1.0 | | 3.5956 | 0.17 | 2300 | 3.4512 | 1.0 | | 3.6312 | 0.17 | 2400 | 3.4484 | 1.0 | | 4.5383 | 0.18 | 2500 | 3.4435 | 1.0 | | 6.1329 | 0.19 | 2600 | 3.4530 | 1.0 | | 3.709 | 0.2 | 2700 | 3.4466 | 1.0 | | 3.289 | 0.2 | 2800 | 3.4463 | 1.0 | | 4.3301 | 0.21 | 2900 | 3.4418 | 1.0 | | 4.6656 | 0.22 | 3000 | 3.4447 | 1.0 | | 3.4288 | 0.22 | 3100 | 3.4715 | 1.0 | | 3.5506 | 0.23 | 3200 | 3.4437 | 1.0 | | 3.7497 | 0.24 | 3300 | 3.4910 | 1.0 | | 3.5198 | 0.25 | 3400 | 3.4574 | 1.0 | | 3.4183 | 0.25 | 3500 | 3.4607 | 1.0 | | 4.5573 | 0.26 | 3600 | 3.4421 | 1.0 | | 3.5737 | 0.27 | 3700 | 3.4481 | 1.0 | | 4.9008 | 0.28 | 3800 | 3.4411 | 1.0 | | 4.8725 | 0.28 | 3900 | 3.4422 | 1.0 | | 3.5799 | 0.29 | 4000 | 3.4659 | 1.0 | | 3.3257 | 0.3 | 4100 | 3.4519 | 1.0 | | 3.6887 | 0.3 | 4200 | 3.4827 | 1.0 | | 3.3037 | 0.31 | 4300 | 3.4632 | 1.0 | | 5.5543 | 0.32 | 4400 | 3.4480 | 1.0 | | 3.2898 | 0.33 | 4500 | 3.4404 | 1.0 | | 3.2794 | 0.33 | 4600 | 3.4633 | 1.0 | | 3.7896 | 0.34 | 4700 | 3.4439 | 1.0 | | 3.6662 | 0.35 | 4800 | 3.4587 | 1.0 | | 3.588 | 0.35 | 4900 | 3.4520 | 1.0 | | 4.0535 | 0.36 | 5000 | 3.4450 | 1.0 | | 3.4335 | 0.37 | 5100 | 3.4577 | 1.0 | | 3.6317 | 0.38 | 5200 | 3.4443 | 1.0 | | 5.2564 | 0.38 | 5300 | 3.4505 | 1.0 | | 3.8781 | 0.39 | 5400 | 3.4418 | 1.0 | | 4.6269 | 0.4 | 5500 | 3.4425 | 1.0 | | 3.6095 | 0.41 | 5600 | 3.4581 | 1.0 | | 4.6164 | 0.41 | 5700 | 3.4404 | 1.0 | | 3.117 | 0.42 | 5800 | 3.4596 | 1.0 | | 4.3939 | 0.43 | 5900 | 3.4401 | 1.0 | | 3.5856 | 0.43 | 6000 | 3.4413 | 1.0 | | 3.5187 | 0.44 | 6100 | 3.4452 | 1.0 | | 4.7991 | 0.45 | 6200 | 3.4481 | 1.0 | | 3.3905 | 0.46 | 6300 | 3.4420 | 1.0 | | 3.5086 | 0.46 | 6400 | 3.4494 | 1.0 | | 4.8217 | 0.47 | 6500 | 3.4477 | 1.0 | | 3.3193 | 0.48 | 6600 | 3.4382 | 1.0 | | 5.3482 | 0.49 | 6700 | 3.4580 | 1.0 | | 3.3947 | 0.49 | 6800 | 3.4767 | 1.0 | | 6.3352 | 0.5 | 6900 | 3.4476 | 1.0 | | 3.4448 | 0.51 | 7000 | 3.4557 | 1.0 | | 3.5358 | 0.51 | 7100 | 3.4438 | 1.0 | | 3.3499 | 0.52 | 7200 | 3.4445 | 1.0 | | 3.6932 | 0.53 | 7300 | 3.4463 | 1.0 | | 6.9058 | 0.54 | 7400 | 3.4482 | 1.0 | | 4.5514 | 0.54 | 7500 | 3.4422 | 1.0 | | 3.517 | 0.55 | 7600 | 3.4505 | 1.0 | | 7.4479 | 0.56 | 7700 | 3.4461 | 1.0 | | 3.3761 | 0.56 | 7800 | 3.4511 | 1.0 | | 4.5925 | 0.57 | 7900 | 3.4389 | 1.0 | | 5.2682 | 0.58 | 8000 | 3.4563 | 1.0 | | 5.6748 | 0.59 | 8100 | 3.4601 | 1.0 | | 4.4335 | 0.59 | 8200 | 3.4439 | 1.0 | | 5.1686 | 0.6 | 8300 | 3.4444 | 1.0 | | 3.5245 | 0.61 | 8400 | 3.4629 | 1.0 | | 4.9426 | 0.62 | 8500 | 3.4389 | 1.0 | | 4.4654 | 0.62 | 8600 | 3.4427 | 1.0 | | 3.5626 | 0.63 | 8700 | 3.4521 | 1.0 | | 4.7086 | 0.64 | 8800 | 3.4489 | 1.0 | | 3.238 | 0.64 | 8900 | 3.4478 | 1.0 | | 4.2738 | 0.65 | 9000 | 3.4510 | 1.0 | | 3.4468 | 0.66 | 9100 | 3.4411 | 1.0 | | 3.2292 | 0.67 | 9200 | 3.4416 | 1.0 | | 3.4972 | 0.67 | 9300 | 3.4643 | 1.0 | | 7.3434 | 0.68 | 9400 | 3.4587 | 1.0 | | 3.708 | 0.69 | 9500 | 3.4799 | 1.0 | | 4.6466 | 0.69 | 9600 | 3.4490 | 1.0 | | 3.3347 | 0.7 | 9700 | 3.4532 | 1.0 | | 5.1486 | 0.71 | 9800 | 3.4427 | 1.0 | | 3.6456 | 0.72 | 9900 | 3.4492 | 1.0 | | 5.3904 | 0.72 | 10000 | 3.4497 | 1.0 | | 4.8832 | 0.73 | 10100 | 3.4476 | 1.0 | | 3.4482 | 0.74 | 10200 | 3.4539 | 1.0 | | 3.617 | 0.75 | 10300 | 3.4547 | 1.0 | | 5.4691 | 0.75 | 10400 | 3.4663 | 1.0 | | 4.2759 | 0.76 | 10500 | 3.4401 | 1.0 | | 8.2106 | 0.77 | 10600 | 3.4404 | 1.0 | | 3.4894 | 0.77 | 10700 | 3.4426 | 1.0 | | 3.6875 | 0.78 | 10800 | 3.4439 | 1.0 | | 3.3277 | 0.79 | 10900 | 3.4446 | 1.0 | | 4.5175 | 0.8 | 11000 | 3.4456 | 1.0 | | 5.2161 | 0.8 | 11100 | 3.4388 | 1.0 | | 3.5234 | 0.81 | 11200 | 3.4418 | 1.0 | | 4.2212 | 0.82 | 11300 | 3.4392 | 1.0 | | 3.6923 | 0.83 | 11400 | 3.4494 | 1.0 | | 3.4863 | 0.83 | 11500 | 3.4572 | 1.0 | | 6.3201 | 0.84 | 11600 | 3.4377 | 1.0 | | 3.7543 | 0.85 | 11700 | 3.4533 | 1.0 | | 3.3959 | 0.85 | 11800 | 3.4600 | 1.0 | | 3.5691 | 0.86 | 11900 | 3.4673 | 1.0 | | 3.49 | 0.87 | 12000 | 3.4407 | 1.0 | | 7.1165 | 0.88 | 12100 | 3.4427 | 1.0 | | 6.731 | 0.88 | 12200 | 3.4394 | 1.0 | | 4.4682 | 0.89 | 12300 | 3.4407 | 1.0 | | 3.3696 | 0.9 | 12400 | 3.4415 | 1.0 | | 4.0241 | 0.9 | 12500 | 3.4454 | 1.0 | | 3.521 | 0.91 | 12600 | 3.4379 | 1.0 | | 5.5273 | 0.92 | 12700 | 3.4423 | 1.0 | | 3.4781 | 0.93 | 12800 | 3.4635 | 1.0 | | 3.4542 | 0.93 | 12900 | 3.4411 | 1.0 | | 3.2363 | 0.94 | 13000 | 3.4396 | 1.0 | | 5.3009 | 0.95 | 13100 | 3.4458 | 1.0 | | 3.498 | 0.96 | 13200 | 3.4398 | 1.0 | | 6.3325 | 0.96 | 13300 | 3.4514 | 1.0 | | 3.5368 | 0.97 | 13400 | 3.4437 | 1.0 | | 5.1164 | 0.98 | 13500 | 3.4623 | 1.0 | | 3.6144 | 0.98 | 13600 | 3.4512 | 1.0 | | 6.6018 | 0.99 | 13700 | 3.4493 | 1.0 | | 3.7539 | 1.0 | 13800 | 3.4597 | 1.0 | | 3.2903 | 1.01 | 13900 | 3.4813 | 1.0 | | 3.3243 | 1.01 | 14000 | 3.4510 | 1.0 | | 3.3485 | 1.02 | 14100 | 3.4389 | 1.0 | | 3.6197 | 1.03 | 14200 | 3.4519 | 1.0 | | 3.322 | 1.04 | 14300 | 3.4399 | 1.0 | | 3.2897 | 1.04 | 14400 | 3.4378 | 1.0 | | 3.3969 | 1.05 | 14500 | 3.4476 | 1.0 | | 3.3289 | 1.06 | 14600 | 3.4646 | 1.0 | | 3.3556 | 1.06 | 14700 | 3.4520 | 1.0 | | 3.2527 | 1.07 | 14800 | 3.4575 | 1.0 | | 3.4003 | 1.08 | 14900 | 3.4443 | 1.0 | | 3.3171 | 1.09 | 15000 | 3.4434 | 1.0 | | 3.4034 | 1.09 | 15100 | 3.4448 | 1.0 | | 3.4363 | 1.1 | 15200 | 3.4560 | 1.0 | | 3.3969 | 1.11 | 15300 | 3.4405 | 1.0 | | 3.4134 | 1.11 | 15400 | 3.4408 | 1.0 | | 3.5059 | 1.12 | 15500 | 3.4395 | 1.0 | | 3.3963 | 1.13 | 15600 | 3.4488 | 1.0 | | 3.2937 | 1.14 | 15700 | 3.4482 | 1.0 | | 3.5635 | 1.14 | 15800 | 3.4621 | 1.0 | | 3.4463 | 1.15 | 15900 | 3.4433 | 1.0 | | 3.2588 | 1.16 | 16000 | 3.4434 | 1.0 | | 3.3617 | 1.17 | 16100 | 3.4542 | 1.0 | | 3.3721 | 1.17 | 16200 | 3.4388 | 1.0 | | 3.3867 | 1.18 | 16300 | 3.4577 | 1.0 | | 3.34 | 1.19 | 16400 | 3.4510 | 1.0 | | 3.3676 | 1.19 | 16500 | 3.4434 | 1.0 | | 3.5519 | 1.2 | 16600 | 3.4410 | 1.0 | | 3.3129 | 1.21 | 16700 | 3.4507 | 1.0 | | 3.3368 | 1.22 | 16800 | 3.4718 | 1.0 | | 3.3107 | 1.22 | 16900 | 3.4439 | 1.0 | | 3.2987 | 1.23 | 17000 | 3.4471 | 1.0 | | 3.3102 | 1.24 | 17100 | 3.4435 | 1.0 | | 3.2089 | 1.25 | 17200 | 3.4432 | 1.0 | | 3.415 | 1.25 | 17300 | 3.4472 | 1.0 | | 3.2884 | 1.26 | 17400 | 3.4388 | 1.0 | | 3.3837 | 1.27 | 17500 | 3.4444 | 1.0 | | 3.3181 | 1.27 | 17600 | 3.4438 | 1.0 | | 3.3071 | 1.28 | 17700 | 3.4406 | 1.0 | | 3.389 | 1.29 | 17800 | 3.4573 | 1.0 | | 3.3246 | 1.3 | 17900 | 3.4580 | 1.0 | | 3.3122 | 1.3 | 18000 | 3.4455 | 1.0 | | 3.282 | 1.31 | 18100 | 3.4606 | 1.0 | | 3.2671 | 1.32 | 18200 | 3.4378 | 1.0 | | 3.3441 | 1.32 | 18300 | 3.4432 | 1.0 | | 3.3115 | 1.33 | 18400 | 3.4458 | 1.0 | | 3.3542 | 1.34 | 18500 | 3.4617 | 1.0 | | 3.3924 | 1.35 | 18600 | 3.4549 | 1.0 | | 3.4895 | 1.35 | 18700 | 3.4557 | 1.0 | | 3.4071 | 1.36 | 18800 | 3.4462 | 1.0 | | 3.3373 | 1.37 | 18900 | 3.4606 | 1.0 | | 3.3497 | 1.38 | 19000 | 3.4458 | 1.0 | | 3.3088 | 1.38 | 19100 | 3.4712 | 1.0 | | 3.333 | 1.39 | 19200 | 3.4483 | 1.0 | | 3.3773 | 1.4 | 19300 | 3.4455 | 1.0 | | 3.357 | 1.4 | 19400 | 3.4379 | 1.0 | | 3.3506 | 1.41 | 19500 | 3.4477 | 1.0 | | 3.2944 | 1.42 | 19600 | 3.4478 | 1.0 | | 3.241 | 1.43 | 19700 | 3.4492 | 1.0 | | 3.4317 | 1.43 | 19800 | 3.4441 | 1.0 | | 3.3478 | 1.44 | 19900 | 3.4385 | 1.0 | | 3.3952 | 1.45 | 20000 | 3.4437 | 1.0 | | 3.4808 | 1.46 | 20100 | 3.4644 | 1.0 | | 3.3625 | 1.46 | 20200 | 3.4529 | 1.0 | | 3.4842 | 1.47 | 20300 | 3.4524 | 1.0 | | 3.3887 | 1.48 | 20400 | 3.4551 | 1.0 | | 3.3198 | 1.48 | 20500 | 3.4433 | 1.0 | | 3.3397 | 1.49 | 20600 | 3.4448 | 1.0 | | 3.3173 | 1.5 | 20700 | 3.4590 | 1.0 | | 3.3687 | 1.51 | 20800 | 3.4720 | 1.0 | | 3.257 | 1.51 | 20900 | 3.4461 | 1.0 | | 3.4451 | 1.52 | 21000 | 3.4541 | 1.0 | | 3.2979 | 1.53 | 21100 | 3.4556 | 1.0 | | 3.3566 | 1.53 | 21200 | 3.4438 | 1.0 | | 3.3466 | 1.54 | 21300 | 3.4422 | 1.0 | | 3.308 | 1.55 | 21400 | 3.4637 | 1.0 | | 3.3952 | 1.56 | 21500 | 3.4435 | 1.0 | | 3.4009 | 1.56 | 21600 | 3.4434 | 1.0 | | 3.7952 | 1.57 | 21700 | 3.4675 | 1.0 | | 3.3891 | 1.58 | 21800 | 3.4565 | 1.0 | | 3.31 | 1.59 | 21900 | 3.4538 | 1.0 | | 3.3186 | 1.59 | 22000 | 3.4492 | 1.0 | | 3.3512 | 1.6 | 22100 | 3.4381 | 1.0 | | 3.309 | 1.61 | 22200 | 3.4558 | 1.0 | | 3.597 | 1.61 | 22300 | 3.4484 | 1.0 | | 3.4474 | 1.62 | 22400 | 3.4574 | 1.0 | | 3.3316 | 1.63 | 22500 | 3.4498 | 1.0 | | 3.3909 | 1.64 | 22600 | 3.4384 | 1.0 | | 3.6999 | 1.64 | 22700 | 3.4503 | 1.0 | | 3.6071 | 1.65 | 22800 | 3.4578 | 1.0 | | 3.2812 | 1.66 | 22900 | 3.4563 | 1.0 | | 3.2921 | 1.67 | 23000 | 3.4564 | 1.0 | | 3.3291 | 1.67 | 23100 | 3.4490 | 1.0 | | 3.3454 | 1.68 | 23200 | 3.4403 | 1.0 | | 3.4212 | 1.69 | 23300 | 3.4409 | 1.0 | | 3.5481 | 1.69 | 23400 | 3.4534 | 1.0 | | 3.2784 | 1.7 | 23500 | 3.4486 | 1.0 | | 3.4625 | 1.71 | 23600 | 3.4413 | 1.0 | | 3.2427 | 1.72 | 23700 | 3.4694 | 1.0 | | 3.8438 | 1.72 | 23800 | 3.4444 | 1.0 | | 3.4009 | 1.73 | 23900 | 3.4505 | 1.0 | | 3.8029 | 1.74 | 24000 | 3.4712 | 1.0 | | 3.36 | 1.74 | 24100 | 3.4552 | 1.0 | | 3.2751 | 1.75 | 24200 | 3.4511 | 1.0 | | 3.309 | 1.76 | 24300 | 3.4368 | 1.0 | | 3.4597 | 1.77 | 24400 | 3.4517 | 1.0 | | 3.2812 | 1.77 | 24500 | 3.4475 | 1.0 | | 3.4425 | 1.78 | 24600 | 3.4413 | 1.0 | | 3.3968 | 1.79 | 24700 | 3.4482 | 1.0 | | 3.35 | 1.8 | 24800 | 3.4473 | 1.0 | | 3.3156 | 1.8 | 24900 | 3.4435 | 1.0 | | 3.3008 | 1.81 | 25000 | 3.4439 | 1.0 | | 3.3365 | 1.82 | 25100 | 3.4382 | 1.0 | | 3.5473 | 1.82 | 25200 | 3.4396 | 1.0 | | 3.3568 | 1.83 | 25300 | 3.4577 | 1.0 | | 3.28 | 1.84 | 25400 | 3.4458 | 1.0 | | 3.4389 | 1.85 | 25500 | 3.4436 | 1.0 | | 3.345 | 1.85 | 25600 | 3.4435 | 1.0 | | 3.3295 | 1.86 | 25700 | 3.4428 | 1.0 | | 4.4622 | 1.87 | 25800 | 3.4638 | 1.0 | | 3.3717 | 1.88 | 25900 | 3.4450 | 1.0 | | 3.3 | 1.88 | 26000 | 3.4616 | 1.0 | | 3.3399 | 1.89 | 26100 | 3.4391 | 1.0 | | 3.4243 | 1.9 | 26200 | 3.4375 | 1.0 | | 3.326 | 1.9 | 26300 | 3.4533 | 1.0 | | 3.3337 | 1.91 | 26400 | 3.4538 | 1.0 | | 3.2655 | 1.92 | 26500 | 3.4460 | 1.0 | | 3.2963 | 1.93 | 26600 | 3.4443 | 1.0 | | 3.3967 | 1.93 | 26700 | 3.4392 | 1.0 | | 3.3203 | 1.94 | 26800 | 3.4609 | 1.0 | | 3.4581 | 1.95 | 26900 | 3.4388 | 1.0 | | 3.2519 | 1.95 | 27000 | 3.4434 | 1.0 | | 3.488 | 1.96 | 27100 | 3.4653 | 1.0 | | 3.3446 | 1.97 | 27200 | 3.4465 | 1.0 | | 3.4035 | 1.98 | 27300 | 3.4535 | 1.0 | | 3.2898 | 1.98 | 27400 | 3.4442 | 1.0 | | 3.3309 | 1.99 | 27500 | 3.4491 | 1.0 | | 3.2765 | 2.0 | 27600 | 3.4477 | 1.0 | | 3.3352 | 2.01 | 27700 | 3.4540 | 1.0 | | 3.4456 | 2.01 | 27800 | 3.4602 | 1.0 | | 3.6378 | 2.02 | 27900 | 3.4578 | 1.0 | | 6.4491 | 2.03 | 28000 | 3.4494 | 1.0 | | 6.1705 | 2.03 | 28100 | 3.4570 | 1.0 | | 3.4253 | 2.04 | 28200 | 3.4504 | 1.0 | | 3.4053 | 2.05 | 28300 | 3.4399 | 1.0 | | 3.6719 | 2.06 | 28400 | 3.4464 | 1.0 | | 3.2769 | 2.06 | 28500 | 3.4473 | 1.0 | | 3.3132 | 2.07 | 28600 | 3.4484 | 1.0 | | 3.3756 | 2.08 | 28700 | 3.4413 | 1.0 | | 5.5583 | 2.08 | 28800 | 3.4411 | 1.0 | | 3.6191 | 2.09 | 28900 | 3.4406 | 1.0 | | 3.4681 | 2.1 | 29000 | 3.4461 | 1.0 | | 4.463 | 2.11 | 29100 | 3.4409 | 1.0 | | 3.4645 | 2.11 | 29200 | 3.4556 | 1.0 | | 3.6549 | 2.12 | 29300 | 3.4545 | 1.0 | | 3.437 | 2.13 | 29400 | 3.4410 | 1.0 | | 3.5002 | 2.14 | 29500 | 3.4370 | 1.0 | | 3.4375 | 2.14 | 29600 | 3.4407 | 1.0 | | 3.3798 | 2.15 | 29700 | 3.4390 | 1.0 | | 3.6778 | 2.16 | 29800 | 3.4386 | 1.0 | | 3.4647 | 2.16 | 29900 | 3.4600 | 1.0 | | 3.4328 | 2.17 | 30000 | 3.4492 | 1.0 | | 3.4381 | 2.18 | 30100 | 3.4406 | 1.0 | | 3.3253 | 2.19 | 30200 | 3.4461 | 1.0 | | 3.4112 | 2.19 | 30300 | 3.4478 | 1.0 | | 3.6158 | 2.2 | 30400 | 3.4482 | 1.0 | | 3.5541 | 2.21 | 30500 | 3.4424 | 1.0 | | 4.3339 | 2.22 | 30600 | 3.4432 | 1.0 | | 3.818 | 2.22 | 30700 | 3.4453 | 1.0 | | 3.8914 | 2.23 | 30800 | 3.4457 | 1.0 | | 5.5706 | 2.24 | 30900 | 3.4605 | 1.0 | | 4.3359 | 2.24 | 31000 | 3.4700 | 1.0 | | 3.6418 | 2.25 | 31100 | 3.4558 | 1.0 | | 3.4288 | 2.26 | 31200 | 3.4396 | 1.0 | | 3.4512 | 2.27 | 31300 | 3.4411 | 1.0 | | 3.3326 | 2.27 | 31400 | 3.4473 | 1.0 | | 3.5872 | 2.28 | 31500 | 3.4400 | 1.0 | | 3.5426 | 2.29 | 31600 | 3.4469 | 1.0 | | 4.2227 | 2.29 | 31700 | 3.4499 | 1.0 | | 3.5461 | 2.3 | 31800 | 3.4388 | 1.0 | | 3.5507 | 2.31 | 31900 | 3.4503 | 1.0 | | 3.5177 | 2.32 | 32000 | 3.4429 | 1.0 | | 3.7237 | 2.32 | 32100 | 3.4617 | 1.0 | | 3.3513 | 2.33 | 32200 | 3.4487 | 1.0 | | 3.3827 | 2.34 | 32300 | 3.4678 | 1.0 | | 3.3311 | 2.35 | 32400 | 3.4441 | 1.0 | | 3.2852 | 2.35 | 32500 | 3.4433 | 1.0 | | 3.5712 | 2.36 | 32600 | 3.4514 | 1.0 | | 4.6259 | 2.37 | 32700 | 3.4520 | 1.0 | | 3.8864 | 2.37 | 32800 | 3.4544 | 1.0 | | 3.3284 | 2.38 | 32900 | 3.4444 | 1.0 | | 3.6078 | 2.39 | 33000 | 3.4450 | 1.0 | | 3.4026 | 2.4 | 33100 | 3.4454 | 1.0 | | 3.7527 | 2.4 | 33200 | 3.4541 | 1.0 | | 3.3741 | 2.41 | 33300 | 3.4386 | 1.0 | | 3.4498 | 2.42 | 33400 | 3.4518 | 1.0 | | 3.3424 | 2.43 | 33500 | 3.4554 | 1.0 | | 4.8226 | 2.43 | 33600 | 3.4412 | 1.0 | | 3.3503 | 2.44 | 33700 | 3.4434 | 1.0 | | 3.509 | 2.45 | 33800 | 3.4393 | 1.0 | | 3.586 | 2.45 | 33900 | 3.4375 | 1.0 | | 3.5242 | 2.46 | 34000 | 3.4402 | 1.0 | | 3.4351 | 2.47 | 34100 | 3.4389 | 1.0 | | 3.4445 | 2.48 | 34200 | 3.4416 | 1.0 | | 6.6676 | 2.48 | 34300 | 3.4571 | 1.0 | | 4.3937 | 2.49 | 34400 | 3.4560 | 1.0 | | 3.4177 | 2.5 | 34500 | 3.4482 | 1.0 | | 3.3966 | 2.5 | 34600 | 3.4640 | 1.0 | | 3.2845 | 2.51 | 34700 | 3.4538 | 1.0 | | 3.438 | 2.52 | 34800 | 3.4555 | 1.0 | | 3.3874 | 2.53 | 34900 | 3.4524 | 1.0 | | 3.5068 | 2.53 | 35000 | 3.4448 | 1.0 | | 4.2406 | 2.54 | 35100 | 3.4503 | 1.0 | | 3.2986 | 2.55 | 35200 | 3.4538 | 1.0 | | 3.4044 | 2.56 | 35300 | 3.4443 | 1.0 | | 3.3105 | 2.56 | 35400 | 3.4391 | 1.0 | | 3.4048 | 2.57 | 35500 | 3.4411 | 1.0 | | 3.5645 | 2.58 | 35600 | 3.4488 | 1.0 | | 3.4912 | 2.58 | 35700 | 3.4400 | 1.0 | | 3.4028 | 2.59 | 35800 | 3.4390 | 1.0 | | 3.4601 | 2.6 | 35900 | 3.4455 | 1.0 | | 3.6066 | 2.61 | 36000 | 3.4441 | 1.0 | | 4.5312 | 2.61 | 36100 | 3.4414 | 1.0 | | 3.6372 | 2.62 | 36200 | 3.4421 | 1.0 | | 4.1912 | 2.63 | 36300 | 3.4572 | 1.0 | | 3.4793 | 2.64 | 36400 | 3.4419 | 1.0 | | 4.5538 | 2.64 | 36500 | 3.4407 | 1.0 | | 3.3823 | 2.65 | 36600 | 3.4446 | 1.0 | | 3.3592 | 2.66 | 36700 | 3.4396 | 1.0 | | 3.4974 | 2.66 | 36800 | 3.4529 | 1.0 | | 3.4599 | 2.67 | 36900 | 3.4380 | 1.0 | | 4.7097 | 2.68 | 37000 | 3.4654 | 1.0 | | 6.7037 | 2.69 | 37100 | 3.4386 | 1.0 | | 3.3465 | 2.69 | 37200 | 3.4652 | 1.0 | | 4.9762 | 2.7 | 37300 | 3.4506 | 1.0 | | 3.9189 | 2.71 | 37400 | 3.4427 | 1.0 | | 3.4746 | 2.71 | 37500 | 3.4465 | 1.0 | | 3.3842 | 2.72 | 37600 | 3.4470 | 1.0 | | 3.2445 | 2.73 | 37700 | 3.4480 | 1.0 | | 3.382 | 2.74 | 37800 | 3.4456 | 1.0 | | 3.7279 | 2.74 | 37900 | 3.4431 | 1.0 | | 3.4329 | 2.75 | 38000 | 3.4374 | 1.0 | | 3.4607 | 2.76 | 38100 | 3.4447 | 1.0 | | 3.2394 | 2.77 | 38200 | 3.4476 | 1.0 | | 3.7795 | 2.77 | 38300 | 3.4380 | 1.0 | | 3.4419 | 2.78 | 38400 | 3.4526 | 1.0 | | 3.6452 | 2.79 | 38500 | 3.4428 | 1.0 | | 3.3474 | 2.79 | 38600 | 3.4424 | 1.0 | | 3.4645 | 2.8 | 38700 | 3.4479 | 1.0 | | 4.1143 | 2.81 | 38800 | 3.4580 | 1.0 | | 4.6453 | 2.82 | 38900 | 3.4585 | 1.0 | | 4.022 | 2.82 | 39000 | 3.4567 | 1.0 | | 4.3049 | 2.83 | 39100 | 3.4377 | 1.0 | | 3.3382 | 2.84 | 39200 | 3.4413 | 1.0 | | 3.6022 | 2.85 | 39300 | 3.4548 | 1.0 | | 4.4217 | 2.85 | 39400 | 3.4411 | 1.0 | | 3.5139 | 2.86 | 39500 | 3.4552 | 1.0 | | 3.1215 | 2.87 | 39600 | 3.4471 | 1.0 | | 3.4514 | 2.87 | 39700 | 3.4378 | 1.0 | | 4.822 | 2.88 | 39800 | 3.4605 | 1.0 | | 5.6699 | 2.89 | 39900 | 3.4489 | 1.0 | | 3.4183 | 2.9 | 40000 | 3.4644 | 1.0 | | 5.7492 | 2.9 | 40100 | 3.4514 | 1.0 | | 3.2879 | 2.91 | 40200 | 3.4543 | 1.0 | | 3.3076 | 2.92 | 40300 | 3.4450 | 1.0 | | 5.2845 | 2.92 | 40400 | 3.4459 | 1.0 | | 3.7927 | 2.93 | 40500 | 3.4481 | 1.0 | | 7.1549 | 2.94 | 40600 | 3.4554 | 1.0 | | 3.4544 | 2.95 | 40700 | 3.4486 | 1.0 | | 3.2332 | 2.95 | 40800 | 3.4415 | 1.0 | | 3.3714 | 2.96 | 40900 | 3.4521 | 1.0 | | 3.5205 | 2.97 | 41000 | 3.4395 | 1.0 | | 4.6267 | 2.98 | 41100 | 3.4622 | 1.0 | | 6.7747 | 2.98 | 41200 | 3.4407 | 1.0 | | 3.3091 | 2.99 | 41300 | 3.4422 | 1.0 | | 3.7135 | 3.0 | 41400 | 3.4383 | 1.0 | | 3.6261 | 3.0 | 41500 | 3.4482 | 1.0 | | 3.3323 | 3.01 | 41600 | 3.4366 | 1.0 | | 3.4544 | 3.02 | 41700 | 3.4376 | 1.0 | | 3.6486 | 3.03 | 41800 | 3.4511 | 1.0 | | 3.3333 | 3.03 | 41900 | 3.4397 | 1.0 | | 3.35 | 3.04 | 42000 | 3.4486 | 1.0 | | 3.3522 | 3.05 | 42100 | 3.4626 | 1.0 | | 3.4359 | 3.06 | 42200 | 3.4462 | 1.0 | | 3.4548 | 3.06 | 42300 | 3.4435 | 1.0 | | 3.2711 | 3.07 | 42400 | 3.4450 | 1.0 | | 3.2679 | 3.08 | 42500 | 3.4394 | 1.0 | | 3.3703 | 3.08 | 42600 | 3.4539 | 1.0 | | 3.3846 | 3.09 | 42700 | 3.4443 | 1.0 | | 3.334 | 3.1 | 42800 | 3.4384 | 1.0 | | 3.3429 | 3.11 | 42900 | 3.4625 | 1.0 | | 3.282 | 3.11 | 43000 | 3.4419 | 1.0 | | 3.3503 | 3.12 | 43100 | 3.4653 | 1.0 | | 3.4923 | 3.13 | 43200 | 3.4380 | 1.0 | | 3.4309 | 3.13 | 43300 | 3.4534 | 1.0 | | 3.3292 | 3.14 | 43400 | 3.4448 | 1.0 | | 3.4219 | 3.15 | 43500 | 3.4665 | 1.0 | | 3.3848 | 3.16 | 43600 | 3.4473 | 1.0 | | 3.3004 | 3.16 | 43700 | 3.4509 | 1.0 | | 3.2002 | 3.17 | 43800 | 3.4493 | 1.0 | | 3.2654 | 3.18 | 43900 | 3.4384 | 1.0 | | 3.3394 | 3.19 | 44000 | 3.4388 | 1.0 | | 3.2365 | 3.19 | 44100 | 3.4491 | 1.0 | | 3.2846 | 3.2 | 44200 | 3.4404 | 1.0 | | 3.3973 | 3.21 | 44300 | 3.4426 | 1.0 | | 3.3367 | 3.21 | 44400 | 3.4690 | 1.0 | | 3.2747 | 3.22 | 44500 | 3.4378 | 1.0 | | 3.4307 | 3.23 | 44600 | 3.4395 | 1.0 | | 3.3685 | 3.24 | 44700 | 3.4431 | 1.0 | | 3.321 | 3.24 | 44800 | 3.4557 | 1.0 | | 3.3541 | 3.25 | 44900 | 3.4489 | 1.0 | | 3.2282 | 3.26 | 45000 | 3.4393 | 1.0 | | 3.3811 | 3.27 | 45100 | 3.4463 | 1.0 | | 3.3014 | 3.27 | 45200 | 3.4505 | 1.0 | | 3.3617 | 3.28 | 45300 | 3.4475 | 1.0 | | 3.3953 | 3.29 | 45400 | 3.4430 | 1.0 | | 3.3999 | 3.29 | 45500 | 3.4417 | 1.0 | | 3.4098 | 3.3 | 45600 | 3.4503 | 1.0 | | 3.1994 | 3.31 | 45700 | 3.4414 | 1.0 | | 3.2185 | 3.32 | 45800 | 3.4485 | 1.0 | | 3.2554 | 3.32 | 45900 | 3.4477 | 1.0 | | 3.4302 | 3.33 | 46000 | 3.4508 | 1.0 | | 3.366 | 3.34 | 46100 | 3.4440 | 1.0 | | 3.4143 | 3.34 | 46200 | 3.4382 | 1.0 | | 4.318 | 3.35 | 46300 | 3.4524 | 1.0 | | 3.4233 | 3.36 | 46400 | 3.4451 | 1.0 | | 3.3492 | 3.37 | 46500 | 3.4526 | 1.0 | | 3.2399 | 3.37 | 46600 | 3.4462 | 1.0 | | 3.421 | 3.38 | 46700 | 3.4432 | 1.0 | | 3.2847 | 3.39 | 46800 | 3.4419 | 1.0 | | 3.4062 | 3.4 | 46900 | 3.4405 | 1.0 | | 3.3822 | 3.4 | 47000 | 3.4434 | 1.0 | | 3.2789 | 3.41 | 47100 | 3.4444 | 1.0 | | 3.2508 | 3.42 | 47200 | 3.4501 | 1.0 | | 3.3867 | 3.42 | 47300 | 3.4498 | 1.0 | | 3.3275 | 3.43 | 47400 | 3.4505 | 1.0 | | 3.424 | 3.44 | 47500 | 3.4448 | 1.0 | | 3.2418 | 3.45 | 47600 | 3.4450 | 1.0 | | 3.3037 | 3.45 | 47700 | 3.4493 | 1.0 | | 3.2562 | 3.46 | 47800 | 3.4466 | 1.0 | | 3.3241 | 3.47 | 47900 | 3.4385 | 1.0 | | 3.5569 | 3.47 | 48000 | 3.4427 | 1.0 | | 3.298 | 3.48 | 48100 | 3.4667 | 1.0 | | 3.3401 | 3.49 | 48200 | 3.4440 | 1.0 | | 3.2824 | 3.5 | 48300 | 3.4427 | 1.0 | | 3.3829 | 3.5 | 48400 | 3.4398 | 1.0 | | 3.3595 | 3.51 | 48500 | 3.4421 | 1.0 | | 3.286 | 3.52 | 48600 | 3.4517 | 1.0 | | 3.3494 | 3.53 | 48700 | 3.4429 | 1.0 | | 3.3507 | 3.53 | 48800 | 3.4422 | 1.0 | | 3.3598 | 3.54 | 48900 | 3.4439 | 1.0 | | 3.3141 | 3.55 | 49000 | 3.4544 | 1.0 | | 3.4548 | 3.55 | 49100 | 3.4415 | 1.0 | | 3.3278 | 3.56 | 49200 | 3.4474 | 1.0 | | 3.4088 | 3.57 | 49300 | 3.4498 | 1.0 | | 3.4046 | 3.58 | 49400 | 3.4554 | 1.0 | | 3.2847 | 3.58 | 49500 | 3.4393 | 1.0 | | 3.3162 | 3.59 | 49600 | 3.4594 | 1.0 | | 3.2493 | 3.6 | 49700 | 3.4514 | 1.0 | | 3.3466 | 3.61 | 49800 | 3.4514 | 1.0 | | 3.3279 | 3.61 | 49900 | 3.4462 | 1.0 | | 3.29 | 3.62 | 50000 | 3.4466 | 1.0 | | 3.2374 | 3.63 | 50100 | 3.4575 | 1.0 | | 3.3499 | 3.63 | 50200 | 3.4392 | 1.0 | | 3.251 | 3.64 | 50300 | 3.4556 | 1.0 | | 3.3692 | 3.65 | 50400 | 3.4498 | 1.0 | | 3.3743 | 3.66 | 50500 | 3.4569 | 1.0 | | 3.3662 | 3.66 | 50600 | 3.4463 | 1.0 | | 3.302 | 3.67 | 50700 | 3.4445 | 1.0 | | 3.2863 | 3.68 | 50800 | 3.4475 | 1.0 | | 3.4266 | 3.68 | 50900 | 3.4370 | 1.0 | | 3.2988 | 3.69 | 51000 | 3.4476 | 1.0 | | 3.9581 | 3.7 | 51100 | 3.4382 | 1.0 | | 3.4516 | 3.71 | 51200 | 3.4526 | 1.0 | | 3.4259 | 3.71 | 51300 | 3.4414 | 1.0 | | 3.3913 | 3.72 | 51400 | 3.4386 | 1.0 | | 3.3606 | 3.73 | 51500 | 3.4458 | 1.0 | | 3.4698 | 3.74 | 51600 | 3.4450 | 1.0 | | 3.4285 | 3.74 | 51700 | 3.4493 | 1.0 | | 3.265 | 3.75 | 51800 | 3.4369 | 1.0 | | 3.4819 | 3.76 | 51900 | 3.4472 | 1.0 | | 3.2869 | 3.76 | 52000 | 3.4580 | 1.0 | | 3.2663 | 3.77 | 52100 | 3.4469 | 1.0 | | 3.4325 | 3.78 | 52200 | 3.4423 | 1.0 | | 3.3355 | 3.79 | 52300 | 3.4411 | 1.0 | | 3.4324 | 3.79 | 52400 | 3.4456 | 1.0 | | 3.3105 | 3.8 | 52500 | 3.4389 | 1.0 | | 3.3588 | 3.81 | 52600 | 3.4403 | 1.0 | | 3.3524 | 3.82 | 52700 | 3.4458 | 1.0 | | 3.2466 | 3.82 | 52800 | 3.4447 | 1.0 | | 3.2375 | 3.83 | 52900 | 3.4448 | 1.0 | | 3.4006 | 3.84 | 53000 | 3.4456 | 1.0 | | 3.3572 | 3.84 | 53100 | 3.4427 | 1.0 | | 3.6162 | 3.85 | 53200 | 3.4379 | 1.0 | | 3.3351 | 3.86 | 53300 | 3.4482 | 1.0 | | 3.7101 | 3.87 | 53400 | 3.4393 | 1.0 | | 3.3836 | 3.87 | 53500 | 3.4474 | 1.0 | | 3.3357 | 3.88 | 53600 | 3.4573 | 1.0 | | 3.3434 | 3.89 | 53700 | 3.4475 | 1.0 | | 3.3349 | 3.89 | 53800 | 3.4659 | 1.0 | | 3.3474 | 3.9 | 53900 | 3.4411 | 1.0 | | 3.4007 | 3.91 | 54000 | 3.4446 | 1.0 | | 3.4218 | 3.92 | 54100 | 3.4406 | 1.0 | | 3.2115 | 3.92 | 54200 | 3.4422 | 1.0 | | 3.2726 | 3.93 | 54300 | 3.4383 | 1.0 | | 3.2999 | 3.94 | 54400 | 3.4423 | 1.0 | | 3.3657 | 3.95 | 54500 | 3.4377 | 1.0 | | 3.4015 | 3.95 | 54600 | 3.4433 | 1.0 | | 3.3373 | 3.96 | 54700 | 3.4457 | 1.0 | | 4.9872 | 3.97 | 54800 | 3.4420 | 1.0 | | 3.3221 | 3.97 | 54900 | 3.4501 | 1.0 | | 3.8059 | 3.98 | 55000 | 3.4501 | 1.0 | | 3.2628 | 3.99 | 55100 | 3.4511 | 1.0 | | 3.3822 | 4.0 | 55200 | 3.4409 | 1.0 | | 3.5464 | 4.0 | 55300 | 3.4527 | 1.0 | | 3.3661 | 4.01 | 55400 | 3.4436 | 1.0 | | 3.4146 | 4.02 | 55500 | 3.4458 | 1.0 | | 3.5756 | 4.03 | 55600 | 3.4409 | 1.0 | | 3.3945 | 4.03 | 55700 | 3.4378 | 1.0 | | 4.5275 | 4.04 | 55800 | 3.4558 | 1.0 | | 3.7913 | 4.05 | 55900 | 3.4523 | 1.0 | | 3.4445 | 4.05 | 56000 | 3.4446 | 1.0 | | 3.51 | 4.06 | 56100 | 3.4488 | 1.0 | | 6.5935 | 4.07 | 56200 | 3.4497 | 1.0 | | 3.3548 | 4.08 | 56300 | 3.4443 | 1.0 | | 3.4544 | 4.08 | 56400 | 3.4547 | 1.0 | | 3.4206 | 4.09 | 56500 | 3.4476 | 1.0 | | 3.3979 | 4.1 | 56600 | 3.4459 | 1.0 | | 3.296 | 4.1 | 56700 | 3.4461 | 1.0 | | 3.7186 | 4.11 | 56800 | 3.4407 | 1.0 | | 3.8726 | 4.12 | 56900 | 3.4498 | 1.0 | | 3.6704 | 4.13 | 57000 | 3.4535 | 1.0 | | 3.4735 | 4.13 | 57100 | 3.4470 | 1.0 | | 3.399 | 4.14 | 57200 | 3.4461 | 1.0 | | 3.3507 | 4.15 | 57300 | 3.4405 | 1.0 | | 3.3948 | 4.16 | 57400 | 3.4582 | 1.0 | | 3.613 | 4.16 | 57500 | 3.4462 | 1.0 | | 3.3553 | 4.17 | 57600 | 3.4507 | 1.0 | | 3.5798 | 4.18 | 57700 | 3.4476 | 1.0 | | 7.6315 | 4.18 | 57800 | 3.4412 | 1.0 | | 3.4873 | 4.19 | 57900 | 3.4605 | 1.0 | | 3.3193 | 4.2 | 58000 | 3.4458 | 1.0 | | 3.4065 | 4.21 | 58100 | 3.4368 | 1.0 | | 3.4813 | 4.21 | 58200 | 3.4464 | 1.0 | | 3.2523 | 4.22 | 58300 | 3.4601 | 1.0 | | 3.3384 | 4.23 | 58400 | 3.4449 | 1.0 | | 3.2839 | 4.24 | 58500 | 3.4544 | 1.0 | | 3.4564 | 4.24 | 58600 | 3.4412 | 1.0 | | 3.3995 | 4.25 | 58700 | 3.4408 | 1.0 | | 3.2107 | 4.26 | 58800 | 3.4463 | 1.0 | | 4.0565 | 4.26 | 58900 | 3.4402 | 1.0 | | 3.6744 | 4.27 | 59000 | 3.4537 | 1.0 | | 3.3658 | 4.28 | 59100 | 3.4435 | 1.0 | | 3.8134 | 4.29 | 59200 | 3.4491 | 1.0 | | 3.3783 | 4.29 | 59300 | 3.4480 | 1.0 | | 3.6206 | 4.3 | 59400 | 3.4403 | 1.0 | | 3.4018 | 4.31 | 59500 | 3.4433 | 1.0 | | 3.2325 | 4.31 | 59600 | 3.4419 | 1.0 | | 3.3935 | 4.32 | 59700 | 3.4420 | 1.0 | | 3.9773 | 4.33 | 59800 | 3.4477 | 1.0 | | 3.3477 | 4.34 | 59900 | 3.4557 | 1.0 | | 3.4817 | 4.34 | 60000 | 3.4421 | 1.0 | | 3.8685 | 4.35 | 60100 | 3.4470 | 1.0 | | 3.679 | 4.36 | 60200 | 3.4457 | 1.0 | | 5.3659 | 4.37 | 60300 | 3.4416 | 1.0 | | 3.2615 | 4.37 | 60400 | 3.4415 | 1.0 | | 3.6087 | 4.38 | 60500 | 3.4398 | 1.0 | | 4.1801 | 4.39 | 60600 | 3.4532 | 1.0 | | 5.013 | 4.39 | 60700 | 3.4465 | 1.0 | | 3.333 | 4.4 | 60800 | 3.4498 | 1.0 | | 3.4247 | 4.41 | 60900 | 3.4542 | 1.0 | | 3.424 | 4.42 | 61000 | 3.4436 | 1.0 | | 3.317 | 4.42 | 61100 | 3.4405 | 1.0 | | 3.4018 | 4.43 | 61200 | 3.4467 | 1.0 | | 7.2156 | 4.44 | 61300 | 3.4436 | 1.0 | | 3.3726 | 4.45 | 61400 | 3.4473 | 1.0 | | 3.2895 | 4.45 | 61500 | 3.4400 | 1.0 | | 3.2293 | 4.46 | 61600 | 3.4536 | 1.0 | | 3.8397 | 4.47 | 61700 | 3.4489 | 1.0 | | 3.3358 | 4.47 | 61800 | 3.4443 | 1.0 | | 3.4085 | 4.48 | 61900 | 3.4472 | 1.0 | | 3.4413 | 4.49 | 62000 | 3.4421 | 1.0 | | 3.4222 | 4.5 | 62100 | 3.4480 | 1.0 | | 3.4665 | 4.5 | 62200 | 3.4435 | 1.0 | | 3.4058 | 4.51 | 62300 | 3.4399 | 1.0 | | 3.4228 | 4.52 | 62400 | 3.4457 | 1.0 | | 3.3362 | 4.52 | 62500 | 3.4453 | 1.0 | | 4.3383 | 4.53 | 62600 | 3.4564 | 1.0 | | 3.2802 | 4.54 | 62700 | 3.4392 | 1.0 | | 5.0224 | 4.55 | 62800 | 3.4491 | 1.0 | | 4.1092 | 4.55 | 62900 | 3.4400 | 1.0 | | 3.6467 | 4.56 | 63000 | 3.4454 | 1.0 | | 3.4197 | 4.57 | 63100 | 3.4411 | 1.0 | | 3.4549 | 4.58 | 63200 | 3.4464 | 1.0 | | 3.2333 | 4.58 | 63300 | 3.4454 | 1.0 | | 3.3108 | 4.59 | 63400 | 3.4437 | 1.0 | | 3.3897 | 4.6 | 63500 | 3.4382 | 1.0 | | 3.2956 | 4.6 | 63600 | 3.4478 | 1.0 | | 3.4244 | 4.61 | 63700 | 3.4439 | 1.0 | | 4.3236 | 4.62 | 63800 | 3.4400 | 1.0 | | 3.263 | 4.63 | 63900 | 3.4542 | 1.0 | | 3.5322 | 4.63 | 64000 | 3.4548 | 1.0 | | 3.613 | 4.64 | 64100 | 3.4442 | 1.0 | | 3.7147 | 4.65 | 64200 | 3.4396 | 1.0 | | 3.6781 | 4.66 | 64300 | 3.4444 | 1.0 | | 3.1597 | 4.66 | 64400 | 3.4642 | 1.0 | | 4.8173 | 4.67 | 64500 | 3.4397 | 1.0 | | 3.7878 | 4.68 | 64600 | 3.4529 | 1.0 | | 3.3288 | 4.68 | 64700 | 3.4423 | 1.0 | | 3.3931 | 4.69 | 64800 | 3.4376 | 1.0 | | 5.6842 | 4.7 | 64900 | 3.4396 | 1.0 | | 3.62 | 4.71 | 65000 | 3.4419 | 1.0 | | 3.3742 | 4.71 | 65100 | 3.4419 | 1.0 | | 3.3207 | 4.72 | 65200 | 3.4392 | 1.0 | | 3.6216 | 4.73 | 65300 | 3.4369 | 1.0 | | 3.2954 | 4.73 | 65400 | 3.4461 | 1.0 | | 3.3943 | 4.74 | 65500 | 3.4442 | 1.0 | | 3.5041 | 4.75 | 65600 | 3.4433 | 1.0 | | 3.5168 | 4.76 | 65700 | 3.4529 | 1.0 | | 3.3715 | 4.76 | 65800 | 3.4446 | 1.0 | | 3.3734 | 4.77 | 65900 | 3.4507 | 1.0 | | 10.6923 | 4.78 | 66000 | 3.4468 | 1.0 | | 3.4432 | 4.79 | 66100 | 3.4400 | 1.0 | | 3.5521 | 4.79 | 66200 | 3.4573 | 1.0 | | 4.9372 | 4.8 | 66300 | 3.4400 | 1.0 | | 3.48 | 4.81 | 66400 | 3.4374 | 1.0 | | 3.1794 | 4.81 | 66500 | 3.4379 | 1.0 | | 3.4121 | 4.82 | 66600 | 3.4364 | 1.0 | | 3.581 | 4.83 | 66700 | 3.4444 | 1.0 | | 3.1135 | 4.84 | 66800 | 3.4380 | 1.0 | | 3.4506 | 4.84 | 66900 | 3.4595 | 1.0 | | 3.3243 | 4.85 | 67000 | 3.4433 | 1.0 | | 3.3814 | 4.86 | 67100 | 3.4550 | 1.0 | | 3.3557 | 4.86 | 67200 | 3.4374 | 1.0 | | 3.2991 | 4.87 | 67300 | 3.4423 | 1.0 | | 3.8854 | 4.88 | 67400 | 3.4398 | 1.0 | | 3.7073 | 4.89 | 67500 | 3.4425 | 1.0 | | 3.3739 | 4.89 | 67600 | 3.4492 | 1.0 | | 3.435 | 4.9 | 67700 | 3.4512 | 1.0 | | 10.5515 | 4.91 | 67800 | 3.4512 | 1.0 | | 3.5227 | 4.92 | 67900 | 3.4493 | 1.0 | | 3.2475 | 4.92 | 68000 | 3.4413 | 1.0 | | 3.3387 | 4.93 | 68100 | 3.4474 | 1.0 | | 3.365 | 4.94 | 68200 | 3.4426 | 1.0 | | 4.1377 | 4.94 | 68300 | 3.4457 | 1.0 | | 3.9188 | 4.95 | 68400 | 3.4437 | 1.0 | | 3.5646 | 4.96 | 68500 | 3.4438 | 1.0 | | 3.3686 | 4.97 | 68600 | 3.4477 | 1.0 | | 3.1943 | 4.97 | 68700 | 3.4508 | 1.0 | | 3.3747 | 4.98 | 68800 | 3.4453 | 1.0 | | 3.8971 | 4.99 | 68900 | 3.4560 | 1.0 | | 3.9434 | 5.0 | 69000 | 3.4457 | 1.0 | | 3.3862 | 5.0 | 69100 | 3.4575 | 1.0 | | 3.2693 | 5.01 | 69200 | 3.4436 | 1.0 | | 3.2971 | 5.02 | 69300 | 3.4494 | 1.0 | | 3.3175 | 5.02 | 69400 | 3.4432 | 1.0 | | 3.3889 | 5.03 | 69500 | 3.4371 | 1.0 | | 3.382 | 5.04 | 69600 | 3.4426 | 1.0 | | 3.3396 | 5.05 | 69700 | 3.4383 | 1.0 | | 3.5613 | 5.05 | 69800 | 3.4472 | 1.0 | | 3.4392 | 5.06 | 69900 | 3.4437 | 1.0 | | 3.2599 | 5.07 | 70000 | 3.4544 | 1.0 | | 3.2819 | 5.07 | 70100 | 3.4459 | 1.0 | | 3.3131 | 5.08 | 70200 | 3.4552 | 1.0 | | 3.3471 | 5.09 | 70300 | 3.4513 | 1.0 | | 3.4194 | 5.1 | 70400 | 3.4446 | 1.0 | | 3.3565 | 5.1 | 70500 | 3.4424 | 1.0 | | 3.3411 | 5.11 | 70600 | 3.4482 | 1.0 | | 3.3473 | 5.12 | 70700 | 3.4514 | 1.0 | | 3.3197 | 5.13 | 70800 | 3.4491 | 1.0 | | 3.3466 | 5.13 | 70900 | 3.4573 | 1.0 | | 3.3856 | 5.14 | 71000 | 3.4420 | 1.0 | | 3.1905 | 5.15 | 71100 | 3.4469 | 1.0 | | 3.3756 | 5.15 | 71200 | 3.4467 | 1.0 | | 3.3498 | 5.16 | 71300 | 3.4479 | 1.0 | | 3.3914 | 5.17 | 71400 | 3.4426 | 1.0 | | 3.3885 | 5.18 | 71500 | 3.4419 | 1.0 | | 3.4713 | 5.18 | 71600 | 3.4434 | 1.0 | | 3.4077 | 5.19 | 71700 | 3.4472 | 1.0 | | 3.3633 | 5.2 | 71800 | 3.4443 | 1.0 | | 3.3677 | 5.21 | 71900 | 3.4413 | 1.0 | | 3.3545 | 5.21 | 72000 | 3.4491 | 1.0 | | 3.3415 | 5.22 | 72100 | 3.4423 | 1.0 | | 3.3796 | 5.23 | 72200 | 3.4420 | 1.0 | | 3.4989 | 5.23 | 72300 | 3.4415 | 1.0 | | 3.3875 | 5.24 | 72400 | 3.4453 | 1.0 | | 3.3728 | 5.25 | 72500 | 3.4534 | 1.0 | | 3.3134 | 5.26 | 72600 | 3.4396 | 1.0 | | 3.3634 | 5.26 | 72700 | 3.4472 | 1.0 | | 3.2482 | 5.27 | 72800 | 3.4448 | 1.0 | | 3.299 | 5.28 | 72900 | 3.4571 | 1.0 | | 3.3579 | 5.28 | 73000 | 3.4440 | 1.0 | | 3.6011 | 5.29 | 73100 | 3.4507 | 1.0 | | 3.2451 | 5.3 | 73200 | 3.4430 | 1.0 | | 3.399 | 5.31 | 73300 | 3.4443 | 1.0 | | 3.3605 | 5.31 | 73400 | 3.4525 | 1.0 | | 3.3511 | 5.32 | 73500 | 3.4520 | 1.0 | | 3.3946 | 5.33 | 73600 | 3.4402 | 1.0 | | 3.3602 | 5.34 | 73700 | 3.4383 | 1.0 | | 3.3105 | 5.34 | 73800 | 3.4492 | 1.0 | | 3.3346 | 5.35 | 73900 | 3.4428 | 1.0 | | 3.4219 | 5.36 | 74000 | 3.4534 | 1.0 | | 3.3491 | 5.36 | 74100 | 3.4603 | 1.0 | | 3.4207 | 5.37 | 74200 | 3.4512 | 1.0 | | 3.2418 | 5.38 | 74300 | 3.4474 | 1.0 | | 3.2637 | 5.39 | 74400 | 3.4402 | 1.0 | | 3.4331 | 5.39 | 74500 | 3.4576 | 1.0 | | 3.3483 | 5.4 | 74600 | 3.4518 | 1.0 | | 3.2825 | 5.41 | 74700 | 3.4526 | 1.0 | | 3.5443 | 5.42 | 74800 | 3.4380 | 1.0 | | 3.3637 | 5.42 | 74900 | 3.4525 | 1.0 | | 3.2016 | 5.43 | 75000 | 3.4483 | 1.0 | | 3.3641 | 5.44 | 75100 | 3.4389 | 1.0 | | 3.3869 | 5.44 | 75200 | 3.4511 | 1.0 | | 3.2595 | 5.45 | 75300 | 3.4498 | 1.0 | | 3.401 | 5.46 | 75400 | 3.4496 | 1.0 | | 3.4416 | 5.47 | 75500 | 3.4502 | 1.0 | | 3.3949 | 5.47 | 75600 | 3.4400 | 1.0 | | 3.279 | 5.48 | 75700 | 3.4461 | 1.0 | | 3.343 | 5.49 | 75800 | 3.4419 | 1.0 | | 3.3848 | 5.49 | 75900 | 3.4470 | 1.0 | | 3.3605 | 5.5 | 76000 | 3.4430 | 1.0 | | 3.2786 | 5.51 | 76100 | 3.4479 | 1.0 | | 3.4013 | 5.52 | 76200 | 3.4469 | 1.0 | | 3.2064 | 5.52 | 76300 | 3.4420 | 1.0 | | 3.5022 | 5.53 | 76400 | 3.4475 | 1.0 | | 3.3093 | 5.54 | 76500 | 3.4431 | 1.0 | | 3.3647 | 5.55 | 76600 | 3.4392 | 1.0 | | 3.3971 | 5.55 | 76700 | 3.4434 | 1.0 | | 3.3352 | 5.56 | 76800 | 3.4485 | 1.0 | | 3.3756 | 5.57 | 76900 | 3.4453 | 1.0 | | 3.2675 | 5.57 | 77000 | 3.4456 | 1.0 | | 3.3187 | 5.58 | 77100 | 3.4471 | 1.0 | | 3.3915 | 5.59 | 77200 | 3.4434 | 1.0 | | 3.522 | 5.6 | 77300 | 3.4579 | 1.0 | | 3.3715 | 5.6 | 77400 | 3.4459 | 1.0 | | 3.2879 | 5.61 | 77500 | 3.4450 | 1.0 | | 3.4566 | 5.62 | 77600 | 3.4446 | 1.0 | | 3.3802 | 5.63 | 77700 | 3.4458 | 1.0 | | 3.3286 | 5.63 | 77800 | 3.4417 | 1.0 | | 3.3506 | 5.64 | 77900 | 3.4582 | 1.0 | | 3.3646 | 5.65 | 78000 | 3.4382 | 1.0 | | 3.3679 | 5.65 | 78100 | 3.4399 | 1.0 | | 3.2344 | 5.66 | 78200 | 3.4389 | 1.0 | | 3.362 | 5.67 | 78300 | 3.4528 | 1.0 | | 3.3598 | 5.68 | 78400 | 3.4411 | 1.0 | | 3.4368 | 5.68 | 78500 | 3.4416 | 1.0 | | 3.3668 | 5.69 | 78600 | 3.4501 | 1.0 | | 3.4889 | 5.7 | 78700 | 3.4469 | 1.0 | | 3.5421 | 5.7 | 78800 | 3.4499 | 1.0 | | 3.4562 | 5.71 | 78900 | 3.4489 | 1.0 | | 3.4175 | 5.72 | 79000 | 3.4456 | 1.0 | | 3.3624 | 5.73 | 79100 | 3.4457 | 1.0 | | 3.338 | 5.73 | 79200 | 3.4480 | 1.0 | | 3.2783 | 5.74 | 79300 | 3.4398 | 1.0 | | 3.3664 | 5.75 | 79400 | 3.4454 | 1.0 | | 3.3883 | 5.76 | 79500 | 3.4511 | 1.0 | | 3.3578 | 5.76 | 79600 | 3.4480 | 1.0 | | 3.2831 | 5.77 | 79700 | 3.4425 | 1.0 | | 3.5258 | 5.78 | 79800 | 3.4522 | 1.0 | | 3.2697 | 5.78 | 79900 | 3.4398 | 1.0 | | 3.291 | 5.79 | 80000 | 3.4395 | 1.0 | | 3.3994 | 5.8 | 80100 | 3.4401 | 1.0 | | 3.3379 | 5.81 | 80200 | 3.4414 | 1.0 | | 3.334 | 5.81 | 80300 | 3.4576 | 1.0 | | 3.4343 | 5.82 | 80400 | 3.4524 | 1.0 | | 3.3857 | 5.83 | 80500 | 3.4445 | 1.0 | | 3.3657 | 5.84 | 80600 | 3.4437 | 1.0 | | 3.3229 | 5.84 | 80700 | 3.4539 | 1.0 | | 3.2913 | 5.85 | 80800 | 3.4466 | 1.0 | | 3.2929 | 5.86 | 80900 | 3.4471 | 1.0 | | 3.4581 | 5.86 | 81000 | 3.4367 | 1.0 | | 3.3521 | 5.87 | 81100 | 3.4395 | 1.0 | | 3.6423 | 5.88 | 81200 | 3.4395 | 1.0 | | 3.3993 | 5.89 | 81300 | 3.4488 | 1.0 | | 3.3382 | 5.89 | 81400 | 3.4626 | 1.0 | | 3.2858 | 5.9 | 81500 | 3.4393 | 1.0 | | 3.3802 | 5.91 | 81600 | 3.4430 | 1.0 | | 3.4808 | 5.91 | 81700 | 3.4421 | 1.0 | | 3.2911 | 5.92 | 81800 | 3.4458 | 1.0 | | 3.199 | 5.93 | 81900 | 3.4411 | 1.0 | | 3.7089 | 5.94 | 82000 | 3.4402 | 1.0 | | 3.32 | 5.94 | 82100 | 3.4524 | 1.0 | | 3.2283 | 5.95 | 82200 | 3.4465 | 1.0 | | 3.3001 | 5.96 | 82300 | 3.4429 | 1.0 | | 3.33 | 5.97 | 82400 | 3.4535 | 1.0 | | 3.3269 | 5.97 | 82500 | 3.4445 | 1.0 | | 3.3572 | 5.98 | 82600 | 3.4459 | 1.0 | | 3.2905 | 5.99 | 82700 | 3.4475 | 1.0 | | 3.4236 | 5.99 | 82800 | 3.4455 | 1.0 | | 4.1378 | 6.0 | 82900 | 3.4454 | 1.0 | | 3.4648 | 6.01 | 83000 | 3.4569 | 1.0 | | 3.2289 | 6.02 | 83100 | 3.4562 | 1.0 | | 3.511 | 6.02 | 83200 | 3.4452 | 1.0 | | 5.6152 | 6.03 | 83300 | 3.4684 | 1.0 | | 3.2102 | 6.04 | 83400 | 3.4555 | 1.0 | | 3.389 | 6.05 | 83500 | 3.4429 | 1.0 | | 3.773 | 6.05 | 83600 | 3.4436 | 1.0 | | 3.3612 | 6.06 | 83700 | 3.4383 | 1.0 | | 3.316 | 6.07 | 83800 | 3.4421 | 1.0 | | 3.4754 | 6.07 | 83900 | 3.4444 | 1.0 | | 3.4536 | 6.08 | 84000 | 3.4461 | 1.0 | | 3.4987 | 6.09 | 84100 | 3.4441 | 1.0 | | 3.5025 | 6.1 | 84200 | 3.4423 | 1.0 | | 3.167 | 6.1 | 84300 | 3.4381 | 1.0 | | 3.3875 | 6.11 | 84400 | 3.4458 | 1.0 | | 3.3446 | 6.12 | 84500 | 3.4491 | 1.0 | | 3.4824 | 6.12 | 84600 | 3.4476 | 1.0 | | 3.4264 | 6.13 | 84700 | 3.4443 | 1.0 | | 3.3786 | 6.14 | 84800 | 3.4391 | 1.0 | | 3.3554 | 6.15 | 84900 | 3.4447 | 1.0 | | 3.2566 | 6.15 | 85000 | 3.4410 | 1.0 | | 3.7839 | 6.16 | 85100 | 3.4471 | 1.0 | | 10.7563 | 6.17 | 85200 | 3.4516 | 1.0 | | 3.501 | 6.18 | 85300 | 3.4458 | 1.0 | | 3.3805 | 6.18 | 85400 | 3.4441 | 1.0 | | 3.3758 | 6.19 | 85500 | 3.4384 | 1.0 | | 3.4565 | 6.2 | 85600 | 3.4457 | 1.0 | | 3.3889 | 6.2 | 85700 | 3.4542 | 1.0 | | 3.6664 | 6.21 | 85800 | 3.4572 | 1.0 | | 3.4372 | 6.22 | 85900 | 3.4442 | 1.0 | | 3.3461 | 6.23 | 86000 | 3.4430 | 1.0 | | 3.3446 | 6.23 | 86100 | 3.4410 | 1.0 | | 4.1477 | 6.24 | 86200 | 3.4521 | 1.0 | | 3.2528 | 6.25 | 86300 | 3.4441 | 1.0 | | 5.4615 | 6.25 | 86400 | 3.4386 | 1.0 | | 3.3977 | 6.26 | 86500 | 3.4507 | 1.0 | | 3.3648 | 6.27 | 86600 | 3.4488 | 1.0 | | 3.875 | 6.28 | 86700 | 3.4477 | 1.0 | | 3.8437 | 6.28 | 86800 | 3.4421 | 1.0 | | 3.2904 | 6.29 | 86900 | 3.4458 | 1.0 | | 3.6029 | 6.3 | 87000 | 3.4536 | 1.0 | | 3.2774 | 6.31 | 87100 | 3.4452 | 1.0 | | 3.3557 | 6.31 | 87200 | 3.4491 | 1.0 | | 3.344 | 6.32 | 87300 | 3.4550 | 1.0 | | 3.1771 | 6.33 | 87400 | 3.4414 | 1.0 | | 3.2468 | 6.33 | 87500 | 3.4407 | 1.0 | | 3.3878 | 6.34 | 87600 | 3.4409 | 1.0 | | 3.3175 | 6.35 | 87700 | 3.4402 | 1.0 | | 3.3398 | 6.36 | 87800 | 3.4422 | 1.0 | | 3.3925 | 6.36 | 87900 | 3.4480 | 1.0 | | 3.2327 | 6.37 | 88000 | 3.4380 | 1.0 | | 3.5039 | 6.38 | 88100 | 3.4449 | 1.0 | | 4.6598 | 6.39 | 88200 | 3.4443 | 1.0 | | 3.2816 | 6.39 | 88300 | 3.4471 | 1.0 | | 3.2072 | 6.4 | 88400 | 3.4370 | 1.0 | | 3.2164 | 6.41 | 88500 | 3.4455 | 1.0 | | 3.1742 | 6.41 | 88600 | 3.4416 | 1.0 | | 3.298 | 6.42 | 88700 | 3.4424 | 1.0 | | 4.2488 | 6.43 | 88800 | 3.4485 | 1.0 | | 3.3554 | 6.44 | 88900 | 3.4421 | 1.0 | | 3.469 | 6.44 | 89000 | 3.4442 | 1.0 | | 3.7796 | 6.45 | 89100 | 3.4478 | 1.0 | | 3.357 | 6.46 | 89200 | 3.4493 | 1.0 | | 3.3099 | 6.46 | 89300 | 3.4422 | 1.0 | | 3.343 | 6.47 | 89400 | 3.4484 | 1.0 | | 3.1808 | 6.48 | 89500 | 3.4493 | 1.0 | | 3.3544 | 6.49 | 89600 | 3.4404 | 1.0 | | 3.2563 | 6.49 | 89700 | 3.4427 | 1.0 | | 4.8257 | 6.5 | 89800 | 3.4409 | 1.0 | | 3.3544 | 6.51 | 89900 | 3.4435 | 1.0 | | 3.3013 | 6.52 | 90000 | 3.4442 | 1.0 | | 3.4374 | 6.52 | 90100 | 3.4389 | 1.0 | | 3.3702 | 6.53 | 90200 | 3.4461 | 1.0 | | 3.8491 | 6.54 | 90300 | 3.4469 | 1.0 | | 3.3713 | 6.54 | 90400 | 3.4456 | 1.0 | | 3.36 | 6.55 | 90500 | 3.4600 | 1.0 | | 3.4559 | 6.56 | 90600 | 3.4541 | 1.0 | | 3.9838 | 6.57 | 90700 | 3.4411 | 1.0 | | 3.3675 | 6.57 | 90800 | 3.4448 | 1.0 | | 3.3384 | 6.58 | 90900 | 3.4437 | 1.0 | | 3.3098 | 6.59 | 91000 | 3.4401 | 1.0 | | 3.344 | 6.6 | 91100 | 3.4412 | 1.0 | | 3.3974 | 6.6 | 91200 | 3.4383 | 1.0 | | 3.3255 | 6.61 | 91300 | 3.4468 | 1.0 | | 3.3193 | 6.62 | 91400 | 3.4410 | 1.0 | | 3.3432 | 6.62 | 91500 | 3.4429 | 1.0 | | 3.5861 | 6.63 | 91600 | 3.4501 | 1.0 | | 3.4078 | 6.64 | 91700 | 3.4466 | 1.0 | | 3.4045 | 6.65 | 91800 | 3.4507 | 1.0 | | 3.2148 | 6.65 | 91900 | 3.4440 | 1.0 | | 3.446 | 6.66 | 92000 | 3.4431 | 1.0 | | 3.2581 | 6.67 | 92100 | 3.4421 | 1.0 | | 3.4569 | 6.67 | 92200 | 3.4477 | 1.0 | | 3.3271 | 6.68 | 92300 | 3.4384 | 1.0 | | 3.3428 | 6.69 | 92400 | 3.4379 | 1.0 | | 5.7004 | 6.7 | 92500 | 3.4444 | 1.0 | | 3.3441 | 6.7 | 92600 | 3.4525 | 1.0 | | 3.4577 | 6.71 | 92700 | 3.4529 | 1.0 | | 3.2188 | 6.72 | 92800 | 3.4386 | 1.0 | | 3.3738 | 6.73 | 92900 | 3.4421 | 1.0 | | 3.309 | 6.73 | 93000 | 3.4421 | 1.0 | | 3.6994 | 6.74 | 93100 | 3.4476 | 1.0 | | 3.4694 | 6.75 | 93200 | 3.4479 | 1.0 | | 3.6629 | 6.75 | 93300 | 3.4433 | 1.0 | | 3.2603 | 6.76 | 93400 | 3.4455 | 1.0 | | 3.5258 | 6.77 | 93500 | 3.4466 | 1.0 | | 3.3443 | 6.78 | 93600 | 3.4444 | 1.0 | | 3.3363 | 6.78 | 93700 | 3.4389 | 1.0 | | 3.8168 | 6.79 | 93800 | 3.4411 | 1.0 | | 3.4222 | 6.8 | 93900 | 3.4447 | 1.0 | | 3.6458 | 6.81 | 94000 | 3.4432 | 1.0 | | 3.246 | 6.81 | 94100 | 3.4473 | 1.0 | | 3.5288 | 6.82 | 94200 | 3.4468 | 1.0 | | 3.4141 | 6.83 | 94300 | 3.4379 | 1.0 | | 3.3348 | 6.83 | 94400 | 3.4394 | 1.0 | | 3.3027 | 6.84 | 94500 | 3.4433 | 1.0 | | 3.7383 | 6.85 | 94600 | 3.4431 | 1.0 | | 3.2835 | 6.86 | 94700 | 3.4385 | 1.0 | | 3.3132 | 6.86 | 94800 | 3.4435 | 1.0 | | 3.5486 | 6.87 | 94900 | 3.4457 | 1.0 | | 3.2407 | 6.88 | 95000 | 3.4401 | 1.0 | | 5.9865 | 6.88 | 95100 | 3.4526 | 1.0 | | 3.7244 | 6.89 | 95200 | 3.4456 | 1.0 | | 3.4583 | 6.9 | 95300 | 3.4419 | 1.0 | | 3.3585 | 6.91 | 95400 | 3.4406 | 1.0 | | 3.3433 | 6.91 | 95500 | 3.4582 | 1.0 | | 3.3487 | 6.92 | 95600 | 3.4446 | 1.0 | | 3.2941 | 6.93 | 95700 | 3.4538 | 1.0 | | 3.4637 | 6.94 | 95800 | 3.4380 | 1.0 | | 3.6811 | 6.94 | 95900 | 3.4385 | 1.0 | | 3.3364 | 6.95 | 96000 | 3.4476 | 1.0 | | 3.3127 | 6.96 | 96100 | 3.4376 | 1.0 | | 3.301 | 6.96 | 96200 | 3.4442 | 1.0 | | 3.407 | 6.97 | 96300 | 3.4419 | 1.0 | | 3.3103 | 6.98 | 96400 | 3.4444 | 1.0 | | 3.514 | 6.99 | 96500 | 3.4496 | 1.0 | | 3.257 | 6.99 | 96600 | 3.4499 | 1.0 | | 3.4131 | 7.0 | 96700 | 3.4408 | 1.0 | | 3.3395 | 7.01 | 96800 | 3.4395 | 1.0 | | 3.3651 | 7.02 | 96900 | 3.4373 | 1.0 | | 3.4559 | 7.02 | 97000 | 3.4431 | 1.0 | | 3.8799 | 7.03 | 97100 | 3.4419 | 1.0 | | 3.4603 | 7.04 | 97200 | 3.4411 | 1.0 | | 3.3208 | 7.04 | 97300 | 3.4413 | 1.0 | | 3.3491 | 7.05 | 97400 | 3.4389 | 1.0 | | 3.3667 | 7.06 | 97500 | 3.4447 | 1.0 | | 3.3628 | 7.07 | 97600 | 3.4418 | 1.0 | | 3.322 | 7.07 | 97700 | 3.4448 | 1.0 | | 3.4562 | 7.08 | 97800 | 3.4479 | 1.0 | | 3.2331 | 7.09 | 97900 | 3.4522 | 1.0 | | 3.4535 | 7.09 | 98000 | 3.4465 | 1.0 | | 3.3035 | 7.1 | 98100 | 3.4444 | 1.0 | | 3.3541 | 7.11 | 98200 | 3.4380 | 1.0 | | 3.2874 | 7.12 | 98300 | 3.4413 | 1.0 | | 3.4224 | 7.12 | 98400 | 3.4519 | 1.0 | | 3.4403 | 7.13 | 98500 | 3.4447 | 1.0 | | 3.2964 | 7.14 | 98600 | 3.4424 | 1.0 | | 3.297 | 7.15 | 98700 | 3.4403 | 1.0 | | 3.3279 | 7.15 | 98800 | 3.4469 | 1.0 | | 3.3393 | 7.16 | 98900 | 3.4477 | 1.0 | | 3.3377 | 7.17 | 99000 | 3.4437 | 1.0 | | 3.3256 | 7.17 | 99100 | 3.4376 | 1.0 | | 3.383 | 7.18 | 99200 | 3.4397 | 1.0 | | 3.3298 | 7.19 | 99300 | 3.4414 | 1.0 | | 5.1176 | 7.2 | 99400 | 3.4438 | 1.0 | | 3.2854 | 7.2 | 99500 | 3.4463 | 1.0 | | 3.3177 | 7.21 | 99600 | 3.4558 | 1.0 | | 3.3946 | 7.22 | 99700 | 3.4420 | 1.0 | | 3.3175 | 7.23 | 99800 | 3.4485 | 1.0 | | 3.3535 | 7.23 | 99900 | 3.4416 | 1.0 | | 3.332 | 7.24 | 100000 | 3.4375 | 1.0 | | 3.2779 | 7.25 | 100100 | 3.4437 | 1.0 | | 3.2977 | 7.25 | 100200 | 3.4438 | 1.0 | | 3.3777 | 7.26 | 100300 | 3.4448 | 1.0 | | 3.3096 | 7.27 | 100400 | 3.4414 | 1.0 | | 3.3538 | 7.28 | 100500 | 3.4464 | 1.0 | | 3.3164 | 7.28 | 100600 | 3.4456 | 1.0 | | 3.4028 | 7.29 | 100700 | 3.4494 | 1.0 | | 3.4322 | 7.3 | 100800 | 3.4554 | 1.0 | | 3.2851 | 7.3 | 100900 | 3.4499 | 1.0 | | 3.3666 | 7.31 | 101000 | 3.4394 | 1.0 | | 3.2821 | 7.32 | 101100 | 3.4396 | 1.0 | | 3.3335 | 7.33 | 101200 | 3.4454 | 1.0 | | 3.3327 | 7.33 | 101300 | 3.4484 | 1.0 | | 3.2771 | 7.34 | 101400 | 3.4416 | 1.0 | | 3.2928 | 7.35 | 101500 | 3.4433 | 1.0 | | 3.3341 | 7.36 | 101600 | 3.4482 | 1.0 | | 3.2928 | 7.36 | 101700 | 3.4420 | 1.0 | | 3.2428 | 7.37 | 101800 | 3.4428 | 1.0 | | 3.3266 | 7.38 | 101900 | 3.4455 | 1.0 | | 3.3004 | 7.38 | 102000 | 3.4481 | 1.0 | | 3.3588 | 7.39 | 102100 | 3.4414 | 1.0 | | 3.3312 | 7.4 | 102200 | 3.4510 | 1.0 | | 3.4165 | 7.41 | 102300 | 3.4375 | 1.0 | | 3.3087 | 7.41 | 102400 | 3.4522 | 1.0 | | 3.353 | 7.42 | 102500 | 3.4400 | 1.0 | | 3.1741 | 7.43 | 102600 | 3.4413 | 1.0 | | 3.2123 | 7.44 | 102700 | 3.4472 | 1.0 | | 3.1993 | 7.44 | 102800 | 3.4452 | 1.0 | | 3.239 | 7.45 | 102900 | 3.4418 | 1.0 | | 3.3241 | 7.46 | 103000 | 3.4496 | 1.0 | | 3.2586 | 7.46 | 103100 | 3.4498 | 1.0 | | 3.5903 | 7.47 | 103200 | 3.4465 | 1.0 | | 3.3286 | 7.48 | 103300 | 3.4488 | 1.0 | | 3.4615 | 7.49 | 103400 | 3.4486 | 1.0 | | 3.3855 | 7.49 | 103500 | 3.4440 | 1.0 | | 3.3819 | 7.5 | 103600 | 3.4534 | 1.0 | | 3.3003 | 7.51 | 103700 | 3.4502 | 1.0 | | 3.4232 | 7.51 | 103800 | 3.4429 | 1.0 | | 3.2926 | 7.52 | 103900 | 3.4442 | 1.0 | | 3.7337 | 7.53 | 104000 | 3.4516 | 1.0 | | 3.3338 | 7.54 | 104100 | 3.4469 | 1.0 | | 3.32 | 7.54 | 104200 | 3.4545 | 1.0 | | 3.6807 | 7.55 | 104300 | 3.4449 | 1.0 | | 3.3397 | 7.56 | 104400 | 3.4479 | 1.0 | | 3.2993 | 7.57 | 104500 | 3.4424 | 1.0 | | 3.3652 | 7.57 | 104600 | 3.4507 | 1.0 | | 3.2885 | 7.58 | 104700 | 3.4437 | 1.0 | | 3.4006 | 7.59 | 104800 | 3.4403 | 1.0 | | 3.3361 | 7.59 | 104900 | 3.4432 | 1.0 | | 3.4084 | 7.6 | 105000 | 3.4423 | 1.0 | | 3.3251 | 7.61 | 105100 | 3.4418 | 1.0 | | 3.3079 | 7.62 | 105200 | 3.4398 | 1.0 | | 3.4738 | 7.62 | 105300 | 3.4497 | 1.0 | | 3.5048 | 7.63 | 105400 | 3.4429 | 1.0 | | 3.4189 | 7.64 | 105500 | 3.4410 | 1.0 | | 3.3132 | 7.64 | 105600 | 3.4437 | 1.0 | | 3.2738 | 7.65 | 105700 | 3.4457 | 1.0 | | 3.2876 | 7.66 | 105800 | 3.4404 | 1.0 | | 3.3413 | 7.67 | 105900 | 3.4458 | 1.0 | | 3.3014 | 7.67 | 106000 | 3.4535 | 1.0 | | 3.2244 | 7.68 | 106100 | 3.4436 | 1.0 | | 3.2715 | 7.69 | 106200 | 3.4470 | 1.0 | | 3.3593 | 7.7 | 106300 | 3.4410 | 1.0 | | 3.334 | 7.7 | 106400 | 3.4525 | 1.0 | | 3.3547 | 7.71 | 106500 | 3.4513 | 1.0 | | 3.9896 | 7.72 | 106600 | 3.4381 | 1.0 | | 3.4202 | 7.72 | 106700 | 3.4395 | 1.0 | | 3.34 | 7.73 | 106800 | 3.4426 | 1.0 | | 3.3778 | 7.74 | 106900 | 3.4508 | 1.0 | | 3.3374 | 7.75 | 107000 | 3.4464 | 1.0 | | 3.4008 | 7.75 | 107100 | 3.4365 | 1.0 | | 3.2595 | 7.76 | 107200 | 3.4496 | 1.0 | | 3.3261 | 7.77 | 107300 | 3.4543 | 1.0 | | 3.2551 | 7.78 | 107400 | 3.4490 | 1.0 | | 3.2967 | 7.78 | 107500 | 3.4404 | 1.0 | | 3.4232 | 7.79 | 107600 | 3.4492 | 1.0 | | 3.3992 | 7.8 | 107700 | 3.4448 | 1.0 | | 3.3268 | 7.8 | 107800 | 3.4465 | 1.0 | | 3.283 | 7.81 | 107900 | 3.4424 | 1.0 | | 3.3488 | 7.82 | 108000 | 3.4446 | 1.0 | | 3.3232 | 7.83 | 108100 | 3.4432 | 1.0 | | 3.5081 | 7.83 | 108200 | 3.4460 | 1.0 | | 3.2686 | 7.84 | 108300 | 3.4499 | 1.0 | | 3.2465 | 7.85 | 108400 | 3.4429 | 1.0 | | 3.5602 | 7.85 | 108500 | 3.4398 | 1.0 | | 3.299 | 7.86 | 108600 | 3.4376 | 1.0 | | 3.3437 | 7.87 | 108700 | 3.4428 | 1.0 | | 3.3221 | 7.88 | 108800 | 3.4492 | 1.0 | | 3.5462 | 7.88 | 108900 | 3.4414 | 1.0 | | 3.3901 | 7.89 | 109000 | 3.4506 | 1.0 | | 3.3598 | 7.9 | 109100 | 3.4421 | 1.0 | | 3.3946 | 7.91 | 109200 | 3.4389 | 1.0 | | 3.3013 | 7.91 | 109300 | 3.4444 | 1.0 | | 3.3094 | 7.92 | 109400 | 3.4464 | 1.0 | | 3.4829 | 7.93 | 109500 | 3.4379 | 1.0 | | 3.2769 | 7.93 | 109600 | 3.4401 | 1.0 | | 3.3359 | 7.94 | 109700 | 3.4437 | 1.0 | | 3.3079 | 7.95 | 109800 | 3.4455 | 1.0 | | 3.3623 | 7.96 | 109900 | 3.4447 | 1.0 | | 3.3439 | 7.96 | 110000 | 3.4404 | 1.0 | | 3.3045 | 7.97 | 110100 | 3.4520 | 1.0 | | 3.2657 | 7.98 | 110200 | 3.4409 | 1.0 | | 3.3187 | 7.99 | 110300 | 3.4430 | 1.0 | | 3.349 | 7.99 | 110400 | 3.4430 | 1.0 | | 3.3262 | 8.0 | 110500 | 3.4412 | 1.0 | | 3.2603 | 8.01 | 110600 | 3.4440 | 1.0 | | 3.4284 | 8.01 | 110700 | 3.4456 | 1.0 | | 3.5993 | 8.02 | 110800 | 3.4518 | 1.0 | | 5.6854 | 8.03 | 110900 | 3.4411 | 1.0 | | 3.3856 | 8.04 | 111000 | 3.4430 | 1.0 | | 3.5339 | 8.04 | 111100 | 3.4394 | 1.0 | | 3.2691 | 8.05 | 111200 | 3.4425 | 1.0 | | 3.3462 | 8.06 | 111300 | 3.4422 | 1.0 | | 3.3469 | 8.06 | 111400 | 3.4458 | 1.0 | | 3.3598 | 8.07 | 111500 | 3.4429 | 1.0 | | 3.554 | 8.08 | 111600 | 3.4438 | 1.0 | | 3.3207 | 8.09 | 111700 | 3.4480 | 1.0 | | 3.2963 | 8.09 | 111800 | 3.4434 | 1.0 | | 3.4644 | 8.1 | 111900 | 3.4417 | 1.0 | | 3.4265 | 8.11 | 112000 | 3.4404 | 1.0 | | 3.3026 | 8.12 | 112100 | 3.4442 | 1.0 | | 3.2747 | 8.12 | 112200 | 3.4433 | 1.0 | | 7.3735 | 8.13 | 112300 | 3.4403 | 1.0 | | 3.4803 | 8.14 | 112400 | 3.4464 | 1.0 | | 4.9879 | 8.14 | 112500 | 3.4454 | 1.0 | | 3.4249 | 8.15 | 112600 | 3.4421 | 1.0 | | 3.3493 | 8.16 | 112700 | 3.4403 | 1.0 | | 3.3514 | 8.17 | 112800 | 3.4445 | 1.0 | | 3.262 | 8.17 | 112900 | 3.4457 | 1.0 | | 3.3517 | 8.18 | 113000 | 3.4479 | 1.0 | | 3.2408 | 8.19 | 113100 | 3.4413 | 1.0 | | 3.2346 | 8.2 | 113200 | 3.4415 | 1.0 | | 3.2397 | 8.2 | 113300 | 3.4414 | 1.0 | | 3.3794 | 8.21 | 113400 | 3.4502 | 1.0 | | 3.516 | 8.22 | 113500 | 3.4507 | 1.0 | | 3.4129 | 8.22 | 113600 | 3.4455 | 1.0 | | 3.3381 | 8.23 | 113700 | 3.4540 | 1.0 | | 3.3172 | 8.24 | 113800 | 3.4473 | 1.0 | | 3.5307 | 8.25 | 113900 | 3.4431 | 1.0 | | 3.3424 | 8.25 | 114000 | 3.4511 | 1.0 | | 3.4004 | 8.26 | 114100 | 3.4434 | 1.0 | | 3.4061 | 8.27 | 114200 | 3.4435 | 1.0 | | 3.5333 | 8.27 | 114300 | 3.4415 | 1.0 | | 3.2974 | 8.28 | 114400 | 3.4472 | 1.0 | | 3.3827 | 8.29 | 114500 | 3.4469 | 1.0 | | 3.5697 | 8.3 | 114600 | 3.4427 | 1.0 | | 3.4561 | 8.3 | 114700 | 3.4433 | 1.0 | | 3.5205 | 8.31 | 114800 | 3.4474 | 1.0 | | 3.2541 | 8.32 | 114900 | 3.4475 | 1.0 | | 3.4251 | 8.33 | 115000 | 3.4394 | 1.0 | | 3.2477 | 8.33 | 115100 | 3.4524 | 1.0 | | 3.4003 | 8.34 | 115200 | 3.4438 | 1.0 | | 3.3378 | 8.35 | 115300 | 3.4447 | 1.0 | | 3.2828 | 8.35 | 115400 | 3.4493 | 1.0 | | 3.6974 | 8.36 | 115500 | 3.4507 | 1.0 | | 3.3466 | 8.37 | 115600 | 3.4384 | 1.0 | | 3.2601 | 8.38 | 115700 | 3.4538 | 1.0 | | 3.8384 | 8.38 | 115800 | 3.4408 | 1.0 | | 3.5255 | 8.39 | 115900 | 3.4446 | 1.0 | | 3.3517 | 8.4 | 116000 | 3.4445 | 1.0 | | 3.37 | 8.41 | 116100 | 3.4530 | 1.0 | | 3.4486 | 8.41 | 116200 | 3.4446 | 1.0 | | 3.4104 | 8.42 | 116300 | 3.4447 | 1.0 | | 3.5267 | 8.43 | 116400 | 3.4410 | 1.0 | | 3.4422 | 8.43 | 116500 | 3.4546 | 1.0 | | 3.1616 | 8.44 | 116600 | 3.4400 | 1.0 | | 3.3557 | 8.45 | 116700 | 3.4458 | 1.0 | | 3.4674 | 8.46 | 116800 | 3.4443 | 1.0 | | 3.3114 | 8.46 | 116900 | 3.4390 | 1.0 | | 3.4986 | 8.47 | 117000 | 3.4405 | 1.0 | | 3.4579 | 8.48 | 117100 | 3.4459 | 1.0 | | 3.3369 | 8.48 | 117200 | 3.4403 | 1.0 | | 3.4802 | 8.49 | 117300 | 3.4480 | 1.0 | | 3.3244 | 8.5 | 117400 | 3.4447 | 1.0 | | 3.3096 | 8.51 | 117500 | 3.4525 | 1.0 | | 3.3415 | 8.51 | 117600 | 3.4516 | 1.0 | | 3.416 | 8.52 | 117700 | 3.4396 | 1.0 | | 3.3363 | 8.53 | 117800 | 3.4510 | 1.0 | | 3.2588 | 8.54 | 117900 | 3.4439 | 1.0 | | 3.4127 | 8.54 | 118000 | 3.4370 | 1.0 | | 3.4268 | 8.55 | 118100 | 3.4472 | 1.0 | | 3.3877 | 8.56 | 118200 | 3.4437 | 1.0 | | 3.386 | 8.56 | 118300 | 3.4448 | 1.0 | | 3.9643 | 8.57 | 118400 | 3.4500 | 1.0 | | 3.2205 | 8.58 | 118500 | 3.4410 | 1.0 | | 3.3372 | 8.59 | 118600 | 3.4486 | 1.0 | | 3.3919 | 8.59 | 118700 | 3.4485 | 1.0 | | 3.3279 | 8.6 | 118800 | 3.4408 | 1.0 | | 3.3251 | 8.61 | 118900 | 3.4379 | 1.0 | | 3.2832 | 8.62 | 119000 | 3.4388 | 1.0 | | 3.2708 | 8.62 | 119100 | 3.4522 | 1.0 | | 4.0701 | 8.63 | 119200 | 3.4436 | 1.0 | | 3.5261 | 8.64 | 119300 | 3.4475 | 1.0 | | 3.2695 | 8.64 | 119400 | 3.4411 | 1.0 | | 3.4095 | 8.65 | 119500 | 3.4451 | 1.0 | | 3.2641 | 8.66 | 119600 | 3.4527 | 1.0 | | 3.6962 | 8.67 | 119700 | 3.4495 | 1.0 | | 3.407 | 8.67 | 119800 | 3.4523 | 1.0 | | 3.5073 | 8.68 | 119900 | 3.4612 | 1.0 | | 3.4697 | 8.69 | 120000 | 3.4491 | 1.0 | | 3.4643 | 8.69 | 120100 | 3.4427 | 1.0 | | 3.5253 | 8.7 | 120200 | 3.4457 | 1.0 | | 3.2562 | 8.71 | 120300 | 3.4545 | 1.0 | | 3.2946 | 8.72 | 120400 | 3.4570 | 1.0 | | 3.393 | 8.72 | 120500 | 3.4432 | 1.0 | | 3.2528 | 8.73 | 120600 | 3.4391 | 1.0 | | 3.4529 | 8.74 | 120700 | 3.4530 | 1.0 | | 3.506 | 8.75 | 120800 | 3.4425 | 1.0 | | 3.3464 | 8.75 | 120900 | 3.4420 | 1.0 | | 3.3287 | 8.76 | 121000 | 3.4463 | 1.0 | | 3.3165 | 8.77 | 121100 | 3.4509 | 1.0 | | 3.3102 | 8.77 | 121200 | 3.4418 | 1.0 | | 3.4206 | 8.78 | 121300 | 3.4495 | 1.0 | | 3.5963 | 8.79 | 121400 | 3.4432 | 1.0 | | 3.2621 | 8.8 | 121500 | 3.4455 | 1.0 | | 3.3275 | 8.8 | 121600 | 3.4483 | 1.0 | | 3.3654 | 8.81 | 121700 | 3.4476 | 1.0 | | 3.4913 | 8.82 | 121800 | 3.4525 | 1.0 | | 3.4162 | 8.83 | 121900 | 3.4409 | 1.0 | | 3.221 | 8.83 | 122000 | 3.4415 | 1.0 | | 3.3024 | 8.84 | 122100 | 3.4385 | 1.0 | | 3.3451 | 8.85 | 122200 | 3.4428 | 1.0 | | 3.3909 | 8.85 | 122300 | 3.4417 | 1.0 | | 3.3237 | 8.86 | 122400 | 3.4472 | 1.0 | | 3.2992 | 8.87 | 122500 | 3.4406 | 1.0 | | 3.2422 | 8.88 | 122600 | 3.4492 | 1.0 | | 3.3713 | 8.88 | 122700 | 3.4411 | 1.0 | | 3.4062 | 8.89 | 122800 | 3.4412 | 1.0 | | 3.3616 | 8.9 | 122900 | 3.4464 | 1.0 | | 3.3811 | 8.9 | 123000 | 3.4382 | 1.0 | | 3.3592 | 8.91 | 123100 | 3.4442 | 1.0 | | 3.8331 | 8.92 | 123200 | 3.4423 | 1.0 | | 3.3764 | 8.93 | 123300 | 3.4492 | 1.0 | | 3.3964 | 8.93 | 123400 | 3.4390 | 1.0 | | 3.5063 | 8.94 | 123500 | 3.4411 | 1.0 | | 3.3627 | 8.95 | 123600 | 3.4467 | 1.0 | | 4.1315 | 8.96 | 123700 | 3.4409 | 1.0 | | 3.7114 | 8.96 | 123800 | 3.4456 | 1.0 | | 3.3446 | 8.97 | 123900 | 3.4413 | 1.0 | | 3.3777 | 8.98 | 124000 | 3.4464 | 1.0 | | 3.6232 | 8.98 | 124100 | 3.4478 | 1.0 | | 3.3275 | 8.99 | 124200 | 3.4474 | 1.0 | | 3.5736 | 9.0 | 124300 | 3.4427 | 1.0 | | 3.2052 | 9.01 | 124400 | 3.4455 | 1.0 | | 3.3101 | 9.01 | 124500 | 3.4485 | 1.0 | | 3.3523 | 9.02 | 124600 | 3.4389 | 1.0 | | 3.3095 | 9.03 | 124700 | 3.4433 | 1.0 | | 3.3152 | 9.03 | 124800 | 3.4402 | 1.0 | | 3.2351 | 9.04 | 124900 | 3.4452 | 1.0 | | 3.5137 | 9.05 | 125000 | 3.4458 | 1.0 | | 3.3489 | 9.06 | 125100 | 3.4431 | 1.0 | | 3.3822 | 9.06 | 125200 | 3.4370 | 1.0 | | 3.3842 | 9.07 | 125300 | 3.4359 | 1.0 | | 3.306 | 9.08 | 125400 | 3.4439 | 1.0 | | 3.3784 | 9.09 | 125500 | 3.4538 | 1.0 | | 3.3313 | 9.09 | 125600 | 3.4410 | 1.0 | | 3.2891 | 9.1 | 125700 | 3.4397 | 1.0 | | 3.321 | 9.11 | 125800 | 3.4457 | 1.0 | | 3.2479 | 9.11 | 125900 | 3.4448 | 1.0 | | 3.3723 | 9.12 | 126000 | 3.4409 | 1.0 | | 3.3203 | 9.13 | 126100 | 3.4439 | 1.0 | | 3.2906 | 9.14 | 126200 | 3.4388 | 1.0 | | 3.2164 | 9.14 | 126300 | 3.4427 | 1.0 | | 3.2608 | 9.15 | 126400 | 3.4396 | 1.0 | | 3.3739 | 9.16 | 126500 | 3.4536 | 1.0 | | 3.3479 | 9.17 | 126600 | 3.4533 | 1.0 | | 3.4664 | 9.17 | 126700 | 3.4491 | 1.0 | | 3.326 | 9.18 | 126800 | 3.4402 | 1.0 | | 3.3056 | 9.19 | 126900 | 3.4398 | 1.0 | | 3.3528 | 9.19 | 127000 | 3.4424 | 1.0 | | 3.2717 | 9.2 | 127100 | 3.4409 | 1.0 | | 3.3564 | 9.21 | 127200 | 3.4497 | 1.0 | | 3.4015 | 9.22 | 127300 | 3.4435 | 1.0 | | 3.3325 | 9.22 | 127400 | 3.4478 | 1.0 | | 3.4459 | 9.23 | 127500 | 3.4479 | 1.0 | | 3.2151 | 9.24 | 127600 | 3.4519 | 1.0 | | 3.2456 | 9.24 | 127700 | 3.4408 | 1.0 | | 3.3108 | 9.25 | 127800 | 3.4430 | 1.0 | | 3.3965 | 9.26 | 127900 | 3.4427 | 1.0 | | 3.4911 | 9.27 | 128000 | 3.4430 | 1.0 | | 3.3996 | 9.27 | 128100 | 3.4458 | 1.0 | | 3.3408 | 9.28 | 128200 | 3.4435 | 1.0 | | 3.353 | 9.29 | 128300 | 3.4468 | 1.0 | | 3.5449 | 9.3 | 128400 | 3.4401 | 1.0 | | 3.3564 | 9.3 | 128500 | 3.4481 | 1.0 | | 3.4768 | 9.31 | 128600 | 3.4450 | 1.0 | | 3.3972 | 9.32 | 128700 | 3.4467 | 1.0 | | 3.3295 | 9.32 | 128800 | 3.4385 | 1.0 | | 3.3181 | 9.33 | 128900 | 3.4435 | 1.0 | | 3.3224 | 9.34 | 129000 | 3.4467 | 1.0 | | 3.3471 | 9.35 | 129100 | 3.4415 | 1.0 | | 3.3379 | 9.35 | 129200 | 3.4458 | 1.0 | | 3.3991 | 9.36 | 129300 | 3.4420 | 1.0 | | 3.4037 | 9.37 | 129400 | 3.4433 | 1.0 | | 3.3157 | 9.38 | 129500 | 3.4450 | 1.0 | | 3.3739 | 9.38 | 129600 | 3.4426 | 1.0 | | 3.2556 | 9.39 | 129700 | 3.4473 | 1.0 | | 3.3451 | 9.4 | 129800 | 3.4413 | 1.0 | | 3.3694 | 9.4 | 129900 | 3.4462 | 1.0 | | 3.343 | 9.41 | 130000 | 3.4408 | 1.0 | | 3.4286 | 9.42 | 130100 | 3.4495 | 1.0 | | 3.4468 | 9.43 | 130200 | 3.4450 | 1.0 | | 3.3417 | 9.43 | 130300 | 3.4457 | 1.0 | | 3.4661 | 9.44 | 130400 | 3.4409 | 1.0 | | 3.2859 | 9.45 | 130500 | 3.4412 | 1.0 | | 3.3164 | 9.45 | 130600 | 3.4495 | 1.0 | | 3.3542 | 9.46 | 130700 | 3.4428 | 1.0 | | 3.2783 | 9.47 | 130800 | 3.4398 | 1.0 | | 3.421 | 9.48 | 130900 | 3.4408 | 1.0 | | 3.3765 | 9.48 | 131000 | 3.4443 | 1.0 | | 3.3822 | 9.49 | 131100 | 3.4458 | 1.0 | | 3.2261 | 9.5 | 131200 | 3.4437 | 1.0 | | 3.362 | 9.51 | 131300 | 3.4388 | 1.0 | | 3.3203 | 9.51 | 131400 | 3.4498 | 1.0 | | 3.2326 | 9.52 | 131500 | 3.4415 | 1.0 | | 3.3897 | 9.53 | 131600 | 3.4556 | 1.0 | | 3.3434 | 9.53 | 131700 | 3.4421 | 1.0 | | 3.3297 | 9.54 | 131800 | 3.4394 | 1.0 | | 3.4889 | 9.55 | 131900 | 3.4420 | 1.0 | | 3.3502 | 9.56 | 132000 | 3.4425 | 1.0 | | 3.4079 | 9.56 | 132100 | 3.4370 | 1.0 | | 3.213 | 9.57 | 132200 | 3.4479 | 1.0 | | 3.3935 | 9.58 | 132300 | 3.4433 | 1.0 | | 3.2598 | 9.59 | 132400 | 3.4431 | 1.0 | | 3.3968 | 9.59 | 132500 | 3.4442 | 1.0 | | 3.338 | 9.6 | 132600 | 3.4433 | 1.0 | | 3.3268 | 9.61 | 132700 | 3.4447 | 1.0 | | 3.3656 | 9.61 | 132800 | 3.4394 | 1.0 | | 3.3782 | 9.62 | 132900 | 3.4397 | 1.0 | | 3.3787 | 9.63 | 133000 | 3.4440 | 1.0 | | 5.5557 | 9.64 | 133100 | 3.4396 | 1.0 | | 3.4011 | 9.64 | 133200 | 3.4448 | 1.0 | | 3.7319 | 9.65 | 133300 | 3.4447 | 1.0 | | 3.5717 | 9.66 | 133400 | 3.4387 | 1.0 | | 3.3051 | 9.66 | 133500 | 3.4460 | 1.0 | | 3.3485 | 9.67 | 133600 | 3.4513 | 1.0 | | 3.4845 | 9.68 | 133700 | 3.4506 | 1.0 | | 3.335 | 9.69 | 133800 | 3.4415 | 1.0 | | 3.2942 | 9.69 | 133900 | 3.4439 | 1.0 | | 3.2748 | 9.7 | 134000 | 3.4390 | 1.0 | | 3.392 | 9.71 | 134100 | 3.4490 | 1.0 | | 3.3396 | 9.72 | 134200 | 3.4463 | 1.0 | | 3.3097 | 9.72 | 134300 | 3.4440 | 1.0 | | 3.3421 | 9.73 | 134400 | 3.4498 | 1.0 | | 3.5204 | 9.74 | 134500 | 3.4514 | 1.0 | | 3.8217 | 9.74 | 134600 | 3.4463 | 1.0 | | 3.3094 | 9.75 | 134700 | 3.4402 | 1.0 | | 3.3267 | 9.76 | 134800 | 3.4425 | 1.0 | | 3.3396 | 9.77 | 134900 | 3.4429 | 1.0 | | 3.3117 | 9.77 | 135000 | 3.4415 | 1.0 | | 3.4302 | 9.78 | 135100 | 3.4406 | 1.0 | | 3.2691 | 9.79 | 135200 | 3.4405 | 1.0 | | 3.337 | 9.8 | 135300 | 3.4416 | 1.0 | | 3.3437 | 9.8 | 135400 | 3.4427 | 1.0 | | 3.3744 | 9.81 | 135500 | 3.4477 | 1.0 | | 3.3151 | 9.82 | 135600 | 3.4388 | 1.0 | | 3.3742 | 9.82 | 135700 | 3.4448 | 1.0 | | 3.3093 | 9.83 | 135800 | 3.4462 | 1.0 | | 3.4145 | 9.84 | 135900 | 3.4413 | 1.0 | | 3.3858 | 9.85 | 136000 | 3.4459 | 1.0 | | 3.3464 | 9.85 | 136100 | 3.4432 | 1.0 | | 3.3831 | 9.86 | 136200 | 3.4467 | 1.0 | | 3.2715 | 9.87 | 136300 | 3.4442 | 1.0 | | 3.3594 | 9.87 | 136400 | 3.4444 | 1.0 | | 3.3679 | 9.88 | 136500 | 3.4498 | 1.0 | | 3.346 | 9.89 | 136600 | 3.4380 | 1.0 | | 3.3156 | 9.9 | 136700 | 3.4501 | 1.0 | | 3.3689 | 9.9 | 136800 | 3.4403 | 1.0 | | 3.3157 | 9.91 | 136900 | 3.4461 | 1.0 | | 3.2955 | 9.92 | 137000 | 3.4460 | 1.0 | | 3.2288 | 9.93 | 137100 | 3.4429 | 1.0 | | 3.3068 | 9.93 | 137200 | 3.4442 | 1.0 | | 3.3965 | 9.94 | 137300 | 3.4400 | 1.0 | | 3.3238 | 9.95 | 137400 | 3.4464 | 1.0 | | 3.3469 | 9.95 | 137500 | 3.4496 | 1.0 | | 3.3818 | 9.96 | 137600 | 3.4446 | 1.0 | | 3.3677 | 9.97 | 137700 | 3.4487 | 1.0 | | 3.4811 | 9.98 | 137800 | 3.4441 | 1.0 | | 3.3636 | 9.98 | 137900 | 3.4456 | 1.0 | | 3.3305 | 9.99 | 138000 | 3.4417 | 1.0 | | 3.4025 | 10.0 | 138100 | 3.4401 | 1.0 | | 3.4951 | 10.01 | 138200 | 3.4392 | 1.0 | | 3.2803 | 10.01 | 138300 | 3.4411 | 1.0 | | 4.6095 | 10.02 | 138400 | 3.4446 | 1.0 | | 3.3677 | 10.03 | 138500 | 3.4465 | 1.0 | | 3.4183 | 10.03 | 138600 | 3.4434 | 1.0 | | 3.3482 | 10.04 | 138700 | 3.4430 | 1.0 | | 3.2795 | 10.05 | 138800 | 3.4449 | 1.0 | | 3.282 | 10.06 | 138900 | 3.4455 | 1.0 | | 3.2617 | 10.06 | 139000 | 3.4442 | 1.0 | | 3.5404 | 10.07 | 139100 | 3.4375 | 1.0 | | 3.3432 | 10.08 | 139200 | 3.4447 | 1.0 | | 3.3643 | 10.08 | 139300 | 3.4429 | 1.0 | | 3.3022 | 10.09 | 139400 | 3.4415 | 1.0 | | 3.4062 | 10.1 | 139500 | 3.4415 | 1.0 | | 3.374 | 10.11 | 139600 | 3.4405 | 1.0 | | 3.2843 | 10.11 | 139700 | 3.4435 | 1.0 | | 3.6033 | 10.12 | 139800 | 3.4473 | 1.0 | | 3.3374 | 10.13 | 139900 | 3.4428 | 1.0 | | 3.3877 | 10.14 | 140000 | 3.4513 | 1.0 | | 3.3533 | 10.14 | 140100 | 3.4484 | 1.0 | | 3.3678 | 10.15 | 140200 | 3.4481 | 1.0 | | 3.276 | 10.16 | 140300 | 3.4416 | 1.0 | | 3.3052 | 10.16 | 140400 | 3.4483 | 1.0 | | 3.4821 | 10.17 | 140500 | 3.4390 | 1.0 | | 3.2748 | 10.18 | 140600 | 3.4389 | 1.0 | | 3.2742 | 10.19 | 140700 | 3.4482 | 1.0 | | 3.2824 | 10.19 | 140800 | 3.4416 | 1.0 | | 3.37 | 10.2 | 140900 | 3.4435 | 1.0 | | 3.3768 | 10.21 | 141000 | 3.4458 | 1.0 | | 3.2652 | 10.22 | 141100 | 3.4454 | 1.0 | | 3.4041 | 10.22 | 141200 | 3.4425 | 1.0 | | 3.4062 | 10.23 | 141300 | 3.4465 | 1.0 | | 3.2338 | 10.24 | 141400 | 3.4438 | 1.0 | | 3.4214 | 10.24 | 141500 | 3.4425 | 1.0 | | 3.3741 | 10.25 | 141600 | 3.4389 | 1.0 | | 3.3156 | 10.26 | 141700 | 3.4468 | 1.0 | | 3.43 | 10.27 | 141800 | 3.4430 | 1.0 | | 3.3447 | 10.27 | 141900 | 3.4456 | 1.0 | | 3.2682 | 10.28 | 142000 | 3.4517 | 1.0 | | 3.3296 | 10.29 | 142100 | 3.4484 | 1.0 | | 3.2508 | 10.29 | 142200 | 3.4420 | 1.0 | | 3.3328 | 10.3 | 142300 | 3.4472 | 1.0 | | 3.2838 | 10.31 | 142400 | 3.4439 | 1.0 | | 3.3274 | 10.32 | 142500 | 3.4408 | 1.0 | | 3.4848 | 10.32 | 142600 | 3.4448 | 1.0 | | 3.5383 | 10.33 | 142700 | 3.4423 | 1.0 | | 3.231 | 10.34 | 142800 | 3.4463 | 1.0 | | 3.1536 | 10.35 | 142900 | 3.4437 | 1.0 | | 3.281 | 10.35 | 143000 | 3.4436 | 1.0 | | 3.2452 | 10.36 | 143100 | 3.4393 | 1.0 | | 3.5728 | 10.37 | 143200 | 3.4406 | 1.0 | | 3.3216 | 10.37 | 143300 | 3.4403 | 1.0 | | 3.3496 | 10.38 | 143400 | 3.4397 | 1.0 | | 3.3177 | 10.39 | 143500 | 3.4559 | 1.0 | | 3.3153 | 10.4 | 143600 | 3.4460 | 1.0 | | 3.4076 | 10.4 | 143700 | 3.4441 | 1.0 | | 3.4137 | 10.41 | 143800 | 3.4397 | 1.0 | | 3.3806 | 10.42 | 143900 | 3.4488 | 1.0 | | 3.366 | 10.42 | 144000 | 3.4462 | 1.0 | | 3.4151 | 10.43 | 144100 | 3.4446 | 1.0 | | 3.3399 | 10.44 | 144200 | 3.4447 | 1.0 | | 3.3705 | 10.45 | 144300 | 3.4392 | 1.0 | | 3.5029 | 10.45 | 144400 | 3.4513 | 1.0 | | 3.3149 | 10.46 | 144500 | 3.4458 | 1.0 | | 3.3677 | 10.47 | 144600 | 3.4442 | 1.0 | | 3.408 | 10.48 | 144700 | 3.4403 | 1.0 | | 3.3738 | 10.48 | 144800 | 3.4405 | 1.0 | | 3.2886 | 10.49 | 144900 | 3.4447 | 1.0 | | 3.3321 | 10.5 | 145000 | 3.4455 | 1.0 | | 3.4341 | 10.5 | 145100 | 3.4476 | 1.0 | | 3.4789 | 10.51 | 145200 | 3.4436 | 1.0 | | 3.4361 | 10.52 | 145300 | 3.4488 | 1.0 | | 3.3073 | 10.53 | 145400 | 3.4495 | 1.0 | | 3.3372 | 10.53 | 145500 | 3.4461 | 1.0 | | 3.31 | 10.54 | 145600 | 3.4512 | 1.0 | | 3.4571 | 10.55 | 145700 | 3.4473 | 1.0 | | 3.3517 | 10.56 | 145800 | 3.4435 | 1.0 | | 3.4304 | 10.56 | 145900 | 3.4428 | 1.0 | | 3.4364 | 10.57 | 146000 | 3.4369 | 1.0 | | 3.5522 | 10.58 | 146100 | 3.4431 | 1.0 | | 3.421 | 10.58 | 146200 | 3.4426 | 1.0 | | 3.3087 | 10.59 | 146300 | 3.4436 | 1.0 | | 3.2905 | 10.6 | 146400 | 3.4417 | 1.0 | | 3.4746 | 10.61 | 146500 | 3.4419 | 1.0 | | 3.3347 | 10.61 | 146600 | 3.4396 | 1.0 | | 3.2969 | 10.62 | 146700 | 3.4471 | 1.0 | | 3.3403 | 10.63 | 146800 | 3.4453 | 1.0 | | 3.8747 | 10.63 | 146900 | 3.4447 | 1.0 | | 3.3049 | 10.64 | 147000 | 3.4458 | 1.0 | | 3.3451 | 10.65 | 147100 | 3.4441 | 1.0 | | 3.4467 | 10.66 | 147200 | 3.4439 | 1.0 | | 3.3037 | 10.66 | 147300 | 3.4425 | 1.0 | | 3.3891 | 10.67 | 147400 | 3.4427 | 1.0 | | 3.2158 | 10.68 | 147500 | 3.4436 | 1.0 | | 3.3726 | 10.69 | 147600 | 3.4438 | 1.0 | | 3.3391 | 10.69 | 147700 | 3.4548 | 1.0 | | 3.2352 | 10.7 | 147800 | 3.4414 | 1.0 | | 3.3604 | 10.71 | 147900 | 3.4408 | 1.0 | | 3.3056 | 10.71 | 148000 | 3.4407 | 1.0 | | 3.3201 | 10.72 | 148100 | 3.4404 | 1.0 | | 3.4137 | 10.73 | 148200 | 3.4423 | 1.0 | | 3.3336 | 10.74 | 148300 | 3.4455 | 1.0 | | 3.317 | 10.74 | 148400 | 3.4426 | 1.0 | | 3.2644 | 10.75 | 148500 | 3.4427 | 1.0 | | 3.4462 | 10.76 | 148600 | 3.4429 | 1.0 | | 3.448 | 10.77 | 148700 | 3.4479 | 1.0 | | 3.8269 | 10.77 | 148800 | 3.4428 | 1.0 | | 3.2383 | 10.78 | 148900 | 3.4400 | 1.0 | | 3.4066 | 10.79 | 149000 | 3.4412 | 1.0 | | 3.2348 | 10.79 | 149100 | 3.4491 | 1.0 | | 3.2971 | 10.8 | 149200 | 3.4464 | 1.0 | | 3.2493 | 10.81 | 149300 | 3.4509 | 1.0 | | 3.4274 | 10.82 | 149400 | 3.4420 | 1.0 | | 3.4327 | 10.82 | 149500 | 3.4441 | 1.0 | | 3.7189 | 10.83 | 149600 | 3.4377 | 1.0 | | 3.3102 | 10.84 | 149700 | 3.4484 | 1.0 | | 3.4991 | 10.84 | 149800 | 3.4460 | 1.0 | | 3.2776 | 10.85 | 149900 | 3.4428 | 1.0 | | 3.4605 | 10.86 | 150000 | 3.4469 | 1.0 | | 3.8307 | 10.87 | 150100 | 3.4500 | 1.0 | | 3.3874 | 10.87 | 150200 | 3.4454 | 1.0 | | 3.3007 | 10.88 | 150300 | 3.4433 | 1.0 | | 3.4145 | 10.89 | 150400 | 3.4434 | 1.0 | | 3.1793 | 10.9 | 150500 | 3.4401 | 1.0 | | 3.27 | 10.9 | 150600 | 3.4459 | 1.0 | | 3.3434 | 10.91 | 150700 | 3.4400 | 1.0 | | 3.3301 | 10.92 | 150800 | 3.4389 | 1.0 | | 3.622 | 10.92 | 150900 | 3.4451 | 1.0 | | 3.2369 | 10.93 | 151000 | 3.4417 | 1.0 | | 3.4093 | 10.94 | 151100 | 3.4520 | 1.0 | | 3.3885 | 10.95 | 151200 | 3.4448 | 1.0 | | 3.4032 | 10.95 | 151300 | 3.4453 | 1.0 | | 3.4659 | 10.96 | 151400 | 3.4445 | 1.0 | | 5.0434 | 10.97 | 151500 | 3.4457 | 1.0 | | 3.5397 | 10.98 | 151600 | 3.4409 | 1.0 | | 3.4057 | 10.98 | 151700 | 3.4426 | 1.0 | | 3.2813 | 10.99 | 151800 | 3.4471 | 1.0 | | 3.2432 | 11.0 | 151900 | 3.4465 | 1.0 | | 3.3493 | 11.0 | 152000 | 3.4466 | 1.0 | | 3.4295 | 11.01 | 152100 | 3.4379 | 1.0 | | 3.2836 | 11.02 | 152200 | 3.4421 | 1.0 | | 3.3436 | 11.03 | 152300 | 3.4429 | 1.0 | | 3.2982 | 11.03 | 152400 | 3.4473 | 1.0 | | 3.3687 | 11.04 | 152500 | 3.4428 | 1.0 | | 3.362 | 11.05 | 152600 | 3.4387 | 1.0 | | 3.3621 | 11.05 | 152700 | 3.4410 | 1.0 | | 3.4442 | 11.06 | 152800 | 3.4392 | 1.0 | | 3.247 | 11.07 | 152900 | 3.4536 | 1.0 | | 3.3843 | 11.08 | 153000 | 3.4479 | 1.0 | | 3.3548 | 11.08 | 153100 | 3.4425 | 1.0 | | 3.376 | 11.09 | 153200 | 3.4394 | 1.0 | | 3.3866 | 11.1 | 153300 | 3.4389 | 1.0 | | 3.3348 | 11.11 | 153400 | 3.4484 | 1.0 | | 3.3206 | 11.11 | 153500 | 3.4468 | 1.0 | | 3.4335 | 11.12 | 153600 | 3.4445 | 1.0 | | 3.3921 | 11.13 | 153700 | 3.4456 | 1.0 | | 3.434 | 11.13 | 153800 | 3.4422 | 1.0 | | 3.3742 | 11.14 | 153900 | 3.4434 | 1.0 | | 3.3157 | 11.15 | 154000 | 3.4444 | 1.0 | | 3.4209 | 11.16 | 154100 | 3.4411 | 1.0 | | 3.3413 | 11.16 | 154200 | 3.4457 | 1.0 | | 3.3626 | 11.17 | 154300 | 3.4451 | 1.0 | | 3.3541 | 11.18 | 154400 | 3.4391 | 1.0 | | 3.2927 | 11.19 | 154500 | 3.4515 | 1.0 | | 3.3222 | 11.19 | 154600 | 3.4498 | 1.0 | | 3.2971 | 11.2 | 154700 | 3.4521 | 1.0 | | 3.3817 | 11.21 | 154800 | 3.4482 | 1.0 | | 3.3806 | 11.21 | 154900 | 3.4467 | 1.0 | | 3.2959 | 11.22 | 155000 | 3.4417 | 1.0 | | 3.4212 | 11.23 | 155100 | 3.4438 | 1.0 | | 3.3606 | 11.24 | 155200 | 3.4382 | 1.0 | | 3.3119 | 11.24 | 155300 | 3.4381 | 1.0 | | 3.4004 | 11.25 | 155400 | 3.4403 | 1.0 | | 3.2865 | 11.26 | 155500 | 3.4469 | 1.0 | | 3.3606 | 11.26 | 155600 | 3.4492 | 1.0 | | 3.2771 | 11.27 | 155700 | 3.4407 | 1.0 | | 3.3281 | 11.28 | 155800 | 3.4461 | 1.0 | | 3.3006 | 11.29 | 155900 | 3.4505 | 1.0 | | 3.3116 | 11.29 | 156000 | 3.4440 | 1.0 | | 3.4326 | 11.3 | 156100 | 3.4475 | 1.0 | | 3.2976 | 11.31 | 156200 | 3.4517 | 1.0 | | 3.3424 | 11.32 | 156300 | 3.4429 | 1.0 | | 3.5005 | 11.32 | 156400 | 3.4398 | 1.0 | | 3.2623 | 11.33 | 156500 | 3.4382 | 1.0 | | 3.331 | 11.34 | 156600 | 3.4472 | 1.0 | | 3.3657 | 11.34 | 156700 | 3.4413 | 1.0 | | 3.3101 | 11.35 | 156800 | 3.4496 | 1.0 | | 3.3516 | 11.36 | 156900 | 3.4465 | 1.0 | | 3.752 | 11.37 | 157000 | 3.4419 | 1.0 | | 3.2446 | 11.37 | 157100 | 3.4416 | 1.0 | | 3.2753 | 11.38 | 157200 | 3.4406 | 1.0 | | 3.2386 | 11.39 | 157300 | 3.4420 | 1.0 | | 3.3541 | 11.4 | 157400 | 3.4409 | 1.0 | | 3.4276 | 11.4 | 157500 | 3.4430 | 1.0 | | 3.2635 | 11.41 | 157600 | 3.4442 | 1.0 | | 3.4478 | 11.42 | 157700 | 3.4413 | 1.0 | | 3.3043 | 11.42 | 157800 | 3.4491 | 1.0 | | 3.3014 | 11.43 | 157900 | 3.4413 | 1.0 | | 3.3542 | 11.44 | 158000 | 3.4436 | 1.0 | | 3.3745 | 11.45 | 158100 | 3.4465 | 1.0 | | 3.3318 | 11.45 | 158200 | 3.4463 | 1.0 | | 3.3373 | 11.46 | 158300 | 3.4444 | 1.0 | | 3.4279 | 11.47 | 158400 | 3.4386 | 1.0 | | 3.3588 | 11.47 | 158500 | 3.4449 | 1.0 | | 3.338 | 11.48 | 158600 | 3.4399 | 1.0 | | 3.4119 | 11.49 | 158700 | 3.4376 | 1.0 | | 3.2989 | 11.5 | 158800 | 3.4462 | 1.0 | | 3.1883 | 11.5 | 158900 | 3.4398 | 1.0 | | 3.277 | 11.51 | 159000 | 3.4457 | 1.0 | | 3.2838 | 11.52 | 159100 | 3.4481 | 1.0 | | 3.3205 | 11.53 | 159200 | 3.4496 | 1.0 | | 3.2713 | 11.53 | 159300 | 3.4435 | 1.0 | | 3.3927 | 11.54 | 159400 | 3.4441 | 1.0 | | 3.5806 | 11.55 | 159500 | 3.4466 | 1.0 | | 3.3704 | 11.55 | 159600 | 3.4462 | 1.0 | | 3.3217 | 11.56 | 159700 | 3.4444 | 1.0 | | 3.2637 | 11.57 | 159800 | 3.4481 | 1.0 | | 3.2525 | 11.58 | 159900 | 3.4456 | 1.0 | | 3.3364 | 11.58 | 160000 | 3.4445 | 1.0 | | 3.3219 | 11.59 | 160100 | 3.4431 | 1.0 | | 3.3982 | 11.6 | 160200 | 3.4489 | 1.0 | | 3.2253 | 11.61 | 160300 | 3.4409 | 1.0 | | 3.2497 | 11.61 | 160400 | 3.4427 | 1.0 | | 3.3137 | 11.62 | 160500 | 3.4454 | 1.0 | | 3.566 | 11.63 | 160600 | 3.4419 | 1.0 | | 3.3203 | 11.63 | 160700 | 3.4460 | 1.0 | | 3.3048 | 11.64 | 160800 | 3.4439 | 1.0 | | 3.371 | 11.65 | 160900 | 3.4432 | 1.0 | | 3.249 | 11.66 | 161000 | 3.4412 | 1.0 | | 3.2731 | 11.66 | 161100 | 3.4430 | 1.0 | | 3.3787 | 11.67 | 161200 | 3.4426 | 1.0 | | 3.2696 | 11.68 | 161300 | 3.4479 | 1.0 | | 3.7056 | 11.68 | 161400 | 3.4417 | 1.0 | | 3.3999 | 11.69 | 161500 | 3.4455 | 1.0 | | 3.292 | 11.7 | 161600 | 3.4458 | 1.0 | | 3.2673 | 11.71 | 161700 | 3.4398 | 1.0 | | 3.4488 | 11.71 | 161800 | 3.4445 | 1.0 | | 3.2858 | 11.72 | 161900 | 3.4422 | 1.0 | | 3.4464 | 11.73 | 162000 | 3.4466 | 1.0 | | 3.2651 | 11.74 | 162100 | 3.4460 | 1.0 | | 3.2518 | 11.74 | 162200 | 3.4520 | 1.0 | | 3.4483 | 11.75 | 162300 | 3.4447 | 1.0 | | 3.2609 | 11.76 | 162400 | 3.4373 | 1.0 | | 3.398 | 11.76 | 162500 | 3.4432 | 1.0 | | 3.5529 | 11.77 | 162600 | 3.4435 | 1.0 | | 3.3348 | 11.78 | 162700 | 3.4452 | 1.0 | | 3.398 | 11.79 | 162800 | 3.4393 | 1.0 | | 3.5933 | 11.79 | 162900 | 3.4418 | 1.0 | | 3.3373 | 11.8 | 163000 | 3.4434 | 1.0 | | 3.3553 | 11.81 | 163100 | 3.4463 | 1.0 | | 3.3234 | 11.81 | 163200 | 3.4421 | 1.0 | | 3.3678 | 11.82 | 163300 | 3.4417 | 1.0 | | 3.2942 | 11.83 | 163400 | 3.4454 | 1.0 | | 3.5065 | 11.84 | 163500 | 3.4490 | 1.0 | | 3.2952 | 11.84 | 163600 | 3.4468 | 1.0 | | 3.7354 | 11.85 | 163700 | 3.4450 | 1.0 | | 3.3021 | 11.86 | 163800 | 3.4439 | 1.0 | | 3.3754 | 11.87 | 163900 | 3.4455 | 1.0 | | 3.2568 | 11.87 | 164000 | 3.4400 | 1.0 | | 3.3191 | 11.88 | 164100 | 3.4391 | 1.0 | | 3.379 | 11.89 | 164200 | 3.4435 | 1.0 | | 3.3221 | 11.89 | 164300 | 3.4440 | 1.0 | | 3.3765 | 11.9 | 164400 | 3.4452 | 1.0 | | 3.2364 | 11.91 | 164500 | 3.4445 | 1.0 | | 3.6366 | 11.92 | 164600 | 3.4424 | 1.0 | | 3.3871 | 11.92 | 164700 | 3.4398 | 1.0 | | 3.3257 | 11.93 | 164800 | 3.4414 | 1.0 | | 3.298 | 11.94 | 164900 | 3.4388 | 1.0 | | 3.2322 | 11.95 | 165000 | 3.4410 | 1.0 | | 3.4019 | 11.95 | 165100 | 3.4453 | 1.0 | | 3.5989 | 11.96 | 165200 | 3.4435 | 1.0 | | 3.3113 | 11.97 | 165300 | 3.4439 | 1.0 | | 3.3364 | 11.97 | 165400 | 3.4416 | 1.0 | | 3.3256 | 11.98 | 165500 | 3.4465 | 1.0 | | 3.3355 | 11.99 | 165600 | 3.4434 | 1.0 | | 3.3243 | 12.0 | 165700 | 3.4420 | 1.0 | | 3.277 | 12.0 | 165800 | 3.4429 | 1.0 | | 3.3413 | 12.01 | 165900 | 3.4418 | 1.0 | | 3.3576 | 12.02 | 166000 | 3.4432 | 1.0 | | 3.2624 | 12.02 | 166100 | 3.4493 | 1.0 | | 3.4131 | 12.03 | 166200 | 3.4429 | 1.0 | | 3.3717 | 12.04 | 166300 | 3.4460 | 1.0 | | 3.4403 | 12.05 | 166400 | 3.4413 | 1.0 | | 3.3418 | 12.05 | 166500 | 3.4425 | 1.0 | | 3.2016 | 12.06 | 166600 | 3.4429 | 1.0 | | 3.2851 | 12.07 | 166700 | 3.4427 | 1.0 | | 3.3627 | 12.08 | 166800 | 3.4436 | 1.0 | | 3.176 | 12.08 | 166900 | 3.4473 | 1.0 | | 3.3159 | 12.09 | 167000 | 3.4431 | 1.0 | | 3.335 | 12.1 | 167100 | 3.4425 | 1.0 | | 3.2585 | 12.1 | 167200 | 3.4438 | 1.0 | | 3.311 | 12.11 | 167300 | 3.4420 | 1.0 | | 3.2594 | 12.12 | 167400 | 3.4402 | 1.0 | | 3.3877 | 12.13 | 167500 | 3.4427 | 1.0 | | 3.3837 | 12.13 | 167600 | 3.4468 | 1.0 | | 3.4012 | 12.14 | 167700 | 3.4431 | 1.0 | | 3.3258 | 12.15 | 167800 | 3.4405 | 1.0 | | 3.5918 | 12.16 | 167900 | 3.4420 | 1.0 | | 3.1809 | 12.16 | 168000 | 3.4487 | 1.0 | | 3.2878 | 12.17 | 168100 | 3.4453 | 1.0 | | 3.3626 | 12.18 | 168200 | 3.4469 | 1.0 | | 3.3128 | 12.18 | 168300 | 3.4452 | 1.0 | | 3.3257 | 12.19 | 168400 | 3.4466 | 1.0 | | 3.3226 | 12.2 | 168500 | 3.4416 | 1.0 | | 3.5412 | 12.21 | 168600 | 3.4479 | 1.0 | | 3.2933 | 12.21 | 168700 | 3.4476 | 1.0 | | 3.5552 | 12.22 | 168800 | 3.4431 | 1.0 | | 3.3288 | 12.23 | 168900 | 3.4424 | 1.0 | | 3.4587 | 12.23 | 169000 | 3.4423 | 1.0 | | 3.3286 | 12.24 | 169100 | 3.4449 | 1.0 | | 3.2894 | 12.25 | 169200 | 3.4432 | 1.0 | | 4.5148 | 12.26 | 169300 | 3.4424 | 1.0 | | 3.3809 | 12.26 | 169400 | 3.4472 | 1.0 | | 3.2641 | 12.27 | 169500 | 3.4456 | 1.0 | | 3.3429 | 12.28 | 169600 | 3.4443 | 1.0 | | 3.2988 | 12.29 | 169700 | 3.4423 | 1.0 | | 3.3795 | 12.29 | 169800 | 3.4408 | 1.0 | | 3.2812 | 12.3 | 169900 | 3.4468 | 1.0 | | 3.2393 | 12.31 | 170000 | 3.4415 | 1.0 | | 3.3997 | 12.31 | 170100 | 3.4426 | 1.0 | | 3.3112 | 12.32 | 170200 | 3.4424 | 1.0 | | 3.4299 | 12.33 | 170300 | 3.4434 | 1.0 | | 3.486 | 12.34 | 170400 | 3.4454 | 1.0 | | 3.2899 | 12.34 | 170500 | 3.4451 | 1.0 | | 3.4311 | 12.35 | 170600 | 3.4456 | 1.0 | | 3.2727 | 12.36 | 170700 | 3.4472 | 1.0 | | 3.3182 | 12.37 | 170800 | 3.4409 | 1.0 | | 3.5047 | 12.37 | 170900 | 3.4412 | 1.0 | | 3.3801 | 12.38 | 171000 | 3.4403 | 1.0 | | 3.3643 | 12.39 | 171100 | 3.4400 | 1.0 | | 3.3132 | 12.39 | 171200 | 3.4417 | 1.0 | | 3.3558 | 12.4 | 171300 | 3.4440 | 1.0 | | 3.4187 | 12.41 | 171400 | 3.4470 | 1.0 | | 3.3376 | 12.42 | 171500 | 3.4450 | 1.0 | | 3.3095 | 12.42 | 171600 | 3.4456 | 1.0 | | 3.3304 | 12.43 | 171700 | 3.4465 | 1.0 | | 3.4092 | 12.44 | 171800 | 3.4500 | 1.0 | | 3.4149 | 12.44 | 171900 | 3.4459 | 1.0 | | 5.8155 | 12.45 | 172000 | 3.4422 | 1.0 | | 3.3086 | 12.46 | 172100 | 3.4405 | 1.0 | | 3.2699 | 12.47 | 172200 | 3.4439 | 1.0 | | 3.2727 | 12.47 | 172300 | 3.4465 | 1.0 | | 3.4084 | 12.48 | 172400 | 3.4495 | 1.0 | | 3.3246 | 12.49 | 172500 | 3.4451 | 1.0 | | 3.4584 | 12.5 | 172600 | 3.4404 | 1.0 | | 3.3491 | 12.5 | 172700 | 3.4407 | 1.0 | | 3.3103 | 12.51 | 172800 | 3.4417 | 1.0 | | 3.3413 | 12.52 | 172900 | 3.4452 | 1.0 | | 3.3625 | 12.52 | 173000 | 3.4437 | 1.0 | | 3.3988 | 12.53 | 173100 | 3.4452 | 1.0 | | 3.3915 | 12.54 | 173200 | 3.4428 | 1.0 | | 3.2812 | 12.55 | 173300 | 3.4445 | 1.0 | | 3.2952 | 12.55 | 173400 | 3.4450 | 1.0 | | 3.4923 | 12.56 | 173500 | 3.4419 | 1.0 | | 3.4275 | 12.57 | 173600 | 3.4420 | 1.0 | | 3.8005 | 12.58 | 173700 | 3.4465 | 1.0 | | 3.5748 | 12.58 | 173800 | 3.4437 | 1.0 | | 3.283 | 12.59 | 173900 | 3.4441 | 1.0 | | 3.3727 | 12.6 | 174000 | 3.4444 | 1.0 | | 3.285 | 12.6 | 174100 | 3.4443 | 1.0 | | 3.4836 | 12.61 | 174200 | 3.4422 | 1.0 | | 3.5803 | 12.62 | 174300 | 3.4426 | 1.0 | | 3.2655 | 12.63 | 174400 | 3.4420 | 1.0 | | 3.3653 | 12.63 | 174500 | 3.4463 | 1.0 | | 3.3581 | 12.64 | 174600 | 3.4464 | 1.0 | | 3.2738 | 12.65 | 174700 | 3.4435 | 1.0 | | 3.3552 | 12.65 | 174800 | 3.4409 | 1.0 | | 3.3571 | 12.66 | 174900 | 3.4467 | 1.0 | | 3.3093 | 12.67 | 175000 | 3.4423 | 1.0 | | 3.6147 | 12.68 | 175100 | 3.4444 | 1.0 | | 3.2892 | 12.68 | 175200 | 3.4420 | 1.0 | | 3.4071 | 12.69 | 175300 | 3.4455 | 1.0 | | 3.3201 | 12.7 | 175400 | 3.4502 | 1.0 | | 3.308 | 12.71 | 175500 | 3.4428 | 1.0 | | 3.3885 | 12.71 | 175600 | 3.4452 | 1.0 | | 3.3285 | 12.72 | 175700 | 3.4418 | 1.0 | | 3.3647 | 12.73 | 175800 | 3.4446 | 1.0 | | 3.2559 | 12.73 | 175900 | 3.4433 | 1.0 | | 3.4547 | 12.74 | 176000 | 3.4484 | 1.0 | | 3.395 | 12.75 | 176100 | 3.4464 | 1.0 | | 3.4244 | 12.76 | 176200 | 3.4468 | 1.0 | | 3.4961 | 12.76 | 176300 | 3.4441 | 1.0 | | 3.4281 | 12.77 | 176400 | 3.4419 | 1.0 | | 3.4241 | 12.78 | 176500 | 3.4407 | 1.0 | | 3.2563 | 12.79 | 176600 | 3.4430 | 1.0 | | 3.3779 | 12.79 | 176700 | 3.4437 | 1.0 | | 3.3268 | 12.8 | 176800 | 3.4457 | 1.0 | | 3.4255 | 12.81 | 176900 | 3.4437 | 1.0 | | 3.3086 | 12.81 | 177000 | 3.4422 | 1.0 | | 3.3619 | 12.82 | 177100 | 3.4447 | 1.0 | | 3.2334 | 12.83 | 177200 | 3.4457 | 1.0 | | 3.4318 | 12.84 | 177300 | 3.4413 | 1.0 | | 3.2553 | 12.84 | 177400 | 3.4425 | 1.0 | | 3.225 | 12.85 | 177500 | 3.4435 | 1.0 | | 3.3984 | 12.86 | 177600 | 3.4518 | 1.0 | | 3.5566 | 12.86 | 177700 | 3.4481 | 1.0 | | 4.3006 | 12.87 | 177800 | 3.4463 | 1.0 | | 3.2232 | 12.88 | 177900 | 3.4454 | 1.0 | | 3.2224 | 12.89 | 178000 | 3.4452 | 1.0 | | 3.3974 | 12.89 | 178100 | 3.4430 | 1.0 | | 3.4688 | 12.9 | 178200 | 3.4441 | 1.0 | | 3.293 | 12.91 | 178300 | 3.4422 | 1.0 | | 3.7722 | 12.92 | 178400 | 3.4459 | 1.0 | | 3.3155 | 12.92 | 178500 | 3.4451 | 1.0 | | 3.3955 | 12.93 | 178600 | 3.4438 | 1.0 | | 3.2985 | 12.94 | 178700 | 3.4411 | 1.0 | | 3.3729 | 12.94 | 178800 | 3.4415 | 1.0 | | 3.3966 | 12.95 | 178900 | 3.4433 | 1.0 | | 3.2917 | 12.96 | 179000 | 3.4422 | 1.0 | | 3.3772 | 12.97 | 179100 | 3.4426 | 1.0 | | 3.2921 | 12.97 | 179200 | 3.4458 | 1.0 | | 3.2751 | 12.98 | 179300 | 3.4429 | 1.0 | | 3.4227 | 12.99 | 179400 | 3.4429 | 1.0 | | 3.3031 | 13.0 | 179500 | 3.4463 | 1.0 | | 3.3257 | 13.0 | 179600 | 3.4496 | 1.0 | | 3.3472 | 13.01 | 179700 | 3.4436 | 1.0 | | 3.4014 | 13.02 | 179800 | 3.4484 | 1.0 | | 3.4494 | 13.02 | 179900 | 3.4418 | 1.0 | | 3.559 | 13.03 | 180000 | 3.4425 | 1.0 | | 3.3253 | 13.04 | 180100 | 3.4412 | 1.0 | | 3.2797 | 13.05 | 180200 | 3.4464 | 1.0 | | 3.3854 | 13.05 | 180300 | 3.4484 | 1.0 | | 3.24 | 13.06 | 180400 | 3.4446 | 1.0 | | 3.2406 | 13.07 | 180500 | 3.4453 | 1.0 | | 3.3609 | 13.07 | 180600 | 3.4425 | 1.0 | | 3.3496 | 13.08 | 180700 | 3.4465 | 1.0 | | 3.2963 | 13.09 | 180800 | 3.4437 | 1.0 | | 3.2781 | 13.1 | 180900 | 3.4481 | 1.0 | | 3.1707 | 13.1 | 181000 | 3.4465 | 1.0 | | 3.5305 | 13.11 | 181100 | 3.4460 | 1.0 | | 3.3498 | 13.12 | 181200 | 3.4423 | 1.0 | | 3.276 | 13.13 | 181300 | 3.4402 | 1.0 | | 3.2264 | 13.13 | 181400 | 3.4432 | 1.0 | | 3.2517 | 13.14 | 181500 | 3.4408 | 1.0 | | 3.3312 | 13.15 | 181600 | 3.4455 | 1.0 | | 3.4057 | 13.15 | 181700 | 3.4476 | 1.0 | | 3.34 | 13.16 | 181800 | 3.4415 | 1.0 | | 3.2458 | 13.17 | 181900 | 3.4409 | 1.0 | | 3.3949 | 13.18 | 182000 | 3.4405 | 1.0 | | 3.289 | 13.18 | 182100 | 3.4431 | 1.0 | | 3.4016 | 13.19 | 182200 | 3.4393 | 1.0 | | 3.256 | 13.2 | 182300 | 3.4410 | 1.0 | | 3.2597 | 13.2 | 182400 | 3.4391 | 1.0 | | 3.2483 | 13.21 | 182500 | 3.4387 | 1.0 | | 3.3637 | 13.22 | 182600 | 3.4409 | 1.0 | | 3.2936 | 13.23 | 182700 | 3.4399 | 1.0 | | 3.2666 | 13.23 | 182800 | 3.4458 | 1.0 | | 3.3675 | 13.24 | 182900 | 3.4494 | 1.0 | | 3.3538 | 13.25 | 183000 | 3.4430 | 1.0 | | 3.3276 | 13.26 | 183100 | 3.4442 | 1.0 | | 3.3851 | 13.26 | 183200 | 3.4425 | 1.0 | | 3.3579 | 13.27 | 183300 | 3.4410 | 1.0 | | 3.2882 | 13.28 | 183400 | 3.4400 | 1.0 | | 3.3541 | 13.28 | 183500 | 3.4436 | 1.0 | | 3.392 | 13.29 | 183600 | 3.4445 | 1.0 | | 3.3857 | 13.3 | 183700 | 3.4477 | 1.0 | | 3.3084 | 13.31 | 183800 | 3.4463 | 1.0 | | 3.327 | 13.31 | 183900 | 3.4451 | 1.0 | | 3.3967 | 13.32 | 184000 | 3.4483 | 1.0 | | 3.3657 | 13.33 | 184100 | 3.4471 | 1.0 | | 3.3732 | 13.34 | 184200 | 3.4465 | 1.0 | | 3.366 | 13.34 | 184300 | 3.4459 | 1.0 | | 3.2545 | 13.35 | 184400 | 3.4451 | 1.0 | | 4.2873 | 13.36 | 184500 | 3.4425 | 1.0 | | 3.6525 | 13.36 | 184600 | 3.4432 | 1.0 | | 3.2921 | 13.37 | 184700 | 3.4437 | 1.0 | | 3.273 | 13.38 | 184800 | 3.4420 | 1.0 | | 3.267 | 13.39 | 184900 | 3.4445 | 1.0 | | 3.3585 | 13.39 | 185000 | 3.4459 | 1.0 | | 3.3271 | 13.4 | 185100 | 3.4424 | 1.0 | | 3.3752 | 13.41 | 185200 | 3.4406 | 1.0 | | 3.2715 | 13.41 | 185300 | 3.4424 | 1.0 | | 3.2668 | 13.42 | 185400 | 3.4440 | 1.0 | | 3.4546 | 13.43 | 185500 | 3.4464 | 1.0 | | 3.2931 | 13.44 | 185600 | 3.4444 | 1.0 | | 3.4428 | 13.44 | 185700 | 3.4443 | 1.0 | | 3.4004 | 13.45 | 185800 | 3.4475 | 1.0 | | 3.3416 | 13.46 | 185900 | 3.4447 | 1.0 | | 3.3598 | 13.47 | 186000 | 3.4458 | 1.0 | | 3.3348 | 13.47 | 186100 | 3.4420 | 1.0 | | 3.2879 | 13.48 | 186200 | 3.4410 | 1.0 | | 3.3791 | 13.49 | 186300 | 3.4481 | 1.0 | | 3.3066 | 13.49 | 186400 | 3.4440 | 1.0 | | 3.2824 | 13.5 | 186500 | 3.4447 | 1.0 | | 3.4092 | 13.51 | 186600 | 3.4447 | 1.0 | | 3.2679 | 13.52 | 186700 | 3.4443 | 1.0 | | 3.3921 | 13.52 | 186800 | 3.4447 | 1.0 | | 3.3348 | 13.53 | 186900 | 3.4424 | 1.0 | | 3.2365 | 13.54 | 187000 | 3.4392 | 1.0 | | 3.3355 | 13.55 | 187100 | 3.4387 | 1.0 | | 3.2654 | 13.55 | 187200 | 3.4393 | 1.0 | | 3.3085 | 13.56 | 187300 | 3.4404 | 1.0 | | 3.3127 | 13.57 | 187400 | 3.4400 | 1.0 | | 3.219 | 13.57 | 187500 | 3.4422 | 1.0 | | 3.3733 | 13.58 | 187600 | 3.4391 | 1.0 | | 3.2622 | 13.59 | 187700 | 3.4420 | 1.0 | | 3.2188 | 13.6 | 187800 | 3.4445 | 1.0 | | 3.2977 | 13.6 | 187900 | 3.4437 | 1.0 | | 3.2994 | 13.61 | 188000 | 3.4463 | 1.0 | | 3.2897 | 13.62 | 188100 | 3.4438 | 1.0 | | 3.3194 | 13.62 | 188200 | 3.4452 | 1.0 | | 3.3566 | 13.63 | 188300 | 3.4446 | 1.0 | | 3.3442 | 13.64 | 188400 | 3.4509 | 1.0 | | 3.58 | 13.65 | 188500 | 3.4509 | 1.0 | | 3.4537 | 13.65 | 188600 | 3.4479 | 1.0 | | 3.342 | 13.66 | 188700 | 3.4428 | 1.0 | | 3.2765 | 13.67 | 188800 | 3.4410 | 1.0 | | 3.2765 | 13.68 | 188900 | 3.4422 | 1.0 | | 3.3381 | 13.68 | 189000 | 3.4400 | 1.0 | | 3.2883 | 13.69 | 189100 | 3.4411 | 1.0 | | 3.2861 | 13.7 | 189200 | 3.4417 | 1.0 | | 3.3049 | 13.7 | 189300 | 3.4431 | 1.0 | | 3.7184 | 13.71 | 189400 | 3.4446 | 1.0 | | 3.3307 | 13.72 | 189500 | 3.4449 | 1.0 | | 3.3274 | 13.73 | 189600 | 3.4456 | 1.0 | | 3.3481 | 13.73 | 189700 | 3.4417 | 1.0 | | 3.3763 | 13.74 | 189800 | 3.4439 | 1.0 | | 3.3005 | 13.75 | 189900 | 3.4442 | 1.0 | | 3.3775 | 13.76 | 190000 | 3.4458 | 1.0 | | 3.284 | 13.76 | 190100 | 3.4427 | 1.0 | | 3.2496 | 13.77 | 190200 | 3.4465 | 1.0 | | 3.4141 | 13.78 | 190300 | 3.4422 | 1.0 | | 3.3689 | 13.78 | 190400 | 3.4441 | 1.0 | | 3.2925 | 13.79 | 190500 | 3.4446 | 1.0 | | 3.334 | 13.8 | 190600 | 3.4447 | 1.0 | | 3.4054 | 13.81 | 190700 | 3.4442 | 1.0 | | 3.5985 | 13.81 | 190800 | 3.4418 | 1.0 | | 3.307 | 13.82 | 190900 | 3.4437 | 1.0 | | 3.2475 | 13.83 | 191000 | 3.4418 | 1.0 | | 3.4217 | 13.83 | 191100 | 3.4429 | 1.0 | | 3.2629 | 13.84 | 191200 | 3.4417 | 1.0 | | 3.4471 | 13.85 | 191300 | 3.4420 | 1.0 | | 3.3174 | 13.86 | 191400 | 3.4400 | 1.0 | | 3.3505 | 13.86 | 191500 | 3.4430 | 1.0 | | 3.4601 | 13.87 | 191600 | 3.4409 | 1.0 | | 3.2617 | 13.88 | 191700 | 3.4439 | 1.0 | | 3.4259 | 13.89 | 191800 | 3.4451 | 1.0 | | 3.4135 | 13.89 | 191900 | 3.4424 | 1.0 | | 3.2713 | 13.9 | 192000 | 3.4425 | 1.0 | | 3.3399 | 13.91 | 192100 | 3.4450 | 1.0 | | 3.375 | 13.91 | 192200 | 3.4440 | 1.0 | | 3.2318 | 13.92 | 192300 | 3.4449 | 1.0 | | 3.2925 | 13.93 | 192400 | 3.4430 | 1.0 | | 3.416 | 13.94 | 192500 | 3.4440 | 1.0 | | 3.283 | 13.94 | 192600 | 3.4441 | 1.0 | | 3.249 | 13.95 | 192700 | 3.4436 | 1.0 | | 3.3415 | 13.96 | 192800 | 3.4435 | 1.0 | | 3.3123 | 13.97 | 192900 | 3.4427 | 1.0 | | 3.3019 | 13.97 | 193000 | 3.4414 | 1.0 | | 3.3949 | 13.98 | 193100 | 3.4409 | 1.0 | | 3.3118 | 13.99 | 193200 | 3.4413 | 1.0 | | 3.4302 | 13.99 | 193300 | 3.4431 | 1.0 | | 3.382 | 14.0 | 193400 | 3.4439 | 1.0 | | 3.4496 | 14.01 | 193500 | 3.4429 | 1.0 | | 3.2643 | 14.02 | 193600 | 3.4454 | 1.0 | | 3.2298 | 14.02 | 193700 | 3.4439 | 1.0 | | 3.3804 | 14.03 | 193800 | 3.4429 | 1.0 | | 3.2049 | 14.04 | 193900 | 3.4429 | 1.0 | | 3.3818 | 14.04 | 194000 | 3.4420 | 1.0 | | 3.2901 | 14.05 | 194100 | 3.4433 | 1.0 | | 3.2989 | 14.06 | 194200 | 3.4419 | 1.0 | | 3.2548 | 14.07 | 194300 | 3.4434 | 1.0 | | 3.454 | 14.07 | 194400 | 3.4432 | 1.0 | | 3.3365 | 14.08 | 194500 | 3.4433 | 1.0 | | 3.3799 | 14.09 | 194600 | 3.4443 | 1.0 | | 3.3536 | 14.1 | 194700 | 3.4438 | 1.0 | | 3.5929 | 14.1 | 194800 | 3.4441 | 1.0 | | 4.2116 | 14.11 | 194900 | 3.4433 | 1.0 | | 3.4121 | 14.12 | 195000 | 3.4437 | 1.0 | | 3.3715 | 14.12 | 195100 | 3.4442 | 1.0 | | 3.4325 | 14.13 | 195200 | 3.4467 | 1.0 | | 3.3585 | 14.14 | 195300 | 3.4450 | 1.0 | | 3.3374 | 14.15 | 195400 | 3.4421 | 1.0 | | 3.3519 | 14.15 | 195500 | 3.4421 | 1.0 | | 3.4128 | 14.16 | 195600 | 3.4416 | 1.0 | | 3.3448 | 14.17 | 195700 | 3.4412 | 1.0 | | 3.4239 | 14.18 | 195800 | 3.4418 | 1.0 | | 3.6124 | 14.18 | 195900 | 3.4440 | 1.0 | | 3.3607 | 14.19 | 196000 | 3.4444 | 1.0 | | 3.3141 | 14.2 | 196100 | 3.4433 | 1.0 | | 3.4431 | 14.2 | 196200 | 3.4432 | 1.0 | | 3.4539 | 14.21 | 196300 | 3.4426 | 1.0 | | 3.3409 | 14.22 | 196400 | 3.4418 | 1.0 | | 3.2736 | 14.23 | 196500 | 3.4422 | 1.0 | | 3.8002 | 14.23 | 196600 | 3.4431 | 1.0 | | 3.501 | 14.24 | 196700 | 3.4421 | 1.0 | | 3.3537 | 14.25 | 196800 | 3.4420 | 1.0 | | 3.4373 | 14.25 | 196900 | 3.4412 | 1.0 | | 3.359 | 14.26 | 197000 | 3.4412 | 1.0 | | 3.302 | 14.27 | 197100 | 3.4425 | 1.0 | | 3.3282 | 14.28 | 197200 | 3.4424 | 1.0 | | 3.3941 | 14.28 | 197300 | 3.4424 | 1.0 | | 4.4183 | 14.29 | 197400 | 3.4435 | 1.0 | | 3.4406 | 14.3 | 197500 | 3.4432 | 1.0 | | 3.285 | 14.31 | 197600 | 3.4432 | 1.0 | | 3.3289 | 14.31 | 197700 | 3.4442 | 1.0 | | 3.3085 | 14.32 | 197800 | 3.4426 | 1.0 | | 3.2033 | 14.33 | 197900 | 3.4446 | 1.0 | | 3.3691 | 14.33 | 198000 | 3.4448 | 1.0 | | 3.3715 | 14.34 | 198100 | 3.4448 | 1.0 | | 4.5572 | 14.35 | 198200 | 3.4432 | 1.0 | | 3.3509 | 14.36 | 198300 | 3.4431 | 1.0 | | 3.3179 | 14.36 | 198400 | 3.4426 | 1.0 | | 3.2891 | 14.37 | 198500 | 3.4436 | 1.0 | | 3.3872 | 14.38 | 198600 | 3.4436 | 1.0 | | 3.3177 | 14.38 | 198700 | 3.4442 | 1.0 | | 3.4302 | 14.39 | 198800 | 3.4446 | 1.0 | | 3.3834 | 14.4 | 198900 | 3.4441 | 1.0 | | 3.4318 | 14.41 | 199000 | 3.4430 | 1.0 | | 3.4176 | 14.41 | 199100 | 3.4431 | 1.0 | | 4.6882 | 14.42 | 199200 | 3.4431 | 1.0 | | 3.2657 | 14.43 | 199300 | 3.4436 | 1.0 | | 3.3929 | 14.44 | 199400 | 3.4436 | 1.0 | | 5.337 | 14.44 | 199500 | 3.4432 | 1.0 | | 3.4289 | 14.45 | 199600 | 3.4432 | 1.0 | | 3.2498 | 14.46 | 199700 | 3.4435 | 1.0 | | 3.3635 | 14.46 | 199800 | 3.4432 | 1.0 | | 5.4355 | 14.47 | 199900 | 3.4418 | 1.0 | | 3.2158 | 14.48 | 200000 | 3.4427 | 1.0 | | 3.4885 | 14.49 | 200100 | 3.4435 | 1.0 | | 3.3739 | 14.49 | 200200 | 3.4430 | 1.0 | | 3.4712 | 14.5 | 200300 | 3.4434 | 1.0 | | 3.3742 | 14.51 | 200400 | 3.4444 | 1.0 | | 3.3465 | 14.52 | 200500 | 3.4429 | 1.0 | | 3.3277 | 14.52 | 200600 | 3.4430 | 1.0 | | 3.3073 | 14.53 | 200700 | 3.4431 | 1.0 | | 3.33 | 14.54 | 200800 | 3.4432 | 1.0 | | 3.3857 | 14.54 | 200900 | 3.4436 | 1.0 | | 3.4481 | 14.55 | 201000 | 3.4430 | 1.0 | | 3.546 | 14.56 | 201100 | 3.4416 | 1.0 | | 3.4435 | 14.57 | 201200 | 3.4404 | 1.0 | | 3.3237 | 14.57 | 201300 | 3.4408 | 1.0 | | 3.3347 | 14.58 | 201400 | 3.4420 | 1.0 | | 4.5461 | 14.59 | 201500 | 3.4420 | 1.0 | | 3.3307 | 14.59 | 201600 | 3.4430 | 1.0 | | 3.3899 | 14.6 | 201700 | 3.4439 | 1.0 | | 3.2613 | 14.61 | 201800 | 3.4435 | 1.0 | | 3.2693 | 14.62 | 201900 | 3.4426 | 1.0 | | 3.3621 | 14.62 | 202000 | 3.4430 | 1.0 | | 3.4383 | 14.63 | 202100 | 3.4434 | 1.0 | | 3.5096 | 14.64 | 202200 | 3.4444 | 1.0 | | 3.3962 | 14.65 | 202300 | 3.4445 | 1.0 | | 3.3854 | 14.65 | 202400 | 3.4441 | 1.0 | | 3.3116 | 14.66 | 202500 | 3.4445 | 1.0 | | 3.3691 | 14.67 | 202600 | 3.4445 | 1.0 | | 3.3821 | 14.67 | 202700 | 3.4440 | 1.0 | | 3.2872 | 14.68 | 202800 | 3.4431 | 1.0 | | 3.3575 | 14.69 | 202900 | 3.4431 | 1.0 | | 3.2881 | 14.7 | 203000 | 3.4435 | 1.0 | | 3.4115 | 14.7 | 203100 | 3.4440 | 1.0 | | 3.3814 | 14.71 | 203200 | 3.4439 | 1.0 | | 3.3609 | 14.72 | 203300 | 3.4435 | 1.0 | | 3.3261 | 14.73 | 203400 | 3.4430 | 1.0 | | 3.2983 | 14.73 | 203500 | 3.4435 | 1.0 | | 3.3094 | 14.74 | 203600 | 3.4431 | 1.0 | | 3.2582 | 14.75 | 203700 | 3.4431 | 1.0 | | 3.2963 | 14.75 | 203800 | 3.4435 | 1.0 | | 3.361 | 14.76 | 203900 | 3.4435 | 1.0 | | 3.2636 | 14.77 | 204000 | 3.4440 | 1.0 | | 3.2908 | 14.78 | 204100 | 3.4439 | 1.0 | | 3.4743 | 14.78 | 204200 | 3.4445 | 1.0 | | 3.2633 | 14.79 | 204300 | 3.4444 | 1.0 | | 3.6696 | 14.8 | 204400 | 3.4440 | 1.0 | | 3.4295 | 14.8 | 204500 | 3.4439 | 1.0 | | 3.2838 | 14.81 | 204600 | 3.4439 | 1.0 | | 3.285 | 14.82 | 204700 | 3.4439 | 1.0 | | 3.2501 | 14.83 | 204800 | 3.4443 | 1.0 | | 3.2872 | 14.83 | 204900 | 3.4443 | 1.0 | | 3.3486 | 14.84 | 205000 | 3.4443 | 1.0 | | 3.2943 | 14.85 | 205100 | 3.4443 | 1.0 | | 3.2908 | 14.86 | 205200 | 3.4438 | 1.0 | | 4.0962 | 14.86 | 205300 | 3.4443 | 1.0 | | 3.2306 | 14.87 | 205400 | 3.4433 | 1.0 | | 3.4682 | 14.88 | 205500 | 3.4433 | 1.0 | | 3.2785 | 14.88 | 205600 | 3.4438 | 1.0 | | 3.4161 | 14.89 | 205700 | 3.4438 | 1.0 | | 3.299 | 14.9 | 205800 | 3.4438 | 1.0 | | 3.3116 | 14.91 | 205900 | 3.4438 | 1.0 | | 3.3456 | 14.91 | 206000 | 3.4439 | 1.0 | | 3.263 | 14.92 | 206100 | 3.4439 | 1.0 | | 3.4408 | 14.93 | 206200 | 3.4444 | 1.0 | | 3.3478 | 14.94 | 206300 | 3.4443 | 1.0 | | 3.1718 | 14.94 | 206400 | 3.4438 | 1.0 | | 3.2811 | 14.95 | 206500 | 3.4439 | 1.0 | | 3.4132 | 14.96 | 206600 | 3.4439 | 1.0 | | 3.2337 | 14.96 | 206700 | 3.4439 | 1.0 | | 3.3859 | 14.97 | 206800 | 3.4439 | 1.0 | | 3.3501 | 14.98 | 206900 | 3.4439 | 1.0 | | 3.5111 | 14.99 | 207000 | 3.4439 | 1.0 | | 3.5375 | 14.99 | 207100 | 3.4439 | 1.0 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
phueb/BabyBERTa-3
23c0b95e4e6acc39a388b711e0797893dba809e8
2022-01-18T14:41:25.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:CHILDES", "transformers", "BabyBERTa", "license:mit", "autotrain_compatible" ]
fill-mask
false
phueb
null
phueb/BabyBERTa-3
1
null
transformers
30,140
--- language: en tags: - BabyBERTa license: mit datasets: - CHILDES widget: - text: "Look here. What is that <mask> ?" - text: "Do you like your <mask> ?" --- ## BabyBERTA ### Overview BabyBERTa is a light-weight version of RoBERTa trained on 5M words of American-English child-directed input. It is intended for language acquisition research, on a single desktop with a single GPU - no high-performance computing infrastructure needed. The three provided models are randomly selected from 10 that were trained and reported in the paper. ## Loading the tokenizer BabyBERTa was trained with `add_prefix_space=True`, so it will not work properly with the tokenizer defaults. For instance, to load the tokenizer for BabyBERTa-1, load it as follows: ```python tokenizer = RobertaTokenizerFast.from_pretrained("phueb/BabyBERTa-1", add_prefix_space=True) ``` ### Hyper-Parameters See the paper for details. All provided models were trained for 400K steps with a batch size of 16. Importantly, BabyBERTa never predicts unmasked tokens during training - `unmask_prob` is set to zero. ### Performance BabyBerta was developed for learning grammatical knowledge from child-directed input. Its grammatical knowledge was evaluated using the [Zorro](https://github.com/phueb/Zorro) test suite. The best model achieves an overall accuracy of 80.3, comparable to RoBERTa-base, which achieves an overall accuracy of 82.6 on the latest version of Zorro (as of October, 2021). Both values differ slightly from those reported in the [CoNLL 2021 paper](https://aclanthology.org/2021.conll-1.49/). There are two reasons for this: 1. Performance of RoBERTa-base is slightly larger because the authors previously lower-cased all words in Zorro before evaluation. Lower-casing of proper nouns is detrimental to RoBERTa-base because RoBERTa-base has likely been trained on proper nouns that are primarily title-cased. In contrast, because BabyBERTa is not case-sensitive, its performance is not influenced by this change. 2. The latest version of Zorro no longer contains ambiguous content words such as "Spanish" which can be both a noun and an adjective. this resulted in a small reduction in the performance of BabyBERTa. Overall Accuracy on Zorro: | Model Name | Accuracy (holistic scoring) | Accuracy (MLM-scoring) | |----------------------------------------|------------------------------|------------| | [BabyBERTa-1][link-BabyBERTa-1] | 80.3 | 79.9 | | [BabyBERTa-2][link-BabyBERTa-2] | 78.6 | 78.2 | | [BabyBERTa-3][link-BabyBERTa-3] | 74.5 | 78.1 | ### Additional Information This model was trained by [Philip Huebner](https://philhuebner.com), currently at the [UIUC Language and Learning Lab](http://www.learninglanguagelab.org). More info can be found [here](https://github.com/phueb/BabyBERTa). [link-BabyBERTa-1]: https://huggingface.co/phueb/BabyBERTa-1 [link-BabyBERTa-2]: https://huggingface.co/phueb/BabyBERTa-2 [link-BabyBERTa-3]: https://huggingface.co/phueb/BabyBERTa-3
pi3ni0/pubmedqa-scibert-special
d906c26acdf58d4fd55aa51702266905385486f7
2021-05-20T02:38:41.000Z
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
false
pi3ni0
null
pi3ni0/pubmedqa-scibert-special
1
null
transformers
30,141
Entry not found
pinecone/mpnet-retriever-discourse
1a1c51b83dff2da55fbab83718443ddb64fa4dd3
2022-01-30T07:23:58.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "question-answering" ]
sentence-similarity
false
pinecone
null
pinecone/mpnet-retriever-discourse
1
null
sentence-transformers
30,142
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - question-answering --- # MPNet Retriever (Discourse) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used as a retriever model in open-domain question-answering tasks. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was fine-tuned on question-answer pairs scraper from several ML-focused Discourse forums \[HuggingFace, PyTorch, Streamlit, TensorFlow\]. The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 105 with parameters: ``` {'batch_size': 12} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Fine-tuned by [James Briggs](https://www.youtube.com/c/jamesbriggs) at [Pinecone](https://www.pinecone.io). Learn more about the [fine-tuning process here](https://www.pinecone.io/learn/retriever-models/).
plum/distilbert-base-cased
32a5153090004cc633b3179223582fdc543ff1a4
2022-01-05T05:31:03.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
plum
null
plum/distilbert-base-cased
1
null
transformers
30,143
Entry not found
plum/roberta-large
0291e390b7a516dcc6e958246a874b70fd73aa6e
2022-01-05T03:01:14.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
plum
null
plum/roberta-large
1
null
transformers
30,144
Entry not found
polodealvarado/xls-r-300m-es
fe42b9da4eeff40d78dfa834a41420d50e137359
2022-03-23T18:34:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
polodealvarado
null
polodealvarado/xls-r-300m-es
1
2
transformers
30,145
--- license: apache-2.0 language: - es tags: - common_voice_8_0 - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wave2vec-xls-r-300m-es results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 es type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 14.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 28.63 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 29.72 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2-XLSR-300m-es This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the spanish common_voice dataset thanks to the GPU credits generously given by the OVHcloud for the Speech Recognition challenge. It achieves the following results on the evaluation set Without LM: - Loss : 0.1900 - Wer : 0.146 With 5-gram: - WER: 0.109 - CER: 0.036 ### Usage with 5-gram. The model can be used with n-gram (n=5) included in the processor as follows. ```python import re from transformers import AutoModelForCTC,Wav2Vec2ProcessorWithLM import torch # Loading model and processor processor = Wav2Vec2ProcessorWithLM.from_pretrained("polodealvarado/xls-r-300m-es") model = AutoModelForCTC.from_pretrained("polodealvarado/xls-r-300m-es") # Cleaning characters def remove_extra_chars(batch): chars_to_ignore_regex = '[^a-záéíóúñ ]' text = batch["translation"][target_lang] batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower()) return batch # Preparing dataset def prepare_dataset(batch): audio = batch["audio"] batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"],return_tensors="pt",padding=True).input_values[0] with processor.as_target_processor(): batch["labels"] = processor(batch["sentence"]).input_ids return batch common_voice_test = load_dataset("mozilla-foundation/common_voice_8_0", "es", split="test",use_auth_token=True) common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000)) common_voice_test = common_voice_test.map(remove_extra_chars, remove_columns=dataset.column_names) common_voice_test = common_voice_test.map(prepare_dataset) # Testing first sample inputs = torch_tensor(common_voice_test[0]["input_values"]) with torch.no_grad(): logits = model(inputs).logits pred_ids = torch.argmax(logits, dim=-1) text = processor.batch_decode(logits.numpy()).text print(text) # 'bien y qué regalo vas a abrir primero' ``` On the other, you can execute the eval.py file for evaluation ```bash # To use GPU: --device 0 $ python eval.py --model_id polodealvarado/xls-r-300m-es --dataset mozilla-foundation/common_voice_8_0 --config es --device 0 --split test ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6747 | 0.3 | 400 | 0.6535 | 0.5926 | | 0.4439 | 0.6 | 800 | 0.3753 | 0.3193 | | 0.3291 | 0.9 | 1200 | 0.3267 | 0.2721 | | 0.2644 | 1.2 | 1600 | 0.2816 | 0.2311 | | 0.24 | 1.5 | 2000 | 0.2647 | 0.2179 | | 0.2265 | 1.79 | 2400 | 0.2406 | 0.2048 | | 0.1994 | 2.09 | 2800 | 0.2357 | 0.1869 | | 0.1613 | 2.39 | 3200 | 0.2242 | 0.1821 | | 0.1546 | 2.69 | 3600 | 0.2123 | 0.1707 | | 0.1441 | 2.99 | 4000 | 0.2067 | 0.1619 | | 0.1138 | 3.29 | 4400 | 0.2044 | 0.1519 | | 0.1072 | 3.59 | 4800 | 0.1917 | 0.1457 | | 0.0992 | 3.89 | 5200 | 0.1900 | 0.1438 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
pourzare/wav2vec2-base-timit-demo-colab
5e068ef7d2b48a59a5e2cb7caa661c9a6c60fb44
2021-11-09T09:53:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pourzare
null
pourzare/wav2vec2-base-timit-demo-colab
1
null
transformers
30,146
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3821 - Wer: 0.3841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7018 | 2.01 | 500 | 1.9216 | 0.9924 | | 1.0211 | 4.02 | 1000 | 0.5051 | 0.5095 | | 0.4293 | 6.02 | 1500 | 0.4209 | 0.4282 | | 0.2513 | 8.03 | 2000 | 0.3821 | 0.3841 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
prajjwal1/ctrl_discovery_12
10243b66e6ae364a223c8ad9105ac0e0924e93b0
2021-05-26T18:53:23.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_12
1
null
transformers
30,147
Entry not found
prajjwal1/ctrl_discovery_14
b289c42ad37cbf644e0e14838cc0d6aff3eb3ded
2021-06-06T21:46:59.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_14
1
null
transformers
30,148
Entry not found
prajjwal1/ctrl_discovery_flipped_2
c5e145f6aeca04f86efcee053310c983c262568b
2021-03-07T17:49:29.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_flipped_2
1
null
transformers
30,149
Entry not found
prajjwal1/roberta_new
abd17371d4f661ae4bae5bda1a750440ef06a912
2021-05-28T21:47:53.000Z
[ "pytorch", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
prajjwal1
null
prajjwal1/roberta_new
1
null
transformers
30,150
Entry not found
prajwalcr/poetry-trust_gpt2
2df6e5be2c460b8a78be41041bdd52609904640e
2021-08-03T10:44:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prajwalcr
null
prajwalcr/poetry-trust_gpt2
1
null
transformers
30,151
Entry not found
preetham18/xls-r-hi-300m-8
3918346e0c15d39faa3ca21513fa5f0de541ac61
2022-02-06T20:40:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
preetham18
null
preetham18/xls-r-hi-300m-8
1
null
transformers
30,152
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5258 - Wer: 1.0073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.917 | 16.13 | 500 | 4.8963 | 1.0 | | 3.3585 | 32.25 | 1000 | 3.3069 | 1.0000 | | 1.5873 | 48.38 | 1500 | 0.8274 | 1.0061 | | 1.2654 | 64.51 | 2000 | 0.6250 | 1.0076 | | 1.0917 | 80.64 | 2500 | 0.5460 | 1.0056 | | 1.0001 | 96.76 | 3000 | 0.5304 | 1.0083 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
princebansal42/distilbert-base-uncased-finetuned-squad
f25639049d7be98bfd7ffcc8e1618a35360f5e55
2021-12-19T10:27:48.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
princebansal42
null
princebansal42/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,153
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 2.6623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3993 | 1.0 | 2051 | 1.8058 | | 1.0467 | 2.0 | 4102 | 1.9564 | | 0.8304 | 3.0 | 6153 | 2.6623 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
princeton-nlp/datamux-mnli-20
629b6b4276dc6d5d2b17c86d3184118ee8c05467
2022-02-16T16:55:01.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-mnli-20
1
null
transformers
30,154
Entry not found
princeton-nlp/datamux-qnli-10
ea1cb5d87cfac0a594ffdcc663801e6d7f10dd51
2022-02-16T16:58:49.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qnli-10
1
null
transformers
30,155
Entry not found
princeton-nlp/datamux-qnli-2
e721baf46bd0586f64b6d4cc5df6db8b70b6539d
2022-02-16T16:56:56.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qnli-2
1
null
transformers
30,156
Entry not found
princeton-nlp/datamux-qnli-20
6d566bff6fb287d0426262b57f139171ee93501f
2022-02-16T17:00:42.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qnli-20
1
null
transformers
30,157
Entry not found
princeton-nlp/datamux-qnli-5
59bc778b1b35fffeb94c795bb24de357cec65950
2022-02-16T16:57:53.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qnli-5
1
null
transformers
30,158
Entry not found
princeton-nlp/datamux-qqp-10
aa6c8737f5acef68ae965952a4928d53860947f9
2022-02-16T17:04:26.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qqp-10
1
null
transformers
30,159
Entry not found
princeton-nlp/datamux-qqp-40
69b629d206b138720b9a9c98a5a197eeddcc0c29
2022-02-16T17:06:48.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-qqp-40
1
null
transformers
30,160
Entry not found
princeton-nlp/datamux-retrieval-5
0a6c2ff9df3c5c90d359e3b708917b5c6c310738
2022-02-18T03:51:35.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-retrieval-5
1
null
transformers
30,161
Entry not found
princeton-nlp/datamux-sst2-10
39b5c635317f9eae379c2c7cc5fa89190ca4c38e
2022-02-16T19:59:06.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-sst2-10
1
null
transformers
30,162
Entry not found
princeton-nlp/datamux-sst2-2
5da9e3960c88806217a7a6aecdb940ee205fabe6
2022-02-16T17:07:27.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-sst2-2
1
null
transformers
30,163
Entry not found
princeton-nlp/datamux-sst2-20
92bea30661e78b0bf2d339c32e0d3e1a7c3c43fa
2022-02-16T20:00:02.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-sst2-20
1
null
transformers
30,164
Entry not found
princeton-nlp/datamux-sst2-40
40a19a915cd1434368500f9b2f14e9688132df2b
2022-02-16T20:01:22.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-sst2-40
1
null
transformers
30,165
Entry not found
princeton-nlp/densephrases-multi-query-ay2
8316ff2eea40e45fc08aa9ab84d2d6d453e1aab4
2021-09-23T18:51:32.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-ay2
1
null
transformers
30,166
Entry not found
princeton-nlp/densephrases-multi-query-trec
a4533e3e44c8802824189358c3f17050d607f283
2021-09-20T21:45:57.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-trec
1
null
transformers
30,167
Entry not found
pritoms/distilroberta-base-YTTranscript23
32ebff52f77807a7b1356e210a8b24600964d0b5
2022-02-03T05:52:25.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
pritoms
null
pritoms/distilroberta-base-YTTranscript23
1
null
transformers
30,168
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-YTTranscript23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-YTTranscript23 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 70 | 2.9007 | | No log | 2.0 | 140 | 2.9651 | | No log | 3.0 | 210 | 2.9374 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
pritoms/distilroberta-base-finetuned-wikitext2
323eb5c9ae760148cfe173a3494b5a12a1d4d5d8
2021-09-25T11:50:19.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
pritoms
null
pritoms/distilroberta-base-finetuned-wikitext2
1
null
transformers
30,169
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: distilroberta-base-finetuned-wikitext2 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 13 | 2.7886 | | No log | 2.0 | 26 | 2.7917 | | No log | 3.0 | 39 | 2.7255 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
pritoms/gpt-neo-125M-Byethon
a269109ac1b4d06f4ec6b587a824f2d5b9e0001f
2021-09-12T11:14:38.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/gpt-neo-125M-Byethon
1
null
transformers
30,170
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: gpt-neo-125M-Byethon results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-Byethon This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 237 | 0.8348 | | No log | 2.0 | 474 | 0.6931 | | 0.8151 | 3.0 | 711 | 0.6609 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
pritoms/gpt2-finetuned-python2
dbeb29d28245ebfe631f0ef6a9ec8ccb406e96c3
2021-10-26T23:15:08.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
pritoms
null
pritoms/gpt2-finetuned-python2
1
null
transformers
30,171
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-python2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-python2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 25 | 2.0135 | | No log | 2.0 | 50 | 1.9618 | | No log | 3.0 | 75 | 1.9454 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
project2you/wav2vec2-large-xlsr-53-demo-colab
151537426f042db8eeaeb47d6bcf5e271f4639a2
2021-12-02T11:58:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
project2you
null
project2you/wav2vec2-large-xlsr-53-demo-colab
1
null
transformers
30,172
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6901 - Wer: 1.6299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.5034 | 3.42 | 400 | 3.5852 | 1.0 | | 1.7853 | 6.83 | 800 | 0.7430 | 1.6774 | | 0.5675 | 10.26 | 1200 | 0.6513 | 1.6330 | | 0.3761 | 13.67 | 1600 | 0.6208 | 1.6081 | | 0.2776 | 17.09 | 2000 | 0.6401 | 1.6081 | | 0.2266 | 20.51 | 2400 | 0.6410 | 1.6295 | | 0.1949 | 23.93 | 2800 | 0.6910 | 1.6287 | | 0.1672 | 27.35 | 3200 | 0.6901 | 1.6299 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
proxyht/mdsister-news
c0ded08fc18052af2beaa132f566eaf1c6489ab4
2021-06-29T10:05:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
proxyht
null
proxyht/mdsister-news
1
null
transformers
30,173
Entry not found
psblade/DialoGPT-medium-PotterBot
1f612afe13f6de8a6f4c6acbbe57be0d883a30a7
2021-08-28T07:11:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
psblade
null
psblade/DialoGPT-medium-PotterBot
1
null
transformers
30,174
--- tags: - conversational --- # Harry Potter DialoGPT Model
pszemraj/gpt2-medium-vaguely-human-dialogue
68b7ae8ad26546b06ea6962944160a42564b8bc1
2022-02-01T19:30:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:natural questions", "transformers", "gpt", "license:mit" ]
text-generation
false
pszemraj
null
pszemraj/gpt2-medium-vaguely-human-dialogue
1
null
transformers
30,175
--- language: - en tags: - text-generation - gpt2 - gpt license: mit datasets: - natural questions widget: - text: "Do you like my new haircut?\nperson beta:\n\n" example_title: "haircut" - text: "I love to learn new things.. are you willing to teach me something?\nperson beta:\n\n" example_title: "teaching" - text: "What's your favorite animal? Mine is the dog? \nperson beta:\n\n" example_title: "favorite" - text: "how much does it cost?\nperson beta:\n\n" example_title: "money" inference: parameters: min_length: 2 max_length: 64 length_penalty: 0.6 no_repeat_ngram_size: 3 do_sample: True top_p: 0.85 top_k: 10 repetition_penalty: 2.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pszemraj/gpt2-medium-vaguely-human-dialogue This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on a parsed version of Wizard of Wikipedia. Because the batch size was so large, it learned a general understanding of words that makes sense together but does not specifically respond to anything - sort of like an alien learning to imitate human words to convince others that it is human. It achieves the following results on the evaluation set: - Loss: 4.3281 ## Model description - a decent example of what happens when your batch size is too large and the global optima does not reflect specific prompts / use cases. ## Intended uses & limitations - there are no intended uses ## Training and evaluation data - a parsed version of the wizard of Wikipedia dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 34.991 | 1.0 | 837 | 14.8359 | | 12.2881 | 2.0 | 1674 | 9.375 | | 8.5071 | 3.0 | 2511 | 7.2148 | | 7.6031 | 4.0 | 3348 | 6.1758 | | 6.4808 | 5.0 | 4185 | 5.5820 | | 5.8562 | 6.0 | 5022 | 5.0977 | | 5.6094 | 7.0 | 5859 | 4.8203 | | 5.2591 | 8.0 | 6696 | 4.5977 | | 5.0031 | 9.0 | 7533 | 4.4219 | | 4.8837 | 10.0 | 8370 | 4.3281 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.0
pszemraj/t5e-xl-lexical-3E
561dae69543967e7e4cc21721aadd6d69d44851f
2022-02-22T19:54:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pszemraj
null
pszemraj/t5e-xl-lexical-3E
1
null
transformers
30,176
Entry not found
ptnv-s/biobert_squad2_cased-finetuned-squad
7dcc81638f949ad77770dc9b9c29aebb95e9afc7
2022-01-03T08:56:44.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ptnv-s
null
ptnv-s/biobert_squad2_cased-finetuned-squad
1
null
transformers
30,177
--- tags: - generated_from_trainer datasets: - squad model-index: - name: biobert_squad2_cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_squad2_cased-finetuned-squad This model is a fine-tuned version of [clagator/biobert_squad2_cased](https://huggingface.co/clagator/biobert_squad2_cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
qarib/bert-base-qarib_far_8280k
a3d4344f6954c948abcba727b9c8436c6102d412
2021-04-21T13:40:36.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
null
false
qarib
null
qarib/bert-base-qarib_far_8280k
1
null
transformers
30,178
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") [ ] >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") [ ] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [ ] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qingtao/wav2vec2-common_voice-tr-demo-dist
4577a87917d22e5f208d4c1ac559a27128c5bf60
2021-11-10T08:29:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
qingtao
null
qingtao/wav2vec2-common_voice-tr-demo-dist
1
null
transformers
30,179
Entry not found
qqhann/w2v_hf_jsut_xlsr53
5f807adb2cbc71d2ab18cf6fcb418bddb92a75b4
2021-04-01T14:49:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:common_voice", "dataset:jsut", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
qqhann
null
qqhann/w2v_hf_jsut_xlsr53
1
null
transformers
30,180
--- language: ja datasets: - common_voice - jsut metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Japanese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: 51.72 - name: Test CER type: cer value: 24.89 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), and JSUT dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python !pip install torchaudio !pip install datasets transformers !pip install jiwer !pip install mecab-python3 !pip install unidic-lite !python -m unidic download !pip install jaconv import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import MeCab from jaconv import kata2hira from typing import List # Japanese preprocessing tagger = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\。\、\「\」\,\?\.\!\-\;\:\"\“\%\‘\”\�]' def text2kata(text): node = tagger.parseToNode(text) word_class = [] while node: word = node.surface wclass = node.feature.split(',') if wclass[0] != u'BOS/EOS': if len(wclass) <= 6: word_class.append((word)) elif wclass[6] == None: word_class.append((word)) else: word_class.append((wclass[6])) node = node.next return ' '.join(word_class) def hiragana(text): return kata2hira(text2kata(text)) test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") resampler = torchaudio.transforms.Resample(48_000, 16_000) # JSUT is already 16kHz # resampler = torchaudio.transforms.Resample(16_000, 16_000) # JSUT is already 16kHz processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model.to("cuda") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = hiragana(batch["sentence"]).strip() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) def cer_compute(predictions: List[str], references: List[str]): p = [" ".join(list(" " + pred.replace(" ", ""))).strip() for pred in predictions] r = [" ".join(list(" " + ref.replace(" ", ""))).strip() for ref in references] return wer.compute(predictions=p, references=r) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer_compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 51.72 % ## Training <!-- The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. --> The privately collected JSUT Japanese dataset was used for training. <!-- The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. -->
quantresearch/tst_t2_reweight_10_0
161e6c1647cdc7e055feb5593c173bd14f176f15
2021-09-16T09:33:01.000Z
[ "pytorch", "transformers" ]
null
false
quantresearch
null
quantresearch/tst_t2_reweight_10_0
1
null
transformers
30,181
Entry not found
quincyqiang/chtesla3
bf8e361d5c46e64fba5dd582ebbb1d1e279c29b7
2021-05-20T03:51:07.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
quincyqiang
null
quincyqiang/chtesla3
1
null
transformers
30,182
Entry not found
qwerty/DialoGPT-small-rick
720c5f38b1dc7e2a51bb9e86ec8c55798c213040
2022-01-12T10:06:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
qwerty
null
qwerty/DialoGPT-small-rick
1
null
transformers
30,183
--- tags: - conversational --- # DialoGPT Small Rick
r3cdhummingbird/DialoGPT-medium-joshua
b6f6ebae7576852b3e12f802f6bd791cad7dada5
2021-09-26T15:01:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
r3cdhummingbird
null
r3cdhummingbird/DialoGPT-medium-joshua
1
null
transformers
30,184
--- thumbnail: https://raw.githubusercontent.com/RuolinZheng08/twewy-discord-chatbot/main/gif-demo/icon.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/T3879/Joshua-Bot_Model/tree/main/twewy-discord-chatbot-main) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3cdhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3cdhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
rachelcorey/DialoGPT-medium-niles
f2f659c4c7fc4889611bef8370d8973fded8dc03
2022-01-11T15:13:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
rachelcorey
null
rachelcorey/DialoGPT-medium-niles
1
null
transformers
30,185
--- tags: - conversational --- # a chatbot based on Niles Crane
radhakri119/wav2vec2-base-timit-demo-colab
9336842aac6ad9041cd64330c1f0c497125efb86
2022-01-20T16:09:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
radhakri119
null
radhakri119/wav2vec2-base-timit-demo-colab
1
null
transformers
30,186
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4780 - Wer: 0.3403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5299 | 4.0 | 500 | 1.5195 | 0.9991 | | 0.6229 | 8.0 | 1000 | 0.4447 | 0.4282 | | 0.2136 | 12.0 | 1500 | 0.4154 | 0.3764 | | 0.1196 | 16.0 | 2000 | 0.4394 | 0.3597 | | 0.0834 | 20.0 | 2500 | 0.4891 | 0.3619 | | 0.0591 | 24.0 | 3000 | 0.4535 | 0.3439 | | 0.0448 | 28.0 | 3500 | 0.4780 | 0.3403 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
rafakat/Botsuana-rick
c5e4a9d031b0217fe597bd733409112d08c22e5c
2021-08-28T17:00:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
rafakat
null
rafakat/Botsuana-rick
1
null
transformers
30,187
--- tags: - conversational --- # Rick DialoGPT Model
rafiulrumy/wav2vec2-base-timit-demo-colab
337ae88eb61d90ae3d5f6982a54c775ce4eda429
2021-12-11T21:02:58.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
rafiulrumy
null
rafiulrumy/wav2vec2-base-timit-demo-colab
1
null
transformers
30,188
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0755 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.0894 | 0.34 | 50 | 3.8065 | 1.0 | | 3.2971 | 0.69 | 100 | 3.0704 | 1.0 | | 3.1262 | 1.03 | 150 | 3.0153 | 1.0 | | 2.9925 | 1.38 | 200 | 3.0094 | 1.0 | | 3.2159 | 1.72 | 250 | 3.0755 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
rafiulrumy/wav2vec2-large-xlsr-hindi-demo-colab_2
67c4023dcdd5d04b628eac4688d7e05f60a6e1b1
2021-12-08T09:51:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
rafiulrumy
null
rafiulrumy/wav2vec2-large-xlsr-hindi-demo-colab_2
1
null
transformers
30,189
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hindi-demo-colab_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hindi-demo-colab_2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.8793 - Wer: 1.1357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 22.381 | 1.11 | 20 | 22.1964 | 1.0 | | 7.6212 | 2.22 | 40 | 4.0591 | 1.0 | | 3.6951 | 3.32 | 60 | 3.6782 | 1.0 | | 3.5574 | 4.43 | 80 | 3.6776 | 1.0 | | 3.5374 | 5.54 | 100 | 3.5649 | 1.0 | | 3.5512 | 6.65 | 120 | 3.5266 | 1.0 | | 3.5075 | 7.76 | 140 | 3.6860 | 1.0 | | 3.5097 | 8.86 | 160 | 3.4941 | 1.0 | | 3.481 | 9.97 | 180 | 3.4659 | 1.0 | | 3.5623 | 11.11 | 200 | 3.7254 | 1.0 | | 3.4404 | 12.22 | 220 | 3.5225 | 1.0 | | 3.432 | 13.32 | 240 | 3.5706 | 1.0 | | 3.4177 | 14.43 | 260 | 3.3833 | 1.0 | | 3.3735 | 15.54 | 280 | 3.4140 | 1.0 | | 3.31 | 16.65 | 300 | 3.2702 | 1.0 | | 3.2256 | 17.76 | 320 | 3.2405 | 1.0 | | 3.0546 | 18.86 | 340 | 3.1644 | 1.0 | | 2.7233 | 19.97 | 360 | 2.9753 | 1.0 | | 2.2822 | 21.11 | 380 | 3.1119 | 1.1183 | | 1.8027 | 22.22 | 400 | 3.0035 | 1.2378 | | 1.5274 | 23.32 | 420 | 2.8536 | 1.2227 | | 1.2313 | 24.43 | 440 | 2.9544 | 1.0951 | | 1.0956 | 25.54 | 460 | 2.8814 | 1.0661 | | 0.9456 | 26.65 | 480 | 3.1192 | 1.1589 | | 0.7893 | 27.76 | 500 | 3.2919 | 1.1833 | | 0.7256 | 28.86 | 520 | 3.0864 | 1.0951 | | 0.6051 | 29.97 | 540 | 3.5888 | 1.1821 | | 0.6087 | 31.11 | 560 | 3.4579 | 1.1392 | | 0.5529 | 32.22 | 580 | 3.1998 | 1.0708 | | 0.5211 | 33.32 | 600 | 3.4655 | 1.1311 | | 0.4506 | 34.43 | 620 | 3.4338 | 1.1694 | | 0.4101 | 35.54 | 640 | 3.5189 | 1.1450 | | 0.4484 | 36.65 | 660 | 3.6585 | 1.1601 | | 0.4038 | 37.76 | 680 | 3.6314 | 1.1497 | | 0.3539 | 38.86 | 700 | 3.6955 | 1.1485 | | 0.3898 | 39.97 | 720 | 3.5738 | 1.1148 | | 0.35 | 41.11 | 740 | 3.6594 | 1.1195 | | 0.3328 | 42.22 | 760 | 3.6894 | 1.1299 | | 0.3264 | 43.32 | 780 | 3.7290 | 1.1021 | | 0.3364 | 44.43 | 800 | 3.7256 | 1.1543 | | 0.3071 | 45.54 | 820 | 3.8834 | 1.1415 | | 0.3074 | 46.65 | 840 | 3.8077 | 1.1450 | | 0.3064 | 47.76 | 860 | 3.8733 | 1.1346 | | 0.3223 | 48.86 | 880 | 3.8780 | 1.1323 | | 0.275 | 49.97 | 900 | 3.8793 | 1.1357 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
rahul26/DialoGPT-small-RaMScript
7ef9a4f9edcf6749bb5403ac93aa56f9ad92fd17
2021-10-20T15:53:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
rahul26
null
rahul26/DialoGPT-small-RaMScript
1
null
transformers
30,190
Entry not found
rahulchakwate/albert-xlarge-finetuned-squad
8ddbe701885f3f9c7bb87b1d07971aa7b9ed1de8
2021-12-13T03:05:20.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulchakwate
null
rahulchakwate/albert-xlarge-finetuned-squad
1
null
transformers
30,191
Entry not found
raphaelmerx/distilbert-base-uncased-finetuned-imdb
3c993644587fa9dab9aa6acc6053b1599bed713e
2021-12-01T07:54:16.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
raphaelmerx
null
raphaelmerx/distilbert-base-uncased-finetuned-imdb
1
null
transformers
30,192
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7117 | 1.0 | 157 | 2.4977 | | 2.5783 | 2.0 | 314 | 2.4241 | | 2.5375 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
raphaelmerx/marian-finetuned-en-map
f9f913ebb372ceb3515f1916644e3a0d39134e04
2021-12-15T12:54:46.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
raphaelmerx
null
raphaelmerx/marian-finetuned-en-map
1
null
transformers
30,193
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: marian-finetuned-en-map results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-en-map This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-map](https://huggingface.co/Helsinki-NLP/opus-mt-en-map) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0542 - eval_bleu: 30.0673 - eval_runtime: 870.8596 - eval_samples_per_second: 14.467 - eval_steps_per_second: 0.226 - epoch: 2.29 - step: 17104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
raruidol/PlayerANchess
a6b120bde0c12ef0535292d59107016fa47a93bf
2021-09-16T08:57:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
raruidol
null
raruidol/PlayerANchess
1
null
transformers
30,194
Algebraic Notation model of sequences of moves done by a unique player in a chess game.
reach-vb/wav2vec2-large-xls-r-1B-common_voice-sl-ft
095eff565c6a9ae069bb90a7e8d6a29b0b401b6c
2022-03-23T18:29:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
reach-vb
null
reach-vb/wav2vec2-large-xls-r-1B-common_voice-sl-ft
1
1
transformers
30,195
--- license: apache-2.0 language: - sl tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-1B-common_voice-sl-ft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lv metrics: - name: Test WER type: wer value: 23.26 - name: Test CER type: cer value: 7.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: sl metrics: - name: Test WER type: wer value: 13.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 62.71 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 62.34 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1B-common_voice-sl-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2112 - Wer: 0.1404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8291 | 12.2 | 500 | 0.5674 | 0.7611 | | 0.0416 | 24.39 | 1000 | 0.3093 | 0.2964 | | 0.0256 | 36.59 | 1500 | 0.2224 | 0.2072 | | 0.0179 | 48.78 | 2000 | 0.2274 | 0.1960 | | 0.0113 | 60.98 | 2500 | 0.2078 | 0.1582 | | 0.0086 | 73.17 | 3000 | 0.1898 | 0.1552 | | 0.0059 | 85.37 | 3500 | 0.2054 | 0.1446 | | 0.0044 | 97.56 | 4000 | 0.2112 | 0.1404 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
remotejob/tweetsT5_small_sum_fi
d3076f1431cb51c4694e68ad71c3f975ea6911c3
2021-07-02T01:47:21.000Z
[ "pytorch", "rust", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
remotejob
null
remotejob/tweetsT5_small_sum_fi
1
null
transformers
30,196
Small t5-small model for summarization
ricardo-filho/BERT-pt-inf-corpus-v.1
c67d8dc486c837af80e87491ad9dd679595b0c2b
2021-07-24T01:42:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ricardo-filho
null
ricardo-filho/BERT-pt-inf-corpus-v.1
1
null
transformers
30,197
Entry not found
ricardo-filho/BERT-pt-institutional
39985421ad4217ac9d088c54a4e1df05bdaf6336
2021-07-22T13:49:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ricardo-filho
null
ricardo-filho/BERT-pt-institutional
1
null
transformers
30,198
hello
ricardo-filho/bert-base-portuguese-cased-nli-assin
02c67f7e7d3bb9224d72b4678c8ce282f8c068ea
2021-08-04T01:52:07.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ricardo-filho
null
ricardo-filho/bert-base-portuguese-cased-nli-assin
1
null
sentence-transformers
30,199
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 295 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 30, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->