modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tktung/aicovid_pretrain
68af37da8e1f906b1849ef67896b1f2d0edd2215
2021-10-22T03:24:52.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
tktung
null
tktung/aicovid_pretrain
1
null
transformers
30,400
Entry not found
tli8hf/unqover-bert-large-uncased-squad
2ab5130b5ff2f51ef858ddacb48bfc8878d7223e
2021-05-20T07:58:54.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
tli8hf
null
tli8hf/unqover-bert-large-uncased-squad
1
null
transformers
30,401
Entry not found
tli8hf/unqover-distilbert-base-uncased-squad
f04b7ddf1003e763a2d250768185f5cde721a285
2020-10-19T23:39:01.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-distilbert-base-uncased-squad
1
null
transformers
30,402
Entry not found
tlkh/program-synthesis-gpt-neo-125m
70be5917e071dc743b4c52e09097433a0dcbfc27
2021-09-29T02:32:15.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
tlkh
null
tlkh/program-synthesis-gpt-neo-125m
1
null
transformers
30,403
Entry not found
tmills/timex-thyme-colon
f12ea29f54c1ca3ff16a8cb64e09af69ba03c4d3
2022-05-02T22:33:28.000Z
[ "pytorch", "cnlpt", "transformers" ]
null
false
tmills
null
tmills/timex-thyme-colon
1
null
transformers
30,404
Entry not found
tnagata/dummy-model
8f79339218139ed0e172d2d24ac0a3e7b2fb297c
2022-02-18T12:21:27.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tnagata
null
tnagata/dummy-model
1
null
transformers
30,405
Entry not found
toast22a/race_natural_number_oqpl_mc
6b430e7d9adc749159f4d7adf0ee2c24d47d60ad
2021-05-23T13:11:24.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
toast22a
null
toast22a/race_natural_number_oqpl_mc
1
null
transformers
30,406
Entry not found
toastynews/electra-hongkongese-large-generator
527e5b4c45d3380bb2389c221d3f5277c9a2d350
2020-07-07T04:45:30.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
toastynews
null
toastynews/electra-hongkongese-large-generator
1
null
transformers
30,407
Entry not found
toastynews/electra-hongkongese-small-generator
67d0c9bfe0169b95964b8345a3fe16fc80ea4adc
2020-07-07T04:13:10.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
toastynews
null
toastynews/electra-hongkongese-small-generator
1
null
transformers
30,408
Entry not found
tolgaand/tolgaand
e224bc3475a026c149a8fc7c7422d52a6e5895de
2021-09-19T01:31:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
tolgaand
null
tolgaand/tolgaand
1
null
transformers
30,409
Entry not found
tom1804/DialoGPT-small-HP
f6bebfcd16fdad75089070795a648845f41fde82
2021-06-20T15:13:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
tom1804
null
tom1804/DialoGPT-small-HP
1
null
transformers
30,410
Entry not found
tom1804/HP
716e276111628a3abcf305a66150e10422f13342
2021-06-20T15:40:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
tom1804
null
tom1804/HP
1
null
transformers
30,411
--- tags: - conversational --- # My Awesome Model
tom1804/HP_last
2af3ef0f1dff2aee3640178bed094c81826b7c49
2021-06-20T15:48:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
tom1804
null
tom1804/HP_last
1
null
transformers
30,412
--- tags: - conversational --- # My Awesome Model
tonyalves/wav2vec2-300M-teste2
1cbd3e8daa16cb17ffc035d1f92c96e7cb9d98af
2022-01-09T17:16:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
tonyalves
null
tonyalves/wav2vec2-300M-teste2
1
null
transformers
30,413
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-300M-teste2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300M-teste2 This model was trained from scratch on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
trangdieu/bert-large-retrained-2-epochs
b4cadaf94b220ae5bdaf480f72709ee51ea583d7
2021-07-19T15:21:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
trangdieu
null
trangdieu/bert-large-retrained-2-epochs
1
null
transformers
30,414
Entry not found
trangdieu/bert-large-retrained-4-epochs
bfd9fa35309837b8cd55b6984b1bb5d4a00cbc11
2021-07-19T15:26:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
trangdieu
null
trangdieu/bert-large-retrained-4-epochs
1
null
transformers
30,415
Entry not found
trangdieu/distilroberta-retrained-6-epochs
82f856f1bae87af68735b3b8bdf1287c09cc6a49
2021-05-30T03:57:07.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
trangdieu
null
trangdieu/distilroberta-retrained-6-epochs
1
null
transformers
30,416
Entry not found
transZ/BiBERT-ViBa
648ab003886d8ac640cb81324eb8e6f226e707f6
2022-02-10T15:56:24.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
transZ
null
transZ/BiBERT-ViBa
1
null
transformers
30,417
Entry not found
transformersbook/xlm-roberta-base-finetuned-panx-de
a14adde7f455d19a9106f07e7ab1ebf1083fabb4
2022-02-05T17:07:41.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
transformersbook
null
transformersbook/xlm-roberta-base-finetuned-panx-de
1
null
transformers
30,418
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8645910410381922 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.1388 - F1: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2652 | 1.0 | 525 | 0.1602 | 0.8230 | | 0.1314 | 2.0 | 1050 | 0.1372 | 0.8527 | | 0.0806 | 3.0 | 1575 | 0.1388 | 0.8646 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
ttumyche/bluebert
5542d51cf239eb306590472ac1602d84b166a2d8
2020-09-21T04:57:19.000Z
[ "pytorch", "transformers" ]
null
false
ttumyche
null
ttumyche/bluebert
1
null
transformers
30,419
Entry not found
tucan9389/distilbert-base-uncased-finetuned-squad
e2736808f801c450ab89a660b4cb1a2a9f74a091
2021-11-17T16:27:10.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tucan9389
null
tucan9389/distilbert-base-uncased-finetuned-squad
1
null
transformers
30,420
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2252 | 1.0 | 5533 | 1.1671 | | 0.9494 | 2.0 | 11066 | 1.1279 | | 0.7696 | 3.0 | 16599 | 1.1560 | ### Framework versions - Transformers 4.12.4 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
tyoyo/byt5-base-TEDxJP-1body-0context-lr-small
67edf94c97d2874f91df28b738a371b5ae882ea6
2021-11-25T14:44:51.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/byt5-base-TEDxJP-1body-0context-lr-small
1
null
transformers
30,421
Entry not found
tyoyo/byt5-base-TEDxJP-1in-1out
0193bd1e911b5714c8d1c779827707ce54543642
2021-11-25T12:22:24.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/byt5-base-TEDxJP-1in-1out
1
null
transformers
30,422
Entry not found
tyoyo/t5-base-TEDxJP-11body-0context
e0566ed9b359cedfea5df2fe42758f2ddd14d00e
2021-12-02T17:37:36.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:te_dx_jp", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-11body-0context
1
null
transformers
30,423
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-11body-0context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-11body-0context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.8068 - Wer: 0.1976 - Mer: 0.1904 - Wil: 0.2816 - Wip: 0.7184 - Hits: 602335 - Substitutions: 75050 - Deletions: 39435 - Insertions: 27185 - Cer: 0.1625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:------:|:-------------:|:---------:|:----------:|:------:| | 0.8909 | 1.0 | 746 | 0.7722 | 0.3120 | 0.2861 | 0.3989 | 0.6011 | 558138 | 99887 | 58795 | 64983 | 0.2652 | | 0.6786 | 2.0 | 1492 | 0.7021 | 0.2226 | 0.2122 | 0.3069 | 0.6931 | 592242 | 78773 | 45805 | 34978 | 0.1862 | | 0.5627 | 3.0 | 2238 | 0.6996 | 0.2104 | 0.2016 | 0.2942 | 0.7058 | 597381 | 76593 | 42846 | 31392 | 0.1752 | | 0.489 | 4.0 | 2984 | 0.7161 | 0.2030 | 0.1952 | 0.2865 | 0.7135 | 599808 | 75155 | 41857 | 28506 | 0.1684 | | 0.4355 | 5.0 | 3730 | 0.7389 | 0.2000 | 0.1924 | 0.2837 | 0.7163 | 601815 | 75247 | 39758 | 28335 | 0.1651 | | 0.3836 | 6.0 | 4476 | 0.7537 | 0.1992 | 0.1918 | 0.2829 | 0.7171 | 601846 | 75046 | 39928 | 27815 | 0.1640 | | 0.3617 | 7.0 | 5222 | 0.7743 | 0.1995 | 0.1918 | 0.2832 | 0.7168 | 602287 | 75268 | 39265 | 28445 | 0.1642 | | 0.3258 | 8.0 | 5968 | 0.7907 | 0.1971 | 0.1899 | 0.2809 | 0.7191 | 602800 | 74887 | 39133 | 27258 | 0.1620 | | 0.3225 | 9.0 | 6714 | 0.8035 | 0.1981 | 0.1908 | 0.2823 | 0.7177 | 602418 | 75372 | 39030 | 27625 | 0.1630 | | 0.3162 | 10.0 | 7460 | 0.8068 | 0.1976 | 0.1904 | 0.2816 | 0.7184 | 602335 | 75050 | 39435 | 27185 | 0.1625 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
tyoyo/t5-base-TEDxJP-1body-0context-lr-small
e0c2db0084d7feab0a9fc0dde2993b91bfaf91b4
2021-11-26T01:39:24.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-0context-lr-small
1
null
transformers
30,424
Entry not found
tyoyo/t5-base-TEDxJP-1body-10context
f6207c193fe3f13f9810fa00fffddc7650221a50
2021-11-30T19:40:13.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:te_dx_jp", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-10context
1
null
transformers
30,425
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-1body-10context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-1body-10context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.3833 - Wer: 0.1983 - Mer: 0.1900 - Wil: 0.2778 - Wip: 0.7222 - Hits: 56229 - Substitutions: 6686 - Deletions: 3593 - Insertions: 2909 - Cer: 0.1823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.5641 | 1.0 | 746 | 0.4426 | 0.2336 | 0.2212 | 0.3143 | 0.6857 | 54711 | 7183 | 4614 | 3742 | 0.2238 | | 0.4867 | 2.0 | 1492 | 0.4017 | 0.2045 | 0.1972 | 0.2863 | 0.7137 | 55378 | 6764 | 4366 | 2470 | 0.1853 | | 0.4257 | 3.0 | 2238 | 0.3831 | 0.2008 | 0.1933 | 0.2826 | 0.7174 | 55715 | 6788 | 4005 | 2560 | 0.1784 | | 0.4038 | 4.0 | 2984 | 0.3797 | 0.1963 | 0.1890 | 0.2776 | 0.7224 | 56028 | 6731 | 3749 | 2578 | 0.1748 | | 0.3817 | 5.0 | 3730 | 0.3769 | 0.1944 | 0.1877 | 0.2758 | 0.7242 | 55926 | 6663 | 3919 | 2345 | 0.1730 | | 0.3467 | 6.0 | 4476 | 0.3806 | 0.2111 | 0.2002 | 0.2876 | 0.7124 | 56082 | 6688 | 3738 | 3616 | 0.1916 | | 0.3361 | 7.0 | 5222 | 0.3797 | 0.1977 | 0.1897 | 0.2780 | 0.7220 | 56173 | 6721 | 3614 | 2816 | 0.1785 | | 0.3107 | 8.0 | 5968 | 0.3814 | 0.1993 | 0.1910 | 0.2792 | 0.7208 | 56167 | 6720 | 3621 | 2916 | 0.1839 | | 0.3141 | 9.0 | 6714 | 0.3820 | 0.1991 | 0.1907 | 0.2787 | 0.7213 | 56201 | 6709 | 3598 | 2933 | 0.1859 | | 0.3122 | 10.0 | 7460 | 0.3833 | 0.1983 | 0.1900 | 0.2778 | 0.7222 | 56229 | 6686 | 3593 | 2909 | 0.1823 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
tyoyo/t5-base-TEDxJP-1body-2context
2be8122cc99903a0ac0884551509b02a7b7cc729
2021-12-06T08:37:39.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:te_dx_jp", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-2context
1
null
transformers
30,426
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-1body-2context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-1body-2context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4968 - Wer: 0.1969 - Mer: 0.1895 - Wil: 0.2801 - Wip: 0.7199 - Hits: 55902 - Substitutions: 6899 - Deletions: 3570 - Insertions: 2599 - Cer: 0.1727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.7136 | 1.0 | 746 | 0.5716 | 0.2512 | 0.2345 | 0.3279 | 0.6721 | 54430 | 7249 | 4692 | 4731 | 0.2344 | | 0.6267 | 2.0 | 1492 | 0.5152 | 0.2088 | 0.2005 | 0.2917 | 0.7083 | 55245 | 6949 | 4177 | 2732 | 0.2009 | | 0.5416 | 3.0 | 2238 | 0.4969 | 0.2025 | 0.1948 | 0.2851 | 0.7149 | 55575 | 6871 | 3925 | 2646 | 0.1802 | | 0.5223 | 4.0 | 2984 | 0.4915 | 0.1989 | 0.1917 | 0.2816 | 0.7184 | 55652 | 6826 | 3893 | 2481 | 0.1754 | | 0.4985 | 5.0 | 3730 | 0.4929 | 0.1991 | 0.1916 | 0.2814 | 0.7186 | 55759 | 6828 | 3784 | 2603 | 0.1753 | | 0.4675 | 6.0 | 4476 | 0.4910 | 0.1969 | 0.1897 | 0.2799 | 0.7201 | 55834 | 6859 | 3678 | 2534 | 0.1756 | | 0.445 | 7.0 | 5222 | 0.4940 | 0.1955 | 0.1884 | 0.2782 | 0.7218 | 55881 | 6821 | 3669 | 2485 | 0.1712 | | 0.4404 | 8.0 | 5968 | 0.4932 | 0.1979 | 0.1903 | 0.2801 | 0.7199 | 55881 | 6828 | 3662 | 2643 | 0.1742 | | 0.4525 | 9.0 | 6714 | 0.4951 | 0.1968 | 0.1893 | 0.2799 | 0.7201 | 55939 | 6897 | 3535 | 2632 | 0.1740 | | 0.4077 | 10.0 | 7460 | 0.4968 | 0.1969 | 0.1895 | 0.2801 | 0.7199 | 55902 | 6899 | 3570 | 2599 | 0.1727 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
tyoyo/t5-base-TEDxJP-1body-3context
bb0e219825caaf6ed9611f63e0851bc90aa1fc18
2021-12-03T21:07:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:te_dx_jp", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-3context
1
null
transformers
30,427
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-1body-3context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-1body-3context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4926 - Wer: 0.1968 - Mer: 0.1894 - Wil: 0.2793 - Wip: 0.7207 - Hits: 55899 - Substitutions: 6836 - Deletions: 3636 - Insertions: 2590 - Cer: 0.1733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.7082 | 1.0 | 746 | 0.5637 | 0.2626 | 0.2430 | 0.3355 | 0.6645 | 54301 | 7195 | 4875 | 5358 | 0.2552 | | 0.6213 | 2.0 | 1492 | 0.5150 | 0.2068 | 0.1994 | 0.2899 | 0.7101 | 55107 | 6861 | 4403 | 2462 | 0.1866 | | 0.5331 | 3.0 | 2238 | 0.4945 | 0.2038 | 0.1958 | 0.2858 | 0.7142 | 55551 | 6845 | 3975 | 2705 | 0.1816 | | 0.5185 | 4.0 | 2984 | 0.4880 | 0.2003 | 0.1929 | 0.2831 | 0.7169 | 55639 | 6860 | 3872 | 2563 | 0.1779 | | 0.4963 | 5.0 | 3730 | 0.4858 | 0.1988 | 0.1912 | 0.2810 | 0.7190 | 55837 | 6838 | 3696 | 2662 | 0.1772 | | 0.4625 | 6.0 | 4476 | 0.4885 | 0.1964 | 0.1894 | 0.2799 | 0.7201 | 55785 | 6875 | 3711 | 2448 | 0.1720 | | 0.4416 | 7.0 | 5222 | 0.4898 | 0.1962 | 0.1890 | 0.2788 | 0.7212 | 55870 | 6819 | 3682 | 2522 | 0.1726 | | 0.4287 | 8.0 | 5968 | 0.4894 | 0.1968 | 0.1894 | 0.2790 | 0.7210 | 55889 | 6804 | 3678 | 2580 | 0.1743 | | 0.4457 | 9.0 | 6714 | 0.4909 | 0.1964 | 0.1891 | 0.2792 | 0.7208 | 55919 | 6858 | 3594 | 2586 | 0.1739 | | 0.4068 | 10.0 | 7460 | 0.4926 | 0.1968 | 0.1894 | 0.2793 | 0.7207 | 55899 | 6836 | 3636 | 2590 | 0.1733 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
uclanlp/plbart-cs-java
fa09d595f1a3b9950cee749c13b0feaa2d08ad4e
2021-11-09T17:08:03.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-cs-java
1
null
transformers
30,428
Entry not found
uclanlp/plbart-multi_task-ruby
fa64c4ae5d694c20331834cf06857c623d6a0e45
2022-03-02T07:32:39.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-ruby
1
null
transformers
30,429
Entry not found
uclanlp/plbart-single_task-en_go
7f519de25814cf4e42b848fa62e2e0efea50c2c1
2022-03-02T07:08:42.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-en_go
1
null
transformers
30,430
Entry not found
uclanlp/plbart-single_task-en_js
8002294481873d498f34ffae383abd3f74f675fb
2022-03-02T07:10:01.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-en_js
1
null
transformers
30,431
Entry not found
uclanlp/plbart-single_task-java_en
3ec7e9e770cb2450fd2870a35b4c3dd0a3d04ae3
2022-03-02T06:57:42.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-java_en
1
null
transformers
30,432
Entry not found
uclanlp/plbart-single_task-strong-generation
7694c7b4382823b4aea57bc49faece3f95a146d1
2022-03-02T07:20:57.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-strong-generation
1
null
transformers
30,433
Entry not found
uclanlp/visualbert-vqa-pre
61b7a7df390dd946c119da9766848078ef6e463b
2021-05-31T11:37:02.000Z
[ "pytorch", "visual_bert", "pretraining", "transformers" ]
null
false
uclanlp
null
uclanlp/visualbert-vqa-pre
1
1
transformers
30,434
Entry not found
ufal/byt5-small-multilexnorm2021-sl
befcb53cc6d5c373194be9315eafba133be3647e
2021-10-20T12:49:57.000Z
[ "pytorch", "t5", "text2text-generation", "sl", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-sl
1
null
transformers
30,435
--- language: sl datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Slovenian version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ughvom/britnayBOTMAIN
674d6c5bbab9f02c2d0786b5628e6f8b7f1f6208
2022-01-09T19:32:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ughvom
null
ughvom/britnayBOTMAIN
1
null
transformers
30,436
--- tags: - conversational --- # britnayBOTMAIN Model
umr55766/DialogGPT-small-peppa-pig
608fbffa1145f9f82f2b0b8dd496a998e3267472
2021-08-30T17:08:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
umr55766
null
umr55766/DialogGPT-small-peppa-pig
1
null
transformers
30,437
--- tags: - conversational --- # Peppa Pig DialogGPT-small Model
unicamp-dl/mt5-base-en-pt-msmarco-v2
129d263c50bc3cd1d0c6effe794c542ea3ad3ef5
2022-01-05T23:16:47.000Z
[ "pytorch", "mt5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "t5", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/mt5-base-en-pt-msmarco-v2
1
null
transformers
30,438
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v2 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the v2 version, the Portuguese dataset was translated using Google Translate. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/ptt5-base-pt-msmarco-10k-v1
f849cb52d0140520cd3cfc85a24e092ae04fea21
2022-01-05T21:29:26.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-base-pt-msmarco-10k-v1
1
null
transformers
30,439
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-10k-v1 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 10k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-10k-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-10k-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
usami/electra-base-discriminator-finetuned-squad
5e3311eaafbc4807b21829e0bea8452473e0ab3c
2021-11-24T09:39:13.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
usami
null
usami/electra-base-discriminator-finetuned-squad
1
null
transformers
30,440
Entry not found
usernamtadejm/flairbookmodel1234
1d12e5a2b5e4903e5b21eaef7bd496f9bdc96676
2022-01-07T15:35:52.000Z
[ "pytorch", "flair", "token-classification" ]
token-classification
false
usernamtadejm
null
usernamtadejm/flairbookmodel1234
1
null
flair
30,441
--- tags: - flair - token-classification widget: - text: "does this work" --- ## Test model README Some test README description
vachevkd/dg-t5sm-race-v01
f40d44a72e9ace5032430c9bb621a1d214345a8e
2021-12-20T20:00:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vachevkd
null
vachevkd/dg-t5sm-race-v01
1
null
transformers
30,442
Entry not found
vaishnavi/indic-bert-512
5f753cca3ef0e6c4ec87f26aad82ed2026c550d3
2021-04-08T06:38:32.000Z
[ "pytorch", "albert", "en", "dataset:AI4Bharat IndicNLP Corpora", "transformers", "license:mit" ]
null
false
vaishnavi
null
vaishnavi/indic-bert-512
1
null
transformers
30,443
--- language: en license: mit datasets: - AI4Bharat IndicNLP Corpora --- # IndicBERT IndicBERT is a multilingual ALBERT model pretrained exclusively on 12 major Indian languages. It is pre-trained on our novel monolingual corpus of around 9 billion tokens and subsequently evaluated on a set of diverse tasks. IndicBERT has much fewer parameters than other multilingual models (mBERT, XLM-R etc.) while it also achieves a performance on-par or better than these models. The 12 languages covered by IndicBERT are: Assamese, Bengali, English, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu. The code can be found [here](https://github.com/divkakwani/indic-bert). For more information, checkout our [project page](https://indicnlp.ai4bharat.org/) or our [paper](https://indicnlp.ai4bharat.org/papers/arxiv2020_indicnlp_corpus.pdf). ## Pretraining Corpus We pre-trained indic-bert on AI4Bharat's monolingual corpus. The corpus has the following distribution of languages: | Language | as | bn | en | gu | hi | kn | | | ----------------- | ------ | ------ | ------ | ------ | ------ | ------ | ------- | | **No. of Tokens** | 36.9M | 815M | 1.34B | 724M | 1.84B | 712M | | | **Language** | **ml** | **mr** | **or** | **pa** | **ta** | **te** | **all** | | **No. of Tokens** | 767M | 560M | 104M | 814M | 549M | 671M | 8.9B | ## Evaluation Results IndicBERT is evaluated on IndicGLUE and some additional tasks. The results are summarized below. For more details about the tasks, refer our [official repo](https://github.com/divkakwani/indic-bert) #### IndicGLUE Task | mBERT | XLM-R | IndicBERT -----| ----- | ----- | ------ News Article Headline Prediction | 89.58 | 95.52 | **95.87** Wikipedia Section Title Prediction| **73.66** | 66.33 | 73.31 Cloze-style multiple-choice QA | 39.16 | 27.98 | **41.87** Article Genre Classification | 90.63 | 97.03 | **97.34** Named Entity Recognition (F1-score) | **73.24** | 65.93 | 64.47 Cross-Lingual Sentence Retrieval Task | 21.46 | 13.74 | **27.12** Average | 64.62 | 61.09 | **66.66** #### Additional Tasks Task | Task Type | mBERT | XLM-R | IndicBERT -----| ----- | ----- | ------ | ----- BBC News Classification | Genre Classification | 60.55 | **75.52** | 74.60 IIT Product Reviews | Sentiment Analysis | 74.57 | **78.97** | 71.32 IITP Movie Reviews | Sentiment Analaysis | 56.77 | **61.61** | 59.03 Soham News Article | Genre Classification | 80.23 | **87.6** | 78.45 Midas Discourse | Discourse Analysis | 71.20 | **79.94** | 78.44 iNLTK Headlines Classification | Genre Classification | 87.95 | 93.38 | **94.52** ACTSA Sentiment Analysis | Sentiment Analysis | 48.53 | 59.33 | **61.18** Winograd NLI | Natural Language Inference | 56.34 | 55.87 | **56.34** Choice of Plausible Alternative (COPA) | Natural Language Inference | 54.92 | 51.13 | **58.33** Amrita Exact Paraphrase | Paraphrase Detection | **93.81** | 93.02 | 93.75 Amrita Rough Paraphrase | Paraphrase Detection | 83.38 | 82.20 | **84.33** Average | | 69.84 | **74.42** | 73.66 \* Note: all models have been restricted to a max_seq_length of 128. ## Downloads The model can be downloaded [here](https://storage.googleapis.com/ai4bharat-public-indic-nlp-corpora/models/indic-bert-v1.tar.gz). Both tf checkpoints and pytorch binaries are included in the archive. Alternatively, you can also download it from [Huggingface](https://huggingface.co/ai4bharat/indic-bert). ## Citing If you are using any of the resources, please cite the following article: ``` @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ``` We would like to hear from you if: - You are using our resources. Please let us know how you are putting these resources to use. - You have any feedback on these resources. ## License The IndicBERT code (and models) are released under the MIT License. ## Contributors - Divyanshu Kakwani - Anoop Kunchukuttan - Gokul NC - Satish Golla - Avik Bhattacharyya - Mitesh Khapra - Pratyush Kumar This work is the outcome of a volunteer effort as part of [AI4Bharat initiative](https://ai4bharat.org). ## Contact - Anoop Kunchukuttan ([[email protected]](mailto:[email protected])) - Mitesh Khapra ([[email protected]](mailto:[email protected])) - Pratyush Kumar ([[email protected]](mailto:[email protected]))
valeriazen/ruT5-base-finetuned-xsum
16c05b534d2cfc77907650c7f8581311f071b449
2022-01-18T17:07:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
valeriazen
null
valeriazen/ruT5-base-finetuned-xsum
1
null
transformers
30,444
Entry not found
valeriulacatusu/distilbert-base-uncased-finetuned-ner
204231d2eee5c3a81a643930820504ed8ea04b0b
2021-12-21T14:44:24.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
valeriulacatusu
null
valeriulacatusu/distilbert-base-uncased-finetuned-ner
1
null
transformers
30,445
Entry not found
valhalla/cogview-vqvae-test
cd3cf9f3b20baf18bd702f3ff7374bbf53c72cef
2021-06-21T07:09:01.000Z
[ "pytorch", "cog_view", "transformers" ]
null
false
valhalla
null
valhalla/cogview-vqvae-test
1
null
transformers
30,446
Entry not found
valhalla/s2t_covost2_en_de_small
e41dbdadc2156479ff5905d96a2abb4b1a557681
2021-02-24T07:22:30.000Z
[ "pytorch", "speech_to_text_transformer", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/s2t_covost2_en_de_small
1
null
transformers
30,447
Entry not found
varun3dec/Pbi-Summarization-model
989b30bc2eb16715877d48c00b7a752e4f80b210
2022-01-10T07:09:54.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
varun3dec
null
varun3dec/Pbi-Summarization-model
1
null
transformers
30,448
vdivya/wav2vec2-base-timit-demo-colab
7ba031b54425313960e43c8deaade5154469245d
2022-01-03T09:51:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vdivya
null
vdivya/wav2vec2-base-timit-demo-colab
1
null
transformers
30,449
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4630 - Wer: 0.3399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4454 | 4.0 | 500 | 1.2920 | 0.9381 | | 0.5869 | 8.0 | 1000 | 0.4634 | 0.4297 | | 0.2216 | 12.0 | 1500 | 0.4481 | 0.3778 | | 0.1283 | 16.0 | 2000 | 0.4651 | 0.3741 | | 0.0872 | 20.0 | 2500 | 0.4762 | 0.3548 | | 0.0635 | 24.0 | 3000 | 0.4495 | 0.3513 | | 0.0482 | 28.0 | 3500 | 0.4630 | 0.3399 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
versae/mt5-base-finetuned-modernisa
d807ca7f3c8a6c21fcc5abd722afe0803cbc6ee6
2022-07-20T10:25:19.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:versae/modernisa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
versae
null
versae/mt5-base-finetuned-modernisa
1
1
transformers
30,450
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu datasets: - versae/modernisa model-index: - name: mt5-base-finetuned-modernisa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-modernisa This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3179 - Bleu: 81.9164 - Gen Len: 11.1876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.4588 | 0.35 | 10000 | 0.4023 | 78.1616 | 11.1577 | | 0.3982 | 0.71 | 20000 | 0.3584 | 79.3456 | 11.144 | | 0.3465 | 1.06 | 30000 | 0.3424 | 80.4057 | 11.1625 | | 0.3236 | 1.42 | 40000 | 0.3349 | 80.9978 | 11.1869 | | 0.2983 | 1.77 | 50000 | 0.3243 | 81.5426 | 11.1925 | | 0.278 | 2.13 | 60000 | 0.3210 | 81.794 | 11.2047 | | 0.2584 | 2.48 | 70000 | 0.3205 | 81.8086 | 11.1986 | | 0.2609 | 2.84 | 80000 | 0.3179 | 81.9164 | 11.1876 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
vesteinn/XLMr-ENIS-QA-IsQ-EnA
edbb89323deefc3041b82352590d7fa142c2a27c
2021-09-27T22:09:30.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
vesteinn
null
vesteinn/XLMr-ENIS-QA-IsQ-EnA
1
null
transformers
30,451
---- language: - is - en thumbnail: tags: - icelandic - qa license: datasets: - ic3 - igc metrics: - em - f1 widget: - text: "Hverrar trúar var Halldór Laxness ?" context: "Halldór Kiljan Laxness was born in 1902 in Reykjavik , the capital of Iceland , but spent his youth in the country . From the age of seventeen on , he travelled and lived abroad , chiefly on the European continent . He was influenced by expressionism and other modern currents in Germany and France . In the mid-twenties he was converted to Catholicism ; his spiritual experiences are reflected in several books of an autobiographical nature , chiefly Undir Helgahnúk ( Under the Holy Mountain ) , 1924 . In 1927 , he published his first important novel , Vefarinn mikli frá Kasmír ( The Great Weaver from Kashmir ) . Laxness’s religious period did not last long ; during a visit to America he became attracted to socialism . Alþydubókin ( The Book of the People ) , 1929 , is evidence of a change toward a socialist outlook . In 1930 , Laxness settled in Iceland . Laxness’s main achievement consists of three novel cycles written during the thirties , dealing with the people of Iceland . Þú vínviður hreini , 1931 , and Fuglinn í fjörunni , 1932 , ( both translated as Salka Valka ) , tell the story of a poor fisher girl ; Sjálfstætt fólk ( Independent People ) , 1934 - 35 , treats the fortunes of small farmers , whereas the tetralogy Ljós heimsins ( The Light of the World ) , 1937 - 40 , has as its hero an Icelandic folk poet . Laxness’s later works are frequently historical and influenced by the saga tradition : Íslandsklukkan ( The Bell of Iceland ) , 1943 - 46 , Gerpla ( The Happy Warriors ) , 1952 , and Paradísarheimt ( Paradise Reclaimed ) , 1960 . Laxness is also the author of the topical and sharply polemical Atómstöðin ( The Atom Station ) , 1948 ." --- # XLMr-ENIS-QA-IsQ-EnA ## Model description This is an Icelandic reading comprehension Q&A model. ## Intended uses & limitations This model is part of my MSc thesis about Q&A for Icelandic. #### How to use ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("vesteinn/IceBERT-QA") model = AutoModelForQuestionAnswering.from_pretrained("vesteinn/IceBERT-QA") ``` #### Limitations and bias ## Training data Translated English datasets were used along with the Natural Questions in Icelandic dataset. ## Training procedure ## Eval results ### BibTeX entry and citation info ```bibtex ```
vesteinn/open-qa-icelandic-densephrases
9c4edf656c25cd1df44cce15bd7b0d346c85fd84
2021-09-30T10:35:31.000Z
[ "pytorch", "xlm-roberta", "transformers" ]
null
false
vesteinn
null
vesteinn/open-qa-icelandic-densephrases
1
null
transformers
30,452
Entry not found
vinko/shitposting_AI
e83abecb7c0d7729ddd2a1d12c43f67ad0c697f0
2022-01-18T13:07:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
vinko
null
vinko/shitposting_AI
1
null
transformers
30,453
Entry not found
vionwinnie/t5-reddit
2d017e49c33a9a6e709eb3b3ddf93374395cc6ce
2021-07-07T08:15:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vionwinnie
null
vionwinnie/t5-reddit
1
1
transformers
30,454
This T5 small model finetuned on Reddit data. It has two subtasks: 1. title generation 2. tag classification
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k-MLM_210k_emb_updated
336c0b6088cc26fcab7239d66c80eb34bf7093aa
2022-02-21T20:13:56.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
vocab-transformers
null
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k-MLM_210k_emb_updated
1
null
sentence-transformers
30,455
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # dense_encoder-msmarco-distilbert-word2vec256k-MLM_210k **Note: Token embeddings where updated!** This model is based on [vocab-transformers/msmarco-distilbert-word2vec256k-MLM_210k](https://huggingface.co/vocab-transformers/msmarco-distilbert-word2vec256k-MLM_210k) with a 256k sized vocabulary initialized with word2vec that has been trained with MLM for 210k. It has been trained on MS MARCO using [MarginMSELoss](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_margin-mse.py). See the train_script.py in this repository. Performance: - MS MARCO dev: 34.91 (MRR@10) - TREC-DL 2019: 67.56 (nDCG@10) - TREC-DL 2020: 68.18 (nDCG@10) ## Usage (Sentence-Transformers) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7858 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_210k_emb_updated
03578fe76922f13abf1d8ccf5bda6ee4fe83ecbb
2022-02-21T20:12:32.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_210k_emb_updated
1
null
transformers
30,456
# Model This model is based on [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. This model has been trained with MLM on the MS MARCO corpus collection for 210k steps. See train_mlm.py for the train script. It was run on 2x V100 GPUs. **Note: Token embeddings where updated!**
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_445k_emb_updated
7b8f2c0865874a1db14688b860af694dde703da7
2022-02-21T20:12:37.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_445k_emb_updated
1
null
transformers
30,457
# Model This model is based on [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. This model has been trained with MLM on the MS MARCO corpus collection for 445k steps. See train_mlm.py for the train script. It was run on 2x V100 GPUs. **Note: Token embeddings where updated!**
voidful/bart_base_cnndm
28ec401fba1ea98d9ad1f3eec6222418efbc037f
2021-10-27T08:49:10.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/bart_base_cnndm
1
null
transformers
30,458
Entry not found
voidful/bart_base_squad_cq_a
081a618aa7e71cc74f8b5d2956cfe411e7885e78
2021-07-04T16:27:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/bart_base_squad_cq_a
1
null
transformers
30,459
Entry not found
voidful/phoneme_bart_base
0fae7c4e82f8d936b2bf2c12924262931bc3f49e
2022-02-21T06:32:07.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
voidful
null
voidful/phoneme_bart_base
1
null
transformers
30,460
Entry not found
vppvgit/BiblItBERT-1
6db466ee095bed01f992ab3086ca6183400c99f9
2021-09-27T09:40:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
vppvgit
null
vppvgit/BiblItBERT-1
1
null
transformers
30,461
--- tags: - generated_from_trainer datasets: - null model-index: - name: BiblItBERT-1 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiblItBERT-1 This model is a fine-tuned version of [vppvgit/BiblItBERT](https://huggingface.co/vppvgit/BiblItBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.5764 | 1.0 | 16528 | 1.5214 | | 1.4572 | 2.0 | 33056 | 1.4201 | | 1.3787 | 3.0 | 49584 | 1.3728 | | 1.3451 | 4.0 | 66112 | 1.3245 | | 1.3066 | 5.0 | 82640 | 1.2614 | | 1.2447 | 6.0 | 99168 | 1.2333 | | 1.2172 | 7.0 | 115696 | 1.2149 | | 1.2079 | 8.0 | 132224 | 1.1853 | | 1.2167 | 9.0 | 148752 | 1.1586 | | 1.2056 | 10.0 | 165280 | 1.1503 | | 1.1307 | 11.0 | 181808 | 1.1224 | | 1.1689 | 12.0 | 198336 | 1.1074 | | 1.1007 | 13.0 | 214864 | 1.0924 | | 1.0901 | 14.0 | 231392 | 1.0659 | | 1.0667 | 15.0 | 247920 | 1.0650 | | 1.0434 | 16.0 | 264448 | 1.0362 | | 1.0333 | 17.0 | 280976 | 1.0250 | | 1.0342 | 18.0 | 297504 | 1.0198 | | 1.0059 | 19.0 | 314032 | 0.9950 | | 0.9719 | 20.0 | 330560 | 0.9836 | | 0.9863 | 21.0 | 347088 | 0.9873 | | 0.9781 | 22.0 | 363616 | 0.9724 | | 0.9369 | 23.0 | 380144 | 0.9599 | | 0.9578 | 24.0 | 396672 | 0.9557 | | 0.9253 | 25.0 | 413200 | 0.9400 | | 0.9441 | 26.0 | 429728 | 0.9222 | | 0.9138 | 27.0 | 446256 | 0.9140 | | 0.882 | 28.0 | 462784 | 0.9045 | | 0.864 | 29.0 | 479312 | 0.8880 | | 0.8632 | 30.0 | 495840 | 0.9023 | | 0.8342 | 32.0 | 528896 | 0.8740 | | 0.8037 | 34.0 | 561952 | 0.8647 | | 0.8119 | 37.0 | 611536 | 0.8358 | | 0.8011 | 38.0 | 628064 | 0.8252 | | 0.786 | 39.0 | 644592 | 0.8228 | | 0.7697 | 41.0 | 677648 | 0.8138 | | 0.7485 | 42.0 | 694176 | 0.8104 | | 0.7689 | 43.0 | 710704 | 0.8018 | | 0.7401 | 45.0 | 743760 | 0.7957 | | 0.7031 | 47.0 | 776816 | 0.7726 | | 0.7578 | 48.0 | 793344 | 0.7864 | | 0.7298 | 49.0 | 809872 | 0.7775 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
vppvgit/BiblItBERT
d4b82537930506124f4105dc06100afac515e30c
2021-09-20T17:47:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vppvgit
null
vppvgit/BiblItBERT
1
null
transformers
30,462
Entry not found
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt
592f522eaa3c800b2c1c185c78f107088d873939
2022-01-09T03:25:27.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt
1
null
transformers
30,463
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 50% upon initialization. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.2081 eval_f1 = 87.5921 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-26250 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-50.0sparse-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
03c83741f6b8dc1eaa90d7917df88e5a69ebf53e
2022-01-09T03:14:14.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt
1
null
transformers
30,464
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 60% upon initialization. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.3122 eval_f1 = 87.6162 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-22000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-60.0sparse-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-pruneofa-90pc-bt-qat-lt
7bf8dffa024ab05b80105e2f05cd525e04500bda
2022-01-19T19:13:40.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-pruneofa-90pc-bt-qat-lt
1
null
transformers
30,465
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-pruneofa-90pc-bt```](https://huggingface.co/vuiseng9/bert-base-squadv1-pruneofa-90pc-bt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 0% upon initialization. Custom reverse masking and sparsity freezing are applied. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.6623 eval_f1 = 87.7147 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 5647610d5ee2bf9f1324604e6579bca1c391e260 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 5dd7402e9a316041dea4ff67508c01047323616e pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash wget https://huggingface.co/vuiseng9/bert-base-squadv1-pruneofa-90pc-bt-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-pruneofa-90pc-bt-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \ --pruneofa_qat \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-pruneofa-90pc-bt-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-pruneofa-90pc-bt-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \ --dataset_name squad \ --qat_checkpoint $MODELROOT/checkpoint-22000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-pruneofa-90pc-bt-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-squadv1-qat-bt
1ab83ad07ccb90df7acdb59b96ea0e19e54cc17e
2022-01-19T19:09:40.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-qat-bt
1
null
transformers
30,466
This model is a quantized-aware transfer learning of bert-base-uncased on Squadv1 using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 2. Custom distillation with fine-tuned model [```csarron/bert-base-uncased-squad-v1```](https://huggingface.co/csarron/bert-base-uncased-squad-v1) ``` eval_exact_match = 80.8136 eval_f1 = 88.2594 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash wget https://huggingface.co/vuiseng9/bert-base-squadv1-qat-bt/raw/main/nncf_bert_squad_qat.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-qat-bt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=2 python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher csarron/bert-base-uncased-squad-v1 \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-qat-bt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-qat-bt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-uncased-squad \ --dataset_name squad \ --qat_checkpoint $MODELROOT/checkpoint-10750 \ --nncf_config $MODELROOT/nncf_bert_squad_qat.json \ --to_onnx $OUTDIR/bert-base-squadv1-qat-bt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-uncased-squadv1-52.0-sparse
e833fd491943acad8e9ee5f59c4c589a049df950
2021-11-11T18:14:37.000Z
[ "pytorch", "tf", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-uncased-squadv1-52.0-sparse
1
null
transformers
30,467
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
vuiseng9/bert-base-uncased-squadv1-59.6-sparse
f3741942661b7e94d817a0bc6b5dc07b93569f87
2021-11-11T18:13:58.000Z
[ "pytorch", "tf", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-uncased-squadv1-59.6-sparse
1
null
transformers
30,468
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
vuiseng9/bert-base-uncased-squadv1-65.1-sparse
101dba914e94ac48d3d5cfd4daa33ab633f85391
2021-11-11T18:13:39.000Z
[ "pytorch", "tf", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-uncased-squadv1-65.1-sparse
1
null
transformers
30,469
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
vuiseng9/pegasus-billsum
4dc4997f8b8ce742fd3e51df1390c499a9548d68
2021-12-21T01:41:33.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vuiseng9
null
vuiseng9/pegasus-billsum
1
null
transformers
30,470
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-billsum-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name billsum \ --do_train \ --adafactor \ --learning_rate 2e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 1000 \ --save_strategy steps \ --save_steps 2000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-billsum-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-billsum \ --dataset_name billsum \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@12000 steps, 6.6epoch, 210mins) with lowest eval loss during training. Test/predict with this checkpoint should give results below. ``` ***** predict metrics ***** predict_gen_len = 179.7363 predict_loss = 1.2452 predict_rouge1 = 56.8657 predict_rouge2 = 38.6531 predict_rougeL = 44.8399 predict_rougeLsum = 51.6266 predict_runtime = 1:19:28.20 predict_samples = 3269 predict_samples_per_second = 0.686 predict_steps_per_second = 0.086 ```
vutankiet2901/wav2vec2-xls-r-1b-ja
2c4a1631f81d4c13742d8b8250db5582e6accf7a
2022-03-23T18:34:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vutankiet2901
null
vutankiet2901/wav2vec2-xls-r-1b-ja
1
null
transformers
30,471
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 11.77 - name: Test CER (with LM) type: cer value: 5.22 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 12.23 - name: Test CER (with LM) type: cer value: 5.33 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 29.35 - name: Test CER (with LM) type: cer value: 16.43 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.48 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 16.97 | 17.95 | |with 4-grams LM| 11.77 | 12.23| ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 6.82 | 7.05 | |with 4-grams LM| 5.22 | 5.33 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vutankiet2901/wav2vec2-xls-r-1b-ja --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.484 | 9.49 | 1500 | 1.1849 | 0.7543 | 0.4099 | | 1.3582 | 18.98 | 3000 | 0.4320 | 0.3489 | 0.1591 | | 1.1716 | 28.48 | 4500 | 0.3835 | 0.3175 | 0.1454 | | 1.0951 | 37.97 | 6000 | 0.3732 | 0.3033 | 0.1405 | | 1.04 | 47.47 | 7500 | 0.3485 | 0.2898 | 0.1360 | | 0.9768 | 56.96 | 9000 | 0.3386 | 0.2787 | 0.1309 | | 0.9129 | 66.45 | 10500 | 0.3363 | 0.2711 | 0.1272 | | 0.8614 | 75.94 | 12000 | 0.3386 | 0.2676 | 0.1260 | | 0.8092 | 85.44 | 13500 | 0.3356 | 0.2610 | 0.1240 | | 0.7658 | 94.93 | 15000 | 0.3316 | 0.2564 | 0.1218 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
w11wo/javanese-distilbert-small-imdb
969240eb0f9966c1b304aa8463b150571409a6fa
2022-02-14T16:18:45.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "jv", "dataset:w11wo/imdb-javanese", "arxiv:1910.01108", "transformers", "javanese-distilbert-small-imdb", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/javanese-distilbert-small-imdb
1
null
transformers
30,472
--- language: jv tags: - javanese-distilbert-small-imdb license: mit datasets: - w11wo/imdb-javanese widget: - text: "Film favoritku yaiku Interstellar [MASK] Christopher Nolan." --- ## Javanese DistilBERT Small IMDB Javanese DistilBERT Small IMDB is a masked language model based on the [DistilBERT model](https://arxiv.org/abs/1910.01108). It was trained on Javanese IMDB movie reviews. The model was originally the pretrained [Javanese DistilBERT Small model](https://huggingface.co/w11wo/javanese-distilbert-small) and is later fine-tuned on the Javanese IMDB movie review dataset. It achieved a perplexity of 21.01 on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |----------------------------------|----------|----------------------|---------------------------------| | `javanese-distilbert-small-imdb` | 66M | DistilBERT Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|-------------| | 3.126 | 3.039 | 21.01 | 5:6:4 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-distilbert-small-imdb" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Aku mangan sate ing [MASK] bareng konco-konco") ``` ### Feature Extraction in PyTorch ```python from transformers import DistilBertModel, DistilBertTokenizerFast pretrained_name = "w11wo/javanese-distilbert-small-imdb" model = DistilBertModel.from_pretrained(pretrained_name) tokenizer = DistilBertTokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese DistilBERT Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/javanese-distilbert-small
5393d48a83e961b631c3d695cc84d54cd0903a2e
2022-02-14T16:18:34.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "jv", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "javanese-distilbert-small", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/javanese-distilbert-small
1
null
transformers
30,473
--- language: jv tags: - javanese-distilbert-small license: mit datasets: - wikipedia widget: - text: "Joko [MASK] wis kelas siji SMA." --- ## Javanese DistilBERT Small Javanese DistilBERT Small is a masked language model based on the [DistilBERT model](https://arxiv.org/abs/1910.01108). It was trained on the latest (late December 2020) Javanese Wikipedia articles. The model was originally HuggingFace's pretrained [English DistilBERT model](https://huggingface.co/distilbert-base-uncased) and is later fine-tuned on the Javanese dataset. It achieved a perplexity of 23.54 on the validation dataset (20% of the articles). Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), and [fine-tuning tutorial notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) written by [Pierre Guillou](https://huggingface.co/pierreguillou). Hugging Face's [Transformers](https://huggingface.co/transformers) library was used to train the model -- utilizing the base DistilBERT model and their `Trainer` class. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |-----------------------------|---------|------------------|-------------------------------------| | `javanese-distilbert-small` | 66M | DistilBERT Small | Javanese Wikipedia (319 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|------------| | 3.088 | 3.153 | 23.54 | 1:46:37 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-distilbert-small" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Aku mangan sate ing [MASK] bareng konco-konco") ``` ### Feature Extraction in PyTorch ```python from transformers import DistilBertModel, DistilBertTokenizerFast pretrained_name = "w11wo/javanese-distilbert-small" model = DistilBertModel.from_pretrained(pretrained_name) tokenizer = DistilBertTokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do remember that although the dataset originated from Wikipedia, the model may not always generate factual texts. Additionally, the biases which came from the Wikipedia articles may be carried over into the results of this model. ## Author Javanese DistilBERT Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/javanese-roberta-small
785f5a75ba398e554c999376da26e5b1ae978b3b
2022-02-14T16:17:41.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "jv", "dataset:wikipedia", "arxiv:1907.11692", "transformers", "javanese-roberta-small", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/javanese-roberta-small
1
null
transformers
30,474
--- language: jv tags: - javanese-roberta-small license: mit datasets: - wikipedia widget: - text: "Ing mangsa rendheng awakedhewe kudu pinter njaga <mask>." --- ## Javanese RoBERTa Small Javanese RoBERTa Small is a masked language model based on the [RoBERTa model](https://arxiv.org/abs/1907.11692). It was trained on the latest (late December 2020) Javanese Wikipedia articles. The model was originally HuggingFace's pretrained [English RoBERTa model](https://huggingface.co/roberta-base) and is later fine-tuned on the Javanese dataset. It achieved a perplexity of 33.30 on the validation dataset (20% of the articles). Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), and [fine-tuning tutorial notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) written by [Pierre Guillou](https://huggingface.co/pierreguillou). Hugging Face's [Transformers](https://huggingface.co/transformers) library was used to train the model -- utilizing the base RoBERTa model and their `Trainer` class. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |--------------------------|---------|----------|-------------------------------------| | `javanese-roberta-small` | 124M | RoBERTa | Javanese Wikipedia (319 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|------------| | 3.481 | 3.506 | 33.30 | 1:11:43 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-roberta-small" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Meja lan kursine lagi <mask>.") ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "w11wo/javanese-roberta-small" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do remember that although the dataset originated from Wikipedia, the model may not always generate factual texts. Additionally, the biases which came from the Wikipedia articles may be carried over into the results of this model. ## Author Javanese RoBERTa Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/lao-roberta-base
4eb8f4edd99d33a178c00f5b04f615205e18031d
2021-12-05T15:55:09.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "lo", "dataset:oscar-corpus/OSCAR-2109", "arxiv:1907.11692", "transformers", "lao-roberta-base", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/lao-roberta-base
1
1
transformers
30,475
--- language: lo tags: - lao-roberta-base license: mit datasets: - oscar-corpus/OSCAR-2109 --- ## Lao RoBERTa Base Lao RoBERTa Base is a masked language model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. It was trained on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset, specifically the `deduplicated_lo` subset. The model was trained from scratch and achieved an evaluation loss of 1.4556 and an evaluation perplexity of 4.287. This model was trained using HuggingFace's PyTorch framework and the training script found [here](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py). All training was done on a TPUv3-8, provided by the [TPU Research Cloud](https://sites.research.google/trc/about/) program. You can view the detailed training results in the [Training metrics](https://huggingface.co/w11wo/lao-roberta-base/tensorboard) tab, logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------ | ------- | ------- | ------------------------------------ | | `lao-roberta-base` | 124M | RoBERTa | OSCAR-2109 `deduplicated_lo` Dataset | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 1024 - total_eval_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | | :-----------: | :---: | :--: | :-------------: | | No log | 1.0 | 216 | 5.8586 | | No log | 2.0 | 432 | 5.5095 | | 6.688 | 3.0 | 648 | 5.3976 | | 6.688 | 4.0 | 864 | 5.3562 | | 5.3629 | 5.0 | 1080 | 5.2912 | | 5.3629 | 6.0 | 1296 | 5.2385 | | 5.22 | 7.0 | 1512 | 5.1955 | | 5.22 | 8.0 | 1728 | 5.1785 | | 5.22 | 9.0 | 1944 | 5.1327 | | 5.1248 | 10.0 | 2160 | 5.1243 | | 5.1248 | 11.0 | 2376 | 5.0889 | | 5.0591 | 12.0 | 2592 | 5.0732 | | 5.0591 | 13.0 | 2808 | 5.0417 | | 5.0094 | 14.0 | 3024 | 5.0388 | | 5.0094 | 15.0 | 3240 | 4.9299 | | 5.0094 | 16.0 | 3456 | 4.2991 | | 4.7527 | 17.0 | 3672 | 3.6541 | | 4.7527 | 18.0 | 3888 | 2.7826 | | 3.4431 | 19.0 | 4104 | 2.2796 | | 3.4431 | 20.0 | 4320 | 2.0213 | | 2.2803 | 21.0 | 4536 | 1.8809 | | 2.2803 | 22.0 | 4752 | 1.7615 | | 2.2803 | 23.0 | 4968 | 1.6925 | | 1.8601 | 24.0 | 5184 | 1.6205 | | 1.8601 | 25.0 | 5400 | 1.5751 | | 1.6697 | 26.0 | 5616 | 1.5391 | | 1.6697 | 27.0 | 5832 | 1.5200 | | 1.5655 | 28.0 | 6048 | 1.4866 | | 1.5655 | 29.0 | 6264 | 1.4656 | | 1.5655 | 30.0 | 6480 | 1.4627 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/lao-roberta-base" prompt = "REPLACE WITH MASKED PROMPT" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask(prompt) ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "w11wo/lao-roberta-base" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "ສະ​ບາຍ​ດີ​ຊາວ​ໂລກ." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Author Lao RoBERTa Base was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google's TPU-RC. ## Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
wangj2/domaingen
0866327f5c582d4b73604ecf450b75789714f38b
2021-05-23T13:46:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
wangj2
null
wangj2/domaingen
1
null
transformers
30,476
Entry not found
wangst/dummy-model
200585467ec0f0df8c25a56cf2d2746e68475517
2021-11-19T18:24:06.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wangst
null
wangst/dummy-model
1
null
transformers
30,477
Entry not found
wbmitcast/mymodel005
e4c8b2d684912f6c4c8175e08084c44bc4388b6b
2021-10-29T02:23:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wbmitcast
null
wbmitcast/mymodel005
1
null
transformers
30,478
Entry not found
wbmitcast/mymodel007
2ac7bca70e71a205a903ba2524198f3c504986de
2021-11-02T03:52:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wbmitcast
null
wbmitcast/mymodel007
1
null
transformers
30,479
Entry not found
weixyan/codegpt_py150
cf0e250d9efc3b2dfd98f5fdead8b53c4f5fc06c
2021-08-30T09:26:16.000Z
[ "pytorch" ]
null
false
weixyan
null
weixyan/codegpt_py150
1
null
null
30,480
Entry not found
wesam266/px
b46ec223cef7737ff22b8a50ea4b02326c24c5b4
2022-01-23T09:47:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
wesam266
null
wesam266/px
1
null
transformers
30,481
Entry not found
widyanto/IndoT5-small-qg
09f73fd84e15c75fe0a02bc42369a6c627289c9d
2021-08-24T00:53:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
widyanto
null
widyanto/IndoT5-small-qg
1
null
transformers
30,482
Entry not found
willemjan/eng
8a4584a6b68b2dfe4687341e2e19d22da1c97dc1
2022-02-07T09:23:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-nc-sa-3.0", "autotrain_compatible" ]
fill-mask
false
willemjan
null
willemjan/eng
1
null
transformers
30,483
--- license: cc-by-nc-sa-3.0 ---
willemjan/nl2
706c0f3cc856fea25fd865d248e162c4235a32a8
2022-02-07T08:52:58.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:cc-by-nc-3.0", "autotrain_compatible" ]
fill-mask
false
willemjan
null
willemjan/nl2
1
null
transformers
30,484
--- license: cc-by-nc-3.0 ---
wilsontam/bert-base-uncased-dstc9
0c61b9deb8374ce9ec5aaa7acd346a44aa57fbe9
2021-12-26T14:00:21.000Z
[ "pytorch", "bert", "fill-mask", "en", "transformers", "dstc10", "autotrain_compatible" ]
fill-mask
false
wilsontam
null
wilsontam/bert-base-uncased-dstc9
1
null
transformers
30,485
--- language: "en" tags: - dstc10 widget: - text: "Can you accommodate large [MASK] ?" --- # Goal This Bert model is trained using DSTC9 training + validation data for dialogue modeling purpose. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Credit: Shuhan Yuan, Wilson Tam
wjc123/dobule_klue
0e54ae0af8b929ccfcb2badf3b698d5bfca141b8
2021-12-06T10:54:19.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
wjc123
null
wjc123/dobule_klue
1
null
transformers
30,486
Entry not found
wjc123/double_klue2
6c57b314b71e7fc270e026106399dfb777e32881
2021-12-07T13:59:14.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
wjc123
null
wjc123/double_klue2
1
null
transformers
30,487
Entry not found
wtrClover/DialoGPT-small-Flutterbot
334497bc5ce9c3f042729cc9c84e7dcd26c6be7f
2022-01-27T23:38:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
wtrClover
null
wtrClover/DialoGPT-small-Flutterbot
1
null
transformers
30,488
--- tags: - conversational --- # MLP DialoGPT Model based on Fluttershy
wudi7758521521/kaikai_model2
3f2a899e125eec4ee285ef1b671bb77a2e24345e
2021-07-18T02:54:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wudi7758521521
null
wudi7758521521/kaikai_model2
1
null
transformers
30,489
Entry not found
wuyanzu/2022_02_10
313b59e3dc4fa1c3e64ac4945eeff8ceed18f327
2022-02-10T13:32:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wuyanzu
null
wuyanzu/2022_02_10
1
null
transformers
30,490
Entry not found
x10ng/gpt2-wikitext2
61b0fcc7a781902770daff05ca4e47aba961a2c1
2022-01-10T16:00:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
x10ng
null
x10ng/gpt2-wikitext2
1
null
transformers
30,491
Entry not found
xdwang/tmp
86f254b76334b658219d6219c11594ecc07540a8
2022-02-07T04:27:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
xdwang
null
xdwang/tmp
1
null
transformers
30,492
Entry not found
McGill-NLP/electra-medal
870a3ddd48d0f2e48fd7f45e066993736981e7a7
2020-11-16T18:44:46.000Z
[ "pytorch", "tf", "electra", "feature-extraction", "transformers" ]
feature-extraction
false
McGill-NLP
null
McGill-NLP/electra-medal
1
null
transformers
30,493
Entry not found
xhluca/tapas-nq-hn-retriever-large-0
7e5da2904f8e71fc476fbb6deeac4386eb998ee8
2022-02-10T03:39:57.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
xhluca
null
xhluca/tapas-nq-hn-retriever-large-0
1
null
transformers
30,494
Entry not found
xhluca/tapas-nq-hn-retriever-large-1
32d9c42cec8984c3158561c8dabbd0132827bfe7
2022-02-10T03:40:23.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
xhluca
null
xhluca/tapas-nq-hn-retriever-large-1
1
null
transformers
30,495
Entry not found
xhluca/tapas-nq-hn-retriever-medium-0
bbdf66f383fc082b145b62955e4a467eb662894b
2022-02-10T02:48:54.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
xhluca
null
xhluca/tapas-nq-hn-retriever-medium-0
1
null
transformers
30,496
Entry not found
xhyi/PT_GPTNEO125_ATG
990b3a764568de56cb4153362cdd17f60463b7b2
2021-09-02T18:03:50.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
xhyi
null
xhyi/PT_GPTNEO125_ATG
1
null
transformers
30,497
Entry not found
xhyi/distilLED3_08_31_2021_v5
f02048cf4ccf3de7536dddd07bdbfeb81614823d
2021-09-02T01:44:58.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
xhyi
null
xhyi/distilLED3_08_31_2021_v5
1
null
transformers
30,498
\nTraining Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 2.880900 2.715085 0.121400 0.142300 0.117100 +200 steps total = 440 steps tokenization: max article: 8192 max abstract: 512
xiejiafang/bert_finetuning_test
c8ec728d13f32673807abac48f1717b9f544fb36
2021-07-18T02:37:10.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
xiejiafang
null
xiejiafang/bert_finetuning_test
1
null
transformers
30,499
Entry not found