modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
gchhablani/wav2vec2-large-xlsr-mr
5be04fd6f46264bd5de20c5e0b466ca687da6097
2021-07-06T05:10:15.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:openslr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-mr
1
null
transformers
29,000
--- language: mr datasets: - openslr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR mr type: openslr metrics: - name: Test WER type: wer value: 14.53 --- # Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.53 % ## Training 90% of the OpenSLR Marathi dataset was used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1_BbLyLqDUsXG3RpSULfLRjC6UY3RjwME?usp=sharing).
gdimino/voxpopuli_base_it_2
ab2ffe2e0280c807a55f6f79ee37798369c5060d
2022-05-23T13:46:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gdimino
null
gdimino/voxpopuli_base_it_2
1
null
transformers
29,001
Entry not found
geninhu/roberta_large_ITPT_FP
5cb29d591609111f9823a6d453b298829f79b6c9
2022-02-12T04:48:49.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
geninhu
null
geninhu/roberta_large_ITPT_FP
1
null
transformers
29,002
Entry not found
geninhu/xls-asr-vi-40h-1B
9d78f75c88f418ad886ebcddda2ec922ffe9b173
2022-03-23T18:27:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "vi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
geninhu
null
geninhu/xls-asr-vi-40h-1B
1
null
transformers
29,003
--- license: apache-2.0 language: - vi tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-asr-vi-40h-1B results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 25.846 - name: Test CER (with LM) type: cer value: 12.961 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 31.158 - name: Test CER (with LM) type: cer value: 16.179 --- # xls-asr-vi-40h-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 25.93 | 34.21 | |with 4-grams LM| 24.11 | 25.84 | 31.158 | ### Benchmark CER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 9.24 | 19.94 | |with 4-grams LM| 10.37 | 12.96 | 16.179 | ## Evaluation Please use the eval.py file to run the evaluation ```python python eval.py --model_id geninhu/xls-asr-vi-40h-1B --dataset mozilla-foundation/common_voice_7_0 --config vi --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6222 | 1.85 | 1500 | 5.9479 | 0.5474 | | 1.1362 | 3.7 | 3000 | 7.9799 | 0.5094 | | 0.7814 | 5.56 | 4500 | 5.0330 | 0.4724 | | 0.6281 | 7.41 | 6000 | 2.3484 | 0.5020 | | 0.5472 | 9.26 | 7500 | 2.2495 | 0.4793 | | 0.4827 | 11.11 | 9000 | 1.1530 | 0.4768 | | 0.4327 | 12.96 | 10500 | 1.6160 | 0.4646 | | 0.3989 | 14.81 | 12000 | 3.2633 | 0.4703 | | 0.3522 | 16.67 | 13500 | 2.2337 | 0.4708 | | 0.3201 | 18.52 | 15000 | 3.6879 | 0.4565 | | 0.2899 | 20.37 | 16500 | 5.4389 | 0.4599 | | 0.2776 | 22.22 | 18000 | 3.5284 | 0.4537 | | 0.2574 | 24.07 | 19500 | 2.1759 | 0.4649 | | 0.2378 | 25.93 | 21000 | 3.3901 | 0.4448 | | 0.217 | 27.78 | 22500 | 1.1632 | 0.4565 | | 0.2115 | 29.63 | 24000 | 1.7441 | 0.4232 | | 0.1959 | 31.48 | 25500 | 3.4992 | 0.4304 | | 0.187 | 33.33 | 27000 | 3.6163 | 0.4369 | | 0.1748 | 35.19 | 28500 | 3.6038 | 0.4467 | | 0.17 | 37.04 | 30000 | 2.9708 | 0.4362 | | 0.159 | 38.89 | 31500 | 3.2045 | 0.4279 | | 0.153 | 40.74 | 33000 | 3.2427 | 0.4287 | | 0.1463 | 42.59 | 34500 | 3.5439 | 0.4270 | | 0.139 | 44.44 | 36000 | 3.9381 | 0.4150 | | 0.1352 | 46.3 | 37500 | 4.1744 | 0.4092 | | 0.1369 | 48.15 | 39000 | 4.2279 | 0.4154 | | 0.1273 | 50.0 | 40500 | 4.1691 | 0.4133 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ghadeermobasher/BC4CHEMD-Modified_BioM-ELECTRA-Base-Discriminator
270cd4ef461fdedef10144e1e2ef10a4b6781939
2022-01-24T01:09:00.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Modified_BioM-ELECTRA-Base-Discriminator
1
null
transformers
29,004
Entry not found
ghadeermobasher/BC4CHEMD_ImbalancedBioM-ELECTRA-Base-Discriminator
40302123f67c03baa52d789beb110e667eafd003
2022-01-23T09:09:55.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD_ImbalancedBioM-ELECTRA-Base-Discriminator
1
null
transformers
29,005
Entry not found
ghadeermobasher/BC5CDR-Disease_Modified_BioM-ELECTRA-Base-Discriminator
6702c15b3c3d18356746d4f8cf08a4a2a7e44a2e
2022-01-23T00:56:15.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Disease_Modified_BioM-ELECTRA-Base-Discriminator
1
null
transformers
29,006
Entry not found
ghadeermobasher/BioNLP13CG-Chem-Modified_BioM-ELECTRA-Base-Discriminator
ca855276d1afddfc64f70ec0ea0e99a0950d325f
2022-01-22T23:23:20.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioNLP13CG-Chem-Modified_BioM-ELECTRA-Base-Discriminator
1
null
transformers
29,007
Entry not found
ghadeermobasher/CRAFT-Chem-Modified_BioM-ELECTRA-Base-Discriminator
eeaead148e7e04f8d4edb7922f676c4ea73307ff
2022-01-23T02:10:50.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Chem-Modified_BioM-ELECTRA-Base-Discriminator
1
null
transformers
29,008
Entry not found
ghhostboy/DialoGPT-medium-connorDBH3-1
7abfca2da8ed734e9cfbc6cc1489415e4f4975e4
2021-11-26T05:04:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ghhostboy
null
ghhostboy/DialoGPT-medium-connorDBH3-1
1
null
transformers
29,009
--- tags: - conversational --- # Connor
ghofrani/common6
eca7da668eb271998c14067f7e7c1928b21a8c99
2022-02-07T02:29:26.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fa", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
ghofrani
null
ghofrani/common6
1
null
transformers
29,010
--- language: - fa tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: common6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common6 This model is a fine-tuned version of [common6/checkpoint-3500](https://huggingface.co/common6/checkpoint-3500) on the COMMON_VOICE - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3706 - Wer: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0344 | 10.0 | 500 | 0.4043 | 0.4511 | | 0.9651 | 20.0 | 1000 | 0.3793 | 0.4159 | | 0.9125 | 30.0 | 1500 | 0.3756 | 0.4046 | | 0.8831 | 40.0 | 2000 | 0.3650 | 0.3876 | | 0.8399 | 50.0 | 2500 | 0.3605 | 0.3772 | | 0.819 | 60.0 | 3000 | 0.3622 | 0.3714 | | 0.8029 | 70.0 | 3500 | 0.3561 | 0.3664 | | 0.8104 | 80.0 | 4000 | 0.3595 | 0.3660 | | 0.8118 | 90.0 | 4500 | 0.3460 | 0.3592 | | 0.7831 | 100.0 | 5000 | 0.3566 | 0.3593 | | 0.744 | 110.0 | 5500 | 0.3578 | 0.3535 | | 0.7388 | 120.0 | 6000 | 0.3538 | 0.3520 | | 0.714 | 130.0 | 6500 | 0.3682 | 0.3506 | | 0.7291 | 140.0 | 7000 | 0.3625 | 0.3505 | | 0.697 | 150.0 | 7500 | 0.3619 | 0.3479 | | 0.6811 | 160.0 | 8000 | 0.3631 | 0.3440 | | 0.6841 | 170.0 | 8500 | 0.3672 | 0.3460 | | 0.6616 | 180.0 | 9000 | 0.3677 | 0.3410 | | 0.6471 | 190.0 | 9500 | 0.3707 | 0.3420 | | 0.6759 | 200.0 | 10000 | 0.3706 | 0.3421 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
ghofrani/common7
9197cd4b03ac62816476789a661c7ccbafe25141
2022-02-04T01:32:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fa", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
ghofrani
null
ghofrani/common7
1
null
transformers
29,011
--- language: - fa tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: common7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common7 This model is a fine-tuned version of [common7/checkpoint-18500](https://huggingface.co/common7/checkpoint-18500) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3448 - Wer: 0.3478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.957 | 3.29 | 500 | 2.9503 | 1.0 | | 1.7225 | 6.58 | 1000 | 0.8860 | 0.7703 | | 1.4907 | 9.86 | 1500 | 0.6555 | 0.6673 | | 1.4177 | 13.16 | 2000 | 0.5784 | 0.6076 | | 1.3425 | 16.45 | 2500 | 0.5379 | 0.5718 | | 1.33 | 19.73 | 3000 | 0.4962 | 0.5245 | | 1.4378 | 23.03 | 3500 | 0.4699 | 0.5098 | | 1.1894 | 26.31 | 4000 | 0.4527 | 0.4848 | | 1.1844 | 29.6 | 4500 | 0.4309 | 0.4651 | | 1.1795 | 32.89 | 5000 | 0.4131 | 0.4524 | | 1.1471 | 36.18 | 5500 | 0.4052 | 0.4435 | | 1.1337 | 39.47 | 6000 | 0.3927 | 0.4363 | | 1.1896 | 42.76 | 6500 | 0.3811 | 0.4254 | | 1.1847 | 46.05 | 7000 | 0.3855 | 0.4129 | | 0.9954 | 49.34 | 7500 | 0.3729 | 0.3981 | | 1.0293 | 52.63 | 8000 | 0.3637 | 0.4014 | | 1.0224 | 55.92 | 8500 | 0.3578 | 0.3885 | | 1.012 | 59.21 | 9000 | 0.3629 | 0.3930 | | 1.0772 | 62.5 | 9500 | 0.3635 | 0.3906 | | 1.0344 | 65.79 | 10000 | 0.3469 | 0.3771 | | 0.9457 | 69.08 | 10500 | 0.3435 | 0.3735 | | 0.9307 | 72.37 | 11000 | 0.3519 | 0.3762 | | 0.9523 | 75.65 | 11500 | 0.3443 | 0.3666 | | 0.9523 | 78.94 | 12000 | 0.3502 | 0.3757 | | 0.9475 | 82.24 | 12500 | 0.3509 | 0.3643 | | 0.9971 | 85.52 | 13000 | 0.3502 | 0.3626 | | 0.9058 | 88.81 | 13500 | 0.3472 | 0.3605 | | 0.8922 | 92.1 | 14000 | 0.3530 | 0.3618 | | 0.9 | 95.39 | 14500 | 0.3500 | 0.3574 | | 0.9051 | 98.68 | 15000 | 0.3456 | 0.3535 | | 0.9304 | 101.97 | 15500 | 0.3438 | 0.3578 | | 0.9433 | 105.26 | 16000 | 0.3396 | 0.3530 | | 0.8988 | 108.55 | 16500 | 0.3436 | 0.3539 | | 0.8789 | 111.84 | 17000 | 0.3426 | 0.3516 | | 0.8667 | 115.13 | 17500 | 0.3438 | 0.3506 | | 0.8895 | 118.42 | 18000 | 0.3434 | 0.3503 | | 0.8888 | 121.71 | 18500 | 0.3425 | 0.3494 | | 0.9453 | 125.0 | 19000 | 0.3415 | 0.3480 | | 0.9267 | 128.29 | 19500 | 0.3477 | 0.3503 | | 0.8315 | 131.58 | 20000 | 0.3476 | 0.3505 | | 0.8542 | 134.86 | 20500 | 0.3475 | 0.3506 | | 0.8478 | 138.16 | 21000 | 0.3430 | 0.3481 | | 0.8643 | 141.45 | 21500 | 0.3451 | 0.3485 | | 0.8705 | 144.73 | 22000 | 0.3444 | 0.3474 | | 0.9869 | 148.03 | 22500 | 0.3441 | 0.3493 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
ghofrani/common8
c932f110d73bc6a59184a42b0772b9c4f9ad93d0
2022-02-08T23:51:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fa", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
ghofrani
null
ghofrani/common8
1
null
transformers
29,012
--- language: - fa tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: common8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common8 This model is a fine-tuned version of [wghts/checkpoint-20000](https://huggingface.co/wghts/checkpoint-20000) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FA dataset. It achieves the following results on the evaluation set: - Loss: 0.3174 - Wer: 0.3022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 250.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.5847 | 1.93 | 500 | 3.5104 | 1.0 | | 2.7858 | 3.86 | 1000 | 2.9601 | 1.0001 | | 1.6827 | 5.79 | 1500 | 0.7853 | 0.7030 | | 1.4656 | 7.72 | 2000 | 0.6076 | 0.6014 | | 1.3693 | 9.65 | 2500 | 0.5114 | 0.5307 | | 1.379 | 11.58 | 3000 | 0.4666 | 0.4940 | | 1.2832 | 13.51 | 3500 | 0.4257 | 0.4593 | | 1.1931 | 15.44 | 4000 | 0.4039 | 0.4427 | | 1.2911 | 17.37 | 4500 | 0.3956 | 0.4295 | | 1.1577 | 19.3 | 5000 | 0.3705 | 0.4114 | | 1.1135 | 21.24 | 5500 | 0.3740 | 0.4010 | | 1.19 | 23.17 | 6000 | 0.3611 | 0.3935 | | 1.1008 | 25.1 | 6500 | 0.3503 | 0.3880 | | 1.0805 | 27.03 | 7000 | 0.3427 | 0.3781 | | 1.1556 | 28.96 | 7500 | 0.3442 | 0.3727 | | 1.0596 | 30.89 | 8000 | 0.3398 | 0.3646 | | 1.0219 | 32.82 | 8500 | 0.3312 | 0.3660 | | 1.1042 | 34.75 | 9000 | 0.3287 | 0.3612 | | 1.0273 | 36.68 | 9500 | 0.3236 | 0.3556 | | 1.0383 | 38.61 | 10000 | 0.3217 | 0.3558 | | 1.0498 | 40.54 | 10500 | 0.3205 | 0.3520 | | 0.9969 | 42.47 | 11000 | 0.3125 | 0.3504 | | 1.0658 | 44.4 | 11500 | 0.3120 | 0.3493 | | 0.992 | 46.33 | 12000 | 0.3137 | 0.3476 | | 0.9737 | 48.26 | 12500 | 0.3085 | 0.3413 | | 1.0817 | 50.19 | 13000 | 0.3091 | 0.3418 | | 0.9414 | 52.12 | 13500 | 0.3072 | 0.3344 | | 0.9295 | 54.05 | 14000 | 0.3039 | 0.3322 | | 1.0248 | 55.98 | 14500 | 0.2991 | 0.3325 | | 0.9474 | 57.91 | 15000 | 0.3032 | 0.3348 | | 0.928 | 59.85 | 15500 | 0.2999 | 0.3285 | | 1.0321 | 61.78 | 16000 | 0.2982 | 0.3253 | | 0.9255 | 63.71 | 16500 | 0.2970 | 0.3231 | | 0.8928 | 65.64 | 17000 | 0.2993 | 0.3250 | | 1.008 | 67.57 | 17500 | 0.2985 | 0.3222 | | 0.9371 | 69.5 | 18000 | 0.2968 | 0.3216 | | 0.9077 | 71.43 | 18500 | 0.3011 | 0.3299 | | 1.0044 | 73.36 | 19000 | 0.3053 | 0.3306 | | 0.9625 | 75.29 | 19500 | 0.3159 | 0.3295 | | 0.9816 | 77.22 | 20000 | 0.3080 | 0.3304 | | 0.9587 | 119.19 | 20500 | 0.3088 | 0.3284 | | 0.9178 | 122.09 | 21000 | 0.3132 | 0.3320 | | 1.0282 | 125.0 | 21500 | 0.3099 | 0.3266 | | 0.9337 | 127.9 | 22000 | 0.3110 | 0.3317 | | 0.8822 | 130.81 | 22500 | 0.3037 | 0.3247 | | 0.9644 | 133.72 | 23000 | 0.3037 | 0.3238 | | 0.9214 | 136.62 | 23500 | 0.3040 | 0.3234 | | 0.9167 | 139.53 | 24000 | 0.3079 | 0.3203 | | 0.9047 | 142.44 | 24500 | 0.3018 | 0.3177 | | 0.8909 | 145.35 | 25000 | 0.3053 | 0.3181 | | 0.9646 | 148.25 | 25500 | 0.3095 | 0.3229 | | 0.8802 | 151.16 | 26000 | 0.3111 | 0.3192 | | 0.8411 | 154.07 | 26500 | 0.3068 | 0.3123 | | 0.9235 | 156.97 | 27000 | 0.3090 | 0.3177 | | 0.8943 | 159.88 | 27500 | 0.3115 | 0.3179 | | 0.8854 | 162.79 | 28000 | 0.3052 | 0.3157 | | 0.8734 | 165.69 | 28500 | 0.3077 | 0.3124 | | 0.8515 | 168.6 | 29000 | 0.3117 | 0.3128 | | 0.912 | 171.51 | 29500 | 0.3039 | 0.3121 | | 0.8669 | 174.42 | 30000 | 0.3120 | 0.3123 | | 0.823 | 177.32 | 30500 | 0.3148 | 0.3118 | | 0.9129 | 180.23 | 31000 | 0.3179 | 0.3101 | | 0.8255 | 183.14 | 31500 | 0.3164 | 0.3114 | | 0.8948 | 186.05 | 32000 | 0.3128 | 0.3101 | | 0.8397 | 188.95 | 32500 | 0.3143 | 0.3068 | | 0.8341 | 191.86 | 33000 | 0.3127 | 0.3136 | | 0.873 | 194.76 | 33500 | 0.3149 | 0.3124 | | 0.8232 | 197.67 | 34000 | 0.3166 | 0.3086 | | 0.8002 | 200.58 | 34500 | 0.3149 | 0.3061 | | 0.8621 | 203.49 | 35000 | 0.3160 | 0.3093 | | 0.8123 | 206.39 | 35500 | 0.3141 | 0.3063 | | 0.7995 | 209.3 | 36000 | 0.3174 | 0.3075 | | 0.8271 | 212.21 | 36500 | 0.3173 | 0.3043 | | 0.8059 | 215.12 | 37000 | 0.3176 | 0.3079 | | 0.8835 | 218.02 | 37500 | 0.3169 | 0.3062 | | 0.8027 | 220.93 | 38000 | 0.3203 | 0.3098 | | 0.775 | 223.83 | 38500 | 0.3159 | 0.3068 | | 0.8487 | 226.74 | 39000 | 0.3161 | 0.3072 | | 0.7929 | 229.65 | 39500 | 0.3143 | 0.3037 | | 0.7653 | 232.56 | 40000 | 0.3160 | 0.3048 | | 0.8211 | 235.46 | 40500 | 0.3173 | 0.3031 | | 0.7761 | 238.37 | 41000 | 0.3176 | 0.3025 | | 0.7761 | 241.28 | 41500 | 0.3179 | 0.3027 | | 0.7903 | 244.19 | 42000 | 0.3181 | 0.3016 | | 0.7807 | 247.09 | 42500 | 0.3170 | 0.3027 | | 0.8406 | 250.0 | 43000 | 0.3174 | 0.3022 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3.dev0 - Tokenizers 0.10.3
ghofrani/wghts
fbee6a05cbce5b6e140cd0d2228ddb44c98a919b
2022-02-01T14:40:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ghofrani
null
ghofrani/wghts
1
null
transformers
29,013
Entry not found
ghofrani/xls-r-300m-fa
cd91fbf24b356c04eb76bbf2902371be0332ff4a
2022-01-30T17:57:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ghofrani
null
ghofrani/xls-r-300m-fa
1
null
transformers
29,014
Entry not found
giganticode/bert-large-StackOverflow-comments_1M
3d001537561adbeaf5eceea41652045e2e05bdad
2021-10-25T13:05:34.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
giganticode
null
giganticode/bert-large-StackOverflow-comments_1M
1
null
transformers
29,015
Entry not found
glasses/deit_tiny_patch16_224
644ed2bb334f3134610ed3e322f5f851d0151aff
2021-04-22T18:44:18.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/deit_tiny_patch16_224
1
null
transformers
29,016
# deit_tiny_patch16_224 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
glasses/densenet201
06d094765920f89ade917d7543408af6aeec1400
2021-12-01T07:49:34.000Z
[ "pytorch", "arxiv:1608.06993", "transformers" ]
null
false
glasses
null
glasses/densenet201
1
null
transformers
29,017
# densenet201 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
glasses/efficientnet_b2
a7e47f80d02a476ad3c1bb93a6dbf0f9ed3b0e87
2021-12-01T08:08:06.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
null
false
glasses
null
glasses/efficientnet_b2
1
null
transformers
29,018
# efficientnet_b2 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_lite0
053175a3c8d6b541c9c74a1824e204022c939267
2021-12-01T08:09:01.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/efficientnet_lite0
1
null
transformers
29,019
Entry not found
glasses/regnetx_002
95112ce3a26a6732f545f89845acfffd10b40dc4
2021-11-30T20:25:54.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
null
false
glasses
null
glasses/regnetx_002
1
null
transformers
29,020
# regnetx_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_040
ae9ad4f198ee581a5fabb74e1c12ab76aa4be8f3
2021-11-30T20:27:44.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/regnetx_040
1
null
transformers
29,021
Entry not found
glasses/regnety_002
e329d1379bc33fb17896af32a7b58cb8aaf4857c
2021-12-01T07:45:22.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
null
false
glasses
null
glasses/regnety_002
1
null
transformers
29,022
# regnety_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_008
c11a1def96cd4792b8aac07fc5a56bb348a2f8e1
2021-12-01T07:46:29.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
null
false
glasses
null
glasses/regnety_008
1
null
transformers
29,023
# regnety_008 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_032
f81cec2a53473c19368a04807787b598b6761e5b
2021-12-01T08:31:57.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/regnety_032
1
null
transformers
29,024
Entry not found
glasses/regnety_064
9264ebae2f90665208a23f49cf3810bd1e56c504
2021-12-01T07:48:05.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/regnety_064
1
null
transformers
29,025
Entry not found
glasses/resnet101
34e388c831995fd4fdde057d194a0cc4e8dece76
2021-11-30T20:10:49.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/resnet101
1
null
transformers
29,026
Entry not found
glasses/resnet26d
4256019677b10c45bdb178090012fe7a4287042a
2021-11-30T20:07:33.000Z
[ "pytorch", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
glasses
null
glasses/resnet26d
1
null
transformers
29,027
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet26d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/vgg11
705c39d6a90328422a3ffac6e0399f07ba46ca29
2021-12-01T07:53:25.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/vgg11
1
null
transformers
29,028
# vgg11 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vit_base_patch16_224
b40b132218b4bc9b8ca2e440a6dec7c9f03b3ff1
2021-12-01T08:23:58.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/vit_base_patch16_224
1
null
transformers
29,029
# vit_base_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_huge_patch16_224
3fe73ba563e88fb761eb9602963b7ac89a09e430
2021-04-22T18:39:36.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/vit_huge_patch16_224
1
null
transformers
29,030
# vit_huge_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_huge_patch32_384
5fe4bb24cddf4b5bdb69ed43e6e79b0cc584d65e
2021-04-22T18:41:37.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/vit_huge_patch32_384
1
null
transformers
29,031
# vit_huge_patch32_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
gniemiec/mt5-small-finetuned-xsum
1b7410ef252bdd00a331c8e7bd8dae2b1a0e0d19
2021-09-21T13:22:57.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gniemiec
null
gniemiec/mt5-small-finetuned-xsum
1
null
transformers
29,032
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: mt5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 2.8351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-xsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 2.8351 - Rouge2: 0.3143 - Rougel: 2.6488 - Rougelsum: 2.6463 - Gen Len: 4.9416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | nan | 1.0 | 12753 | nan | 2.8351 | 0.3143 | 2.6488 | 2.6463 | 4.9416 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
gonced8/pegasus-qa
ea2408de301ae6f79c879572bf9569f57c24551b
2021-05-17T15:46:42.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
gonced8
null
gonced8/pegasus-qa
1
null
transformers
29,033
Entry not found
goodjw/gpt-trinity-poem
6aeec8ffb04bde11334d1c61be1061f685ee7d4f
2021-12-07T15:38:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
goodjw
null
goodjw/gpt-trinity-poem
1
null
transformers
29,034
Entry not found
google/multiberts-seed_0-step_0k
93e2ee33230f548b15bebc8c936f0cb5ef17b37a
2021-11-05T23:37:18.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_0k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_0k
1
null
transformers
29,035
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_0k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1000k
6d16dba114c3c91aecee3526ffbaac84f7f5e90f
2021-11-06T00:08:04.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1000k
1
null
transformers
29,036
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1000k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1000k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_100k
144b03be7bcb188b4c32b1b1d1b4588e3492de07
2021-11-05T23:45:48.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_100k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_100k
1
null
transformers
29,037
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_100k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1100k
f33754924915b9b4adabb88c9a0258fddd4cbe48
2021-11-06T00:09:45.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1100k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1100k
1
null
transformers
29,038
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1100k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1100k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1100k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1300k
f084998a12cb66a1791644c2cf77695daba9bd1f
2021-11-06T00:13:16.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1300k
1
null
transformers
29,039
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1600k
00d5c4d9a1a5711b6a508db1110c666cd6596e1d
2021-11-06T00:18:39.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1600k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1600k
1
null
transformers
29,040
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1600k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1600k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1600k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1800k
f813aa4d9f8d566efaf4e400383ed20684d4bfe5
2021-11-06T00:22:02.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1800k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1800k
1
null
transformers
29,041
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1800k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_180k
0419b80e6129e38ecf0bf4380daa01de5055dbf3
2021-11-05T23:52:40.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_180k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_180k
1
null
transformers
29,042
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_180k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1900k
c6e05e75cb669fe8874deec83d3145a5203dd18c
2021-11-06T00:23:42.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1900k
1
null
transformers
29,043
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_20k
8c40009a439f3e7f9c5844f1707a4a1c46197b99
2021-11-05T23:38:42.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_20k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_20k
1
null
transformers
29,044
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_20k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_40k
49397d8a5abe7a220e7adc5d9e10ded4c44f9c9b
2021-11-05T23:40:21.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_40k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_40k
1
null
transformers
29,045
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_40k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_500k
7a3142802965daf1d830a8d7ef20fc07bb52a388
2021-11-05T23:59:35.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_500k
1
null
transformers
29,046
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_500k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_500k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_600k
49bd26b107a6edfa4ce67849cc7ec0d7316cd586
2021-11-06T00:01:17.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_600k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_600k
1
null
transformers
29,047
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_600k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_600k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_600k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_60k
9ab74d84068694cf164abb169c44cb647421caf4
2021-11-05T23:42:02.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_60k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_60k
1
null
transformers
29,048
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_60k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_60k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_60k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_80k
f9acf7e8fa6c803090b5cea8607ba4070bdc5d90
2021-11-05T23:44:05.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_80k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_80k
1
null
transformers
29,049
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_80k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_900k
08a690ae07a6f913cc6cb17f29868c9c4dd166ee
2021-11-06T00:06:27.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_900k
1
null
transformers
29,050
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_0k
6461363270fb78b7322d003717392f2d37cee00f
2021-11-06T00:33:14.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_0k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_0k
1
null
transformers
29,051
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_0k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_1200k
3a77ec97c76fc286f29ade9f215502f02650fcf5
2021-11-06T01:06:43.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1200k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1200k
1
null
transformers
29,052
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1200k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1200k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1200k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_140k
499f45fb52ea6add6e78d94fff7e266badfaed97
2021-11-06T00:45:09.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_140k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_140k
1
null
transformers
29,053
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_140k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_1500k
1a3503430d9a9a8da7b10c76179e14e5c4e2570e
2021-11-06T01:12:25.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1500k
1
null
transformers
29,054
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_1700k
695b433d43d194151958b2169a4540658fc93c99
2021-11-06T01:15:38.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1700k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1700k
1
null
transformers
29,055
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1700k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1700k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1700k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_180k
35dd95299fc753e4033fa32fe8c6b2bcf5b81a8d
2021-11-06T00:48:31.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_180k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_180k
1
null
transformers
29,056
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_180k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_1900k
262516350928ae9dec915630550813a9dc8f9a57
2021-11-06T01:18:58.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1900k
1
null
transformers
29,057
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_200k
fe825b2d10adb9032c3e11a8ae8b87ec42332d22
2021-11-06T00:50:10.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_200k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_200k
1
null
transformers
29,058
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_200k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_200k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_200k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_40k
a17edd76b8276a4c356ad5047c2cb9cd6b07df30
2021-11-06T00:36:44.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_40k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_40k
1
null
transformers
29,059
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_40k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_60k
d04485e97c640635e9cf3c7745bb52030322c9ac
2021-11-06T00:38:22.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_60k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_60k
1
null
transformers
29,060
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_60k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_60k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_60k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_800k
872e5525d3d7be281f9bc93c1f742aa260f31352
2021-11-06T01:00:02.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_800k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_800k
1
null
transformers
29,061
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_800k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_800k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_800k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_80k
2fbd54bd29bf5f852a2b11291b1abfcb94f8a639
2021-11-06T00:40:03.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_80k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_80k
1
null
transformers
29,062
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_80k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_900k
7b6943f6e294fd3ac46ed077caaf8334037ff7ac
2021-11-06T01:01:37.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_900k
1
null
transformers
29,063
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_0k
ab05d88d267ac301e64c70d013e2e6338a1237d3
2021-11-06T01:22:15.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_0k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_0k
1
null
transformers
29,064
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_0k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1000k
105f9db751598695dd7eaeed63725b9efbb9e0e1
2021-11-06T01:52:35.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1000k
1
null
transformers
29,065
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1000k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1000k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_100k
cc8a45e7eba051555b0c5bb120c58b649c6418f6
2021-11-06T01:30:23.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_100k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_100k
1
null
transformers
29,066
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_100k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1200k
0e05c382414b22f5c51557ba45d293f835e9986a
2021-11-06T01:55:55.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1200k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1200k
1
null
transformers
29,067
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1200k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1200k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1200k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1300k
6a38204007db2912a86f328722c57c68db67eb62
2021-11-06T01:57:33.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1300k
1
null
transformers
29,068
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1400k
44ffa412e617f369da9eb563164a63e58987c3b9
2021-11-06T01:59:29.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1400k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1400k
1
null
transformers
29,069
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1400k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1400k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1400k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_140k
e99322fb0182d9b09b83f2a3dc71354e487ca7f6
2021-11-06T01:33:52.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_140k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_140k
1
null
transformers
29,070
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_140k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1600k
aec87149bd36cc2f96362ae1dba788ca4e7ceaeb
2021-11-06T02:02:54.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1600k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1600k
1
null
transformers
29,071
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1600k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1600k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1600k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_160k
44e9c347054762780a8411764945d69d62a84219
2021-11-06T01:35:33.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_160k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_160k
1
null
transformers
29,072
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_160k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_180k
f7b697673292fce623a90e39276cdc65dfd59d55
2021-11-06T01:37:26.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_180k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_180k
1
null
transformers
29,073
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_180k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_2000k
1cc140c003bde233583f2327732bdc67a7c21921
2021-11-06T02:09:39.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_2000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_2000k
1
null
transformers
29,074
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_2000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_200k
9954496f11bd4f1a4d01942882e1afe65baf8580
2021-11-06T01:39:13.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_200k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_200k
1
null
transformers
29,075
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_200k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_200k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_200k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_20k
94eb1b42727d309989b3d8e844265476b731360e
2021-11-06T01:23:46.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_20k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_20k
1
null
transformers
29,076
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_20k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_300k
9e59e4f7a4319d8c9f9cc20d35db47fcb13521c6
2021-11-06T01:41:00.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_300k
1
null
transformers
29,077
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_60k
bf921cbb2ee6b4b15754aced9621a58721683376
2021-11-06T01:26:52.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_60k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_60k
1
null
transformers
29,078
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_60k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_60k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_60k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_80k
357087afb94435b7103ee7a6cbdcae25560a0fbd
2021-11-06T01:28:37.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_80k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_80k
1
null
transformers
29,079
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_80k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1100k
579ac6108a669bcd56be551c62c7fe74d064e78a
2021-11-06T02:44:24.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1100k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1100k
1
null
transformers
29,080
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1100k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1100k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1100k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_120k
7ff57537769b040df909eec73177756f92dd8f09
2021-11-06T02:21:41.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_120k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_120k
1
null
transformers
29,081
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_120k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1300k
27d87c2a3260d29ab2f22af202474b09207e85d3
2021-11-06T02:47:47.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1300k
1
null
transformers
29,082
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_140k
b1a50e2a7689591312e588933ebda5e73a6c08e8
2021-11-06T02:23:23.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_140k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_140k
1
null
transformers
29,083
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_140k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1600k
63595f348ec87ad66e90206178c3dc29384edbee
2021-11-06T02:52:59.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1600k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1600k
1
null
transformers
29,084
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1600k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1600k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1600k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_160k
1c3777526b3c8c7bf3d4adf58fbe1b203e0dfe5f
2021-11-06T02:25:08.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_160k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_160k
1
null
transformers
29,085
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_160k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1800k
79e8bf2e88f3c53999cf5735d04ecf9da237e600
2021-11-06T02:56:28.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1800k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1800k
1
null
transformers
29,086
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1800k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_300k
5b1ab57da645324d774f98e6f5405cecb5725137
2021-11-06T02:30:30.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_300k
1
null
transformers
29,087
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_500k
62c7693d9ce239001fb56496def19eb35ef28741
2021-11-06T02:33:55.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_500k
1
null
transformers
29,088
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_500k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_500k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/realm-orqa-wq-reader
008372f1b5f82570d9aa3fbdcf9daebad99f5175
2022-01-05T18:34:18.000Z
[ "pytorch", "realm", "en", "transformers", "license:apache-2.0" ]
null
false
google
null
google/realm-orqa-wq-reader
1
null
transformers
29,089
--- language: en license: apache-2.0 --- # realm-orqa-wq-reader ## Model description The REALM checkpoint finetuned with WebQuestions(WQ) dataset, converted from the TF checkpoint provided by Google Language. The original paper, code, and checkpoints can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## Usage ```python from transformers import RealmReader reader = RealmReader.from_pretrained("qqaatw/realm-orqa-wq-reader") ```
google/t5-efficient-base-dl2
669370fa0dd9e00e767dadb5c64e49431bf80850
2022-02-15T10:52:03.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-base-dl2
1
null
transformers
29,090
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-BASE-DL2 (Deep-Narrow version) T5-Efficient-BASE-DL2 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-dl2** - is of model type **Base** with the following variations: - **dl** is **2** It has **128.52** million parameters and thus requires *ca.* **514.09 MB** of memory in full precision (*fp32*) or **257.05 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-dl16
92619bb9e48f051aa1cd1585eace4a100800e289
2022-02-15T10:54:45.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-dl16
1
null
transformers
29,091
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-DL16 (Deep-Narrow version) T5-Efficient-LARGE-DL16 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-dl16** - is of model type **Large** with the following variations: - **dl** is **16** It has **603.47** million parameters and thus requires *ca.* **2413.88 MB** of memory in full precision (*fp32*) or **1206.94 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-dl2
f50cf9800a03f439795c271941c22f548168d93e
2022-02-15T10:54:48.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-dl2
1
null
transformers
29,092
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-DL2 (Deep-Narrow version) T5-Efficient-LARGE-DL2 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-dl2** - is of model type **Large** with the following variations: - **dl** is **2** It has **368.53** million parameters and thus requires *ca.* **1474.11 MB** of memory in full precision (*fp32*) or **737.05 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-dl4
162579abc37ee3c5f574e9cd96b4b5b745fe5098
2022-02-15T10:54:55.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-dl4
1
null
transformers
29,093
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-DL4 (Deep-Narrow version) T5-Efficient-LARGE-DL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-dl4** - is of model type **Large** with the following variations: - **dl** is **4** It has **402.09** million parameters and thus requires *ca.* **1608.36 MB** of memory in full precision (*fp32*) or **804.18 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-el12
6f49b98a07f37871f260280460c80d5f9cda53ff
2022-02-15T10:55:04.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-el12
1
null
transformers
29,094
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-EL12 (Deep-Narrow version) T5-Efficient-LARGE-EL12 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-el12** - is of model type **Large** with the following variations: - **el** is **12** It has **586.69** million parameters and thus requires *ca.* **2346.78 MB** of memory in full precision (*fp32*) or **1173.39 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-nl4
72ab9d2ca787b192142604bf6c10f9ac5cd3650d
2022-02-15T10:56:01.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-nl4
1
null
transformers
29,095
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-NL4 (Deep-Narrow version) T5-Efficient-LARGE-NL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-nl4** - is of model type **Large** with the following variations: - **nl** is **4** It has **150.37** million parameters and thus requires *ca.* **601.49 MB** of memory in full precision (*fp32*) or **300.75 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-dl16
eaa13145f881420bc381ece1aa771aae12323baa
2022-02-15T10:56:26.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-dl16
1
null
transformers
29,096
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-DL16 (Deep-Narrow version) T5-Efficient-SMALL-DL16 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-dl16** - is of model type **Small** with the following variations: - **dl** is **16** It has **102.49** million parameters and thus requires *ca.* **409.97 MB** of memory in full precision (*fp32*) or **204.99 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-dl4
faa4050d1e76a56f215174951aca49d1e798ccfd
2022-02-15T10:56:33.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-dl4
1
null
transformers
29,097
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-DL4 (Deep-Narrow version) T5-Efficient-SMALL-DL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-dl4** - is of model type **Small** with the following variations: - **dl** is **4** It has **52.13** million parameters and thus requires *ca.* **208.51 MB** of memory in full precision (*fp32*) or **104.25 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el16-dl1
3661535eec72f5414bebf59180737ad608983e9c
2022-02-15T10:56:52.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el16-dl1
1
null
transformers
29,098
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL16-DL1 (Deep-Narrow version) T5-Efficient-SMALL-EL16-DL1 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el16-dl1** - is of model type **Small** with the following variations: - **el** is **16** - **dl** is **1** It has **71.01** million parameters and thus requires *ca.* **284.04 MB** of memory in full precision (*fp32*) or **142.02 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el16-dl8
1e982f8c4e38976d95f252e4fd1b6e8a70fdf19a
2022-02-15T10:57:02.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el16-dl8
1
null
transformers
29,099
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL16-DL8 (Deep-Narrow version) T5-Efficient-SMALL-EL16-DL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el16-dl8** - is of model type **Small** with the following variations: - **el** is **16** - **dl** is **8** It has **100.39** million parameters and thus requires *ca.* **401.57 MB** of memory in full precision (*fp32*) or **200.78 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.