modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
sidkhuntia/harrypotter
321c79e8b949529e11d31f8d55d7a1111081ca6c
2021-11-03T07:37:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sidkhuntia
null
sidkhuntia/harrypotter
1
null
transformers
30,300
--- tags: - conversational --- #Harry Potter
sienog/autonlp-mt5-xlsum-25085641
5d360a94fe2edc8f7be09875cfe866036632cb81
2021-10-22T17:20:30.000Z
[ "pytorch", "mt5", "text2text-generation", "unk", "dataset:sienog/autonlp-data-mt5-xlsum", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
sienog
null
sienog/autonlp-mt5-xlsum-25085641
1
null
transformers
30,301
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - sienog/autonlp-data-mt5-xlsum co2_eq_emissions: 11.166602089650883 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 25085641 - CO2 Emissions (in grams): 11.166602089650883 ## Validation Metrics - Loss: 1.173471212387085 - Rouge1: 51.7353 - Rouge2: 36.6771 - RougeL: 45.4129 - RougeLsum: 48.8512 - Gen Len: 82.9375 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/sienog/autonlp-mt5-xlsum-25085641 ```
sifclairhelix/DialoGPT-small-harrypot
a4463f378dbf45ce3b5d908ac48ae0e1cc3730a1
2021-09-03T17:12:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sifclairhelix
null
sifclairhelix/DialoGPT-small-harrypot
1
null
transformers
30,302
--- tags: - conversational --- #Harry Potter DialoGPT Model
simonmun/COHA1830s
12bd719f619557089a59c861189ea686f79d333e
2021-05-20T21:32:06.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1830s
1
null
transformers
30,303
Entry not found
simonmun/COHA1850s
0e2a9adfec93a145cc7899ae5e26e2f2054b5dc5
2021-05-20T21:33:55.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1850s
1
null
transformers
30,304
Entry not found
simonmun/COHA1990s
1eba6574b90547be0825626f3c41b39aedec3849
2021-05-20T21:48:59.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1990s
1
null
transformers
30,305
Entry not found
skillzzzzzy/bengberto
85cb3cf37789e55a669384e6207785eae9ef9950
2021-11-14T13:10:48.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
skillzzzzzy
null
skillzzzzzy/bengberto
1
null
transformers
30,306
Entry not found
skillzzzzzy/hindberto
117d222ace4e3d38a49a28c39868a2b52251b2c7
2021-11-14T12:46:31.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
skillzzzzzy
null
skillzzzzzy/hindberto
1
null
transformers
30,307
Entry not found
skillzzzzzy/tamilberto
8d630a2b38e1b39fc37fa8902bb6250dfed36465
2021-11-14T13:20:33.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
skillzzzzzy
null
skillzzzzzy/tamilberto
1
null
transformers
30,308
Entry not found
skimai/electra-small-spanish
570aa7ca5f34392c7083ff7b28fec41f471c39e9
2020-05-08T19:16:48.000Z
[ "pytorch", "transformers" ]
null
false
skimai
null
skimai/electra-small-spanish
1
null
transformers
30,309
Entry not found
skylord/greek_lsr_1
915042637ab60382985f73db8286abbcb0eb9cf0
2021-03-26T05:37:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
skylord
null
skylord/greek_lsr_1
1
null
transformers
30,310
--- language: el datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Greek XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 56.253154 --- # Wav2Vec2-Large-XLSR-53-Greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Greek using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset{s}. #TODO: replace {language} with your language, *e.g.* French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1") model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1") model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 56.253154 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
smartpim/k2t_ru_02
d82ad6fcc250c336bf35a2a5f4d75cb8f169b16d
2022-02-13T17:49:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
smartpim
null
smartpim/k2t_ru_02
1
null
transformers
30,311
Entry not found
smeoni/deberta-base-clrp
3c761d923d168ba37a69f8eeaf9301bec59e1324
2021-06-23T09:45:15.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/deberta-base-clrp
1
null
transformers
30,312
Entry not found
smeoni/distilroberta-base-clrp
40e9f755daa43abd29971440136512a279c38b37
2021-06-23T10:04:08.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/distilroberta-base-clrp
1
null
transformers
30,313
Entry not found
smeoni/electra-base-discriminator-clrp
98921a37d0c19a8fac4997d00811b721c2a08070
2021-06-23T10:11:13.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/electra-base-discriminator-clrp
1
null
transformers
30,314
Entry not found
smeoni/roberta-base-clrp
d5c3f37d870d79e62e7a6418d0f251d6f837b304
2021-06-21T21:29:20.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/roberta-base-clrp
1
null
transformers
30,315
Entry not found
smonah/distilbert-base-uncased-finetuned-squad
a7f386a61e464d7967ddc64146fc125c3e5f783a
2021-12-20T15:43:44.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
smonah
null
smonah/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,316
Entry not found
softcatala/wav2vec2-large-100k-voxpopuli-catala
fb77f7231b0688f6e004a03012ebf59162bacd16
2022-02-08T02:20:32.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ca", "dataset:common_voice", "dataset:parlament_parla", "transformers", "audio", "speech", "speech-to-text", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
softcatala
null
softcatala/wav2vec2-large-100k-voxpopuli-catala
1
null
transformers
30,317
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - speech-to-text license: apache-2.0 model-index: - name: Catalan VoxPopuli Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 5.98 - name: Google Crowsourced Corpus WER type: wer value: 12.14 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 12.02 --- # Wav2Vec2-Large-100k-VoxPopuli-Català Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv)) | 5.98% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.14% | | Audiobook “La llegenda de Sant Jordi” | 12.02% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
softcatala/wav2vec2-large-xlsr-catala
4e8ceed125344298e04a2a5d9ce1645f7fc3d4b9
2022-02-08T00:23:02.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ca", "dataset:common_voice", "dataset:parlament_parla", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
softcatala
null
softcatala/wav2vec2-large-xlsr-catala
1
null
transformers
30,318
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Catalan XLSR Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 6.92 - name: Google Crowsourced Corpus WER type: wer value: 12.99 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 13.23 --- # Wav2Vec2-Large-XLSR-Català Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test.csv)) | 6.92% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.99% | | Audiobook “La llegenda de Sant Jordi” | 13.23% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-xlsr-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-xlsr-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
soheeyang/dpr-ctx_encoder-single-trivia-base
59536a5f080a63f7572dd1a377ba74343ba2b5a7
2021-04-15T14:48:50.000Z
[ "pytorch", "tf", "dpr", "arxiv:2004.04906", "transformers" ]
null
false
soheeyang
null
soheeyang/dpr-ctx_encoder-single-trivia-base
1
null
transformers
30,319
# DPRContextEncoder for TriviaQA ## dpr-ctx_encoder-single-trivia-base Dense Passage Retrieval (`DPR`) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih, [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906), EMNLP 2020. This model is the context encoder of DPR trained solely on TriviaQA (single-trivia) using the [official implementation of DPR](https://github.com/facebookresearch/DPR). Disclaimer: This model is not from the authors of DPR, but my reproduction. The authors did not release the DPR weights trained solely on TriviaQA. I hope this model checkpoint can be helpful for those who want to use DPR trained only on TriviaQA. ## Performance The following is the answer recall rate measured using PyTorch 1.4.0 and transformers 4.5.0. The values in parentheses are those reported in the paper. | Top-K Passages | TriviaQA Dev | TriviaQA Test | |----------------|--------------|---------------| | 1 | 54.27 | 54.41 | | 5 | 71.11 | 70.99 | | 20 | 79.53 | 79.31 (79.4) | | 50 | 82.72 | 82.99 | | 100 | 85.07 | 84.99 (85.0) | ## How to Use Using `AutoModel` does not properly detect whether the checkpoint is for `DPRContextEncoder` or `DPRQuestionEncoder`. Therefore, please specify the exact class to use the model. ```python from transformers import DPRContextEncoder, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("soheeyang/dpr-ctx_encoder-single-trivia-base") ctx_encoder = DPRContextEncoder.from_pretrained("soheeyang/dpr-ctx_encoder-single-trivia-base") data = tokenizer("context comes here", return_tensors="pt") ctx_embedding = ctx_encoder(**data).pooler_output # embedding vector for context ```
soikit/distilgpt2-finetuned-wikitext2
bdfe6fe3da5588252ad1229041ae882c2188feea
2021-10-19T13:23:40.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
soikit
null
soikit/distilgpt2-finetuned-wikitext2
1
null
transformers
30,320
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
soroush/t5-finetuned-lesson-summarizer
7c02073d028f85d137e7fcc044c120f18f1beb7f
2020-07-26T23:56:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
soroush
null
soroush/t5-finetuned-lesson-summarizer
1
null
transformers
30,321
Entry not found
sourabharsh/wav2vec2_rajya_sabha
d85272efdb2b5bff710192f1b861f05bd15eed9e
2021-07-14T08:52:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sourabharsh
null
sourabharsh/wav2vec2_rajya_sabha
1
null
transformers
30,322
Entry not found
speeqo/wav2vec2-base-100h-with-lm
e44a4ad122a2cd7379c028268dceddbfd2f7d9fb
2022-02-04T13:19:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
speeqo
null
speeqo/wav2vec2-base-100h-with-lm
1
null
transformers
30,323
Entry not found
sravn/e2e-qg-scibert
fd310d5518f88058049a8769875ccf71e07e0e49
2021-07-09T17:18:08.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sravn
null
sravn/e2e-qg-scibert
1
null
transformers
30,324
Entry not found
sravya/ELECTRA_SD_V4
568f62c010a6ad791a1a743a2f000fd014097bf3
2021-06-10T03:57:37.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
sravya
null
sravya/ELECTRA_SD_V4
1
null
transformers
30,325
Entry not found
sripadhstudy/100_SDB_TAxxL_average_768
d56e5c76491e18165d712cee382bb387f8998a1f
2021-06-05T15:37:11.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sripadhstudy
null
sripadhstudy/100_SDB_TAxxL_average_768
1
null
transformers
30,326
Entry not found
sripadhstudy/500_SAB_TAxxL_truncate_3L_h2048_original
946222972eb1c2abb818a82d2e7935cd7c1673a5
2021-06-21T02:14:44.000Z
[ "pytorch" ]
null
false
sripadhstudy
null
sripadhstudy/500_SAB_TAxxL_truncate_3L_h2048_original
1
null
null
30,327
Entry not found
sripadhstudy/500_SAB_TAxxL_truncate_3_layers
8071699f05c3cd2d4a9ca003e323c83567d6968f
2021-06-14T15:51:21.000Z
[ "pytorch" ]
null
false
sripadhstudy
null
sripadhstudy/500_SAB_TAxxL_truncate_3_layers
1
null
null
30,328
Entry not found
sripadhstudy/500_SAB_TAxxL_truncate_768
53c7ea2e22a385fd8bbd63f92eb65e852e96d1ab
2021-06-10T14:18:20.000Z
[ "pytorch", "albert", "transformers" ]
null
false
sripadhstudy
null
sripadhstudy/500_SAB_TAxxL_truncate_768
1
null
transformers
30,329
Entry not found
sripadhstudy/500_SDB_TAxxL_truncate_768
1430e9156ea1b083e7e09dc1f33b2ac7203f177e
2021-06-09T06:41:53.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sripadhstudy
null
sripadhstudy/500_SDB_TAxxL_truncate_768
1
null
transformers
30,330
Entry not found
sripadhstudy/50_SDB_TAxxL_average_768
556e2c629347b6e5b47c5c3f20d94ba1459d49a4
2021-06-04T16:40:02.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sripadhstudy
null
sripadhstudy/50_SDB_TAxxL_average_768
1
null
transformers
30,331
Entry not found
sripadhstudy/50_SDB_TAxxL_truncate_768
80884863a4ccc6e59874b94e19c21d1a020b7354
2021-06-04T14:04:52.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sripadhstudy
null
sripadhstudy/50_SDB_TAxxL_truncate_768
1
null
transformers
30,332
Entry not found
ssardorf/t5-meta-desc
eb65651a5daf618d28d00fd87c99287c2ecaa573
2022-02-23T10:20:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ssardorf
null
ssardorf/t5-meta-desc
1
null
transformers
30,333
Entry not found
sshasnain/wav2vec2-xls-r-300m-bangla-command
7d4c690f2f489dc03800b205d2fbf783abfc87ff
2022-02-11T13:10:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "Bengali", "dataset:custom", "transformers", "bn", "audio", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sshasnain
null
sshasnain/wav2vec2-xls-r-300m-bangla-command
1
1
transformers
30,334
--- language: Bengali datasets: - custom metrics: - wer tags: - bn - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: wav2vec2-xls-r-300m-bangla-command results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: custom type: custom args: ben metrics: - name: Test WER type: wer value: 0.006 --- # wav2vec2-xls-r-300m-bangla-command *** ## Usage Commands '৫ টা কলম দেন' 'চেয়ারটা কোথায় রেখেছেন' 'ডানের বালতিটার প্রাইজ কেমন' 'দশ কেজি আলু কত' 'বাজুসের ল্যাপটপটা এসেছে' 'বাসার জন্য দরজা আছে' 'ম্যাম মোবাইলটা কি আছে' 'হ্যালো শ্যাম্পুর দাম বল'
sshasnain/wav2vec2-xls-r-timit-trainer
84c7218d70ee6572afccf263cb00268e17aef785
2022-01-04T14:49:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sshasnain
null
sshasnain/wav2vec2-xls-r-timit-trainer
1
null
transformers
30,335
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1064 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5537 | 4.03 | 500 | 0.6078 | 1.0 | | 0.5444 | 8.06 | 1000 | 0.4990 | 0.9994 | | 0.3744 | 12.1 | 1500 | 0.5530 | 1.0 | | 0.2863 | 16.13 | 2000 | 0.6401 | 1.0 | | 0.2357 | 20.16 | 2500 | 0.6485 | 1.0 | | 0.1933 | 24.19 | 3000 | 0.7448 | 0.9994 | | 0.162 | 28.22 | 3500 | 0.7502 | 1.0 | | 0.1325 | 32.26 | 4000 | 0.7801 | 1.0 | | 0.1169 | 36.29 | 4500 | 0.8334 | 1.0 | | 0.1031 | 40.32 | 5000 | 0.8269 | 1.0 | | 0.0913 | 44.35 | 5500 | 0.8432 | 1.0 | | 0.0793 | 48.39 | 6000 | 0.8738 | 1.0 | | 0.0694 | 52.42 | 6500 | 0.8897 | 1.0 | | 0.0613 | 56.45 | 7000 | 0.8966 | 1.0 | | 0.0548 | 60.48 | 7500 | 0.9398 | 1.0 | | 0.0444 | 64.51 | 8000 | 0.9548 | 1.0 | | 0.0386 | 68.55 | 8500 | 0.9647 | 1.0 | | 0.0359 | 72.58 | 9000 | 0.9901 | 1.0 | | 0.0299 | 76.61 | 9500 | 1.0151 | 1.0 | | 0.0259 | 80.64 | 10000 | 1.0526 | 1.0 | | 0.022 | 84.67 | 10500 | 1.0754 | 1.0 | | 0.0189 | 88.71 | 11000 | 1.0688 | 1.0 | | 0.0161 | 92.74 | 11500 | 1.0914 | 1.0 | | 0.0138 | 96.77 | 12000 | 1.1064 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
sshleifer/bb12
cce97c9cc9c33f4e8f526adc24ea507a7ce273f0
2020-09-19T04:19:18.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/bb12
1
null
transformers
30,336
Entry not found
sshleifer/distill-mbart-en-ro-12-9
15f4fb7fd9c24278d59e7633890266a9b8b113bb
2020-09-10T15:56:54.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/distill-mbart-en-ro-12-9
1
null
transformers
30,337
Entry not found
sshleifer/distill-pegasus-xsum-12-12
4dbb7c6ff132bd06e23cfa0f47b31903934af290
2020-10-14T16:12:31.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/distill-pegasus-xsum-12-12
1
null
transformers
30,338
Entry not found
sshleifer/student_blarge_12_3
f978ee12042f257f34ccf74359c17ad78fb547c9
2021-06-14T08:27:56.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_blarge_12_3
1
null
transformers
30,339
Entry not found
sshleifer/student_cnn_6_6
e4ba27bbc3fab4a008b6ea4227553b783fa73b99
2021-06-14T09:20:09.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_cnn_6_6
1
null
transformers
30,340
Entry not found
sshleifer/student_enro_avg_12_2
cdd1b7dd2d3503d693ee17f83c674c21b95f343f
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_enro_avg_12_2
1
null
transformers
30,341
Entry not found
sshleifer/student_mbart_en_ro_12_2
94db2dac0fc4eec3c55b85332f6380dd272b71b2
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_12_2
1
null
transformers
30,342
Entry not found
sshleifer/student_mbart_en_ro_12_4
f066f26f13622f2f2f3420bddf2ab95c345f4329
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_12_4
1
null
transformers
30,343
Entry not found
sshleifer/student_mbart_en_ro_12_9
f26597750669e435fd9a347abab259fae8fd84c6
2020-07-15T15:26:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_12_9
1
null
transformers
30,344
Entry not found
sshleifer/student_mbart_en_ro_6_6
d7c7c98f7402df5605eb419cfb222ed88d2dc0b2
2020-07-15T15:27:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_6_6
1
null
transformers
30,345
Entry not found
sshleifer/student_xsum_12_4
735c4736e93ef4933b118fe6cb7e57d88643224e
2021-06-14T09:48:49.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_12_4
1
null
transformers
30,346
Entry not found
stanleychu2/blenderbot_user_simulator_both_domain
dd2d3b458dcc7942cf75775c0e6d7b68288d2538
2021-12-13T03:02:53.000Z
[ "pytorch", "blenderbot-small", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
stanleychu2
null
stanleychu2/blenderbot_user_simulator_both_domain
1
null
transformers
30,347
Entry not found
stasvmk/honeymad_gpt_ru_v0_01
bd4fa834eddcbd0c334e21b1a66fcb15da31d6a9
2022-01-10T07:41:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stasvmk
null
stasvmk/honeymad_gpt_ru_v0_01
1
null
transformers
30,348
Entry not found
stefan-it/electra-base-gc4-64k-0-cased-generator
65041ed72d818a6d48f95fa33de1d7e9f5b55cdc
2021-04-30T22:25:17.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-0-cased-generator
1
null
transformers
30,349
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-100000-cased-discriminator
64e25b530b14ac2ad49096ef8ddbddd31dca3f6b
2021-04-30T22:33:21.000Z
[ "pytorch", "tf", "electra", "pretraining", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit" ]
null
false
stefan-it
null
stefan-it/electra-base-gc4-64k-100000-cased-discriminator
1
null
transformers
30,350
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-100000-cased-generator
7ff661bb959f8602514f6082d9ae340c15b5c9e1
2021-05-01T11:16:57.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-100000-cased-generator
1
null
transformers
30,351
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-1000000-cased-discriminator
b278041fa3a92926a1a2b1615dbfae3ed0d820b9
2021-05-01T11:13:39.000Z
[ "pytorch", "tf", "electra", "pretraining", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit" ]
null
false
stefan-it
null
stefan-it/electra-base-gc4-64k-1000000-cased-discriminator
1
null
transformers
30,352
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-200000-cased-generator
b3ba2685533ecf3b54487b91de619a0dabba4247
2021-05-01T11:17:26.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-200000-cased-generator
1
null
transformers
30,353
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-300000-cased-discriminator
3faca80e0f2f6030986f69c8bdf4e7cd893d1236
2021-04-30T22:38:04.000Z
[ "pytorch", "tf", "electra", "pretraining", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit" ]
null
false
stefan-it
null
stefan-it/electra-base-gc4-64k-300000-cased-discriminator
1
null
transformers
30,354
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-400000-cased-generator
101c8a47e9fc7ee9352fb1840ace7fd2652bbb0d
2021-05-01T11:19:45.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-400000-cased-generator
1
null
transformers
30,355
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-600000-cased-generator
86bdcbde93aad61014a15ee6a494110f13136fce
2021-05-01T11:21:31.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-600000-cased-generator
1
null
transformers
30,356
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/electra-base-gc4-64k-800000-cased-generator
7c5f973f8c832d7619ccdd5cf014c8e6ad659d91
2021-05-01T11:23:30.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-800000-cased-generator
1
null
transformers
30,357
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
subbareddyiiit/roberta_csl_gold8k
9f95fabc28733076106616113b184015f0c41c94
2021-05-20T22:01:14.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
subbareddyiiit
null
subbareddyiiit/roberta_csl_gold8k
1
null
transformers
30,358
hello
subham92/translation_model_by_subham
d8815c1e69f8d512e942ad978c4529a1def80c80
2021-01-18T10:29:50.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
subham92
null
subham92/translation_model_by_subham
1
null
transformers
30,359
--- language: - fi - en tags: - translation license: apache-2.0 ---
suksun1412/wangchanberta-ner-2
c0efd489881e8fb4432ed1b21885d42364e176c7
2022-02-15T04:18:16.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
suksun1412
null
suksun1412/wangchanberta-ner-2
1
null
transformers
30,360
Entry not found
sultan/ArabicTransformer-large
3ec88c13ec3f6a530fe7d707ee98ed1b61015c2c
2021-12-05T17:06:51.000Z
[ "pytorch", "funnel", "feature-extraction", "arxiv:2006.03236", "transformers" ]
feature-extraction
false
sultan
null
sultan/ArabicTransformer-large
1
1
transformers
30,361
ArabicTransformer Large model (B8-8-8 with decoder) <b>Paper</b> : ArabicTransformer: Efficient Large Arabic Language Model with Funnel Transformer and ELECTRA Objective (EMNLP21) <b>Abstract</b> Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pretraining cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models. <b>Description</b> This model was pre-trained on 44GB of Arabic corpora using [Funnel Transformer with ELECTRA objective](https://arxiv.org/abs/2006.03236). We will update you with more details about the model and our accepted paper later at EMNLP21. Check our GitHub page for the latest updates and examples: https://github.com/salrowili/ArabicTransformer ```bibtex @inproceedings{alrowili-shanker-2021-arabictransformer-efficient, title = "{A}rabic{T}ransformer: Efficient Large {A}rabic Language Model with Funnel Transformer and {ELECTRA} Objective", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.108", pages = "1255--1261", abstract = "Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pre-training cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models.", } ```
sultan/ArabicTransformer-small-encoder
e3c60548d1c4c48b8e0c00307ba6239c8a6a32e9
2021-10-08T06:25:01.000Z
[ "pytorch", "funnel", "feature-extraction", "transformers" ]
feature-extraction
false
sultan
null
sultan/ArabicTransformer-small-encoder
1
null
transformers
30,362
Entry not found
sultan/ArabicTransformer-small
1c91581e016d56e6130db642369bcebbf9e15774
2021-12-05T17:07:06.000Z
[ "pytorch", "funnel", "feature-extraction", "arxiv:2006.03236", "transformers" ]
feature-extraction
false
sultan
null
sultan/ArabicTransformer-small
1
null
transformers
30,363
ArabicTransformer small model (B4-4-4 with decoder) <b>Paper</b> : ArabicTransformer: Efficient Large Arabic Language Model with Funnel Transformer and ELECTRA Objective (EMNLP21) <b>Abstract</b> Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pretraining cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models. <b>Description</b> This model was pre-trained on 44GB of Arabic corpora using [Funnel Transformer with ELECTRA objective](https://arxiv.org/abs/2006.03236). This model is faster than ELECTRA-base architecture while having the same number of parameters. The model was pre-trained with significantly less resources than state-of-the-art models. We will update you with more details about the model and our accepted paper later at EMNLP21. Check our GitHub page for the latest updates and examples : https://github.com/salrowili/ArabicTransformer ```bibtex @inproceedings{alrowili-shanker-2021-arabictransformer-efficient, title = "{A}rabic{T}ransformer: Efficient Large {A}rabic Language Model with Funnel Transformer and {ELECTRA} Objective", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.108", pages = "1255--1261", abstract = "Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pre-training cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models.", } ```
sunhao666/chi-sum
82302bbf76608ec11443ca607a7de83d860073f2
2021-05-19T17:32:16.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sunhao666
null
sunhao666/chi-sum
1
null
transformers
30,364
sunitha/FT_AQG_Configs
3310b7e725e58308e349186a3102294af0006b8b
2022-02-09T13:04:55.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/FT_AQG_Configs
1
null
transformers
30,365
Entry not found
sunitha/distilbert-base-uncased-3feb-2022-finetuned-squad
490a38cc542d79832c605c589292becadbc87bbc
2022-02-03T05:06:27.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/distilbert-base-uncased-3feb-2022-finetuned-squad
1
null
transformers
30,366
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-3feb-2022-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-3feb-2022-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2276 | 1.0 | 5533 | 1.1641 | | 0.9614 | 2.0 | 11066 | 1.1225 | | 0.7769 | 3.0 | 16599 | 1.1470 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
sunitha/output_files
55bd18518478d2464c792bd4bbc0bf2ec99a3958
2021-12-13T13:57:03.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/output_files
1
null
transformers
30,367
Question Answering - Build - 1
suojianhua/itcast-nlp-base
9e7d2ac06ffc293e161154193c0b41721327baaa
2022-02-14T07:00:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
suojianhua
null
suojianhua/itcast-nlp-base
1
null
transformers
30,368
Entry not found
sv/gpt2-finetuned-nft-shakes-seuss
973c2c01f4bc74e349b6b7c76b1ef6e9301cfbe5
2021-09-06T19:35:40.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
sv
null
sv/gpt2-finetuned-nft-shakes-seuss
1
null
transformers
30,369
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-finetuned-nft-shakes-seuss results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-nft-shakes-seuss This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2178 | 1.0 | 1095 | 4.0073 | | 3.9522 | 2.0 | 2190 | 3.8824 | | 3.8393 | 3.0 | 3285 | 3.8505 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
sv/gpt2-nft-poetry
2b40c797ba2d0ebe7babc3759f6ca7caf8516b7a
2021-09-08T16:15:47.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
sv
null
sv/gpt2-nft-poetry
1
null
transformers
30,370
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-nft-poetry results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-nft-poetry This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 282 | 4.3092 | | 4.5403 | 2.0 | 564 | 4.1283 | | 4.5403 | 3.0 | 846 | 4.0605 | | 4.039 | 4.0 | 1128 | 4.0321 | | 4.039 | 5.0 | 1410 | 4.0243 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
svsokol/opus-mt-ru-en-finetuned-en-to-ru
446f5053100008550f7f264c0edad97b98637978
2021-12-14T19:53:09.000Z
[ "pytorch", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
svsokol
null
svsokol/opus-mt-ru-en-finetuned-en-to-ru
1
null
transformers
30,371
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: opus-mt-ru-en-finetuned-en-to-ru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ru-en-finetuned-en-to-ru This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
swcrazyfan/TE-v3-10K
f56d2d6e352ebf295a1abe565ba777992b2f4675
2021-05-29T03:21:08.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TE-v3-10K
1
null
transformers
30,372
Entry not found
swcrazyfan/TE-v3-12K
6cb40bf0dd6c10c3073cad3eafe6bdcebf409a7a
2021-05-29T06:32:52.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TE-v3-12K
1
null
transformers
30,373
Entry not found
swcrazyfan/TEFL-V3
285d25f7df525ac55768584249951766796453e5
2021-06-14T07:17:34.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TEFL-V3
1
null
transformers
30,374
Entry not found
tabo/distilbert-base-uncased-finetuned-squad2
8fa621bd48b3898f27b71b06baa9cad24c1cd76f
2021-12-17T07:22:42.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tabo
null
tabo/distilbert-base-uncased-finetuned-squad2
1
null
transformers
30,375
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2306 | 1.0 | 5533 | 1.1557 | | 0.9535 | 2.0 | 11066 | 1.1260 | | 0.7629 | 3.0 | 16599 | 1.1606 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
taesu/ts-test
1470fbe0f3b39f9281d0ee7eb3a622662cf37a7c
2022-02-16T23:28:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
taesu
null
taesu/ts-test
1
null
transformers
30,376
Entry not found
tareknaous/bert2bert-daily-dialog
701d14e39314dc8c5fb170b5a0603b047aed4e72
2022-02-21T08:39:32.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/bert2bert-daily-dialog
1
null
transformers
30,377
Entry not found
tareknaous/t5-daily-dialog
62cf98068835eb390be00a04a6b4d662e1eff762
2022-02-21T08:50:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/t5-daily-dialog
1
null
transformers
30,378
Entry not found
tarikul/distilbert-base-uncased-finetuned-squad
75c71643c1a690ed6d97fd444e87291ecc68ba6a
2021-09-12T07:19:38.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tarikul
null
tarikul/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,379
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
tbochens/dummy-model
ae9ea962bf672f6a04b5dea85ceec2942d768bcb
2021-12-29T19:36:22.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tbochens
null
tbochens/dummy-model
1
null
transformers
30,380
Entry not found
tdopierre/ProtAugment-LM-Liu
e864181fdb7719aace4c3e14d618616c2864a371
2021-07-01T13:54:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tdopierre
null
tdopierre/ProtAugment-LM-Liu
1
null
transformers
30,381
Entry not found
teacookies/autonlp-more_fine_tune_24465520-26265903
28e9550d677a9f3f62fb466099e7165a99c0c8e5
2021-10-25T09:35:40.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265903
1
null
transformers
30,382
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 108.13983395548236 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265903 - CO2 Emissions (in grams): 108.13983395548236 ## Validation Metrics - Loss: 0.6330059170722961 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265903 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265903", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265903", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265904
f8c7160137a61b7af3ba48187659166e6ada88d7
2021-10-25T09:36:11.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265904
1
null
transformers
30,383
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 108.63800043275934 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265904 - CO2 Emissions (in grams): 108.63800043275934 ## Validation Metrics - Loss: 0.5807144045829773 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265904 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265904", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265904", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265909
fddd8d19f3995d35730f721062f17c3eaead4474
2021-10-25T09:20:12.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-more_fine_tune_24465520-26265909
1
null
transformers
30,384
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 80.25874179679201 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265909 - CO2 Emissions (in grams): 80.25874179679201 ## Validation Metrics - Loss: 5.950643062591553 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265909 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265909", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265909", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465519
72e0ec888dea16171a4f663c777f6dc8312ebcfd
2021-10-22T08:13:26.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465519
1
null
transformers
30,385
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 58.19097299648645 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465519 - CO2 Emissions (in grams): 58.19097299648645 ## Validation Metrics - Loss: 0.566668689250946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465519 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465519", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465519", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465521
ecdf74d16363393bdec78fe6277da0041cf98925
2021-10-22T08:21:40.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465521
1
null
transformers
30,386
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 70.20260764805424 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465521 - CO2 Emissions (in grams): 70.20260764805424 ## Validation Metrics - Loss: 0.6295848488807678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465521 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465521", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465521", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465523
66696373eb47a7af78181b4b223939624ad3d329
2021-10-22T08:13:18.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465523
1
null
transformers
30,387
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 56.99866929988893 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465523 - CO2 Emissions (in grams): 56.99866929988893 ## Validation Metrics - Loss: 0.5468788146972656 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465523 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465523", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465523", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465525
b2702c3d4d0472404acd7c889618889b932805ff
2021-10-22T08:23:09.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465525
1
null
transformers
30,388
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 63.997230261104875 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465525 - CO2 Emissions (in grams): 63.997230261104875 ## Validation Metrics - Loss: 0.5740988850593567 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465525 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465525", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465525", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
terter/rick-bot-test-v2
ce3375e111b48987bd1059993e16c699639979c7
2021-09-13T15:16:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
terter
null
terter/rick-bot-test-v2
1
null
transformers
30,389
--- tags: - conversational --- #Rick Sanchez DialoGPT Model
testimonial/wav2vec2-base-timit-demo-colab
70f9b4c3b6484ddfbdb5949c6041c870d85c428a
2022-02-03T03:07:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
testimonial
null
testimonial/wav2vec2-base-timit-demo-colab
1
null
transformers
30,390
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4688 - Wer: 0.3417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4156 | 4.0 | 500 | 1.2721 | 0.8882 | | 0.6145 | 8.0 | 1000 | 0.4712 | 0.4510 | | 0.229 | 12.0 | 1500 | 0.4459 | 0.3847 | | 0.1312 | 16.0 | 2000 | 0.4739 | 0.3786 | | 0.0897 | 20.0 | 2500 | 0.4483 | 0.3562 | | 0.0608 | 24.0 | 3000 | 0.4450 | 0.3502 | | 0.0456 | 28.0 | 3500 | 0.4688 | 0.3417 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
teven/roberta_kelm_tekgen
86fe78bc97435451a703df31c641f25a5f5dd093
2021-11-22T01:04:55.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
teven
null
teven/roberta_kelm_tekgen
1
null
sentence-transformers
30,391
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/roberta_kelm_tekgen This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/roberta_kelm_tekgen') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/roberta_kelm_tekgen') model = AutoModel.from_pretrained('teven/roberta_kelm_tekgen') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/roberta_kelm_tekgen) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 976035 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 394379 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` [ { "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ] ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
thaalesalves/jurandir
3f83db2fa4a20310472e85e7484a89c995848cb4
2021-07-06T01:25:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
thaalesalves
null
thaalesalves/jurandir
1
null
transformers
30,392
# DialoGPT small - Jurandir Este é Jurandir, o GPT-2 baseado no DialoGPT que fala português. Ele foi treinado com datasets baseados na Wikipédia e no (Brazilian Portuguese Literature Corpus)[https://www.kaggle.com/rtatman/brazilian-portuguese-literature-corpus]. O propósito deste modelo, inicialmente, é para ser usado com o servidor do KoboldAI em combinação com o bot de Discord [Jurandir](https://github.com/thaalesalves/jurandir).
thetlwin/DialoGPT-small-ironman
872c0a188040fbd8792cf316969afa07a639aa93
2021-09-14T05:56:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
thetlwin
null
thetlwin/DialoGPT-small-ironman
1
null
transformers
30,393
--- tags: - conversational --- # Ironman DialoGPT Model (small)
thorduragust/XLMR-ENIS-finetuned-ner
dfa8391afedee73fb5518b8332ab444b65c0f03a
2021-10-05T15:40:05.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
thorduragust
null
thorduragust/XLMR-ENIS-finetuned-ner
1
null
transformers
30,394
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8707943925233644 - name: Recall type: recall value: 0.8475270039795338 - name: F1 type: f1 value: 0.8590031691155287 - name: Accuracy type: accuracy value: 0.982856184128243 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0916 - Precision: 0.8708 - Recall: 0.8475 - F1: 0.8590 - Accuracy: 0.9829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0581 | 1.0 | 2904 | 0.1055 | 0.8477 | 0.8057 | 0.8262 | 0.9791 | | 0.0316 | 2.0 | 5808 | 0.0902 | 0.8574 | 0.8349 | 0.8460 | 0.9813 | | 0.0201 | 3.0 | 8712 | 0.0916 | 0.8708 | 0.8475 | 0.8590 | 0.9829 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
threem/mysquadv2-finetuned-squad
3f6d92c13c7d11a76a6ced970779dda4c4ff95a3
2022-01-08T06:14:47.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
threem
null
threem/mysquadv2-finetuned-squad
1
null
transformers
30,395
Entry not found
thyagosme/gpt2-wikitext2
09e59fafe472f6cfab14e4e86b67613de0174083
2022-02-09T03:17:38.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
thyagosme
null
thyagosme/gpt2-wikitext2
1
null
transformers
30,396
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5576 | 1.0 | 2249 | 6.4681 | | 6.1905 | 2.0 | 4498 | 6.1976 | | 6.0005 | 3.0 | 6747 | 6.1095 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
tiagohatta/opus-mt-de-en-finetuned-de-to-en-first
792aed25294f00a824e6b90f2a86b416732cef1a
2021-11-27T13:04:18.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tiagohatta
null
tiagohatta/opus-mt-de-en-finetuned-de-to-en-first
1
null
transformers
30,397
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-de-en-finetuned-de-to-en-first results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 39.8122 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-de-en-finetuned-de-to-en-first This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.1465 - Bleu: 39.8122 - Gen Len: 25.579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 63 | 1.1465 | 39.8122 | 25.579 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
tiagohatta/opus-mt-de-en-finetuned-de-to-en-second
55b13f148055618ea69e0d04b69a470dc353e215
2021-11-30T17:23:04.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tiagohatta
null
tiagohatta/opus-mt-de-en-finetuned-de-to-en-second
1
null
transformers
30,398
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-de-en-finetuned-de-to-en-second results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 38.959 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-de-en-finetuned-de-to-en-second This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.1719 - Bleu: 38.959 - Gen Len: 25.2812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 157 | 1.1492 | 39.2552 | 25.2268 | | No log | 2.0 | 314 | 1.1601 | 38.8343 | 25.2288 | | No log | 3.0 | 471 | 1.1651 | 39.0092 | 25.254 | | 1.8512 | 4.0 | 628 | 1.1704 | 38.9281 | 25.2756 | | 1.8512 | 5.0 | 785 | 1.1719 | 38.959 | 25.2812 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ticet11/DialoGPT-small-BOBBY
f5412f41ef0ae0f339ffff14ea56db9ac33baa89
2021-10-01T03:56:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ticet11
null
ticet11/DialoGPT-small-BOBBY
1
null
transformers
30,399
--- tags: - conversational --- # Bobby Hill DialoGPT Model