modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
beatajackowska/DialoGPT-RickBot
dcd05a25a1094e6d2c1ee8527c551e0897bdf3ef
2021-08-31T21:28:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
beatajackowska
null
beatajackowska/DialoGPT-RickBot
1
null
transformers
28,700
--- tags: - conversational --- RICK!!!
benajtil/DialoGPT-small-Daddyben
8f54a93a1b7f827805df49c62f5bafacdf3b0854
2022-01-30T13:15:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
benajtil
null
benajtil/DialoGPT-small-Daddyben
1
null
transformers
28,701
--- tags: - conversational --- # DaddyBen DialoGPT Model
benajtil/DialoGPT-small-RickAndMortyScripts
e8a5c449f665ff6d9bc2376e3b3cd27e72afcb97
2022-01-28T12:46:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
benajtil
null
benajtil/DialoGPT-small-RickAndMortyScripts
1
null
transformers
28,702
--- tags: - conversational --- # Rick And Morty Scripts DialoGPT Model
benjamin/gpt2-wechsel-swahili
2f0b3dd5febbad85ec27adbf82f4efadf3d10182
2022-07-13T23:43:39.000Z
[ "pytorch", "gpt2", "text-generation", "sw", "transformers", "license:mit" ]
text-generation
false
benjamin
null
benjamin/gpt2-wechsel-swahili
1
null
transformers
28,703
--- language: sw license: mit --- # gpt2-wechsel-swahili Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. See the code here: https://github.com/CPJKU/wechsel And the paper here: https://aclanthology.org/2022.naacl-main.293/ ## Performance ### RoBERTa | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-french` | **82.43** | **90.88** | **86.65** | | `camembert-base` | 80.88 | 90.26 | 85.57 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-german` | **81.79** | **89.72** | **85.76** | | `deepset/gbert-base` | 78.64 | 89.46 | 84.05 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-chinese` | **78.32** | 80.55 | **79.44** | | `bert-base-chinese` | 76.55 | **82.05** | 79.30 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-swahili` | **75.05** | **87.39** | **81.22** | | `xlm-roberta-base` | 69.18 | 87.37 | 78.28 | ### GPT2 | Model | PPL | |---|---| | `gpt2-wechsel-french` | **19.71** | | `gpt2` (retrained from scratch) | 20.47 | | Model | PPL | |---|---| | `gpt2-wechsel-german` | **26.8** | | `gpt2` (retrained from scratch) | 27.63 | | Model | PPL | |---|---| | `gpt2-wechsel-chinese` | **51.97** | | `gpt2` (retrained from scratch) | 52.98 | | Model | PPL | |---|---| | `gpt2-wechsel-swahili` | **10.14** | | `gpt2` (retrained from scratch) | 10.58 | See our paper for details. ## Citation Please cite WECHSEL as ``` @inproceedings{minixhofer-etal-2022-wechsel, title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models", author = "Minixhofer, Benjamin and Paischer, Fabian and Rekabsaz, Navid", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.293", pages = "3992--4006", abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.", } ```
benny6/roberta-tydiqa
b27940efd3f40fe8d410ee25d6407ff3a02b2303
2021-05-24T12:19:00.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
benny6
null
benny6/roberta-tydiqa
1
null
transformers
28,704
Entry not found
beomi/exKcBERT-paws-extonly
f87a388fac41b05f66b6ac31428931096e5550c9
2021-06-14T06:35:28.000Z
[ "pytorch", "exbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
beomi
null
beomi/exKcBERT-paws-extonly
1
null
transformers
28,705
Entry not found
beomi/exKcBERT-paws
4836852d76d2712023d013ea81d2a2792bb79399
2021-06-10T16:21:09.000Z
[ "pytorch", "exbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
beomi
null
beomi/exKcBERT-paws
1
null
transformers
28,706
Entry not found
bestminerevah/DialoGPT-small-thetenthdoctor
d9650787c8622972debaf7492f2f3fa1b614cf94
2021-08-29T12:42:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
bestminerevah
null
bestminerevah/DialoGPT-small-thetenthdoctor
1
null
transformers
28,707
--- tags: - conversational --- # The Tenth Doctor DialoGPT Model
beyhan/checkpoint-3750
58025f6ee67a21ce919e09f337ba99b075182249
2021-05-19T12:38:52.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
beyhan
null
beyhan/checkpoint-3750
1
null
transformers
28,708
Entry not found
bhan/distilbert-base-uncased-finetuned-squad
f8f4da6bbf9132cb1a40ea83e2902d753de39c8b
2022-01-04T19:20:26.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
bhan
null
bhan/distilbert-base-uncased-finetuned-squad
1
null
transformers
28,709
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 5.8757 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0
bhavya689/DialoGPT-large-chandler
e100a0df8c95b69037f92f681828e1748029351a
2021-11-13T16:30:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
bhavya689
null
bhavya689/DialoGPT-large-chandler
1
null
transformers
28,710
--- tags: - conversational --- #Chandler DialoGPT model
bigjoedata/obama-gpt2-sm
dfd46f1861e0d28d9cd79cce69ac013d6685cbb9
2021-05-21T14:14:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
bigjoedata
null
bigjoedata/obama-gpt2-sm
1
null
transformers
28,711
Entry not found
bigjoedata/trump-gpt2-sm
a5c5133acadc925471a314c8b8a7c15773892c3b
2021-05-21T14:21:14.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
bigjoedata
null
bigjoedata/trump-gpt2-sm
1
null
transformers
28,712
Entry not found
birgermoell/swedish-common-voice-vox-voxpopuli
419d47450339d3ca6b838479f8f98eb4a7c1f040
2021-07-05T23:02:25.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "et", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/swedish-common-voice-vox-voxpopuli
1
null
transformers
28,713
--- language: et datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: common-voice-vox-populi-swedish by Birger Moell results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Vox Populi Swedish type: common_voice args: et metrics: - name: Test WER type: wer value: 36.951816 --- # common-voice-vox-populi-swedish Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/birgermoell/common-voice-vox-populi-swedish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/common-voice-vox-populi-swedish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/common-voice-vox-populi-swedish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/common-voice-vox-populi-swedish") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\\\\\ ``` **Test Result**: WER: 22.684600
birgermoell/wav2vec2-large-xlsr-finnish
08790a5917eae8fc5332b396fbf433ba07bbef63
2021-07-05T23:13:42.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/wav2vec2-large-xlsr-finnish
1
0
transformers
28,714
--- language: fi datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Birger Moell results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 55.097365 --- # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlsr-finnish") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: The WER is 55.097365 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/16AyzqMWU_aWNe3IA-NxrhskB1WLPHG-Q?usp=sharing
birgermoell/wav2vec2-luganda
05ddec5963ef53b8bb48186c0491d4be836d2f0f
2021-07-05T23:22:11.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lg", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/wav2vec2-luganda
1
1
transformers
28,715
--- language: lg datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Luganda by Birger Moell results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Luganda type: common_voice args: lg metrics: - name: Test WER type: wer value: 48.31 --- # Wav2Vec2-Large-XLSR-53-Luganda Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Luganda test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-luganda") model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-luganda") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\\\\\\\\\twith torch.no_grad(): \\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\\\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: WER: 48.314356 ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found here https://colab.research.google.com/drive/1ZeII36LZ5IpBrTV7kBaTVfhDqygznlmC?usp=sharing
bmdonnell/DialoGPT-medium-harrypotter
5887f6153ec6e9185f4b80ee2eb10001b440cbea
2021-08-28T04:56:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
bmdonnell
null
bmdonnell/DialoGPT-medium-harrypotter
1
null
transformers
28,716
--- tags: - conversational --- # Harry Potter Bot
boydster/DialoGPT-small-gollum
90e3ff721b95cba131806f93095234f17090066a
2021-10-02T19:48:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
boydster
null
boydster/DialoGPT-small-gollum
1
null
transformers
28,717
--- tags: - conversational --- # Gollum DialoGPT Model
brimeggi/testbot2
5f6267f43f1867590fc29035a7da9b5e763226e5
2021-08-13T13:16:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
brimeggi
null
brimeggi/testbot2
1
null
transformers
28,718
--- tags: - conversational --- # RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
britama/DialoGPT-small-psycho
25fbcf2c85e621f603d4202cb1f7627afabd763b
2021-08-30T01:53:02.000Z
[ "pytorch" ]
null
false
britama
null
britama/DialoGPT-small-psycho
1
null
null
28,719
Entry not found
briverse/vi-electra-small-cased
7e81769eaba4b162899b38f1a17564d113f68a75
2021-02-04T15:19:22.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
briverse
null
briverse/vi-electra-small-cased
1
null
transformers
28,720
Entry not found
cahya/output
593378dda97b1eca9b3593cc9875ad65af8f06d0
2022-02-01T15:40:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/output
1
null
transformers
28,721
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial-cv](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.1822 - Wer: 0.1423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
cahya/wav2vec2-base-30h-290e
7dcba5929f24534469596f2459e60c5a3306a6ec
2021-07-05T23:37:40.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
cahya
null
cahya/wav2vec2-base-30h-290e
1
null
transformers
28,722
Entry not found
cahya/wav2vec2-base-test
1b0c10cfdcb98fedda99869878c5d1e2536fae9d
2021-07-05T23:38:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-base-test
1
null
transformers
28,723
Entry not found
cahya/wav2vec2-large-xlsr-breton
1ea767a965ea1bc13ce655535b8115e3c5bf28bd
2021-07-05T23:47:53.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "br", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-large-xlsr-breton
1
null
transformers
28,724
--- language: br datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Breton by Cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 41.71 --- # Wav2Vec2-Large-XLSR-Breton Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Breton Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "br", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton") chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = batch["sentence"].replace("ʼ", "'") batch["sentence"] = batch["sentence"].replace("’", "'") batch["sentence"] = batch["sentence"].replace('‘', "'") speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` The above code leads to the following prediction for the first two samples: ``` Prediction: ["ne' ler ket don a-benn us netra pa vez zer nic'hed evel-si", 'an eil hag egile'] Reference: ['"n\'haller ket dont a-benn eus netra pa vezer nec\'het evel-se." ', 'an eil hag egile. '] ``` ## Evaluation The model can be evaluated as follows on the Breton test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "br", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton") model.to("cuda") chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = batch["sentence"].replace("ʼ", "'") batch["sentence"] = batch["sentence"].replace("’", "'") batch["sentence"] = batch["sentence"].replace('‘', "'") speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 41.71 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition) (will be available soon)
calebcsjm/distilgpt2-finetuned-wikitexts
4189340d492ffe35b96b9cc592dff6d485e38579
2022-02-18T16:01:53.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
calebcsjm
null
calebcsjm/distilgpt2-finetuned-wikitexts
1
null
transformers
28,725
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitexts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitexts This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
cambridgeltl/mirrorwic-deberta-base
710a900eb2b12a3dd8c7994d989065494cbb01ac
2021-10-25T19:23:20.000Z
[ "pytorch", "deberta", "feature-extraction", "transformers" ]
feature-extraction
false
cambridgeltl
null
cambridgeltl/mirrorwic-deberta-base
1
null
transformers
28,726
Entry not found
camille/bert-base-pruned-voc-esw0.1-40000-en-de-cased
b83ef53be88cdf256611b5c2683e6830831292cf
2021-05-19T13:48:06.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
camille
null
camille/bert-base-pruned-voc-esw0.1-40000-en-de-cased
1
null
transformers
28,727
Entry not found
camilodefelipe/t5_squad_v1_es
78ce610c65e527887e61284db7d3beae6d231cf2
2021-11-21T15:57:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
camilodefelipe
null
camilodefelipe/t5_squad_v1_es
1
null
transformers
28,728
Entry not found
cammy/bart-large-cnn-finetuned-weaksup-1000-earlystop
cdcc9a509738465f993e8a8383cf4e4c9ad616c8
2022-02-22T08:34:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-1000-earlystop
1
null
transformers
28,729
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-1000-earlystop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-earlystop This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9095 - Rouge1: 27.9262 - Rouge2: 11.895 - Rougel: 21.4029 - Rougelsum: 24.7805 - Gen Len: 67.68 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.502 | 1.0 | 1000 | 1.7405 | 26.5705 | 11.4807 | 20.1226 | 23.6827 | 66.73 | | 0.7337 | 2.0 | 2000 | 1.9095 | 27.9262 | 11.895 | 21.4029 | 24.7805 | 67.68 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-finetuned-weaksup-10000-pad-early
db439fe2795f1d0450b48595bc48b58b465b1dde
2022-02-24T04:48:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-10000-pad-early
1
null
transformers
28,730
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn-finetuned-weaksup-10000-pad-early results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-10000-pad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3541 - eval_rouge1: 27.8229 - eval_rouge2: 12.9484 - eval_rougeL: 21.4909 - eval_rougeLsum: 24.7737 - eval_gen_len: 67.365 - eval_runtime: 1162.9446 - eval_samples_per_second: 0.86 - eval_steps_per_second: 0.86 - epoch: 2.0 - step: 20000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/distilbart-cnn-12-6-finetuned-weaksup-1000
cf2fe58469739f4f2fd095ba1fb0bf25c1f67d5b
2022-02-22T08:49:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/distilbart-cnn-12-6-finetuned-weaksup-1000
1
null
transformers
28,731
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-weaksup-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-weaksup-1000 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6818 - Rouge1: 25.9199 - Rouge2: 11.2697 - Rougel: 20.3598 - Rougelsum: 22.8242 - Gen Len: 66.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.644 | 1.0 | 1000 | 1.6818 | 25.9199 | 11.2697 | 20.3598 | 22.8242 | 66.44 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
candra/gpt2-newgen-test
bf1fe2b04d0bce091fcfb941d3787d74add4b0e5
2021-12-17T07:53:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
candra
null
candra/gpt2-newgen-test
1
null
transformers
28,732
news generator dummy
caps1994/DialoGPT-small-chrisbot-caps1994
25bf87bcaf2d6e1348f6d7a984b3599d7a5770f5
2021-09-08T23:37:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
caps1994
null
caps1994/DialoGPT-small-chrisbot-caps1994
1
null
transformers
28,733
--- tags: - conversational --- #Chris DialoGPT Model
cariai/medslabs
19d5b787272001202406b92d5519d59d13163c83
2021-05-20T15:16:39.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cariai
null
cariai/medslabs
1
null
transformers
28,734
Med Labs Cariai
carlosejimenez/wiki103_bert_small_final_e27
c7be2adc49f3cc689781957fb4aeacd877f1e434
2021-12-14T16:56:06.000Z
[ "pytorch", "bert", "transformers" ]
null
false
carlosejimenez
null
carlosejimenez/wiki103_bert_small_final_e27
1
null
transformers
28,735
Entry not found
carlosejimenez/wiki103_bert_small_k1000_e27
8d01113973a805c531ce73a0d2ef501b986a0d26
2021-12-14T16:58:29.000Z
[ "pytorch", "bert", "transformers" ]
null
false
carlosejimenez
null
carlosejimenez/wiki103_bert_small_k1000_e27
1
null
transformers
28,736
Entry not found
carlosejimenez/wiki103_bert_small_k10_e27
6cc29c9f4b50fc278938f6b4e644dc6999b13f8c
2021-12-14T17:00:13.000Z
[ "pytorch", "bert", "transformers" ]
null
false
carlosejimenez
null
carlosejimenez/wiki103_bert_small_k10_e27
1
null
transformers
28,737
Entry not found
carlosejimenez/wiki103_bert_small_visual_only_e27
e9cc5b0726559652a166edd434f11acc469bb184
2021-12-14T17:09:02.000Z
[ "pytorch", "bert", "transformers" ]
null
false
carlosejimenez
null
carlosejimenez/wiki103_bert_small_visual_only_e27
1
null
transformers
28,738
Entry not found
chaitanya97/custom_german
0e3557b3978c5075930092096a491bc08c539e23
2021-10-25T16:27:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chaitanya97
null
chaitanya97/custom_german
1
null
transformers
28,739
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: custom_german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # custom_german This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6832 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.7718 | 5.0 | 5 | 8.5148 | 1.0 | | 3.7125 | 10.0 | 10 | 5.4304 | 1.0 | | 2.7679 | 15.0 | 15 | 5.0388 | 1.0 | | 2.0516 | 20.0 | 20 | 4.4628 | 1.0 | | 1.6702 | 25.0 | 25 | 4.5341 | 1.0 | | 1.515 | 30.0 | 30 | 4.6832 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
chaitanya97/german_pretrained
fe43d7289d4c2263fa14bb113f90425754c18cb9
2021-10-26T13:35:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chaitanya97
null
chaitanya97/german_pretrained
1
null
transformers
28,740
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: german_pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german_pretrained This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9812 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 12.5229 | 5.0 | 5 | 12.9520 | 1.0 | | 4.3782 | 10.0 | 10 | 5.5689 | 1.0 | | 2.56 | 15.0 | 15 | 4.8410 | 1.0 | | 2.2895 | 20.0 | 20 | 4.0380 | 1.0 | | 1.872 | 25.0 | 25 | 3.9558 | 1.0 | | 1.6992 | 30.0 | 30 | 3.9812 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
chaitanya97/wav2vec2-large-xls-r-300m-turkish-colab
cf08f75e505d1c05061639d49c09697bd8ce16a0
2022-02-16T10:38:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chaitanya97
null
chaitanya97/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
28,741
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 33.1265 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 21.4247 | 4.0 | 4 | 33.1265 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews-batch8-LR1
be7a317c73283bbbc8b1d724fd74d4675af6455a
2021-12-04T11:37:31.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews-batch8-LR1
1
null
transformers
28,742
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-finetuned-kaggglenews-batch8-LR1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-batch8-LR1 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.6826 | 27.5191 | 15.0672 | 23.3065 | 24.7163 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews-batch8-LR2E6
08a19dcd56e1c13f398689db43226717765b8304
2021-12-04T12:07:12.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews-batch8-LR2E6
1
null
transformers
28,743
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-finetuned-kaggglenews-batch8-LR2E6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-batch8-LR2E6 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.7971 | 26.6141 | 13.9957 | 22.3012 | 23.7509 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews-batch8-LR4
68798f12cdbb12a37a474bb42769e08120c7bfb2
2021-12-04T11:53:34.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews-batch8-LR4
1
null
transformers
28,744
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-finetuned-kaggglenews-batch8-LR4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-batch8-LR4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.6037 | 28.1247 | 15.9399 | 23.8676 | 25.3739 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews-batch8-epochs10
56c938fc69a06c150ec26516c5412a758f967bf9
2021-12-02T12:42:51.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews-batch8-epochs10
1
null
transformers
28,745
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-finetuned-kaggglenews-batch8-epochs10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-batch8-epochs10 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5763 - Rouge1: 28.693 - Rouge2: 16.666 - Rougel: 24.2361 - Rougelsum: 26.0289 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.6043 | 27.8611 | 15.8713 | 23.8365 | 25.378 | 20.0 | | 1.9054 | 2.0 | 990 | 1.5613 | 28.2715 | 16.3724 | 24.3212 | 25.8499 | 20.0 | | 1.651 | 3.0 | 1485 | 1.5394 | 28.6282 | 16.2976 | 24.2336 | 25.9434 | 20.0 | | 1.4955 | 4.0 | 1980 | 1.5438 | 28.9266 | 16.7257 | 24.61 | 26.443 | 20.0 | | 1.4034 | 5.0 | 2475 | 1.5449 | 28.2296 | 16.1292 | 23.9698 | 25.651 | 20.0 | | 1.3077 | 6.0 | 2970 | 1.5642 | 28.4486 | 16.3833 | 24.1629 | 26.0013 | 20.0 | | 1.2505 | 7.0 | 3465 | 1.5566 | 28.5469 | 16.5374 | 24.2966 | 25.962 | 20.0 | | 1.2027 | 8.0 | 3960 | 1.5730 | 28.7278 | 16.6442 | 24.2531 | 26.1171 | 20.0 | | 1.1571 | 9.0 | 4455 | 1.5690 | 28.7736 | 16.7491 | 24.3066 | 26.1439 | 20.0 | | 1.1237 | 10.0 | 4950 | 1.5763 | 28.693 | 16.666 | 24.2361 | 26.0289 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews-batch8-epochs3
d371633a46dfbf0551e6b82823e2b75132b1e075
2021-12-02T15:10:13.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews-batch8-epochs3
1
null
transformers
28,746
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-finetuned-kaggglenews-batch8-epochs3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-batch8-epochs3 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5635 - Rouge1: 28.2335 - Rouge2: 16.0201 - Rougel: 24.0315 - Rougelsum: 25.647 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.5635 | 28.2335 | 16.0201 | 24.0315 | 25.647 | 20.0 | | 1.5345 | 2.0 | 990 | 1.5635 | 28.2335 | 16.0201 | 24.0315 | 25.647 | 20.0 | | 1.531 | 3.0 | 1485 | 1.5635 | 28.2335 | 16.0201 | 24.0315 | 25.647 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews-fact-corrector-II
6aaaa650ef1a0ad7a65dd967e20939dbe2d6fb23
2021-12-05T20:22:09.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews-fact-corrector-II
1
null
transformers
28,747
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-finetuned-kaggglenews-fact-corrector-II results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-fact-corrector-II This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 305 | 1.5749 | 27.9313 | 15.1004 | 23.3282 | 25.2336 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
chandank/bart-base-finetuned-kaggglenews
f21b3e66b163732739037e4823532ff412ae0e42
2021-10-26T16:04:05.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-kaggglenews
1
null
transformers
28,748
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-finetuned-kaggglenews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6240 - Rouge1: 28.3618 - Rouge2: 15.9828 - Rougel: 24.078 - Rougelsum: 25.565 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 1.9433 | 1.0 | 989 | 1.6240 | 28.3618 | 15.9828 | 24.078 | 25.565 | 20.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
chandank/bart-base-finetuned-xsum
b0cecf8e08b63a1f7f139f5828c2cf105bdcd5f2
2021-08-23T20:21:52.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
false
chandank
null
chandank/bart-base-finetuned-xsum
1
null
transformers
28,749
--- tags: - generated_from_trainer datasets: - null metrics: - rouge model_index: - name: bart-base-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Rouge1 type: rouge value: 27.887 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-xsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5925 - Rouge1: 27.887 - Rouge2: 16.1414 - Rougel: 24.0525 - Rougelsum: 25.4029 - Gen Len: 19.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 1.9826 | 1.0 | 879 | 1.5925 | 27.887 | 16.1414 | 24.0525 | 25.4029 | 19.9841 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
charsiu/en_w2v2_fc_10ms_32k
613d79f3cc7a7b96e8f82a1bda69b626a62371aa
2021-10-03T14:24:55.000Z
[ "pytorch", "wav2vec2", "transformers" ]
null
false
charsiu
null
charsiu/en_w2v2_fc_10ms_32k
1
null
transformers
28,750
Entry not found
charsiu/en_w2v2_fc_20ms
41ae65b77e09407f8678700223b04d696c42e46f
2021-10-03T14:29:02.000Z
[ "pytorch", "wav2vec2", "transformers" ]
null
false
charsiu
null
charsiu/en_w2v2_fc_20ms
1
2
transformers
28,751
Entry not found
charsiu/en_w2v2_fs_20ms
dd618a5ce51ab44ad564c25b051b784f60e01d0a
2021-10-04T15:25:15.000Z
[ "pytorch", "wav2vec2", "transformers" ]
null
false
charsiu
null
charsiu/en_w2v2_fs_20ms
1
null
transformers
28,752
Entry not found
chatdemoiselle/MedMTEVAL_baseline
aea90e6dbf6e6eadd7221fe9cd24ffb7767808e0
2022-02-13T10:32:25.000Z
[ "pytorch" ]
null
false
chatdemoiselle
null
chatdemoiselle/MedMTEVAL_baseline
1
null
null
28,753
--- language: - ru - en license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: contest_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # contest_train This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4420 - Bleu: 67.6003 - Gen Len: 35.605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
chopey/testmntdv
2d6831b1affa00dbe91e51b8f60be2740a042c19
2021-12-02T02:48:18.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
chopey
null
chopey/testmntdv
1
null
transformers
28,754
Test English-Dhivehi/Dhivehi-English NMT Would need a lot more data to get accurate translations.
chujiezheng/DialoGPT-small-ESC
58e5714ade24602c0624a031ab53a43b6e12eb67
2021-08-13T01:16:34.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:2106.01144", "transformers" ]
text-generation
false
chujiezheng
null
chujiezheng/DialoGPT-small-ESC
1
null
transformers
28,755
[DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) fine-tuned on [Emotional Support Conversation](https://arxiv.org/pdf/2106.01144.pdf) dataset
cjrowe/afriberta_base-finetuned-tydiqa
288e8d1c0b352d786c0255cdedc49d9eceddbaea
2021-12-17T18:21:22.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "sw", "dataset:tydiqa", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
cjrowe
null
cjrowe/afriberta_base-finetuned-tydiqa
1
null
transformers
28,756
--- language: - sw tags: - generated_from_trainer datasets: - tydiqa model-index: - name: afriberta_base-finetuned-tydiqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta_base-finetuned-tydiqa This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 2.3728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 192 | 2.1359 | | No log | 2.0 | 384 | 2.3409 | | 0.8353 | 3.0 | 576 | 2.3728 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
cl-nagoya/defsent-bert-large-uncased-cls
32cee7905696d87fc8f9f366efc40c26b75f3fe8
2021-08-05T05:46:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-nagoya
null
cl-nagoya/defsent-bert-large-uncased-cls
1
null
transformers
28,757
Entry not found
cl-nagoya/defsent-bert-large-uncased-mean
39b2785b292c9812d3eb29ba2d97572e5baf4784
2021-08-05T05:47:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-nagoya
null
cl-nagoya/defsent-bert-large-uncased-mean
1
null
transformers
28,758
Entry not found
cl-nagoya/defsent-roberta-large-cls
6497379f77dff6681ee76feaf71ec395599f57f9
2021-08-05T05:48:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-nagoya
null
cl-nagoya/defsent-roberta-large-cls
1
null
transformers
28,759
Entry not found
classla/bcms-bertic-geo
d8806c3b7593f9311d5ae3210832bd315fd418f2
2021-02-20T06:46:06.000Z
[ "pytorch", "electra", "transformers" ]
null
false
classla
null
classla/bcms-bertic-geo
1
null
transformers
28,760
Entry not found
classla/bert-base-german-dbmdz-uncased-geo
2f627ee4d7390fa9a51f54ff7887ffe9bd9c312b
2021-05-19T14:23:58.000Z
[ "pytorch", "bert", "transformers" ]
null
false
classla
null
classla/bert-base-german-dbmdz-uncased-geo
1
null
transformers
28,761
Entry not found
classla/swissbert-geo
eeaefd2099ad978b298c3f429cac203245b0d796
2021-05-19T14:24:21.000Z
[ "pytorch", "bert", "transformers" ]
null
false
classla
null
classla/swissbert-geo
1
null
transformers
28,762
Entry not found
clayfox/DialoGPT-small-Hiccup
00286f311a0dc106c16762af3c759df11d43def4
2021-11-28T16:23:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
clayfox
null
clayfox/DialoGPT-small-Hiccup
1
null
transformers
28,763
--- tags: - conversational --- # HiccupBot DialoGPT Model
cling371/modeling_test
59db277d7597dc90f41601ea6dfde2050042ecae
2021-06-11T07:43:33.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cling371
null
cling371/modeling_test
1
null
transformers
28,764
Entry not found
coldfir3/xlm-roberta-base-finetuned-panx-fr
dbffa33fbe475a76e687b171fd723b424b9608f2
2022-01-02T18:49:32.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
coldfir3
null
coldfir3/xlm-roberta-base-finetuned-panx-fr
1
null
transformers
28,765
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8354854938789199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2651 - F1: 0.8355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5954 | 1.0 | 191 | 0.3346 | 0.7975 | | 0.2689 | 2.0 | 382 | 0.2900 | 0.8347 | | 0.1821 | 3.0 | 573 | 0.2651 | 0.8355 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
colochoplay/DialoGTP-small-harrypotter
97ec6668d35574eea11e4539d409de7b69f1df91
2021-09-06T03:31:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
colochoplay
null
colochoplay/DialoGTP-small-harrypotter
1
null
transformers
28,766
--- tags: - conversational --- # Harry Potter DialoGPT Model
comacrae/roberta-eda-and-parav3
4630a7a5d5cf9b9950813a479a7975f82963f9ef
2022-02-22T23:41:46.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
comacrae
null
comacrae/roberta-eda-and-parav3
1
null
transformers
28,767
Entry not found
comacrae/roberta-edav3
c7b62484564b8b34ab5eea76c0639df64fbd03ab
2022-02-22T22:30:37.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
comacrae
null
comacrae/roberta-edav3
1
null
transformers
28,768
Entry not found
comacrae/roberta-unaugv3
61eb14d748799a6e1a37ef742e46804ee5580a7e
2022-02-22T21:22:34.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
comacrae
null
comacrae/roberta-unaugv3
1
null
transformers
28,769
Entry not found
comodoro/wav2vec2-xls-r-300m-hsb-cv8
9f23e8f22cc0b5f55ea6ba28bbf2a76c33639659
2022-03-24T11:53:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hsb", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
comodoro
null
comodoro/wav2vec2-xls-r-300m-hsb-cv8
1
null
transformers
28,770
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Upper Sorbian comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 56.3 - name: Test CER type: cer value: 14.3 --- # Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9643 - Wer: 0.5037 - Cer: 0.1278 ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-hsb-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config hsb ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 4.3121 | 19.35 | 1200 | 3.2059 | 1.0 | 1.0 | | 2.6525 | 38.71 | 2400 | 1.1324 | 0.9387 | 0.3204 | | 1.3644 | 58.06 | 3600 | 0.8767 | 0.8099 | 0.2271 | | 1.093 | 77.42 | 4800 | 0.8739 | 0.7603 | 0.2090 | | 0.9546 | 96.77 | 6000 | 0.8454 | 0.6983 | 0.1882 | | 0.8554 | 116.13 | 7200 | 0.8197 | 0.6484 | 0.1708 | | 0.775 | 135.48 | 8400 | 0.8452 | 0.6345 | 0.1681 | | 0.7167 | 154.84 | 9600 | 0.8551 | 0.6241 | 0.1631 | | 0.6609 | 174.19 | 10800 | 0.8442 | 0.5821 | 0.1531 | | 0.616 | 193.55 | 12000 | 0.8892 | 0.5864 | 0.1527 | | 0.5815 | 212.9 | 13200 | 0.8839 | 0.5772 | 0.1503 | | 0.55 | 232.26 | 14400 | 0.8905 | 0.5665 | 0.1436 | | 0.5173 | 251.61 | 15600 | 0.8995 | 0.5471 | 0.1417 | | 0.4969 | 270.97 | 16800 | 0.8633 | 0.5325 | 0.1334 | | 0.4803 | 290.32 | 18000 | 0.9074 | 0.5253 | 0.1352 | | 0.4596 | 309.68 | 19200 | 0.9159 | 0.5146 | 0.1294 | | 0.4415 | 329.03 | 20400 | 0.9055 | 0.5189 | 0.1314 | | 0.434 | 348.39 | 21600 | 0.9435 | 0.5208 | 0.1314 | | 0.4199 | 367.74 | 22800 | 0.9199 | 0.5136 | 0.1290 | | 0.4008 | 387.1 | 24000 | 0.9342 | 0.5174 | 0.1303 | | 0.4051 | 406.45 | 25200 | 0.9436 | 0.5132 | 0.1292 | | 0.3861 | 425.81 | 26400 | 0.9417 | 0.5084 | 0.1283 | | 0.3738 | 445.16 | 27600 | 0.9573 | 0.5079 | 0.1299 | | 0.3768 | 464.52 | 28800 | 0.9682 | 0.5062 | 0.1289 | | 0.3647 | 483.87 | 30000 | 0.9643 | 0.5037 | 0.1278 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-pl-cv8
eedf150688ee1985ca9b716f353e3a575098d25f
2022-03-24T11:52:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pl", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
comodoro
null
comodoro/wav2vec2-xls-r-300m-pl-cv8
1
null
transformers
28,771
--- language: - pl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Polish comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pl metrics: - name: Test WER type: wer value: 17.0 - name: Test CER type: cer value: 3.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pl metrics: - name: Test WER type: wer value: 38.97 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pl metrics: - name: Test WER type: wer value: 46.05 --- # wav2vec2-xls-r-300m-pl-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training: - Loss: 0.1716 - Wer: 0.1697 - Cer: 0.0385 The `eval.py` script results are: WER: 0.16970531733661967 CER: 0.03839135416519316 ## Model description Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "pl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-pl-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config pl ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ## Training procedure ### Training hyperparameters The following hyperparameters were used: - learning_rate: 1e-4 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP The training was interrupted after 3250 steps. ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-sr-cv8
75ce1f7e6f27eec4f668398eaf534969b1577977
2022-03-24T11:53:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sr", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
comodoro
null
comodoro/wav2vec2-xls-r-300m-sr-cv8
1
null
transformers
28,772
--- language: - sr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 - name: Serbian comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sr metrics: - name: Test WER type: wer value: 48.5 - name: Test CER type: cer value: 18.4 model-index: - name: wav2vec2-xls-r-300m-sr-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: sr metrics: - name: Test WER type: wer value: 48.53 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sr metrics: - name: Test WER type: wer value: 97.43 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sr metrics: - name: Test WER type: wer value: 96.69 --- # Serbian wav2vec2-xls-r-300m-sr-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7302 - Wer: 0.4825 - Cer: 0.1847 Evaluation on mozilla-foundation/common_voice_8_0 gave the following results: - WER: 0.48530097993467103 - CER: 0.18413288165227845 Evaluation on speech-recognition-community-v2/dev_data gave the following results: - WER: 0.9718373107518604 - CER: 0.8302740620263108 The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-sr-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config sr ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 5.6536 | 15.0 | 1200 | 2.9744 | 1.0 | 1.0 | | 2.7935 | 30.0 | 2400 | 1.6613 | 0.8998 | 0.4670 | | 1.6538 | 45.0 | 3600 | 0.9248 | 0.6918 | 0.2699 | | 1.2446 | 60.0 | 4800 | 0.9151 | 0.6452 | 0.2398 | | 1.0766 | 75.0 | 6000 | 0.9110 | 0.5995 | 0.2207 | | 0.9548 | 90.0 | 7200 | 1.0273 | 0.5921 | 0.2149 | | 0.8919 | 105.0 | 8400 | 0.9929 | 0.5646 | 0.2117 | | 0.8185 | 120.0 | 9600 | 1.0850 | 0.5483 | 0.2069 | | 0.7692 | 135.0 | 10800 | 1.1001 | 0.5394 | 0.2055 | | 0.7249 | 150.0 | 12000 | 1.1018 | 0.5380 | 0.1958 | | 0.6786 | 165.0 | 13200 | 1.1344 | 0.5114 | 0.1941 | | 0.6432 | 180.0 | 14400 | 1.1516 | 0.5054 | 0.1905 | | 0.6009 | 195.0 | 15600 | 1.3149 | 0.5324 | 0.1991 | | 0.5773 | 210.0 | 16800 | 1.2468 | 0.5124 | 0.1903 | | 0.559 | 225.0 | 18000 | 1.2186 | 0.4956 | 0.1922 | | 0.5298 | 240.0 | 19200 | 1.4483 | 0.5333 | 0.2085 | | 0.5136 | 255.0 | 20400 | 1.2871 | 0.4802 | 0.1846 | | 0.4824 | 270.0 | 21600 | 1.2891 | 0.4974 | 0.1885 | | 0.4669 | 285.0 | 22800 | 1.3283 | 0.4942 | 0.1878 | | 0.4511 | 300.0 | 24000 | 1.4502 | 0.5002 | 0.1994 | | 0.4337 | 315.0 | 25200 | 1.4714 | 0.5035 | 0.1911 | | 0.4221 | 330.0 | 26400 | 1.4971 | 0.5124 | 0.1962 | | 0.3994 | 345.0 | 27600 | 1.4473 | 0.5007 | 0.1920 | | 0.3892 | 360.0 | 28800 | 1.3904 | 0.4937 | 0.1887 | | 0.373 | 375.0 | 30000 | 1.4971 | 0.4946 | 0.1902 | | 0.3657 | 390.0 | 31200 | 1.4208 | 0.4900 | 0.1821 | | 0.3559 | 405.0 | 32400 | 1.4648 | 0.4895 | 0.1835 | | 0.3476 | 420.0 | 33600 | 1.4848 | 0.4946 | 0.1829 | | 0.3276 | 435.0 | 34800 | 1.5597 | 0.4979 | 0.1873 | | 0.3193 | 450.0 | 36000 | 1.7329 | 0.5040 | 0.1980 | | 0.3078 | 465.0 | 37200 | 1.6379 | 0.4937 | 0.1882 | | 0.3058 | 480.0 | 38400 | 1.5878 | 0.4942 | 0.1921 | | 0.2987 | 495.0 | 39600 | 1.5590 | 0.4811 | 0.1846 | | 0.2931 | 510.0 | 40800 | 1.6001 | 0.4825 | 0.1849 | | 0.276 | 525.0 | 42000 | 1.7388 | 0.4942 | 0.1918 | | 0.2702 | 540.0 | 43200 | 1.7037 | 0.4839 | 0.1866 | | 0.2619 | 555.0 | 44400 | 1.6704 | 0.4755 | 0.1840 | | 0.262 | 570.0 | 45600 | 1.6042 | 0.4751 | 0.1865 | | 0.2528 | 585.0 | 46800 | 1.6402 | 0.4821 | 0.1865 | | 0.2442 | 600.0 | 48000 | 1.6693 | 0.4886 | 0.1862 | | 0.244 | 615.0 | 49200 | 1.6203 | 0.4765 | 0.1792 | | 0.2388 | 630.0 | 50400 | 1.6829 | 0.4830 | 0.1828 | | 0.2362 | 645.0 | 51600 | 1.8100 | 0.4928 | 0.1888 | | 0.2224 | 660.0 | 52800 | 1.7746 | 0.4932 | 0.1899 | | 0.2218 | 675.0 | 54000 | 1.7752 | 0.4946 | 0.1901 | | 0.2201 | 690.0 | 55200 | 1.6775 | 0.4788 | 0.1844 | | 0.2147 | 705.0 | 56400 | 1.7085 | 0.4844 | 0.1851 | | 0.2103 | 720.0 | 57600 | 1.7624 | 0.4848 | 0.1864 | | 0.2101 | 735.0 | 58800 | 1.7213 | 0.4783 | 0.1835 | | 0.1983 | 750.0 | 60000 | 1.7452 | 0.4848 | 0.1856 | | 0.2015 | 765.0 | 61200 | 1.7525 | 0.4872 | 0.1869 | | 0.1969 | 780.0 | 62400 | 1.7443 | 0.4844 | 0.1852 | | 0.2043 | 795.0 | 63600 | 1.7302 | 0.4825 | 0.1847 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
cosmic/DialoGPT-Rick
699671b7d04a160441b2235d0f68d3b0255b55a3
2021-10-11T17:29:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cosmic
null
cosmic/DialoGPT-Rick
1
null
transformers
28,773
--- tags: - conversational --- # Rick Sanchez
cowTodd/adalm-cs-small
4606ff7e5e0970b8cf54b83d6dbb2fb8013b9efb
2021-09-18T06:16:38.000Z
[ "pytorch", "transformers" ]
null
false
cowTodd
null
cowTodd/adalm-cs-small
1
null
transformers
28,774
Entry not found
cpierse/wav2vec2-large-xlsr-53-esperanto
3ff4b48db24592341ea7cc8930da9a1b172b4930
2021-07-06T00:44:08.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "eo", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cpierse
null
cpierse/wav2vec2-large-xlsr-53-esperanto
1
1
transformers
28,775
--- language: eo datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Esperanto by Charles Pierse results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eo type: common_voice args: eo metrics: - name: Test WER type: wer value: 12.31 --- # Wav2Vec2-Large-XLSR-53-eo Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on esperanto using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eo", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Esperanto test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\„\«\(\»\)\’\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=2000))) ``` **Test Result**: 12.31 % ## Training The Common Voice `train`, `validation` datasets were used for training.
cpierse/wav2vec2-large-xlsr-53-irish
6b48d1416d6f22334b1505773c1c5da54c7d5a25
2021-07-06T00:48:34.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ga-IE", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cpierse
null
cpierse/wav2vec2-large-xlsr-53-irish
1
null
transformers
28,776
--- language: ga-IE datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: cpierse/wav2vec2-large-xlsr-53-irish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ga-IE type: common_voice args: ga-IE metrics: - name: Test WER type: wer value: 43.06 --- # Wav2Vec2-Large-XLSR-53-Irish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Irish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish") model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Irish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish") model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\„\«\(\»\)\’\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 43.06 %
crabz/bertoslav-limited
06ee6edcd493ad5847335ece65359f554d08a6df
2022-03-06T12:29:08.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
crabz
null
crabz/bertoslav-limited
1
1
transformers
28,777
--- inference: false ---
creat89/NER_FEDA_Sl
fd8348f5a1581630840b3682c732615d44b9bd61
2022-04-13T09:32:36.000Z
[ "pytorch", "bert", "hr", "sl", "en", "transformers", "CroSloEngual", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Sl
1
null
transformers
28,778
--- license: mit language: - hr - sl - en tags: - CroSloEngual - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on CroSloEngual (https://huggingface.co/EMBEDDIA/crosloengual-bert) and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SSJ500k (LOC, MISC, ORG, PER) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. This model manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creynier/wav2vec2-base-swbd-small-turn-eos-2
1eda59d746dc2081196e4e91ebaafc74f11bcf4a
2022-01-29T10:39:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-small-turn-eos-2
1
null
transformers
28,779
Entry not found
creynier/wav2vec2-base-swbd-turn-small-2
16a8479e8fe4fdf5d2fa4c32a3450f095d505520
2022-02-14T16:00:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-small-2
1
null
transformers
28,780
Entry not found
cristinakuo/wav2vec-timit
f9db7d8d252dc0ca266464159e12b8350eeaf464
2021-12-12T22:48:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cristinakuo
null
cristinakuo/wav2vec-timit
1
null
transformers
28,781
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-timit This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
crystalgate/DialoGPT-small-rick
2619f73cbede7949db461741b6315a05a34e9db9
2022-01-05T17:17:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
crystalgate
null
crystalgate/DialoGPT-small-rick
1
null
transformers
28,782
--- tags: - conversational --- #Rick Dialogpt model
csbongga/Machi-QAG-01
9f8feadc873775d94af9528f62119b85d4593115
2022-02-23T02:43:55.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
csbongga
null
csbongga/Machi-QAG-01
1
null
transformers
28,783
Entry not found
csbongga/Machi-QAG-02
b7e8ec13ee9329757cf6cc4b876839e8e148ecb4
2022-02-23T03:18:57.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
csbongga
null
csbongga/Machi-QAG-02
1
null
transformers
28,784
Entry not found
csikasote/wav2vec2-large-xls-r-300m-bemba-fds
8868faafde9bf5e2b01ba3cda1594b4976e5cd0c
2022-02-10T07:21:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "bem", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/wav2vec2-large-xls-r-300m-bemba-fds
1
null
transformers
28,785
--- license: apache-2.0 tags: - generated_from_trainer - bem - robust-speech-event model-index: - name: wav2vec2-large-xls-r-300m-bemba-fds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bemba-fds This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [BembaSpeech](https://github.com/csikasote/BembaSpeech) dataset. It achieves the following results on the evaluation set: - Loss: 0.3594 - Wer: 0.3838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9961 | 0.67 | 500 | 0.5157 | 0.7133 | | 0.5903 | 1.34 | 1000 | 0.3663 | 0.4989 | | 0.4804 | 2.02 | 1500 | 0.3547 | 0.4653 | | 0.4146 | 2.69 | 2000 | 0.3274 | 0.4345 | | 0.3792 | 3.36 | 2500 | 0.3586 | 0.4640 | | 0.3509 | 4.03 | 3000 | 0.3360 | 0.4316 | | 0.3114 | 4.7 | 3500 | 0.3382 | 0.4303 | | 0.2935 | 5.38 | 4000 | 0.3263 | 0.4091 | | 0.2723 | 6.05 | 4500 | 0.3348 | 0.4175 | | 0.2502 | 6.72 | 5000 | 0.3317 | 0.4147 | | 0.2334 | 7.39 | 5500 | 0.3542 | 0.4030 | | 0.2287 | 8.06 | 6000 | 0.3594 | 0.4067 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
cumtowndiscord/DialoGPT-small-joshua
8bd1906d558da1fd911fa8f1e047a40565062184
2022-02-04T16:25:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cumtowndiscord
null
cumtowndiscord/DialoGPT-small-joshua
1
null
transformers
28,786
--- tags: - conversational --- # My Awesome Model
cuongtran/RobertaTextSummarization
194706b58c1f6c48b34e435debc43b4eac07ea79
2021-09-29T14:52:45.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cuongtran
null
cuongtran/RobertaTextSummarization
1
null
transformers
28,787
Entry not found
d4rk/harry
d77d1fb5b78ce4f43c620bb29161af8019f7b7d0
2021-12-02T11:04:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
d4rk
null
d4rk/harry
1
null
transformers
28,788
--- tags: - conversational --- # Harry
danhsf/t5-small-finetuned-en-to-pt
c9a6dab85f1152cf20da4c99b12bebe0ef5617b5
2022-01-23T00:38:04.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
danhsf
null
danhsf/t5-small-finetuned-en-to-pt
1
null
transformers
28,789
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-en-to-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-pt This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3295 - Bleu: 5.6807 - Gen Len: 18.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.5787 | 1.0 | 6250 | 0.4928 | 4.1007 | 18.638 | | 0.5089 | 2.0 | 12500 | 0.4463 | 4.3492 | 18.663 | | 0.4652 | 3.0 | 18750 | 0.4215 | 4.68 | 18.6652 | | 0.4353 | 4.0 | 25000 | 0.3980 | 4.8172 | 18.6708 | | 0.4042 | 5.0 | 31250 | 0.3799 | 4.9719 | 18.6514 | | 0.3734 | 6.0 | 37500 | 0.3676 | 5.2226 | 18.6572 | | 0.3396 | 7.0 | 43750 | 0.3513 | 5.2693 | 18.6596 | | 0.308 | 8.0 | 50000 | 0.3400 | 5.4546 | 18.676 | | 0.2767 | 9.0 | 56250 | 0.3331 | 5.5649 | 18.6708 | | 0.2424 | 10.0 | 62500 | 0.3295 | 5.6807 | 18.6772 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
danhsf/t5-small-finetuned-en-to-ro-lr_2e-3-fp_false
776494c2e66dd823bcfe70520d8fc68b21563b96
2021-12-03T09:19:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
danhsf
null
danhsf/t5-small-finetuned-en-to-ro-lr_2e-3-fp_false
1
null
transformers
28,790
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-lr_2e-3-fp_false results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.1921 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-lr_2e-3-fp_false This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Bleu: 7.1921 - Gen Len: 18.2611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.8922 | 0.05 | 2000 | 1.7000 | 6.5274 | 18.2656 | | 0.8621 | 0.1 | 4000 | 1.6409 | 6.6411 | 18.2311 | | 0.8433 | 0.16 | 6000 | 1.6396 | 6.6601 | 18.2596 | | 0.8297 | 0.21 | 8000 | 1.6304 | 6.7129 | 18.2581 | | 0.8006 | 0.26 | 10000 | 1.6022 | 6.6067 | 18.2816 | | 0.793 | 0.31 | 12000 | 1.5999 | 6.551 | 18.2631 | | 0.774 | 0.37 | 14000 | 1.5586 | 6.7105 | 18.2661 | | 0.7618 | 0.42 | 16000 | 1.5769 | 6.7278 | 18.2526 | | 0.7463 | 0.47 | 18000 | 1.5625 | 6.6972 | 18.2201 | | 0.7394 | 0.52 | 20000 | 1.5377 | 6.936 | 18.2491 | | 0.7203 | 0.58 | 22000 | 1.5191 | 7.0205 | 18.2731 | | 0.7158 | 0.63 | 24000 | 1.5055 | 6.835 | 18.2506 | | 0.688 | 0.68 | 26000 | 1.4779 | 7.0534 | 18.2716 | | 0.678 | 0.73 | 28000 | 1.4691 | 6.9735 | 18.2616 | | 0.6677 | 0.79 | 30000 | 1.4702 | 7.0359 | 18.2496 | | 0.6568 | 0.84 | 32000 | 1.4534 | 6.9982 | 18.2556 | | 0.6475 | 0.89 | 34000 | 1.4427 | 7.0443 | 18.2466 | | 0.6395 | 0.94 | 36000 | 1.4265 | 7.1205 | 18.2721 | | 0.6319 | 1.0 | 38000 | 1.4239 | 7.1921 | 18.2611 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
danielbispov/t5-small-finetuned-fi-to-en
a2da35e7c09e66f02fa57703f07f273a50449b38
2021-12-05T16:40:52.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt19", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
danielbispov
null
danielbispov/t5-small-finetuned-fi-to-en
1
null
transformers
28,791
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt19 metrics: - bleu model-index: - name: t5-small-finetuned-fi-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt19 type: wmt19 args: fi-en metrics: - name: Bleu type: bleu value: 1.129 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-fi-to-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset. It achieves the following results on the evaluation set: - Loss: 3.5235 - Bleu: 1.129 - Gen Len: 17.088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:| | 3.414 | 1.0 | 6250 | 3.5235 | 1.129 | 17.088 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
danielbubiola/daniel_asr
935e03d571638e5778c6c3123fc885f83789d0fc
2022-01-24T05:30:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
danielbubiola
null
danielbubiola/daniel_asr
1
null
transformers
28,792
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: daniel_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daniel_asr This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4565 - Wer: 0.3423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4909 | 4.0 | 500 | 1.3485 | 0.8887 | | 0.5887 | 8.0 | 1000 | 0.4957 | 0.4641 | | 0.2207 | 12.0 | 1500 | 0.4621 | 0.3971 | | 0.125 | 16.0 | 2000 | 0.4339 | 0.3756 | | 0.0829 | 20.0 | 2500 | 0.4618 | 0.3613 | | 0.0601 | 24.0 | 3000 | 0.4564 | 0.3535 | | 0.0456 | 28.0 | 3500 | 0.4565 | 0.3423 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
danny481/DialoGPT-small-harrypotter
0be0dd1b34dd9722f7a68367df0997f17a5aebd8
2021-12-27T23:56:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
danny481
null
danny481/DialoGPT-small-harrypotter
1
null
transformers
28,793
--- tags: - conversational --- #Harry Potter DialoGPT
danny911kr/calm-base
818034e7e496b340193aa72de06a947b48a08d68
2021-09-16T07:16:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
danny911kr
null
danny911kr/calm-base
1
null
transformers
28,794
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
danny911kr/calm-large
a2d2d6d86565cecdc6c09871f90547ff0b3c84d3
2021-09-16T07:16:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
danny911kr
null
danny911kr/calm-large
1
null
transformers
28,795
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
danny911kr/calm-mix-base
040c857b1e0283d52b7c1654f7fede0c1908daf7
2021-09-16T07:20:42.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
danny911kr
null
danny911kr/calm-mix-base
1
null
transformers
28,796
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
danurahul/Eddie_neo_1.3train
b1fd303fc4ea549ea5749fa185b38ca29ca513f9
2021-06-17T14:06:29.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/Eddie_neo_1.3train
1
null
transformers
28,797
Entry not found
danurahul/Eddie_neo_j11
a559f6df662574e294ab1db02b5753cbcef9c3a1
2021-06-17T06:30:42.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/Eddie_neo_j11
1
null
transformers
28,798
Entry not found
danurahul/alex-gpt-finetune
cb6650480607ece4d35e57b52d0b52f77a07c09d
2021-05-21T15:16:14.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/alex-gpt-finetune
1
null
transformers
28,799
Entry not found