modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
danurahul/distil
d77bcd0bb0d4c2c0bf1990ed14d95573c4d30631
2021-06-08T02:21:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/distil
1
null
transformers
28,800
Entry not found
danurahul/ghosh_dentist
ed86362b7501f582bbe28ba986d30d6c4a950b08
2021-07-07T07:57:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/ghosh_dentist
1
null
transformers
28,801
Entry not found
danurahul/gptneo_tarot
cf1b90179ed6789c2263749723ed789cc83b5a04
2021-05-16T11:01:00.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/gptneo_tarot
1
null
transformers
28,802
Entry not found
danurahul/wav2vec2-large-xlsr-or
f8c84a7ccc70307b35684dc0c1cd48ede9d7516d
2021-07-06T01:22:42.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "or", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
danurahul
null
danurahul/wav2vec2-large-xlsr-or
1
null
transformers
28,803
--- language: or datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: odia XLSR Wav2Vec2 Large 2000 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice or type: common_voice args: or metrics: - name: Test WER type: wer value: 54.6 --- # Wav2Vec2-Large-XLSR-53-or Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on odia using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 54.6 % ## Training The Common Voice `train`, `validation`, and test datasets were used for training as well as prediction and testing The script used for training can be found [https://github.com/rahul-art/wav2vec2_or]
danurahul/yoav_gpt_neo1.3B
7ffe0d32ba66828c8be7c1adeef778a9156684fe
2021-06-18T03:52:45.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/yoav_gpt_neo1.3B
1
null
transformers
28,804
Entry not found
danurahul/yoav_neo_spaces
32ab011ab3cc6ccdf0fad9eca803c26c75ea11b7
2021-06-28T07:34:43.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/yoav_neo_spaces
1
null
transformers
28,805
Entry not found
dark-knight/wav2vec2-base-timit-demo-colab
b8f307f17ef64909b151c859aa9e8367908cfacf
2022-02-06T16:25:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dark-knight
null
dark-knight/wav2vec2-base-timit-demo-colab
1
null
transformers
28,806
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
darkzek/chickenbot-jon-snow
0530347afe8849502b9da63aba0d831660139bca
2022-02-17T01:51:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
darkzek
null
darkzek/chickenbot-jon-snow
1
null
transformers
28,807
--- tags: - conversational --- # Chicken Bot's Jon Snow DialoGPT Model
darthboii/DialoGPT-small-PickleRick
79742c0527c1c7b17b53c42446ba182c30e33532
2021-09-15T07:48:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
darthboii
null
darthboii/DialoGPT-small-PickleRick
1
null
transformers
28,808
--- tags: - conversational --- # Pickle Rick DialoGPT Model
databuzzword/JointBERT-snips
39e92ce5acb96c12319087acb39700edd983fe3b
2021-09-22T14:02:14.000Z
[ "pytorch", "bert", "transformers" ]
null
false
databuzzword
null
databuzzword/JointBERT-snips
1
null
transformers
28,809
https://github.com/monologg/JointBERT
davanstrien/eighteenth-century-distilbert
561cb60bcc12d2cd7ed065e15986c292fd5ad032
2022-02-01T08:42:48.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
davanstrien
null
davanstrien/eighteenth-century-distilbert
1
null
transformers
28,810
Entry not found
davidcechak/tss_bert_6
05e18f338a3e023d00fa4a6c3cec2851155d6eff
2022-01-25T17:17:11.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
davidcechak
null
davidcechak/tss_bert_6
1
null
transformers
28,811
Entry not found
davidcechak/tss_bert_6_v1
96a2ed1a77c3ed60f9b971f67a17baab08f22dda
2022-01-27T03:37:47.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
davidcechak
null
davidcechak/tss_bert_6_v1
1
null
transformers
28,812
Entry not found
day/first-bot-large
86d1321e3098ab14e8a72350bb6da6d0978f0a12
2022-01-14T11:29:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
day
null
day/first-bot-large
1
null
transformers
28,813
Entry not found
day/first-bot-medium
9a988cb50329ea89ff5cd109ee35daf8b436aead
2022-01-14T12:52:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
day
null
day/first-bot-medium
1
null
transformers
28,814
Entry not found
day/first-bot-small
a45706d4f719a80e4202bca7f4dd14e11f83e24c
2022-01-14T10:50:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
day
null
day/first-bot-small
1
null
transformers
28,815
Entry not found
day/her-bot-small
4131130a1490eb8867b4ef5413135ce7592d56b2
2022-01-16T15:49:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
day
null
day/her-bot-small
1
null
transformers
28,816
Entry not found
dbernsohn/t5_measurement_time
8cb68134da58f7785539faad606d27ddd9c4e707
2021-06-23T12:17:10.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:measurement_time", "transformers", "autotrain_compatible" ]
text2text-generation
false
dbernsohn
null
dbernsohn/t5_measurement_time
1
null
transformers
28,817
# measurement_time --- language: en datasets: - measurement_time --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/measurement_time](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetmeasurement_time) for solving **measurement time equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_measurement_time") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_measurement_time") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "How many minutes are there between 2:09 PM and 2:27 PM?" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 18</s> ``` Another examples: + How many minutes are there between 2:09 PM and 2:27 PM? + Answer: 18 Pred: 18 ---- + What is 116 minutes after 10:06 AM? + Answer: 12:02 PM Pred: 12:02 PM ---- + What is 608 minutes after 3:14 PM? + Answer: 1:22 AM Pred: 1:22 AM ---- + What is 64 minutes before 9:16 AM? + Answer: 8:12 AM Pred: 8:12 AM ---- + What is 427 minutes before 4:27 AM? + Answer: 9:20 PM Pred: 9:20 PM ---- + How many minutes are there between 6:36 PM and 12:15 AM? + Answer: 339 Pred: 339 ---- + What is 554 minutes before 5:24 PM? + Answer: 8:10 AM Pred: 8:10 AM ---- + What is 307 minutes after 5:15 AM? + Answer: 10:22 AM Pred: 10:22 AM The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dbernsohn/t5_numbers_gcd
6d5b21bb85463bc3d056bafa52535b7a44e7b188
2021-02-08T06:52:18.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:numbers_gcd", "transformers", "autotrain_compatible" ]
text2text-generation
false
dbernsohn
null
dbernsohn/t5_numbers_gcd
1
null
transformers
28,818
# numbers_gcd --- language: en datasets: - numbers_gcd --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/numbers_gcd](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetnumbers_gcd) for solving **greatest common divisor** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_numbers_gcd") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_numbers_gcd") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "What is the highest common factor of 4210884 and 72?" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 36</s> ``` Another examples: + Calculate the greatest common factor of 3470 and 97090. + Answer: 10 Pred: 10 ---- + Calculate the highest common factor of 3480 and 775431. + Answer: 87 Pred: 87 ---- + What is the highest common divisor of 26 and 88049? + Answer: 13 Pred: 13 ---- + Calculate the highest common factor of 1416 and 24203688. + Answer: 1416 Pred: 1416 ---- + Calculate the highest common divisor of 124 and 69445828. + Answer: 124 Pred: 124 ---- + What is the greatest common factor of 657906 and 470? + Answer: 94 Pred: 94 ---- + What is the highest common factor of 4210884 and 72? + Answer: 36 Pred: 36 The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dbmdz/bert-base-swedish-europeana-cased
510c5372ecdb9e19aa27517a8e59ee3d1c6693b3
2021-11-18T21:35:46.000Z
[ "pytorch", "jax", "tensorboard", "bert", "fill-mask", "swedish", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-base-swedish-europeana-cased
1
null
transformers
28,819
--- language: swedish license: mit widget: - text: "Det vore [MASK] häller nödvändigt att be" --- # Historic Language Models (HLMs) ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Models At the moment, the following models are available on the model hub: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) | `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) | `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) | `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Pretraining ## Multilingual model We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) ## English model The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-historic-english-cased/ \ --tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ --train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ --validation_file /mnt/datasets/bl-corpus/english_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 10 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic_english.png) ## Finnish model The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ --validation_file /mnt/datasets/hlms/finnish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) ## Swedish model The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ --validation_file /mnt/datasets/hlms/swedish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
dbsamu/distilroberta-base-finetuned-ner
21b5f55bcab9afba09efe4e920963699e70eda13
2022-01-23T17:53:07.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dbsamu
null
dbsamu/distilroberta-base-finetuned-ner
1
null
transformers
28,820
Entry not found
ddemszky/Feb25_09-02-16_combined_education_dataset_02252021.json_6.25e-05_hist1-truncated-acd81d
0c7c21ecc96457144774181a1e955e6122749d68
2021-05-19T15:23:05.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
ddemszky
null
ddemszky/Feb25_09-02-16_combined_education_dataset_02252021.json_6.25e-05_hist1-truncated-acd81d
1
null
transformers
28,821
Entry not found
devin132/w2v-timit-ft-4001
55b7b88bd69435078117f3b9203728a1449c45ea
2021-09-04T22:35:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
devin132
null
devin132/w2v-timit-ft-4001
1
null
transformers
28,822
# Fintuned Wav2Vec of Timit - 4001 checkpoint
dhanushlnaik/amySan
c68469e3a5e8cd675f8c145c0a98676d1118874f
2021-08-28T06:39:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
dhanushlnaik
null
dhanushlnaik/amySan
1
null
transformers
28,823
--- tags: - conversational --- # AMy San
diegor2/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetu-truncated-d22eed
0c8e7fb6a22331b52e368a7dcec9451822764b4f
2021-12-05T23:13:14.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
diegor2
null
diegor2/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetu-truncated-d22eed
1
null
transformers
28,824
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed model-index: - name: t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1 This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
diegor2/t5-tiny-random-length-96-learning_rate-0.0001-weight_decay-0.01-finetu-truncated-5e15da
ec98b8af44dce2e75fae3f59472c2d67cac475b9
2021-12-06T01:02:21.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
diegor2
null
diegor2/t5-tiny-random-length-96-learning_rate-0.0001-weight_decay-0.01-finetu-truncated-5e15da
1
null
transformers
28,825
Entry not found
diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetu-truncated-41f800
abbc528360814723772cfb77ff83c5997667fff1
2021-12-06T00:23:37.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
diegor2
null
diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetu-truncated-41f800
1
null
transformers
28,826
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro-TRAIN_EPOCHS-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro-TRAIN_EPOCHS-1 This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 6.4897 - Bleu: 0.0002 - Gen Len: 9.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 6.2585 | 1.0 | 76290 | 6.4897 | 0.0002 | 9.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1
28d5bef639f8027b408c02a712d1f972918208a1
2021-12-05T23:16:54.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
diegor2
null
diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1
1
null
transformers
28,827
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed model-index: - name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1 This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
diegozs97/chemprot-seed-0-0k
8b96da64e4f4a6fd4960aa894cef7ea1dccc82e1
2021-12-06T23:14:56.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-0k
1
null
transformers
28,828
Entry not found
diegozs97/chemprot-seed-0-100k
b52ed45bb0565f43b61e3ca35c5015e132eb413b
2021-12-06T23:36:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-100k
1
null
transformers
28,829
Entry not found
diegozs97/chemprot-seed-0-1800k
93eee6ff6e3508de706ba5e609eb4f77b124547f
2021-12-07T00:16:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-1800k
1
null
transformers
28,830
Entry not found
diegozs97/chemprot-seed-0-2000k
0b1c2bbb51792d51ee158ecd16873a8aab20d6e2
2021-12-07T00:26:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-2000k
1
null
transformers
28,831
Entry not found
diegozs97/chemprot-seed-0-20k
da0c808f906438ead13dcc063b70e838852e6762
2021-12-06T23:26:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-20k
1
null
transformers
28,832
Entry not found
diegozs97/chemprot-seed-0-400k
16999268343d765d8cf24130ca78a765847f3220
2021-12-06T23:46:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-400k
1
null
transformers
28,833
Entry not found
diegozs97/chemprot-seed-1-0k
608c586f4c5852cdea979b439553a14f941e940d
2021-12-07T01:41:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-0k
1
null
transformers
28,834
Entry not found
diegozs97/chemprot-seed-1-1000k
9a8cae5708d5d0dbda3e6ae8a6b7012cee895bfe
2021-12-07T02:12:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-1000k
1
null
transformers
28,835
Entry not found
diegozs97/chemprot-seed-1-100k
e134cb28365957a6f3242295f525fcab4db5a856
2021-12-07T02:23:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-100k
1
null
transformers
28,836
Entry not found
diegozs97/chemprot-seed-1-1500k
d486f6526aaa0128894e95325611e9cbbdd2fbd4
2021-12-07T01:17:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-1500k
1
null
transformers
28,837
Entry not found
diegozs97/chemprot-seed-1-1800k
b226dbdbd3d2d15121da9bc46f542454a34d4314
2021-12-07T01:24:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-1800k
1
null
transformers
28,838
Entry not found
diegozs97/chemprot-seed-1-20k
90e32cf5d32378fac325ffe4f54cdb25bc84912a
2021-12-07T00:18:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-20k
1
null
transformers
28,839
Entry not found
diegozs97/chemprot-seed-1-60k
6f7660e742767969c8c7f7c9635df23d38d4fe85
2021-12-07T00:27:11.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-60k
1
null
transformers
28,840
Entry not found
diegozs97/chemprot-seed-1-700k
aa4fc526fa09710fb0ffcb668119fb23afb9a97c
2021-12-07T01:11:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-700k
1
null
transformers
28,841
Entry not found
diegozs97/chemprot-seed-2-0k
7f8c13dd8e5948f14254907f7ae2157f265fe4f2
2021-12-07T02:48:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-0k
1
null
transformers
28,842
Entry not found
diegozs97/chemprot-seed-2-1000k
c10ce797cb99826e8899099328905e9ba744d67d
2021-12-07T04:04:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-1000k
1
null
transformers
28,843
Entry not found
diegozs97/chemprot-seed-2-100k
b2dad843e353e2526fc8a150f083a50a1ede83dc
2021-12-07T03:06:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-100k
1
null
transformers
28,844
Entry not found
diegozs97/chemprot-seed-2-1800k
e0ca01f93c82c4153e0ea00341173792e8adc69e
2021-12-07T03:48:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-1800k
1
null
transformers
28,845
Entry not found
diegozs97/chemprot-seed-2-200k
4cd34834e72ba9cd0492ffeef9b03e91574f11af
2021-12-07T03:13:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-200k
1
null
transformers
28,846
Entry not found
diegozs97/chemprot-seed-2-20k
9e743c7522bcc5bdceba72937d0a786e062799ab
2021-12-07T02:53:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-20k
1
null
transformers
28,847
Entry not found
diegozs97/chemprot-seed-2-400k
930cd7a6e536e609a6a4718db4f3de52b084a970
2021-12-07T03:20:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-400k
1
null
transformers
28,848
Entry not found
diegozs97/chemprot-seed-2-700k
02ba5ab54118dcc198102c7a6a27703e13579668
2021-12-07T03:29:29.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-700k
1
null
transformers
28,849
Entry not found
diegozs97/chemprot-seed-3-0k
64aee58176dadc8d4851ea90d63082bf0bd034ad
2021-12-07T05:24:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-0k
1
null
transformers
28,850
Entry not found
diegozs97/chemprot-seed-3-1000k
71d7668224714df0d26523a002f7556087e629dd
2021-12-07T15:26:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-1000k
1
null
transformers
28,851
Entry not found
diegozs97/chemprot-seed-3-100k
367f8814a32090eaca334e59fc5fd3db0f5e0d91
2021-12-07T05:46:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-100k
1
null
transformers
28,852
Entry not found
diegozs97/chemprot-seed-3-1800k
fbaab09ef98ef4dc57f1a609adf3a39ec523c0f1
2021-12-07T06:31:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-1800k
1
null
transformers
28,853
Entry not found
diegozs97/chemprot-seed-3-200k
b18b5d7f0ccc3a2a7336d351d625df1cfc97db10
2021-12-07T05:51:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-200k
1
null
transformers
28,854
Entry not found
diegozs97/chemprot-seed-3-20k
44a259d833e6f7bd3800865a43c22e0fd769eb9a
2021-12-07T05:32:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-20k
1
null
transformers
28,855
Entry not found
diegozs97/chemprot-seed-3-400k
09a73a179b2a76c64946acebde369b9840f54b16
2021-12-07T05:56:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-400k
1
null
transformers
28,856
Entry not found
diegozs97/chemprot-seed-3-700k
a6caf07d7511ea3b828fc9271c50b2ef111e7f5b
2021-12-07T06:00:56.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-700k
1
null
transformers
28,857
Entry not found
diegozs97/chemprot-seed-4-0k
33d5fc6e432a20cf8a5707431301eb6812339e00
2021-12-07T15:49:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-0k
1
null
transformers
28,858
Entry not found
diegozs97/chemprot-seed-4-100k
8ae99a01cac8b84d160782d06139397d420dfd3e
2021-12-07T18:17:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-100k
1
null
transformers
28,859
Entry not found
diegozs97/chemprot-seed-4-1500k
1f0fc6b7555a51e12f9f21dab3b5fd66f9b796e5
2021-12-07T17:03:57.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-1500k
1
null
transformers
28,860
Entry not found
diegozs97/chemprot-seed-4-1800k
cc9c35597edc91c01fe7bc12cdc56873eaeeb680
2021-12-07T17:10:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-1800k
1
null
transformers
28,861
Entry not found
diegozs97/chemprot-seed-4-2000k
66acffdec620f633b15c6fc9893161a3128b76d5
2021-12-07T17:15:33.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-2000k
1
null
transformers
28,862
Entry not found
diegozs97/chemprot-seed-4-200k
acc697d6e82ad8a973308429e4a3a545b95c3159
2021-12-07T16:25:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-200k
1
null
transformers
28,863
Entry not found
diegozs97/chemprot-seed-4-20k
a63bd1df8424a812a00c4668902a38454c7441c2
2021-12-07T15:57:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-20k
1
null
transformers
28,864
Entry not found
diegozs97/chemprot-seed-4-60k
9ad23e6adaeaf94c455467a9baabb0a9f8b6856a
2021-12-07T16:05:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-60k
1
null
transformers
28,865
Entry not found
diegozs97/chemprot-seed-4-700k
2cc626617c4ecd60a1a6e20e1924c73d0db489a6
2021-12-07T16:39:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-700k
1
null
transformers
28,866
Entry not found
diegozs97/sciie-seed-0-0k
c021bbb7683d89804c7e769e4b156fb89bfa0234
2021-12-08T19:42:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-0k
1
null
transformers
28,867
Entry not found
diegozs97/sciie-seed-0-100k
ea3f5c6311a47ce6f20c370321ca9386b48b1d63
2021-12-08T18:53:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-100k
1
null
transformers
28,868
Entry not found
diegozs97/sciie-seed-0-1500k
6b6dec6f9b3dd3f82f00d94cd0ad0cf814095f1a
2021-12-08T18:46:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-1500k
1
null
transformers
28,869
Entry not found
diegozs97/sciie-seed-0-1800k
0b966dc6f229c903f5db57e5472e58c83a57fb4d
2021-12-08T20:02:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-1800k
1
null
transformers
28,870
Entry not found
diegozs97/sciie-seed-0-2000k
a73c098edd38034b03d5dc306d663fd4cb1b4baf
2021-12-08T21:26:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-2000k
1
null
transformers
28,871
Entry not found
diegozs97/sciie-seed-0-20k
e40ef8dc8231799ecbd989cb5f72b705f62f6e01
2021-12-08T22:25:29.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-20k
1
null
transformers
28,872
Entry not found
diegozs97/sciie-seed-0-400k
9a944f730591285f3e7ec9c260f42dc9367e9cb5
2021-12-08T22:51:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-400k
1
null
transformers
28,873
Entry not found
diegozs97/sciie-seed-1-0k
42da34a8b838d2baf55620fccf7f8db275755b22
2021-12-07T02:57:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-0k
1
null
transformers
28,874
Entry not found
diegozs97/sciie-seed-1-1000k
d5b319fbca7d44b34c07a6a0685d9eb26898e3f8
2021-12-07T03:39:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-1000k
1
null
transformers
28,875
Entry not found
diegozs97/sciie-seed-1-100k
daa2b4bdf37f4753d95167c52c7ce52d67455173
2021-12-07T03:09:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-100k
1
null
transformers
28,876
Entry not found
diegozs97/sciie-seed-1-1500k
2bd0f1d6e961fe7e5177bda9f884177f1acad37d
2021-12-07T02:24:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-1500k
1
null
transformers
28,877
Entry not found
diegozs97/sciie-seed-1-1800k
5caec790cb1ec4cb2d9e3e67a8b088386454d16f
2021-12-07T04:02:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-1800k
1
null
transformers
28,878
Entry not found
diegozs97/sciie-seed-1-2000k
8be04bf4c4ebab61aae9c3dca15d5bbb659b8dd9
2021-12-07T03:57:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-2000k
1
null
transformers
28,879
Entry not found
diegozs97/sciie-seed-1-200k
32b5af7cca3bfbc374b88f128bb0787a2ccd686e
2021-12-07T03:22:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-200k
1
null
transformers
28,880
Entry not found
diegozs97/sciie-seed-1-20k
f5842c5eb83f461524547ce09d1d19e292d3e426
2021-12-07T01:29:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-20k
1
null
transformers
28,881
Entry not found
diegozs97/sciie-seed-1-400k
b15d955984ae67ffc3f8e2c54d0a1f717ce262a9
2021-12-07T02:04:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-400k
1
null
transformers
28,882
Entry not found
diegozs97/sciie-seed-1-60k
a0ee5cc370e1e19b1c9fa3dd333547b816476868
2021-12-07T01:40:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-60k
1
null
transformers
28,883
Entry not found
diegozs97/sciie-seed-1-700k
fd6093b918f5aedcf7f49938373ee970a0bec0d7
2021-12-07T02:09:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-1-700k
1
null
transformers
28,884
Entry not found
diegozs97/sciie-seed-2-1000k
e7b498ee80aaa16d48afaf69a6c2fdb28945f1f5
2021-12-07T05:18:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-1000k
1
null
transformers
28,885
Entry not found
diegozs97/sciie-seed-2-100k
91b5496c908c1a5926513af0e01d102ba4f6a262
2021-12-07T04:56:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-100k
1
null
transformers
28,886
Entry not found
diegozs97/sciie-seed-2-1800k
f1e7d5e120b98a7baeef0cc4f8c82cce45aa4ab8
2021-12-07T05:27:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-1800k
1
null
transformers
28,887
Entry not found
diegozs97/sciie-seed-2-2000k
5af981a94333461d9f44d9bedfc6b0a50219a588
2021-12-07T05:36:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-2000k
1
null
transformers
28,888
Entry not found
diegozs97/sciie-seed-2-200k
efcccf4bb5cc4e4511878338e7df7b5d08a568ff
2021-12-07T06:22:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-200k
1
null
transformers
28,889
Entry not found
diegozs97/sciie-seed-2-20k
c120377933a2a4016b24bfdb794f0fb53be516d2
2021-12-07T04:34:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-20k
1
null
transformers
28,890
Entry not found
diegozs97/sciie-seed-2-400k
c88be99c9c3bad943d3939b5937a4923bc6ca0f3
2021-12-07T05:08:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-400k
1
null
transformers
28,891
Entry not found
diegozs97/sciie-seed-2-60k
0f0bc2b99758969b0a47a28eeafdea2338578e3d
2021-12-07T04:52:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-60k
1
null
transformers
28,892
Entry not found
diegozs97/sciie-seed-2-700k
2676980acb13ba8920b4fdcbe846e79927415155
2021-12-07T05:13:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-700k
1
null
transformers
28,893
Entry not found
diegozs97/sciie-seed-3-0k
1f4523fc2a719ed468ed48ec4557be4427160ecd
2021-12-07T18:34:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-0k
1
null
transformers
28,894
Entry not found
diegozs97/sciie-seed-3-1000k
dcde2bd538c936d94eaba5b6cf9a78c3a5d5e02b
2021-12-07T19:16:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-1000k
1
null
transformers
28,895
Entry not found
diegozs97/sciie-seed-3-100k
e7174892b6bfcee8fa08f6be2b9cb809abd023a8
2021-12-07T18:46:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-100k
1
null
transformers
28,896
Entry not found
diegozs97/sciie-seed-3-1500k
571568a0b7cee3aa0dcef3ae310890315aa192f5
2021-12-07T16:26:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-1500k
1
null
transformers
28,897
Entry not found
diegozs97/sciie-seed-3-1800k
91f4d40f10a83b6ad89fa8d0456f4d0c933cefad
2021-12-07T19:25:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-1800k
1
null
transformers
28,898
Entry not found
diegozs97/sciie-seed-3-2000k
d8430dfa9ef85c99288b10d155dd1437931011d8
2021-12-07T17:01:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-2000k
1
null
transformers
28,899
Entry not found