modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
diegozs97/sciie-seed-3-200k
862ec5f180898d7637392acf2ee1b403b6328069
2021-12-07T19:05:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-200k
1
null
transformers
28,900
Entry not found
diegozs97/sciie-seed-3-20k
c8133a745c9f248f01398d579bfb89fe7b0d247a
2021-12-07T15:35:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-20k
1
null
transformers
28,901
Entry not found
diegozs97/sciie-seed-3-400k
9193a7b6355aa5c64c327576ae153a8bedbf73a8
2021-12-07T15:51:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-400k
1
null
transformers
28,902
Entry not found
diegozs97/sciie-seed-3-60k
377bb21400a2f5d8036a92e74d5ae5e8d2d92dde
2021-12-07T15:44:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-60k
1
null
transformers
28,903
Entry not found
diegozs97/sciie-seed-3-700k
039724cf78e4660897691c42712faa9ba79f736f
2021-12-07T16:00:41.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-3-700k
1
null
transformers
28,904
Entry not found
diegozs97/sciie-seed-4-2000k
974d46c22d0edb3d29feba95adc25091d4a5ede3
2021-12-07T22:34:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-2000k
1
null
transformers
28,905
Entry not found
diegozs97/sciie-seed-4-400k
fb5321040cbd81b21dff5bba3514673683c50557
2021-12-07T21:06:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-400k
1
null
transformers
28,906
Entry not found
diegozs97/sciie-seed-4-60k
e115a78e517c5a58f24eecd1746ee27a7d061a77
2021-12-07T20:51:42.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-60k
1
null
transformers
28,907
Entry not found
diegozs97/sciie-seed-4-700k
2f4276e7225b3f07fead48367db4eadb88a39203
2021-12-07T21:11:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-700k
1
null
transformers
28,908
Entry not found
diegozs97/test_model
08153bcbc84a29da8e0d819e15b8a9cef68e7172
2021-12-06T23:07:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/test_model
1
null
transformers
28,909
Entry not found
disdamoe/TheGreatManipulator
314922e73cce2c13349eb937a273082bd40dac5f
2021-12-12T18:58:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
disdamoe
null
disdamoe/TheGreatManipulator
1
null
transformers
28,910
--- tags: - conversational --- # Moe DialoGPT Model
dk16gaming/DialoGPT-small-HarryPotter
d88bef4c9a4a14addec8e414996ff126705381d5
2021-09-21T01:57:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
dk16gaming
null
dk16gaming/DialoGPT-small-HarryPotter
1
null
transformers
28,911
--- tags: - conversational --- # Harry Potter DialoGPT Model
dobbytk/KSL-BERT
10530f5b646f4b632709b0eeedbcb1f4a24d9582
2021-10-20T13:19:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dobbytk
null
dobbytk/KSL-BERT
1
null
transformers
28,912
Entry not found
docketanalyzer/distilroberta-base-ddlm
0610142f18a6b7c605098f02fb101bc854344dc1
2021-05-20T16:12:56.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
docketanalyzer
null
docketanalyzer/distilroberta-base-ddlm
1
null
transformers
28,913
Entry not found
donggyu/mnmt
efeee89d6f28e99e08a3ce5252ca3e620643ec67
2021-11-30T05:27:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
donggyu
null
donggyu/mnmt
1
null
transformers
28,914
Entry not found
donhuang/game_roberta_finetuned_base_wwm
bfe2b554742c0bd9d15cea32a93b26ac06c946ce
2021-07-19T06:42:36.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
donhuang
null
donhuang/game_roberta_finetuned_base_wwm
1
null
transformers
28,915
Entry not found
dpasch01/finetune-clm-employment
4211876bddd72b1879c15b9f331187a40fc84c1e
2021-12-22T07:59:51.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
dpasch01
null
dpasch01/finetune-clm-employment
1
null
transformers
28,916
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetune-clm-employment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-clm-employment This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3283 | 1.0 | 3989 | 1.9578 | | 2.0824 | 2.0 | 7978 | 1.9013 | | 1.9936 | 3.0 | 11967 | 1.8625 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
dragonStyle/bert-303-step35000
88bb30af334e97e972b3d4fb84244c1d209b9831
2021-06-21T03:01:59.000Z
[ "pytorch", "bert", "transformers" ]
null
false
dragonStyle
null
dragonStyle/bert-303-step35000
1
null
transformers
28,917
这是一个git lfs项目。 没有改造数据前的模型性能: knowledge points - max length is 1566, min length is 3, ave length is 87.96, 95% quantile is 490. question and answer - max length is 303, min length is 8, ave length is 47.09, 95% quantile is 119. 303精度为:2562/5232=48.97%
dreamline2/DialoGPT-small-joshua-demo
4813c7676a3626f5bd1c85c33ac21422646f7caf
2022-01-22T07:26:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
dreamline2
null
dreamline2/DialoGPT-small-joshua-demo
1
null
transformers
28,918
--- tags: - conversational --- # My Awesome Model
dudesparsh/tweet_GPT
5b86e3ec44f0526128ca23043038ad4c8760f16b
2021-05-21T15:41:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
dudesparsh
null
dudesparsh/tweet_GPT
1
null
transformers
28,919
Entry not found
dundar/wav2vec2-large-xlsr-53-lithuanian
8c42544edf5bbdf50fa5417b80b70b45a3c42b4f
2021-07-06T01:34:27.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dundar
null
dundar/wav2vec2-large-xlsr-53-lithuanian
1
null
transformers
28,920
--- language: lt datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Lithuanian by Enes Burak Dundar results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lt type: common_voice args: lt metrics: - name: Test WER type: wer value: 35.87 --- # Wav2Vec2-Large-XLSR-53-Lithuanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Lithuanian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("dundar/wav2vec2-large-xlsr-53-lithuanian") model = Wav2Vec2ForCTC.from_pretrained("dundar/wav2vec2-large-xlsr-53-lithuanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Lithuanian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "lt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("dundar/wav2vec2-large-xlsr-53-lithuanian") model = Wav2Vec2ForCTC.from_pretrained("dundar/wav2vec2-large-xlsr-53-lithuanian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 35.87 % ## Training The Common Voice datasets `except the test` set were used for training. The script used for training can be found [here](https://github.com/ebdundar/)
dundar/wav2vec2-large-xlsr-53-turkish
9fe6a45fb1a694dcbb603790e18163f1ba197ce4
2021-07-06T01:36:42.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dundar
null
dundar/wav2vec2-large-xlsr-53-turkish
1
1
transformers
28,921
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Turkish by Enes Burak Dundar results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 24.86 --- # Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("dundar/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("dundar/wav2vec2-large-xlsr-53-turkish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("dundar/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("dundar/wav2vec2-large-xlsr-53-turkish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\'\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.86 % ## Training The Common Voice datasets `except the test` set were used for training. The script used for training can be found [here](https://github.com/ebdundar/)
eclare/DialoGPT-small-SCHAEFER
7e12ef9c19125cc80e4163119eaee073990e5012
2021-09-19T06:58:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
eclare
null
eclare/DialoGPT-small-SCHAEFER
1
null
transformers
28,922
--- tags: - conversational --- # Predator DialoGPT-small-SCHAEFER model
ehdwns1516/bart_finetuned_xsum
11471c06f8334892c48335ddf7f9749fe7342d0a
2021-07-30T03:49:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ehdwns1516
null
ehdwns1516/bart_finetuned_xsum
1
null
transformers
28,923
# ehdwns1516/bart_finetuned_xsum * This model has been trained as a [xsum dataset](https://huggingface.co/datasets/xsum). * Input text what you want to summarize. review generator DEMO: [Ainize DEMO](https://main-text-summarizer-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/text_summarizer) ## Overview Language model: [facebook/bart-large](https://huggingface.co/facebook/bart-large) Language: English Training data: [xsum dataset](https://huggingface.co/datasets/xsum) Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/bart_finetuned_xsum-notebook) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/bart_finetuned_xsum") model = AutoModelForSeq2SeqLM.from_pretrained("ehdwns1516/bart_finetuned_xsum") summarizer = pipeline( "summarization", model="ehdwns1516/bart_finetuned_xsum", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = summarizer(context)[0] ```
ehdwns1516/gpt2_review_star2
dd83fd185d16cf388b16c2430982ab5625a7d32f
2021-07-23T01:06:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ehdwns1516
null
ehdwns1516/gpt2_review_star2
1
null
transformers
28,924
# gpt2_review_star2 * This model has been trained as a review_body dataset with a star of 2 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 2 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star2") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star2") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star2", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
ehdwns1516/gpt2_review_star4
9db9820a58c20901bd74f43342267b480dd00a60
2021-07-23T01:07:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ehdwns1516
null
ehdwns1516/gpt2_review_star4
1
null
transformers
28,925
# gpt2_review_star4 * This model has been trained as a review_body dataset with a star of 4 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 4 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star3") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star3") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star4", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
eklrivera/DialoGPT-small-harrypotter
db65d55c35df6bbcf29ce8d13315dc97117050ef
2021-08-28T01:51:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
eklrivera
null
eklrivera/DialoGPT-small-harrypotter
1
null
transformers
28,926
--- tags: - conversational --- # Harry Potter DialoGPT Model
eldor-97/MarianMix_en-10
9a49c64b9bbe2c8f852611ed3c0282f8d770c527
2022-01-30T23:25:27.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
eldor-97
null
eldor-97/MarianMix_en-10
1
null
transformers
28,927
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: MarianMix_en-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MarianMix_en-10 This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0752 - Bleu: 14.601 - Gen Len: 45.8087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 99 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:| | 2.1136 | 0.44 | 500 | 2.0044 | 0.2655 | 109.0201 | | 1.1422 | 0.89 | 1000 | 1.7516 | 1.4123 | 71.0 | | 0.9666 | 1.33 | 1500 | 1.5219 | 3.6611 | 64.6888 | | 0.8725 | 1.78 | 2000 | 1.3606 | 4.6539 | 77.1641 | | 0.7655 | 2.22 | 2500 | 1.2586 | 8.3456 | 60.3837 | | 0.7149 | 2.67 | 3000 | 1.1953 | 11.2247 | 50.5921 | | 0.6719 | 3.11 | 3500 | 1.1541 | 10.4303 | 54.3776 | | 0.6265 | 3.56 | 4000 | 1.1186 | 13.3231 | 48.283 | | 0.6157 | 4.0 | 4500 | 1.0929 | 13.8467 | 46.569 | | 0.5736 | 4.44 | 5000 | 1.0848 | 14.2731 | 45.5035 | | 0.5683 | 4.89 | 5500 | 1.0752 | 14.601 | 45.8087 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.17.0 - Tokenizers 0.10.3
elgeish/cs224n-squad2.0-albert-xxlarge-v1
503bdb37bcfa9fa4030362563ca38266f1ed52d2
2020-12-11T21:39:01.000Z
[ "pytorch", "albert", "question-answering", "arxiv:2004.07067", "transformers", "exbert", "autotrain_compatible" ]
question-answering
false
elgeish
null
elgeish/cs224n-squad2.0-albert-xxlarge-v1
1
null
transformers
28,928
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-xxlarge-v1"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 85.93287265547877, "f1": 88.91258331187983, "total": 6078, "HasAns_exact": 84.36426116838489, "HasAns_f1": 90.58786301361013, "HasAns_total": 2910, "NoAns_exact": 87.37373737373737, "NoAns_f1": 87.37373737373737, "NoAns_total": 3168, "best_exact": 85.93287265547877, "best_exact_thresh": 0.0, "best_f1": 88.91258331187993, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 512, "model_name_or_path": "albert-xxlarge-v1", "model_type": "albert", "num_train_epochs": 4, "per_gpu_train_batch_size": 1, "save_steps": 1000, "seed": 42, "train_batch_size": 1, "version_2_with_negative": true, "warmup_steps": 814, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
eliasbe/IceBERT-finetuned-ner
26889a1111bab9030c508a95ad31be8493a0f84b
2021-10-05T12:35:51.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
eliasbe
null
eliasbe/IceBERT-finetuned-ner
1
null
transformers
28,929
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner model-index: - name: IceBERT-finetuned-ner widget: - text: systurnar guðrún og monique voru einar í skóginum umkringdar víði, eik og reyni með þá ósk að sameinast fjölskyldu sinni sem fór á mai thai og í bíó paradís að sjá jim carey leika í the eternal sunshine of the spotless mind. results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [eliasbe/IceBERT-finetuned-ner](https://huggingface.co/eliasbe/IceBERT-finetuned-ner) on the mim_gold_ner dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
eliotm/t5-small-finetuned-en-to-ro-LR_1e-3
1481505e2aeaf37477996b557f09a86bd0ece164
2021-12-02T14:05:14.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
eliotm
null
eliotm/t5-small-finetuned-en-to-ro-LR_1e-3
1
null
transformers
28,930
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-LR_1e-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.1606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-LR_1e-3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.5215 - Bleu: 7.1606 - Gen Len: 18.2451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6758 | 1.0 | 7629 | 1.5215 | 7.1606 | 18.2451 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
eliotm/t5-small-finetuned-en-to-ro-fp16_off
874aa3e1e06d45355af9de05626c0c426c805596
2021-12-03T03:05:19.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
eliotm
null
eliotm/t5-small-finetuned-en-to-ro-fp16_off
1
null
transformers
28,931
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-fp16_off results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 5.9132 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-fp16_off This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.8351 - Bleu: 5.9132 - Gen Len: 18.2656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.8501 | 1.0 | 7629 | 1.8351 | 5.9132 | 18.2656 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
eliotm/t5-small-finetuned-en-to-ro-lr_2e-6
fc1a35a8770ae924aa57a6ec7a33e4ef9b4b62b6
2021-12-02T03:07:16.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
eliotm
null
eliotm/t5-small-finetuned-en-to-ro-lr_2e-6
1
null
transformers
28,932
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-lr_2e-6 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.2935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-lr_2e-6 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4232 - Bleu: 7.2935 - Gen Len: 18.2521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.04375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6703 | 0.04 | 2671 | 1.4232 | 7.2935 | 18.2521 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
emeson77/wav2vec2-large-xls-r-300m-turkish-colab
f417487d6bc6356e5ab3e55cc540126ea4d43b4c
2021-12-23T06:25:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emeson77
null
emeson77/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
28,933
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7214 - Wer: 0.5555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4408 | 7.83 | 400 | 0.8109 | 0.7792 | | 0.2469 | 15.68 | 800 | 0.6794 | 0.5975 | | 0.0871 | 23.52 | 1200 | 0.7214 | 0.5555 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
emre/distilbert-base-uncased-finetuned-squad
627d4a143e6e46d77f5d558e28adb1ac775cd3d0
2022-02-12T23:05:04.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
emre
null
emre/distilbert-base-uncased-finetuned-squad
1
null
transformers
28,934
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2256 | 1.0 | 5533 | 1.1620 | | 0.9551 | 2.0 | 11066 | 1.1237 | | 0.7726 | 3.0 | 16599 | 1.1620 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-Turkish-Tr-med
a2e02acb6e44040de93d55f9d8a1f56416ddce18
2022-02-10T22:56:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-Turkish-Tr-med
1
null
transformers
28,935
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Turkish-Tr-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-med This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4727 - Wer: 0.4677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8093 | 4.21 | 400 | 2.7831 | 1.0 | | 0.9881 | 8.42 | 800 | 0.5088 | 0.6681 | | 0.3519 | 12.63 | 1200 | 0.4496 | 0.6007 | | 0.2436 | 16.84 | 1600 | 0.4993 | 0.5654 | | 0.1874 | 21.05 | 2000 | 0.4793 | 0.5530 | | 0.1561 | 25.26 | 2400 | 0.5187 | 0.5589 | | 0.1336 | 29.47 | 2800 | 0.5135 | 0.5311 | | 0.1163 | 33.68 | 3200 | 0.4960 | 0.5143 | | 0.1056 | 37.89 | 3600 | 0.4795 | 0.5045 | | 0.0959 | 42.11 | 4000 | 0.4883 | 0.4987 | | 0.0819 | 46.32 | 4400 | 0.4799 | 0.4903 | | 0.0756 | 50.53 | 4800 | 0.4822 | 0.4831 | | 0.0692 | 54.74 | 5200 | 0.4621 | 0.4762 | | 0.062 | 58.95 | 5600 | 0.4727 | 0.4677 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Turkish-Tr-small
027ac27180e9b50f9b3a733aa79830199aee7b8d
2022-02-10T22:55:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-Turkish-Tr-small
1
null
transformers
28,936
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Turkish-Tr-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4375 - Wer: 0.5050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8735 | 4.21 | 400 | 2.8173 | 1.0002 | | 1.0073 | 8.42 | 800 | 0.4981 | 0.6717 | | 0.3395 | 12.63 | 1200 | 0.4470 | 0.5866 | | 0.2254 | 16.84 | 1600 | 0.4349 | 0.5491 | | 0.1648 | 21.05 | 2000 | 0.4454 | 0.5284 | | 0.1325 | 25.26 | 2400 | 0.4552 | 0.5131 | | 0.1102 | 29.47 | 2800 | 0.4375 | 0.5050 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-hy-AM-CV8-v1
a2bc62ea7ea0f0b7e89850418fad2d50fb67c368
2022-02-11T15:29:46.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-hy-AM-CV8-v1
1
null
transformers
28,937
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-hy-AM-CV8-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-hy-AM-CV8-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9145 - Wer: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 170 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7132 | 83.31 | 500 | 1.9274 | 1.0523 | | 1.017 | 166.62 | 1000 | 0.9145 | 0.9598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
enriqueyanh/bert1
25b51925902f0c0a3b7b528870cd33e4297a3cd3
2021-07-18T02:41:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
enriqueyanh
null
enriqueyanh/bert1
1
null
transformers
28,938
Entry not found
enriqueyanh/bert_cn
de8ee47104a69beefe0186621305af0924e88ba3
2021-07-19T11:50:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
enriqueyanh
null
enriqueyanh/bert_cn
1
null
transformers
28,939
Entry not found
eooitom/phobertlong4096
340948a3573d7b479d2bbc5acf725633f1d9a5c7
2021-07-18T17:26:31.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
eooitom
null
eooitom/phobertlong4096
1
null
transformers
28,940
Entry not found
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v1
2502f0252952b8f5518474ba38c805f5b9ba95d6
2022-01-04T12:14:41.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ericRosello
null
ericRosello/distilbert-base-uncased-finetuned-squad-frozen-v1
1
null
transformers
28,941
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.3629 ## Model description Base model weights were frozen leaving only to finetune the last layer (qa outputs). ## Training and evaluation data Achieved EM: 4.7776726584673606, F1: 11.440882287905591 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.679 | 1.0 | 5533 | 4.6713 | | 4.4171 | 2.0 | 11066 | 4.4218 | | 4.3464 | 3.0 | 16599 | 4.3629 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ericRosello/trial
2840e8a5bb36a6061df33d69850590da1fa6681f
2021-12-30T16:35:05.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
ericRosello
null
ericRosello/trial
1
null
transformers
28,942
Entry not found
erica/kc_900
688e90d168187e9ba506af1823cba4ef67924243
2021-05-22T03:41:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
erica
null
erica/kc_900
1
null
transformers
28,943
Entry not found
erica/kob900
076f595aed843bce2e0b1bd6154c9ef52dac8e6d
2021-05-20T12:53:34.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
erica
null
erica/kob900
1
null
transformers
28,944
Entry not found
erica/krm_fin
62081b3738def16632f3529b8e1bde141446c3f3
2021-11-18T02:24:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
erica
null
erica/krm_fin
1
null
transformers
28,945
Entry not found
ericchchiu/dummy-model
53c51e971edf428756f56f9c44c213628e6323e6
2021-09-19T05:11:06.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ericchchiu
null
ericchchiu/dummy-model
1
null
transformers
28,946
Entry not found
eunjin/koMHBERT-kobert-based-v1
4a664b73a3c4a95dea65f2eebdcbc09474bab905
2021-05-19T16:47:55.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
eunjin
null
eunjin/koMHBERT-kobert-based-v1
1
null
transformers
28,947
Entry not found
f00d4tehg0dz/Peppa
196a2344d6e0281257c390a815faa5356f53b1cd
2021-08-28T03:52:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
f00d4tehg0dz
null
f00d4tehg0dz/Peppa
1
null
transformers
28,948
--- tags: - conversational --- #peppa pig chat bot
fabianafatsawo/math_problem_NLtoACE_BART
3beabc3ad8dc572a315aaec8f9856dfc4926fd34
2022-02-03T20:55:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fabianafatsawo
null
fabianafatsawo/math_problem_NLtoACE_BART
1
null
transformers
28,949
Entry not found
facebook/wav2vec2-base-10k-voxpopuli-ft-cs
6b0285fee92dcd520b0c49246eeaaf80689501aa
2021-07-06T01:48:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "cs", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-cs
1
null
transformers
28,950
--- language: cs tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in cs (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-cs") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-cs") # load dataset ds = load_dataset("common_voice", "cs", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-base-10k-voxpopuli-ft-fi
8a507c332fc29a126f4c4e0f8e2be6b044806b64
2021-07-06T01:49:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-fi
1
null
transformers
28,951
--- language: fi tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in fi (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-fi") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-fi") # load dataset ds = load_dataset("common_voice", "fi", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-base-10k-voxpopuli-ft-hr
06e605b9b3bf5a6c6b25b691c82a2f8f65562050
2021-07-06T01:50:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hr", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-hr
1
null
transformers
28,952
--- language: hr tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in hr (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-hr") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-hr") # load dataset ds = load_dataset("common_voice", "hr", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-base-10k-voxpopuli-ft-sk
2b0347bd9eaa179b29222b649f517f0391754d6b
2021-07-06T01:52:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sk", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-sk
1
null
transformers
28,953
--- language: sk tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in sk (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-sk") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-sk") # load dataset ds = load_dataset("common_voice", "sk", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-large-10k-voxpopuli
a77cf9dac84c3b9e334540ce020518f1b291eaa0
2021-07-06T01:57:22.000Z
[ "pytorch", "jax", "wav2vec2", "pretraining", "multilingual", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-10k-voxpopuli
1
null
transformers
28,954
--- language: multilingual tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Large-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained on the 10k unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
fadhilarkan/gq-indo-k
9356d907efc529253bc79fe8985566e1220cc936
2021-08-22T22:25:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "model-index", "autotrain_compatible" ]
text2text-generation
false
fadhilarkan
null
fadhilarkan/gq-indo-k
1
null
transformers
28,955
--- metrics: - rouge model-index: - name: gq-indo-k --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gq-indo-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.7905 - Rouge1: 22.5734 - Rouge2: 6.555 - Rougel: 20.9491 - Rougelsum: 20.9509 - Gen Len: 12.0767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9355 | 1.0 | 13032 | 2.8563 | 22.4828 | 6.5456 | 20.8782 | 20.8772 | 11.915 | | 2.825 | 2.0 | 26064 | 2.7993 | 22.547 | 6.5815 | 20.8937 | 20.8973 | 12.0886 | | 2.7631 | 3.0 | 39096 | 2.7905 | 22.5734 | 6.555 | 20.9491 | 20.9509 | 12.0767 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
fadhilarkan/qa-indo-math-k-v2
e1c3e77222ce625da9a708c3c29f234241e74d19
2021-08-23T08:45:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "model-index", "autotrain_compatible" ]
text2text-generation
false
fadhilarkan
null
fadhilarkan/qa-indo-math-k-v2
1
null
transformers
28,956
--- model-index: - name: qa-indo-math-k-v2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-indo-math-k-v2 This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 80 | 0.7969 | | No log | 2.0 | 160 | 0.7612 | | No log | 3.0 | 240 | 0.7624 | | No log | 4.0 | 320 | 0.7424 | | No log | 5.0 | 400 | 0.7634 | | No log | 6.0 | 480 | 0.7415 | | 0.9241 | 7.0 | 560 | 0.7219 | | 0.9241 | 8.0 | 640 | 0.7792 | | 0.9241 | 9.0 | 720 | 0.7803 | | 0.9241 | 10.0 | 800 | 0.7666 | | 0.9241 | 11.0 | 880 | 0.7614 | | 0.9241 | 12.0 | 960 | 0.7616 | | 0.6373 | 13.0 | 1040 | 0.7673 | | 0.6373 | 14.0 | 1120 | 0.7818 | | 0.6373 | 15.0 | 1200 | 0.8030 | | 0.6373 | 16.0 | 1280 | 0.8021 | | 0.6373 | 17.0 | 1360 | 0.8025 | | 0.6373 | 18.0 | 1440 | 0.8628 | | 0.5614 | 19.0 | 1520 | 0.8616 | | 0.5614 | 20.0 | 1600 | 0.8739 | | 0.5614 | 21.0 | 1680 | 0.8647 | | 0.5614 | 22.0 | 1760 | 0.9006 | | 0.5614 | 23.0 | 1840 | 0.9560 | | 0.5614 | 24.0 | 1920 | 0.9395 | | 0.486 | 25.0 | 2000 | 0.9453 | | 0.486 | 26.0 | 2080 | 0.9569 | | 0.486 | 27.0 | 2160 | 1.0208 | | 0.486 | 28.0 | 2240 | 0.9860 | | 0.486 | 29.0 | 2320 | 0.9806 | | 0.486 | 30.0 | 2400 | 1.0681 | | 0.486 | 31.0 | 2480 | 1.1085 | | 0.4126 | 32.0 | 2560 | 1.1028 | | 0.4126 | 33.0 | 2640 | 1.1110 | | 0.4126 | 34.0 | 2720 | 1.1573 | | 0.4126 | 35.0 | 2800 | 1.1387 | | 0.4126 | 36.0 | 2880 | 1.2067 | | 0.4126 | 37.0 | 2960 | 1.2079 | | 0.3559 | 38.0 | 3040 | 1.2152 | | 0.3559 | 39.0 | 3120 | 1.2418 | | 0.3559 | 40.0 | 3200 | 1.2023 | | 0.3559 | 41.0 | 3280 | 1.2679 | | 0.3559 | 42.0 | 3360 | 1.3178 | | 0.3559 | 43.0 | 3440 | 1.3419 | | 0.3084 | 44.0 | 3520 | 1.4702 | | 0.3084 | 45.0 | 3600 | 1.3824 | | 0.3084 | 46.0 | 3680 | 1.4227 | | 0.3084 | 47.0 | 3760 | 1.3925 | | 0.3084 | 48.0 | 3840 | 1.4940 | | 0.3084 | 49.0 | 3920 | 1.4110 | | 0.2686 | 50.0 | 4000 | 1.4534 | | 0.2686 | 51.0 | 4080 | 1.4749 | | 0.2686 | 52.0 | 4160 | 1.5351 | | 0.2686 | 53.0 | 4240 | 1.5479 | | 0.2686 | 54.0 | 4320 | 1.4755 | | 0.2686 | 55.0 | 4400 | 1.5207 | | 0.2686 | 56.0 | 4480 | 1.5075 | | 0.2388 | 57.0 | 4560 | 1.5470 | | 0.2388 | 58.0 | 4640 | 1.5361 | | 0.2388 | 59.0 | 4720 | 1.5914 | | 0.2388 | 60.0 | 4800 | 1.6430 | | 0.2388 | 61.0 | 4880 | 1.6249 | | 0.2388 | 62.0 | 4960 | 1.5503 | | 0.2046 | 63.0 | 5040 | 1.6441 | | 0.2046 | 64.0 | 5120 | 1.6789 | | 0.2046 | 65.0 | 5200 | 1.6174 | | 0.2046 | 66.0 | 5280 | 1.6175 | | 0.2046 | 67.0 | 5360 | 1.6947 | | 0.2046 | 68.0 | 5440 | 1.6299 | | 0.1891 | 69.0 | 5520 | 1.7419 | | 0.1891 | 70.0 | 5600 | 1.8442 | | 0.1891 | 71.0 | 5680 | 1.8802 | | 0.1891 | 72.0 | 5760 | 1.8233 | | 0.1891 | 73.0 | 5840 | 1.8172 | | 0.1891 | 74.0 | 5920 | 1.8181 | | 0.1664 | 75.0 | 6000 | 1.8399 | | 0.1664 | 76.0 | 6080 | 1.8128 | | 0.1664 | 77.0 | 6160 | 1.8423 | | 0.1664 | 78.0 | 6240 | 1.8380 | | 0.1664 | 79.0 | 6320 | 1.8941 | | 0.1664 | 80.0 | 6400 | 1.8636 | | 0.1664 | 81.0 | 6480 | 1.7949 | | 0.1614 | 82.0 | 6560 | 1.8342 | | 0.1614 | 83.0 | 6640 | 1.8123 | | 0.1614 | 84.0 | 6720 | 1.8639 | | 0.1614 | 85.0 | 6800 | 1.8580 | | 0.1614 | 86.0 | 6880 | 1.8816 | | 0.1614 | 87.0 | 6960 | 1.8579 | | 0.1487 | 88.0 | 7040 | 1.8783 | | 0.1487 | 89.0 | 7120 | 1.9175 | | 0.1487 | 90.0 | 7200 | 1.9025 | | 0.1487 | 91.0 | 7280 | 1.9207 | | 0.1487 | 92.0 | 7360 | 1.9195 | | 0.1487 | 93.0 | 7440 | 1.9142 | | 0.1355 | 94.0 | 7520 | 1.9333 | | 0.1355 | 95.0 | 7600 | 1.9238 | | 0.1355 | 96.0 | 7680 | 1.9256 | | 0.1355 | 97.0 | 7760 | 1.9305 | | 0.1355 | 98.0 | 7840 | 1.9294 | | 0.1355 | 99.0 | 7920 | 1.9301 | | 0.1297 | 100.0 | 8000 | 1.9328 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
fadhilarkan/qa-indo-math-k
bd178df6dbff83acd429d25feaab02394a4ee59c
2021-08-23T07:40:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "model-index", "autotrain_compatible" ]
text2text-generation
false
fadhilarkan
null
fadhilarkan/qa-indo-math-k
1
null
transformers
28,957
--- model-index: - name: qa-indo-math-k --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-indo-math-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 127 | 0.7652 | | No log | 2.0 | 254 | 0.7520 | | No log | 3.0 | 381 | 0.7681 | | 0.9618 | 4.0 | 508 | 0.7337 | | 0.9618 | 5.0 | 635 | 0.7560 | | 0.9618 | 6.0 | 762 | 0.7397 | | 0.9618 | 7.0 | 889 | 0.7298 | | 0.6652 | 8.0 | 1016 | 0.7891 | | 0.6652 | 9.0 | 1143 | 0.7874 | | 0.6652 | 10.0 | 1270 | 0.7759 | | 0.6652 | 11.0 | 1397 | 0.7505 | | 0.6174 | 12.0 | 1524 | 0.7838 | | 0.6174 | 13.0 | 1651 | 0.7878 | | 0.6174 | 14.0 | 1778 | 0.8028 | | 0.6174 | 15.0 | 1905 | 0.8154 | | 0.5733 | 16.0 | 2032 | 0.8131 | | 0.5733 | 17.0 | 2159 | 0.8278 | | 0.5733 | 18.0 | 2286 | 0.8308 | | 0.5733 | 19.0 | 2413 | 0.8433 | | 0.5378 | 20.0 | 2540 | 0.8303 | | 0.5378 | 21.0 | 2667 | 0.8352 | | 0.5378 | 22.0 | 2794 | 0.8369 | | 0.5378 | 23.0 | 2921 | 0.8518 | | 0.5095 | 24.0 | 3048 | 0.8749 | | 0.5095 | 25.0 | 3175 | 0.8533 | | 0.5095 | 26.0 | 3302 | 0.8547 | | 0.5095 | 27.0 | 3429 | 0.8844 | | 0.4856 | 28.0 | 3556 | 0.8752 | | 0.4856 | 29.0 | 3683 | 0.8804 | | 0.4856 | 30.0 | 3810 | 0.8801 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
fadhilarkan/tmpr60526f6
d7355c1978336813de661e21fbd9439b7f946650
2021-08-23T22:32:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fadhilarkan
null
fadhilarkan/tmpr60526f6
1
null
transformers
28,958
Entry not found
fbaigt/proc_roberta
02244bc84ce86d26da9c70669d4cc9f1f0bfe57f
2021-11-08T15:02:04.000Z
[ "pytorch", "roberta", "feature-extraction", "en", "dataset:pubmed", "dataset:chemical patent", "dataset:cooking recipe", "arxiv:2109.04711", "transformers" ]
feature-extraction
false
fbaigt
null
fbaigt/proc_roberta
1
null
transformers
28,959
--- language: - en datasets: - pubmed - chemical patent - cooking recipe --- ## Proc-RoBERTa Proc-RoBERTa is a pre-trained language model for procedural text. It was built by fine-tuning the RoBERTa-based model on a procedural corpus (PubMed articles/chemical patents/cooking recipes), which contains 1.05B tokens. More details can be found in the following [paper](https://arxiv.org/abs/2109.04711): ``` @inproceedings{bai-etal-2021-pre, title = "Pre-train or Annotate? Domain Adaptation with a Constrained Budget", author = "Bai, Fan and Ritter, Alan and Xu, Wei", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", } ``` ## Usage ``` from transformers import * tokenizer = AutoTokenizer.from_pretrained("fbaigt/proc_roberta") model = AutoModelForTokenClassification.from_pretrained("fbaigt/proc_roberta") ``` More usage details can be found [here](https://github.com/bflashcp3f/ProcBERT).
felipetanios/opus-mt-de-en-finetuned-de-to-en-second
134761ba4aa1929adbc022e17fbe96f53a18fa27
2021-12-04T18:48:17.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
felipetanios
null
felipetanios/opus-mt-de-en-finetuned-de-to-en-second
1
null
transformers
28,960
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-de-en-finetuned-de-to-en-second results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 37.9762 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-de-en-finetuned-de-to-en-second This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Bleu: 37.9762 - Gen Len: 25.3696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 157 | 1.1837 | 38.8278 | 25.22 | | No log | 2.0 | 314 | 1.2057 | 38.3047 | 25.2908 | | No log | 3.0 | 471 | 1.2167 | 38.231 | 25.316 | | 1.4808 | 4.0 | 628 | 1.2256 | 37.9871 | 25.3556 | | 1.4808 | 5.0 | 785 | 1.2282 | 37.9762 | 25.3696 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ffsouza/t5-small-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
eb9087d10c3ca9852d1c645c7c8ab6373c3b0d5f
2021-12-02T20:04:48.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/t5-small-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
1
null
transformers
28,961
Entry not found
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro
1e4bf8eadeda2e0abfc5a928f5c7a89a510055fd
2021-12-03T17:33:37.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro
1
null
transformers
28,962
Entry not found
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro
0d99eb211400c9e0854143f6a92a41e1ccbbf65a
2021-12-03T16:07:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro
1
null
transformers
28,963
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 6.4854 - Bleu: 0.0002 - Gen Len: 9.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 6.2568 | 1.0 | 76290 | 6.4854 | 0.0002 | 9.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
fgaim/tielectra-small-pos
32a41e14ea96853608a55df991f2aa16c9440b35
2022-05-14T06:48:42.000Z
[ "pytorch", "electra", "token-classification", "ti", "dataset:TLMD", "dataset:NTC", "transformers", "model-index", "autotrain_compatible" ]
token-classification
false
fgaim
null
fgaim/tielectra-small-pos
1
1
transformers
28,964
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" datasets: - TLMD - NTC metrics: - f1 - precision - recall - accuracy model-index: - name: tielectra-small-pos results: - task: name: Token Classification type: token-classification metrics: - name: F1 type: f1 value: 0.9456 - name: Precision type: precision value: 0.9456 - name: Recall type: recall value: 0.9456 - name: Accuracy type: accuracy value: 0.9456 --- # Tigrinya POS tagging with TiELECTRA This model is a fine-tuned version of [TiELECTRA](https://huggingface.co/fgaim/tielectra-small) on the NTC-v1 dataset (Tedla et al. 2016). ## Basic usage ```python from transformers import pipeline ti_pos = pipeline("token-classification", model="fgaim/tielectra-small-pos") ti_pos("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.2236 - Adj Precision: 0.9148 - Adj Recall: 0.9192 - Adj F1: 0.9170 - Adj Number: 1670 - Adv Precision: 0.8228 - Adv Recall: 0.8058 - Adv F1: 0.8142 - Adv Number: 484 - Con Precision: 0.9793 - Con Recall: 0.9743 - Con F1: 0.9768 - Con Number: 972 - Fw Precision: 0.5 - Fw Recall: 0.3214 - Fw F1: 0.3913 - Fw Number: 28 - Int Precision: 0.64 - Int Recall: 0.6154 - Int F1: 0.6275 - Int Number: 26 - N Precision: 0.9525 - N Recall: 0.9587 - N F1: 0.9556 - N Number: 3992 - Num Precision: 0.9825 - Num Recall: 0.9372 - Num F1: 0.9593 - Num Number: 239 - N Prp Precision: 0.9132 - N Prp Recall: 0.9404 - N Prp F1: 0.9266 - N Prp Number: 470 - N V Precision: 0.9667 - N V Recall: 0.9760 - N V F1: 0.9713 - N V Number: 416 - Pre Precision: 0.9645 - Pre Recall: 0.9592 - Pre F1: 0.9619 - Pre Number: 907 - Pro Precision: 0.9395 - Pro Recall: 0.9079 - Pro F1: 0.9234 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 0.9286 - Unc Recall: 0.8125 - Unc F1: 0.8667 - Unc Number: 16 - V Precision: 0.7609 - V Recall: 0.8974 - V F1: 0.8235 - V Number: 78 - V Aux Precision: 0.9581 - V Aux Recall: 0.9786 - V Aux F1: 0.9682 - V Aux Number: 654 - V Ger Precision: 0.9183 - V Ger Recall: 0.9415 - V Ger F1: 0.9297 - V Ger Number: 513 - V Imf Precision: 0.9473 - V Imf Recall: 0.9442 - V Imf F1: 0.9458 - V Imf Number: 914 - V Imv Precision: 0.8163 - V Imv Recall: 0.5714 - V Imv F1: 0.6723 - V Imv Number: 70 - V Prf Precision: 0.8927 - V Prf Recall: 0.8776 - V Prf F1: 0.8851 - V Prf Number: 294 - V Rel Precision: 0.9535 - V Rel Recall: 0.9485 - V Rel F1: 0.9510 - V Rel Number: 757 - Overall Precision: 0.9456 - Overall Recall: 0.9456 - Overall F1: 0.9456 - Overall Accuracy: 0.9456 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author= {Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title= {Monolingual Pre-trained Language Models for Tigrinya}, year= 2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. International Journal Of Computer Applications 146 pp. 33-41 (2016). ```
fgaim/tielectra-small
1bb8114c801c9855a54ca1a8dee8819b880cf4ea
2021-10-16T19:25:40.000Z
[ "pytorch", "jax", "electra", "fill-mask", "ti", "transformers", "autotrain_compatible" ]
fill-mask
false
fgaim
null
fgaim/tielectra-small
1
1
transformers
28,965
--- language: ti widget: - text: "ዓቕሚ መንእሰይ ኤርትራ [MASK] ተራእዩ" --- # Pre-trained ELECTRA small for Tigrinya Language We pre-train ELECTRA small on the [TLMD](https://zenodo.org/record/5139094) dataset, with over 40 million tokens. Contained are trained Flax and PyTorch models. ## Hyperparameters The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | Seq | |------------|----|----|-----|------|------|------| | SMALL | 12 | 4 | 256 | 1024 | 14M | 512 | (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.)
figurative-nlp/se4fig-roberta-base
15cfbc810952183067ed871f0e6537f21fc21b9e
2022-02-17T15:54:01.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
figurative-nlp
null
figurative-nlp/se4fig-roberta-base
1
null
transformers
28,966
This model can measure semantic similarity between pairs of texts containing figurative language. As far as we know, this model works slightly better than sup-simCSE-roberta-base. For example : **sentence 1**: I have been in seventh heaven since Harry entered my life . **sentence 2**: I have been in very happy since Harry entered my life. the cosin score of simcse: 0.897 the cosin score of us: 0.897 ------------------------------------------------------------------- **sentence 1**: I have been in seventh heaven since Harry entered my life . **sentence 2**: I have been in pain since Harry entered my life . the cosin score of simcse: 0.846 the cosin score of us: 0.753 -------------------------------------------------- It's still a big challenge for us to measure semantic similarity of figurative language from the sentence embedding perspective. unsupvised models may useless as the key is to infer the literal meaning of the figurative expression, since the annotated is rare.
finiteautomata/robertuitonews-tweetcontext
021093b4a915b21027a079e7662e6194d4dd94b9
2021-11-15T14:58:55.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
finiteautomata
null
finiteautomata/robertuitonews-tweetcontext
1
null
transformers
28,967
Entry not found
flavio-nakasato/berdou_500k
67d4f6548207d7c1ba89a80d23ac5811e0ca01b7
2021-08-15T15:19:49.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
flavio-nakasato
null
flavio-nakasato/berdou_500k
1
null
transformers
28,968
MLM fine-tuned from Bertimbau-Base model on the Brazilian Federal Official Gazette (500k instances)
flavio-nakasato/deeppolicytracker_200k
c8c5844ccbdc80bf6b39dd44bb8523e3c8a4e546
2021-08-14T22:45:13.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
flavio-nakasato
null
flavio-nakasato/deeppolicytracker_200k
1
null
transformers
28,969
RoBERTa model pretrained on the Brazilian Federal Official Gazette (200k instances).
flavio-nakasato/roberdou_100k
8d729c98f6080be2f92cbaac8526513fb2d59d19
2021-08-15T15:38:47.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
flavio-nakasato
null
flavio-nakasato/roberdou_100k
1
null
transformers
28,970
MLM fine-tuned from BR-BERTo model on the Brazilian Federal Official Gazette (100k instances)
flax-community/wav2vec2-dhivehi
a83fcbd6d1a8adfc10b83c48a326421d7d1f242e
2021-07-19T09:40:30.000Z
[ "pytorch", "jax", "tensorboard", "wav2vec2", "pretraining", "dv", "dataset:common_voice", "arxiv:2006.11477", "transformers", "automatic-speech-recognition" ]
automatic-speech-recognition
false
flax-community
null
flax-community/wav2vec2-dhivehi
1
null
transformers
28,971
--- language: dv tags: - automatic-speech-recognition datasets: - common_voice --- # Wav2Vec2 Dhivehi Wav2vec2 pre-pretrained from scratch using common voice dhivehi dataset. The model was trained with Flax during the [Flax/Jax Community Week](https://discss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. ## Model description The model used for training is [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (https://arxiv.org/abs/2006.11477). This model is available in the 🤗 [Model Hub](https://huggingface.co/facebook/wav2vec2-base-960h). ## Training data Dhivehi data from [Common Voice](https://commonvoice.mozilla.org/en/datasets). The dataset is also available in the 🤗 [Datasets](https://huggingface.co/datasets/common_voice) library. ## Team members - Shahu Kareem ([@shahukareem](https://huggingface.co/shahukareem)) - Eyna ([@eyna](https://huggingface.co/eyna))
flax-sentence-embeddings/all_datasets_v3_MiniLM-L12
894997f1d826887fa7c19a6194ab1f1c32e17d7a
2021-07-23T15:37:42.000Z
[ "pytorch", "bert", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "sentence-transformers", "feature-extraction", "sentence-similarity" ]
sentence-similarity
false
flax-sentence-embeddings
null
flax-sentence-embeddings/all_datasets_v3_MiniLM-L12
1
1
sentence-transformers
28,972
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`MiniLM-L12`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v3_MiniLM-L12') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [`MiniLM-L12`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flboehm/reddit-bert-text_10
2e1e715bae122844ab660c932bafc0794d504754
2021-12-18T11:07:20.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
flboehm
null
flboehm/reddit-bert-text_10
1
null
transformers
28,973
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reddit-bert-text_10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text_10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9626 | 1.0 | 946 | 2.6163 | | 2.6934 | 2.0 | 1892 | 2.5612 | | 2.5971 | 3.0 | 2838 | 2.5023 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
formermagic/codet5-xl
d9a801b53edec073025eee569b04fb7ee0934878
2021-10-08T02:33:12.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
formermagic
null
formermagic/codet5-xl
1
null
transformers
28,974
Entry not found
formermagic/codet5x-base
5e1ae641c53408d00e483e59a51f2ad5ed3576b2
2021-09-25T01:57:27.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
formermagic
null
formermagic/codet5x-base
1
1
transformers
28,975
Entry not found
frgfm/cspdarknet53_mish
8b9f2c2cf2ec60ab73e7bc8b59a08067b44f52bd
2022-07-20T00:57:54.000Z
[ "pytorch", "dataset:frgfm/imagenette", "arxiv:1911.11929", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
frgfm
null
frgfm/cspdarknet53_mish
1
null
transformers
28,976
--- license: apache-2.0 tags: - image-classification - pytorch datasets: - frgfm/imagenette --- # CSP-Darknet-53 Mish model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The CSP-Darknet-53 Mish architecture was introduced in [this paper](https://arxiv.org/pdf/1911.11929.pdf). ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/cspdarknet53_mish").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1911-11929, author = {Chien{-}Yao Wang and Hong{-}Yuan Mark Liao and I{-}Hau Yeh and Yueh{-}Hua Wu and Ping{-}Yang Chen and Jun{-}Wei Hsieh}, title = {CSPNet: {A} New Backbone that can Enhance Learning Capability of {CNN}}, journal = {CoRR}, volume = {abs/1911.11929}, year = {2019}, url = {http://arxiv.org/abs/1911.11929}, eprinttype = {arXiv}, eprint = {1911.11929}, timestamp = {Tue, 03 Dec 2019 20:41:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-11929.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frtna/t5-small-finetuned-Spanish-to-Italian
41d4b498e87e04ee5a3155a175088118f0b2e67c
2021-12-27T06:01:32.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frtna
null
frtna/t5-small-finetuned-Spanish-to-Italian
1
null
transformers
28,977
Entry not found
frtna/ted_mt-Spanish-to-Italian
3bd08be7e2cd98eaf40639a9d399a1a994ffb9a8
2022-03-28T22:04:21.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:new_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
frtna
null
frtna/ted_mt-Spanish-to-Italian
1
null
transformers
28,978
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset model-index: - name: ted_mt-Spanish-to-Italian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ted_mt-Spanish-to-Italian This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-it](https://huggingface.co/Helsinki-NLP/opus-mt-es-it) on the new_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | No log | 1.0 | 46 | 1.4873 | 29.6133 | 26.9081 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
furyhawk/t5-small-finetuned-bbc
9dfd6be623b15dc939bec5393920024359b1dd58
2021-10-29T11:01:51.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
furyhawk
null
furyhawk/t5-small-finetuned-bbc
1
1
transformers
28,979
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-bbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-bbc This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3238 - Rouge1: 21.2266 - Rouge2: 16.0927 - Rougel: 19.6785 - Rougelsum: 19.8849 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.4882 | 1.0 | 1001 | 0.3238 | 21.2266 | 16.0927 | 19.6785 | 19.8849 | 19.0 | ### Framework versions - Transformers 4.12.0 - Pytorch 1.10.0 - Datasets 1.14.0 - Tokenizers 0.10.3
gabtan99/dialogpt-tagalog-medium
5672eafc6e302639fa07b2c460e52a230e7ffeae
2021-08-16T03:34:56.000Z
[ "pytorch", "gpt2", "text-generation", "tl", "dataset:gabtan99/pex-conversations", "transformers", "conversational", "tagalog", "filipino" ]
conversational
false
gabtan99
null
gabtan99/dialogpt-tagalog-medium
1
null
transformers
28,980
--- tags: - conversational - tagalog - filipino language: - tl inference: false datasets: - gabtan99/pex-conversations --- # Tagalog DialoGPT A DialoGPT-medium model fine-tuned on Tagalog conversational data scraped from the web. This model is an output of a research on RoBERTa-based data augmentation for low resource languages. This is the baseline model which did not use any synthetic data in training. # Latest release: July 25, 2021 * The model is currently only able to respond based on the history of 3 previous utterances before being limited. This is a result of the scarce amount of Tagalog conversations in our dataset. # Dataset [PEx Conversations Dataset](https://huggingface.co/datasets/gabtan99/pex-conversations) # Usage Here is an example of using beam search for model inference. ``` for step in range(2): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # we limit the generation to 512 tokens, each utterance in training had a maximum of 128 tokens chat_history_ids = model.generate( bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id, num_beams=5, no_repeat_ngram_size=3 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` # Training Script [Fine-tuning script adapted from Spanish DialoGPT](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) # Research by * [tyadrianpaule](https://huggingface.co/tyadrianpaule) * [schuylerng](https://huggingface.co/schuylerng) * [dcl127](https://huggingface.co/dcl127)
gaetangate/bart-large_genrl_simpleq
4cd2026b087ee47dcbdd9360052cd8c6e385a2e2
2022-04-05T15:09:05.000Z
[ "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
gaetangate
null
gaetangate/bart-large_genrl_simpleq
1
null
transformers
28,981
--- license: apache-2.0 --- This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
gagan3012/ViTGPT2I2A
1a1ef7d31e41b1780a390910ec707ff35fe9e731
2022-02-08T03:27:44.000Z
[ "pytorch", "vision-encoder-decoder", "transformers", "image-captioning", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
gagan3012
null
gagan3012/ViTGPT2I2A
1
null
transformers
28,982
--- license: apache-2.0 tags: - image-captioning - generated_from_trainer model-index: - name: ViTGPT2I2A results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2I2A This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the vizwiz dataset. It achieves the following results on the evaluation set: - Loss: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1528 | 0.17 | 1000 | 0.0869 | | 0.0899 | 0.34 | 2000 | 0.0817 | | 0.084 | 0.51 | 3000 | 0.0790 | | 0.0814 | 0.68 | 4000 | 0.0773 | | 0.0803 | 0.85 | 5000 | 0.0757 | | 0.077 | 1.02 | 6000 | 0.0745 | | 0.0739 | 1.19 | 7000 | 0.0740 | | 0.0719 | 1.37 | 8000 | 0.0737 | | 0.0717 | 1.54 | 9000 | 0.0730 | | 0.0731 | 1.71 | 10000 | 0.0727 | | 0.0708 | 1.88 | 11000 | 0.0720 | | 0.0697 | 2.05 | 12000 | 0.0717 | | 0.0655 | 2.22 | 13000 | 0.0719 | | 0.0653 | 2.39 | 14000 | 0.0719 | | 0.0657 | 2.56 | 15000 | 0.0712 | | 0.0663 | 2.73 | 16000 | 0.0710 | | 0.0654 | 2.9 | 17000 | 0.0708 | | 0.0645 | 3.07 | 18000 | 0.0716 | | 0.0616 | 3.24 | 19000 | 0.0712 | | 0.0607 | 3.41 | 20000 | 0.0712 | | 0.0611 | 3.58 | 21000 | 0.0711 | | 0.0615 | 3.76 | 22000 | 0.0711 | | 0.0614 | 3.93 | 23000 | 0.0710 | | 0.0594 | 4.1 | 24000 | 0.0716 | | 0.0587 | 4.27 | 25000 | 0.0715 | | 0.0574 | 4.44 | 26000 | 0.0715 | | 0.0579 | 4.61 | 27000 | 0.0715 | | 0.0581 | 4.78 | 28000 | 0.0715 | | 0.0579 | 4.95 | 29000 | 0.0715 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gagan3012/ViTGPT2_VW
93c31484c3072fa3b86c486ede238e59bc44d847
2022-02-07T18:35:06.000Z
[ "pytorch", "vision-encoder-decoder", "transformers", "generated_from_trainer", "model-index" ]
null
false
gagan3012
null
gagan3012/ViTGPT2_VW
1
null
transformers
28,983
--- tags: - generated_from_trainer model-index: - name: ViTGPT2_VW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2_VW This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1256 | 0.03 | 1000 | 0.0928 | | 0.0947 | 0.07 | 2000 | 0.0897 | | 0.0889 | 0.1 | 3000 | 0.0859 | | 0.0888 | 0.14 | 4000 | 0.0842 | | 0.0866 | 0.17 | 5000 | 0.0831 | | 0.0852 | 0.2 | 6000 | 0.0819 | | 0.0833 | 0.24 | 7000 | 0.0810 | | 0.0835 | 0.27 | 8000 | 0.0802 | | 0.081 | 0.31 | 9000 | 0.0796 | | 0.0803 | 0.34 | 10000 | 0.0789 | | 0.0814 | 0.38 | 11000 | 0.0785 | | 0.0799 | 0.41 | 12000 | 0.0780 | | 0.0786 | 0.44 | 13000 | 0.0776 | | 0.0796 | 0.48 | 14000 | 0.0771 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gagan3012/model
753663868669dd0f630b127f783dcf19555c6962
2021-10-18T18:23:58.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
gagan3012
null
gagan3012/model
1
null
transformers
28,984
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
gagan3012/project-code-py-neo
e28fae47af3aa731003fa615abff579bf53207c0
2021-05-25T07:32:07.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
gagan3012
null
gagan3012/project-code-py-neo
1
null
transformers
28,985
Entry not found
gagan3012/summarsiation
57ef8e80d73aa6022af0bcb57b0143b65b38d4b1
2021-08-17T17:17:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gagan3012
null
gagan3012/summarsiation
1
null
transformers
28,986
--- Summarisation model summarsiation
gagan3012/wav2vec2-large-xls-r-300m-hindi
afe0d6fc271251aa848656c10ef5891795ec1ffe
2022-01-28T18:47:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gagan3012
null
gagan3012/wav2vec2-large-xls-r-300m-hindi
1
null
transformers
28,987
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
gagan3012/wav2vec2-large-xls-r-hindi
f9e42271c2adb182ea2d69220cd54e667109e525
2022-01-28T19:14:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gagan3012
null
gagan3012/wav2vec2-large-xls-r-hindi
1
null
transformers
28,988
Entry not found
gagan3012/xls-r-300m-ta
c7da3e627301bc45e971d426126f3ad4e20adaf3
2022-01-31T20:29:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gagan3012
null
gagan3012/xls-r-300m-ta
1
null
transformers
28,989
Entry not found
gaotianyu1350/sup-simcse-bert-large-uncased
1002873deea93828394ca1034dc34e75ded25fa9
2021-05-19T17:06:11.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
gaotianyu1350
null
gaotianyu1350/sup-simcse-bert-large-uncased
1
null
transformers
28,990
Entry not found
gaotianyu1350/sup-simcse-roberta-base
19d5c7f7fcea71d06c80689e8332f7724096f876
2021-05-20T16:21:48.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
gaotianyu1350
null
gaotianyu1350/sup-simcse-roberta-base
1
null
transformers
28,991
Entry not found
gayanin/t5-small-mlm-pubmed-45
1bf8424db32fdf58bf21b8666b19f20f906df1db
2021-11-22T23:47:01.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-mlm-pubmed-45
1
null
transformers
28,992
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-mlm-pubmed-45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-45 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6395 - Rouge2 Precision: 0.3383 - Rouge2 Recall: 0.2424 - Rouge2 Fmeasure: 0.2753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.519 | 0.75 | 500 | 1.9659 | 0.3178 | 0.1888 | 0.2299 | | 2.169 | 1.51 | 1000 | 1.8450 | 0.3256 | 0.2138 | 0.25 | | 2.0796 | 2.26 | 1500 | 1.7900 | 0.3368 | 0.2265 | 0.2636 | | 1.9978 | 3.02 | 2000 | 1.7553 | 0.3427 | 0.234 | 0.2709 | | 1.9686 | 3.77 | 2500 | 1.7172 | 0.3356 | 0.2347 | 0.2692 | | 1.9142 | 4.52 | 3000 | 1.6986 | 0.3358 | 0.238 | 0.2715 | | 1.921 | 5.28 | 3500 | 1.6770 | 0.3349 | 0.2379 | 0.2709 | | 1.8848 | 6.03 | 4000 | 1.6683 | 0.3346 | 0.2379 | 0.2708 | | 1.8674 | 6.79 | 4500 | 1.6606 | 0.3388 | 0.2419 | 0.2752 | | 1.8606 | 7.54 | 5000 | 1.6514 | 0.3379 | 0.2409 | 0.274 | | 1.8515 | 8.3 | 5500 | 1.6438 | 0.3356 | 0.2407 | 0.2731 | | 1.8403 | 9.05 | 6000 | 1.6401 | 0.3367 | 0.2421 | 0.2744 | | 1.8411 | 9.8 | 6500 | 1.6395 | 0.3383 | 0.2424 | 0.2753 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/t5-small-mlm-pubmed
d33459f72434ea4099ba0f4b31a0afd832a6e041
2021-11-08T17:26:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-mlm-pubmed
1
null
transformers
28,993
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-mlm-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8008 - Rouge2 Precision: 0.6071 - Rouge2 Recall: 0.4566 - Rouge2 Fmeasure: 0.5079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.914 | 0.75 | 500 | 0.8691 | 0.5901 | 0.4357 | 0.4879 | | 0.9093 | 1.51 | 1000 | 0.8646 | 0.5867 | 0.4372 | 0.488 | | 0.895 | 2.26 | 1500 | 0.8618 | 0.5891 | 0.4387 | 0.49 | | 0.8842 | 3.02 | 2000 | 0.8571 | 0.5899 | 0.4374 | 0.4891 | | 0.8796 | 3.77 | 2500 | 0.8544 | 0.5903 | 0.4406 | 0.4916 | | 0.8759 | 4.52 | 3000 | 0.8513 | 0.5921 | 0.4395 | 0.4912 | | 0.8621 | 5.28 | 3500 | 0.8485 | 0.5934 | 0.4413 | 0.493 | | 0.8613 | 6.03 | 4000 | 0.8442 | 0.5944 | 0.4428 | 0.4944 | | 0.8537 | 6.79 | 4500 | 0.8406 | 0.594 | 0.4414 | 0.4932 | | 0.8518 | 7.54 | 5000 | 0.8399 | 0.5956 | 0.4424 | 0.4945 | | 0.8438 | 8.3 | 5500 | 0.8365 | 0.5953 | 0.4452 | 0.4964 | | 0.8339 | 9.05 | 6000 | 0.8353 | 0.5983 | 0.4468 | 0.4983 | | 0.8307 | 9.8 | 6500 | 0.8331 | 0.5979 | 0.4461 | 0.4976 | | 0.8328 | 10.56 | 7000 | 0.8304 | 0.5975 | 0.4465 | 0.4979 | | 0.8263 | 11.31 | 7500 | 0.8283 | 0.5977 | 0.4467 | 0.4981 | | 0.8168 | 12.07 | 8000 | 0.8267 | 0.5971 | 0.4463 | 0.4976 | | 0.8165 | 12.82 | 8500 | 0.8248 | 0.5969 | 0.4462 | 0.4976 | | 0.8084 | 13.57 | 9000 | 0.8245 | 0.6018 | 0.4527 | 0.5035 | | 0.8136 | 14.33 | 9500 | 0.8219 | 0.6023 | 0.4509 | 0.5023 | | 0.8073 | 15.08 | 10000 | 0.8206 | 0.6002 | 0.4486 | 0.5001 | | 0.808 | 15.84 | 10500 | 0.8185 | 0.6009 | 0.4506 | 0.5019 | | 0.8027 | 16.59 | 11000 | 0.8173 | 0.5978 | 0.4478 | 0.4989 | | 0.8061 | 17.35 | 11500 | 0.8169 | 0.6022 | 0.4513 | 0.5026 | | 0.7922 | 18.1 | 12000 | 0.8152 | 0.6016 | 0.4501 | 0.5016 | | 0.7928 | 18.85 | 12500 | 0.8141 | 0.6009 | 0.45 | 0.5012 | | 0.7909 | 19.61 | 13000 | 0.8143 | 0.6019 | 0.4521 | 0.5028 | | 0.7909 | 20.36 | 13500 | 0.8115 | 0.5997 | 0.4505 | 0.5011 | | 0.7949 | 21.12 | 14000 | 0.8115 | 0.6043 | 0.4536 | 0.5048 | | 0.7853 | 21.87 | 14500 | 0.8095 | 0.6033 | 0.4527 | 0.5038 | | 0.7819 | 22.62 | 15000 | 0.8095 | 0.6054 | 0.4541 | 0.5056 | | 0.7828 | 23.38 | 15500 | 0.8075 | 0.6036 | 0.453 | 0.5042 | | 0.787 | 24.13 | 16000 | 0.8068 | 0.6031 | 0.4528 | 0.504 | | 0.7739 | 24.89 | 16500 | 0.8072 | 0.6043 | 0.4529 | 0.5045 | | 0.7782 | 25.64 | 17000 | 0.8073 | 0.606 | 0.4551 | 0.5063 | | 0.7772 | 26.4 | 17500 | 0.8063 | 0.6055 | 0.4549 | 0.5062 | | 0.7718 | 27.15 | 18000 | 0.8057 | 0.606 | 0.4546 | 0.5059 | | 0.7747 | 27.9 | 18500 | 0.8045 | 0.6046 | 0.4543 | 0.5054 | | 0.7738 | 28.66 | 19000 | 0.8035 | 0.6059 | 0.4549 | 0.506 | | 0.7642 | 29.41 | 19500 | 0.8041 | 0.6053 | 0.4545 | 0.5058 | | 0.7666 | 30.17 | 20000 | 0.8039 | 0.6066 | 0.457 | 0.508 | | 0.7686 | 30.92 | 20500 | 0.8027 | 0.6075 | 0.4571 | 0.5081 | | 0.7664 | 31.67 | 21000 | 0.8026 | 0.6062 | 0.4566 | 0.5076 | | 0.77 | 32.43 | 21500 | 0.8022 | 0.6068 | 0.4571 | 0.5081 | | 0.7618 | 33.18 | 22000 | 0.8015 | 0.6065 | 0.4563 | 0.5072 | | 0.7615 | 33.94 | 22500 | 0.8013 | 0.6064 | 0.4565 | 0.5074 | | 0.7611 | 34.69 | 23000 | 0.8017 | 0.607 | 0.4567 | 0.5078 | | 0.7611 | 35.44 | 23500 | 0.8013 | 0.608 | 0.4565 | 0.5082 | | 0.7604 | 36.2 | 24000 | 0.8012 | 0.6069 | 0.4561 | 0.5072 | | 0.7599 | 36.95 | 24500 | 0.8013 | 0.6078 | 0.4571 | 0.5085 | | 0.7542 | 37.71 | 25000 | 0.8016 | 0.6083 | 0.4579 | 0.5091 | | 0.7637 | 38.46 | 25500 | 0.8009 | 0.6072 | 0.4569 | 0.5081 | | 0.7596 | 39.22 | 26000 | 0.8008 | 0.6069 | 0.4566 | 0.5078 | | 0.7604 | 39.97 | 26500 | 0.8008 | 0.6071 | 0.4566 | 0.5079 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gchhablani/wav2vec2-large-xlsr-cnh
90564648a748d0ee77977477f5e0a1eb02e7aff0
2021-07-06T04:25:40.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "cnh", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-cnh
1
null
transformers
28,994
--- language: cnh datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Large 53 Hakha Chin by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cnh type: common_voice args: cnh metrics: - name: Test WER type: wer value: 31.38 --- # Wav2Vec2-Large-XLSR-53-Hakha-Chin Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hakha Chin using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cnh", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh/") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cnh", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\/]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 31.38 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1pejk9gv9vMcUOjyVQ_vsV2ngW4NiWLWy?usp=sharing).
gchhablani/wav2vec2-large-xlsr-gu
f89ae9d57db3d2c8dfbc2465f1a02ad41071b548
2021-07-06T04:38:17.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "gu", "dataset:openslr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-gu
1
null
transformers
28,995
--- language: gu datasets: - openslr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Gujarati by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR gu type: openslr metrics: - name: Test WER type: wer value: 23.55 --- # Wav2Vec2-Large-XLSR-53-Gujarati Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Gujarati using the [OpenSLR SLR78](http://openslr.org/78/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. # For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset_eval = test_dataset_eval.map(speech_file_to_array_fn) inputs = processor(test_dataset_eval["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset_eval["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 23.55 % ## Training 90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1fRQlgl4EPR4qKGScgza3MpWgbL5BeWtn?usp=sharing).
gchhablani/wav2vec2-large-xlsr-hu
1c5340192b30f8644bbf2b3c9b6e7060d844057e
2021-07-06T04:43:55.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "hu", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-hu
1
null
transformers
28,996
--- language: hu datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Large 53 Hungarian by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hu type: common_voice args: hu metrics: - name: Test WER type: wer value: 46.75 --- # Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.75 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-hungarian-asr.ipynb). The notebook containing the code used for evaluation can be found [here](https://colab.research.google.com/drive/1esYvWS6IkTQFfRqi_b6lAJEycuecInHE?usp=sharing).
gchhablani/wav2vec2-large-xlsr-ia
0050eb7579ae8662b329a1dd631e8a692a377bc9
2021-07-06T04:50:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ia", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-ia
1
null
transformers
28,997
--- language: ia datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Interlingua by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ia type: common_voice args: ia metrics: - name: Test WER type: wer value: 25.09 --- # Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ia", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ia", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.09 % ## Training The Common Voice `train` and `validation` datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results. The colab notebook used can be found [here](https://colab.research.google.com/drive/1nbqvVwS8DTNrCzzh3vgrN55qxgoqbita?usp=sharing) and the evaluation can be found [here](https://colab.research.google.com/drive/18pCWBwNNUMUYV1FiqT_0EsTbCfwwe7ms?usp=sharing).
gchhablani/wav2vec2-large-xlsr-mr-2
4ec7a5c7cc3738e4d005470df63e0dc3a27fd78f
2021-07-06T04:59:33.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:interspeech_2021_asr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-mr-2
1
null
transformers
28,998
--- language: mr datasets: - interspeech_2021_asr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Marathi 2 by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: InterSpeech 2021 ASR mr type: interspeech_2021_asr metrics: - name: Test WER type: wer value: 14.53 --- # Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using a part of the [InterSpeech 2021 Marathi](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") resampler = torchaudio.transforms.Resample(8_000, 16_000) # The original data was with 8,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(8_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.98 % (555 examples from test set were used for evaluation) **Test Result on 10% of OpenSLR74 data**: 64.64 % ## Training 5000 examples of the InterSpeech Marathi dataset were used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1sIwGOLJPQqhKm_wVZDkzRuoJqAEgArFr?usp=sharing).
gchhablani/wav2vec2-large-xlsr-mr-3
189233a8d6faa0983d91c816f84c73459296046d
2021-07-06T05:05:54.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:openslr", "dataset:interspeech_2021_asr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-mr-3
1
null
transformers
28,999
--- language: mr datasets: - openslr - interspeech_2021_asr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR mr, InterSpeech 2021 ASR mr type: openslr, interspeech_2021_asr metrics: - name: Test WER type: wer value: 19.05 --- # Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset and [InterSpeech 2021](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `text` and `audio_path` fields: ```python import torch import torchaudio import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) # sampling_rate can vary return batch test_data= test_data.map(speech_file_to_array_fn) inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_data["text"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) return batch test_data= test_data.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_data.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 19.05 % (157+157 examples) **Test Result on OpenSLR test**: 14.15 % (157 examples) **Test Results on InterSpeech test**: 27.14 % (157 examples) ## Training 1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used. The colab notebook used for training and evaluation can be found [here](https://colab.research.google.com/drive/15fUhb4bUFFGJyNLr-_alvPxVX4w0YXRu?usp=sharing).