modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WikinewsSum/bert2bert-multi-fr-wiki-news | 1ce94b46c6844911f81e436286dda2b701d7878a | 2020-08-11T09:05:51.000Z | [
"pytorch",
"encoder-decoder",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | WikinewsSum | null | WikinewsSum/bert2bert-multi-fr-wiki-news | 1 | null | transformers | 28,500 | Entry not found |
Wintermute/Wintermute_extended | 6542afcb93569c7612a8b69175e48402e0d3c1e1 | 2021-05-21T11:42:01.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | Wintermute | null | Wintermute/Wintermute_extended | 1 | null | transformers | 28,501 | Entry not found |
XuguangAi/DialoGPT-small-Leslie | 55c4edf627fe811829983edad20b8a249a08925d | 2021-12-03T20:56:53.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | XuguangAi | null | XuguangAi/DialoGPT-small-Leslie | 1 | null | transformers | 28,502 | ---
tags:
- conversational
---
# Leslie |
XuguangAi/DialoGPT-small-Rick | f23061315d267e69e91355b5d516187127388bd3 | 2021-12-03T18:09:15.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | XuguangAi | null | XuguangAi/DialoGPT-small-Rick | 1 | null | transformers | 28,503 | ---
tags:
- conversational
---
# Rick |
Yankee/test1234 | caa8db0e468698f78721f88240c28b8869b3583d | 2022-01-29T12:10:10.000Z | [
"pytorch",
"conversational"
] | conversational | false | Yankee | null | Yankee/test1234 | 1 | null | null | 28,504 | ---
tags:
- conversational
---
#test |
Yixuan/wav2vec2-large-xls-r-300m-turkish-colab | 67e1a93e8127c4695c7917e099eefe491ae3a241 | 2022-01-26T22:54:18.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | Yixuan | null | Yixuan/wav2vec2-large-xls-r-300m-turkish-colab | 1 | null | transformers | 28,505 | Entry not found |
YusufSahin99/IFIS_ZORK_AI_HORROR | eb47e2fd4d873b8ef79019aa07303f8bc07d24e2 | 2021-07-14T14:11:24.000Z | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | false | YusufSahin99 | null | YusufSahin99/IFIS_ZORK_AI_HORROR | 1 | null | transformers | 28,506 | ---
license: mit
tags:
- generated_from_trainer
model_index:
- name: IFIS_ZORK_AI_HORROR
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IFIS_ZORK_AI_HORROR
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
|
YusufSahin99/IFIS_ZORK_AI_MODERN | 355561a61429099cd97873856319879f1c980490 | 2021-07-14T15:12:29.000Z | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | false | YusufSahin99 | null | YusufSahin99/IFIS_ZORK_AI_MODERN | 1 | null | transformers | 28,507 | ---
license: mit
tags:
- generated_from_trainer
model_index:
- name: IFIS_ZORK_AI_MODERN
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IFIS_ZORK_AI_MODERN
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
|
YusufSahin99/IFIS_ZORK_AI_SCIFI | 0418e093ca52a1cc5d00564738b1f9a87ae77194 | 2021-07-13T15:34:34.000Z | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | false | YusufSahin99 | null | YusufSahin99/IFIS_ZORK_AI_SCIFI | 1 | null | transformers | 28,508 | ---
license: mit
tags:
- generated_from_trainer
model_index:
- name: IFIS_ZORK_AI_SCIFI
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IFIS_ZORK_AI_SCIFI
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
|
YusufSahin99/Zork_AI_SciFi | 7bed41fcd673b2777591243b47c5311975f1fc58 | 2021-07-13T14:58:01.000Z | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | false | YusufSahin99 | null | YusufSahin99/Zork_AI_SciFi | 1 | null | transformers | 28,509 | ---
license: mit
tags:
- generated_from_trainer
model_index:
- name: Zork_AI_SciFi
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Zork_AI_SciFi
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
|
ZYW/squad-mbart-model | a1ebd77f18a0c18f2c11846806ff1ab0b054d50c | 2021-05-30T16:12:15.000Z | [
"pytorch",
"mbart",
"question-answering",
"transformers",
"model-index",
"autotrain_compatible"
] | question-answering | false | ZYW | null | ZYW/squad-mbart-model | 1 | null | transformers | 28,510 | ---
model-index:
- name: squad-mbart-model
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# squad-mbart-model
This model was trained from scratch on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.7.0
- Tokenizers 0.10.3
|
ZYW/squad-mbert-en-de-es-model | bc103b41234e2c595115dd0dbfb5d948592945a5 | 2021-05-30T22:33:10.000Z | [
"pytorch",
"bert",
"question-answering",
"transformers",
"model-index",
"autotrain_compatible"
] | question-answering | false | ZYW | null | ZYW/squad-mbert-en-de-es-model | 1 | null | transformers | 28,511 | ---
model-index:
- name: squad-mbert-en-de-es-model
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# squad-mbert-en-de-es-model
This model was trained from scratch on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.7.0
- Tokenizers 0.10.3
|
ZYW/squad-mbert-en-de-es-vi-zh-model | 12212d870a7a876b76bfceb07b84d12bc813e291 | 2021-05-31T05:43:16.000Z | [
"pytorch",
"bert",
"question-answering",
"transformers",
"model-index",
"autotrain_compatible"
] | question-answering | false | ZYW | null | ZYW/squad-mbert-en-de-es-vi-zh-model | 1 | null | transformers | 28,512 | ---
model-index:
- name: squad-mbert-en-de-es-vi-zh-model
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# squad-mbert-en-de-es-vi-zh-model
This model was trained from scratch on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.7.0
- Tokenizers 0.10.3
|
ZYW/squad-mbert-model_2 | 5e40804ae62d2a302f8d832434388143d3d5f90a | 2021-05-30T18:18:37.000Z | [
"pytorch",
"bert",
"question-answering",
"transformers",
"model-index",
"autotrain_compatible"
] | question-answering | false | ZYW | null | ZYW/squad-mbert-model_2 | 1 | null | transformers | 28,513 | ---
model-index:
- name: squad-mbert-model_2
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# squad-mbert-model_2
This model was trained from scratch on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.7.0
- Tokenizers 0.10.3
|
Zephaus/Chromrepo | 3236cbbd330532404c5104deaac14800f2a5dc5b | 2022-02-17T05:21:06.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | Zephaus | null | Zephaus/Chromrepo | 1 | null | transformers | 28,514 | ---
tags:
- conversational
---
# Chrombot |
ZhaoyiGUAN/Bert_Fintuning_Test1 | 404e65e8f4c43e7a20e7e85c2fcc0324bb9088cc | 2021-09-27T05:56:04.000Z | [
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | ZhaoyiGUAN | null | ZhaoyiGUAN/Bert_Fintuning_Test1 | 1 | null | transformers | 28,515 | Entry not found |
ZhaoyiGUAN/Bert_cn_finetuning_1 | 30607826d1e5dce88c3004b21e12b81635eabbb5 | 2021-09-27T07:49:00.000Z | [
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | ZhaoyiGUAN | null | ZhaoyiGUAN/Bert_cn_finetuning_1 | 1 | null | transformers | 28,516 | Entry not found |
Zichuu/spert | a0e06ac5cfa24803d6394d6bd603caf1c4f08749 | 2021-11-03T04:45:41.000Z | [
"pytorch",
"bert",
"transformers"
] | null | false | Zichuu | null | Zichuu/spert | 1 | null | transformers | 28,517 | # SpERT
SpERT is the Relation Extraction model [(SpERT)Span-based Entity and Relation Transformer](https://github.com/lavis-nlp/spert).This is the model trained with CoNLL04 Dataset.
## Use
## References
```
Markus Eberts, Adrian Ulges. Span-based Joint Entity and Relation Extraction with Transformer Pre-training. 24th European Conference on Artificial Intelligence, 2020.
``` |
Zirk/wav2vec2-base-timit-demo-colab | 4e3efe59dfc1c927a253d05582a9c526f00c1266 | 2022-02-18T09:18:19.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | Zirk | null | Zirk/wav2vec2-base-timit-demo-colab | 1 | null | transformers | 28,518 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
ab20211112/distilbert-base-uncased-finetuned-squad | cb173be9554e6f26ea38ee2da654518ca5efe85e | 2021-11-16T13:59:38.000Z | [
"pytorch",
"distilbert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | false | ab20211112 | null | ab20211112/distilbert-base-uncased-finetuned-squad | 1 | null | transformers | 28,519 | Entry not found |
abdouaziiz/soraberta | dbaf2580bce224dcc99c6364a3d86267ceae87dd | 2021-09-24T11:31:32.000Z | [
"pytorch",
"roberta",
"fill-mask",
"wo",
"arxiv:1907.11692",
"transformers",
"language-model",
"wolof",
"autotrain_compatible"
] | fill-mask | false | abdouaziiz | null | abdouaziiz/soraberta | 1 | null | transformers | 28,520 | ---
language: wo
tags:
- roberta
- language-model
- wo
- wolof
---
# Soraberta: Unsupervised Language Model Pre-training for Wolof
**Soraberta** is pretrained roberta-base model on wolof language . Roberta was introduced in [this paper](https://arxiv.org/abs/1907.11692)
## Soraberta models
| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------: | :---: | :---: | :---: | :---: |
| `soraberta-base` | 6 | 12 | 514 | 83 M |
## Using Soraberta with Hugging Face's Transformers
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='abdouaziiz/soraberta')
>>> unmasker("juroom naari jullit man nanoo boole jend aw nag walla <mask>.")
[{'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla gileem.',
'score': 0.9783930778503418,
'token': 4621,
'token_str': ' gileem'},
{'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla jend.',
'score': 0.009271537885069847,
'token': 2155,
'token_str': ' jend'},
{'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla aw.',
'score': 0.0027585660573095083,
'token': 704,
'token_str': ' aw'},
{'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla pel.',
'score': 0.001120452769100666,
'token': 1171,
'token_str': ' pel'},
{'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla juum.',
'score': 0.0005133090307936072,
'token': 5820,
'token_str': ' juum'}]
```
## Training data
The data sources are [Bible OT](http://biblewolof.com/) , [WOLOF-ONLINE](http://www.wolof-online.com/)
## Contact
Please contact [email protected] for any question, feedback or request. |
abhijithneilabraham/pubmed-summarisation-pegasus | 9d188552a2d6efd8206e17a6f4c24f10596d519c | 2021-12-16T08:24:30.000Z | [
"pytorch",
"pegasus",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | abhijithneilabraham | null | abhijithneilabraham/pubmed-summarisation-pegasus | 1 | null | transformers | 28,521 | Entry not found |
abhinema/testauto | 2a9729eb29e9470040dcccb6a3e4ac10f386fe4f | 2022-01-03T03:39:47.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | abhinema | null | abhinema/testauto | 1 | null | transformers | 28,522 | Entry not found |
adalbertojunior/test-256-uncased-2 | 17812ef8e6509a31c1f5d3cedf0b12f1b066f46f | 2021-11-23T22:40:09.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | adalbertojunior | null | adalbertojunior/test-256-uncased-2 | 1 | null | transformers | 28,523 | Entry not found |
adalbertojunior/test-256-uncased | f555a5cbdb19979ac63e1070f063e97c374be93b | 2021-10-22T03:46:25.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | adalbertojunior | null | adalbertojunior/test-256-uncased | 1 | null | transformers | 28,524 | Entry not found |
adamlin/tus_21-delex_5000 | f8d1d183f5e8431655112afa7308c344933be68b | 2021-04-08T14:25:30.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | adamlin | null | adamlin/tus_21-delex_5000 | 1 | null | transformers | 28,525 | Entry not found |
adamlin/usr-topicalchat-uk | c381748b06283b39dca2ee9f1596ddb7055b19bf | 2021-06-28T13:00:11.000Z | [
"pytorch",
"transformers"
] | null | false | adamlin | null | adamlin/usr-topicalchat-uk | 1 | null | transformers | 28,526 | Entry not found |
addy88/code-t5-ruby | fd048f0605bfcfe6d7b8d591a0caf7afbed4a724 | 2022-01-02T14:30:57.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | addy88 | null | addy88/code-t5-ruby | 1 | null | transformers | 28,527 | Entry not found |
addy88/wav2vec2-base-timit-english | 27caf1ad8b4fe3ebedf2a74ff6ad144f08e850f9 | 2021-12-09T07:36:20.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | addy88 | null | addy88/wav2vec2-base-timit-english | 1 | null | transformers | 28,528 | Entry not found |
addy88/wav2vec2-gujarati-stt | 9bf62903e69d363e3a0d89d9ae29e1679bc9238d | 2021-12-19T15:14:38.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | addy88 | null | addy88/wav2vec2-gujarati-stt | 1 | null | transformers | 28,529 | ## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import argparse
def parse_transcription(wav_file):
# load pretrained model
processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-gujarati-stt")
model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-gujarati-stt")
# load audio
audio_input, sample_rate = sf.read(wav_file)
# pad input values and return pt tensor
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
# INFERENCE
# retrieve logits & take argmax
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# transcribe
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
print(transcription)
``` |
addy88/wav2vec2-punjabi-stt | 75c243f095615c99544f25ab86dca9f38d65a336 | 2021-12-19T15:04:43.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | addy88 | null | addy88/wav2vec2-punjabi-stt | 1 | null | transformers | 28,530 | ## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import argparse
def parse_transcription(wav_file):
# load pretrained model
processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-punjabi-stt")
model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-punjabi-stt")
# load audio
audio_input, sample_rate = sf.read(wav_file)
# pad input values and return pt tensor
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
# INFERENCE
# retrieve logits & take argmax
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# transcribe
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
print(transcription)
``` |
addy88/wav2vec2-sanskrit-stt | f850d9109d3539782596d94cf9ae805b07add340 | 2021-12-19T13:38:52.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | addy88 | null | addy88/wav2vec2-sanskrit-stt | 1 | null | transformers | 28,531 | ## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import argparse
def parse_transcription(wav_file):
# load pretrained model
processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-sanskrit-stt")
model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-sanskrit-stt")
# load audio
audio_input, sample_rate = sf.read(wav_file)
# pad input values and return pt tensor
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
# INFERENCE
# retrieve logits & take argmax
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# transcribe
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
print(transcription)
``` |
adit94/t5_emotion | 0d77341f38bea60c2f21c568e7c0430056d5bf63 | 2021-08-30T12:25:58.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | adit94 | null | adit94/t5_emotion | 1 | null | transformers | 28,532 | Entry not found |
aditeyabaral/additionalpretrained-contrastive-bert-base-cased | 658b4b07aabfe56c8374f946ec4bb59c8905ffba | 2021-11-14T14:43:02.000Z | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | false | aditeyabaral | null | aditeyabaral/additionalpretrained-contrastive-bert-base-cased | 1 | null | transformers | 28,533 | Entry not found |
aditeyabaral/additionalpretrained-roberta-base | aa283f25d1c01d16b02c1bc807188961d04d8fb0 | 2021-10-21T18:03:10.000Z | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | false | aditeyabaral | null | aditeyabaral/additionalpretrained-roberta-base | 1 | null | transformers | 28,534 | Entry not found |
aditeyabaral/additionalpretrained-roberta-hinglish-big | 8e245b78dfc8b7e4f29ce7e9fdbed00e211e0f56 | 2021-10-20T18:28:00.000Z | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | false | aditeyabaral | null | aditeyabaral/additionalpretrained-roberta-hinglish-big | 1 | null | transformers | 28,535 | Entry not found |
aditeyabaral/additionalpretrained-xlm-roberta-base | 13aa8b3c2f9224a15f2930ae06276a17f23f0cdf | 2021-10-24T04:55:30.000Z | [
"pytorch",
"xlm-roberta",
"feature-extraction",
"transformers"
] | feature-extraction | false | aditeyabaral | null | aditeyabaral/additionalpretrained-xlm-roberta-base | 1 | null | transformers | 28,536 | Entry not found |
aditeyabaral/distilbert-hinglish-big | ef7d10f080c41826d8a504094ccd03f046e62280 | 2021-10-12T00:18:47.000Z | [
"pytorch",
"distilbert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | aditeyabaral | null | aditeyabaral/distilbert-hinglish-big | 1 | null | transformers | 28,537 | Entry not found |
aditeyabaral/roberta-hinglish-big | 4afc17dccd5210bec6b0262356138f9afa92cb89 | 2021-09-25T15:22:17.000Z | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | aditeyabaral | null | aditeyabaral/roberta-hinglish-big | 1 | null | transformers | 28,538 | Entry not found |
aditeyabaral/sentencetransformer-distilbert-hinglish-small | f520d4902ff71dba8b5bc6d51e8b778a25142998 | 2021-10-20T09:04:04.000Z | [
"pytorch",
"distilbert",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers"
] | sentence-similarity | false | aditeyabaral | null | aditeyabaral/sentencetransformer-distilbert-hinglish-small | 1 | null | sentence-transformers | 28,539 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# aditeyabaral/sentencetransformer-distilbert-hinglish-small
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-hinglish-small')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-small')
model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-small')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-hinglish-small)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 4617 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
aditeyabaral/sentencetransformer-roberta-hinglish-big | 1ecbbf08a16ed1c49e7b6585d8cb3a5fd093108f | 2021-10-19T22:41:56.000Z | [
"pytorch",
"roberta",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers"
] | sentence-similarity | false | aditeyabaral | null | aditeyabaral/sentencetransformer-roberta-hinglish-big | 1 | null | sentence-transformers | 28,540 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# aditeyabaral/sentencetransformer-roberta-hinglish-big
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aditeyabaral/sentencetransformer-roberta-hinglish-big')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-roberta-hinglish-big')
model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-roberta-hinglish-big')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-roberta-hinglish-big)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 4617 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
adresgezgini/wav2vec-tr-lite-AG | 868cefaac6e65cd42fd6d3490f3f8e3680cc4093 | 2021-07-05T18:56:04.000Z | [
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"tr",
"dataset:common_voice",
"transformers",
"audio",
"speech",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | adresgezgini | null | adresgezgini/wav2vec-tr-lite-AG | 1 | null | transformers | 28,541 | ---
language: tr
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Turkish by Davut Emre TASAR
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice tr
type: common_voice
args: tr
metrics:
- name: Test WER
type: wer
---
# wav2vec-tr-lite-AG
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG")
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
**Test Result**: 27.30 %
[here](https://adresgezgini.com)
|
ahanadeb/wav2vec2-large-indian-instrument-classification-v1 | c5c5d27e2843e7f521e83e71d22a1c33299a1994 | 2021-11-11T18:56:47.000Z | [
"pytorch",
"wav2vec2",
"transformers"
] | null | false | ahanadeb | null | ahanadeb/wav2vec2-large-indian-instrument-classification-v1 | 1 | null | transformers | 28,542 | Hello World! |
ahazeemi/wav2vec2-base-timit-demo-colab | 9298c44e857c972218c0f6ea89646aa34d687e7d | 2021-12-04T17:49:06.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | ahazeemi | null | ahazeemi/wav2vec2-base-timit-demo-colab | 1 | null | transformers | 28,543 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
ahmednasserswe/sentence_distilbert | 3d7079baf6315ab5b5bc72aaf1bb0deec87e0e31 | 2020-06-09T09:02:24.000Z | [
"pytorch",
"distilbert",
"feature-extraction",
"transformers"
] | feature-extraction | false | ahmednasserswe | null | ahmednasserswe/sentence_distilbert | 1 | null | transformers | 28,544 | Entry not found |
aiface/vivos_prj1tha | 13d4631e483ad063a3e4fbb664cf465a41fd3098 | 2022-02-18T11:35:55.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"dataset:vivos_dataset",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | aiface | null | aiface/vivos_prj1tha | 1 | null | transformers | 28,545 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- vivos_dataset
model-index:
- name: vivos_prj1tha
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vivos_prj1tha
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the vivos_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7737
- Wer: 0.5128
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.0541 | 10.25 | 400 | 1.0293 | 0.7051 |
| 0.5514 | 20.51 | 800 | 0.7737 | 0.5128 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
aimiekhe/yummv1 | cbee126f36a8c8e06cdf03287e8b213b793dd26e | 2021-06-06T02:38:56.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | aimiekhe | null | aimiekhe/yummv1 | 1 | null | transformers | 28,546 | ---
tags:
- conversational
---
# My Awesome Model |
aimiekhe/yummv2 | f6ec3f678ac78948706b936049b20c9a1593c443 | 2021-06-06T03:04:24.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | aimiekhe | null | aimiekhe/yummv2 | 1 | null | transformers | 28,547 | ---
tags:
- conversational
---
# My Awesome Model |
ajaiswal1008/wav2vec2-large-xls-r-300m-hi-colab_new | 4d5a2ff441ff89964d01a3dd6f0a23a772846c6d | 2022-02-10T15:11:14.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"dataset:common_voice",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | ajaiswal1008 | null | ajaiswal1008/wav2vec2-large-xls-r-300m-hi-colab_new | 1 | null | transformers | 28,548 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-hi-colab_new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hi-colab_new
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
ajanco/sr_roberta_oscar | 445c0576978f0163953c3b9f22419feaf402658d | 2022-01-18T03:20:21.000Z | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | ajanco | null | ajanco/sr_roberta_oscar | 1 | null | transformers | 28,549 | Entry not found |
akadriu/wav2vec2-large-xlsr-53-Total_2e-4 | 4b7700481ec71e67564920bbff079875862311ec | 2022-03-03T06:28:22.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | akadriu | null | akadriu/wav2vec2-large-xlsr-53-Total_2e-4 | 1 | null | transformers | 28,550 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xlsr-53-Total_2e-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-Total_2e-4
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2082
- Wer: 0.4355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.0972 | 0.1 | 200 | 2.9261 | 0.9696 |
| 2.2492 | 0.2 | 400 | 1.4255 | 0.7957 |
| 0.9206 | 0.3 | 600 | 1.1854 | 0.6903 |
| 0.8152 | 0.4 | 800 | 1.2227 | 0.6072 |
| 0.7284 | 0.5 | 1000 | 1.2009 | 0.5694 |
| 0.6503 | 0.6 | 1200 | 1.2563 | 0.5603 |
| 0.643 | 0.7 | 1400 | 1.1556 | 0.5404 |
| 0.6692 | 0.8 | 1600 | 1.2245 | 0.5176 |
| 0.5939 | 0.9 | 1800 | 1.1662 | 0.5116 |
| 0.577 | 1.0 | 2000 | 1.1099 | 0.5128 |
| 0.5118 | 1.1 | 2200 | 1.3127 | 0.4911 |
| 0.5389 | 1.2 | 2400 | 1.0365 | 0.4958 |
| 0.5452 | 1.3 | 2600 | 1.0924 | 0.4840 |
| 0.5072 | 1.4 | 2800 | 1.2285 | 0.4787 |
| 0.514 | 1.5 | 3000 | 1.0627 | 0.4802 |
| 0.5275 | 1.6 | 3200 | 1.0770 | 0.4702 |
| 0.5064 | 1.7 | 3400 | 1.1287 | 0.4709 |
| 0.4837 | 1.8 | 3600 | 1.1389 | 0.4694 |
| 0.4939 | 1.9 | 3800 | 1.0724 | 0.4635 |
| 0.5104 | 2.0 | 4000 | 1.2553 | 0.4604 |
| 0.4439 | 2.1 | 4200 | 1.2482 | 0.4570 |
| 0.4546 | 2.2 | 4400 | 1.2378 | 0.4732 |
| 0.4294 | 2.3 | 4600 | 1.1122 | 0.4519 |
| 0.4533 | 2.4 | 4800 | 1.1338 | 0.4508 |
| 0.4526 | 2.5 | 5000 | 1.2038 | 0.4540 |
| 0.4642 | 2.6 | 5200 | 1.2188 | 0.4635 |
| 0.4403 | 2.7 | 5400 | 1.2394 | 0.4512 |
| 0.4485 | 2.8 | 5600 | 1.0510 | 0.4577 |
| 0.4614 | 2.9 | 5800 | 1.1459 | 0.4451 |
| 0.4233 | 3.0 | 6000 | 1.1758 | 0.4397 |
| 0.4013 | 3.1 | 6200 | 1.0858 | 0.4456 |
| 0.4166 | 3.2 | 6400 | 1.2246 | 0.4420 |
| 0.3998 | 3.3 | 6600 | 1.1516 | 0.4465 |
| 0.4106 | 3.4 | 6800 | 1.2585 | 0.4394 |
| 0.4031 | 3.5 | 7000 | 1.2514 | 0.4419 |
| 0.3858 | 3.6 | 7200 | 1.2545 | 0.4447 |
| 0.393 | 3.7 | 7400 | 1.0103 | 0.4387 |
| 0.3819 | 3.8 | 7600 | 1.1280 | 0.4355 |
| 0.3957 | 3.9 | 7800 | 1.1960 | 0.4476 |
| 0.392 | 4.0 | 8000 | 1.1318 | 0.4461 |
| 0.355 | 4.1 | 8200 | 1.1822 | 0.4387 |
| 0.3377 | 4.2 | 8400 | 1.2258 | 0.4403 |
| 0.353 | 4.3 | 8600 | 1.2232 | 0.4350 |
| 0.3595 | 4.4 | 8800 | 1.1642 | 0.4329 |
| 0.3762 | 4.5 | 9000 | 1.1507 | 0.4365 |
| 0.3455 | 4.6 | 9200 | 1.2259 | 0.4337 |
| 0.3398 | 4.7 | 9400 | 1.2888 | 0.4350 |
| 0.3624 | 4.8 | 9600 | 1.2015 | 0.4364 |
| 0.3392 | 4.9 | 9800 | 1.2045 | 0.4350 |
| 0.339 | 5.0 | 10000 | 1.2082 | 0.4355 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
akoshel/made-ai-dungeon | f8559c01e873eacbb1278eb24b981f0ae0cb7c66 | 2021-11-06T07:50:15.000Z | [
"pytorch"
] | null | false | akoshel | null | akoshel/made-ai-dungeon | 1 | null | null | 28,551 | Entry not found |
akozlo/con_bal60k | 72fae7ef4fbb9671c9a19b8a0cb60de1e87a8064 | 2022-02-14T00:13:51.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | akozlo | null | akozlo/con_bal60k | 1 | null | transformers | 28,552 | hello
|
akshara23/Pegasus_for_Here | 5d726f21102839f9992a15f54a77384680fad66b | 2021-07-09T17:46:41.000Z | [
"pytorch",
"pegasus",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | akshara23 | null | akshara23/Pegasus_for_Here | 1 | null | transformers | 28,553 | Entry not found |
akshaychaudhary/distilbert-base-uncased-finetuned-cloud-ner | ec8ceb1e9c413f68f8f90d2b3f271847b37ca4cf | 2022-02-11T15:00:36.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | akshaychaudhary | null | akshaychaudhary/distilbert-base-uncased-finetuned-cloud-ner | 1 | null | transformers | 28,554 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-cloud-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cloud-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0812
- Precision: 0.8975
- Recall: 0.9080
- F1: 0.9027
- Accuracy: 0.9703
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 166 | 0.1326 | 0.7990 | 0.8043 | 0.8017 | 0.9338 |
| No log | 2.0 | 332 | 0.0925 | 0.8770 | 0.8946 | 0.8858 | 0.9618 |
| No log | 3.0 | 498 | 0.0812 | 0.8975 | 0.9080 | 0.9027 | 0.9703 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
akshaychaudhary/distilbert-base-uncased-finetuned-cloud1-ner | f44b90a4493fbce870448e0a11a0b054097491b2 | 2022-02-14T13:30:57.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | akshaychaudhary | null | akshaychaudhary/distilbert-base-uncased-finetuned-cloud1-ner | 1 | null | transformers | 28,555 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-cloud1-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cloud1-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0074
- Precision: 0.9714
- Recall: 0.9855
- F1: 0.9784
- Accuracy: 0.9972
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 166 | 0.0160 | 0.9653 | 0.9420 | 0.9535 | 0.9945 |
| No log | 2.0 | 332 | 0.0089 | 0.9623 | 0.9855 | 0.9737 | 0.9965 |
| No log | 3.0 | 498 | 0.0074 | 0.9714 | 0.9855 | 0.9784 | 0.9972 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
akshaychaudhary/distilbert-base-uncased-finetuned-ner | 3ff90e6496e62c999b174d2b8d798024037c4a4e | 2022-01-31T18:50:20.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | akshaychaudhary | null | akshaychaudhary/distilbert-base-uncased-finetuned-ner | 1 | null | transformers | 28,556 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9988
- Precision: 0.3
- Recall: 0.6
- F1: 0.4
- Accuracy: 0.7870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 84 | 0.8399 | 0.2105 | 0.4 | 0.2759 | 0.75 |
| No log | 2.0 | 168 | 0.9664 | 0.3 | 0.6 | 0.4 | 0.7870 |
| No log | 3.0 | 252 | 0.9988 | 0.3 | 0.6 | 0.4 | 0.7870 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
|
alexrfelicio/t5-small-finetuned16-en-to-de | cb17f9201101aef9d69b0ab6e80d4b9bba0ade42 | 2021-12-02T23:08:06.000Z | [
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"dataset:wmt16",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | alexrfelicio | null | alexrfelicio/t5-small-finetuned16-en-to-de | 1 | null | transformers | 28,557 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
model-index:
- name: t5-small-finetuned16-en-to-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned16-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 136 | 2.1906 | 23.3821 | 12.956 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
alexrfelicio/t5-small-finetuned300-en-to-de | 20ea51fd33177801ad718a3c8e876f8a70e1889b | 2021-12-02T22:08:10.000Z | [
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"dataset:wmt16",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | alexrfelicio | null | alexrfelicio/t5-small-finetuned300-en-to-de | 1 | null | transformers | 28,558 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
model-index:
- name: t5-small-finetuned300-en-to-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned300-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 136 | 1.1454 | 14.2319 | 17.8329 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
alexrfelicio/t5-small-finetuned8-en-to-de | 9827cad8ca156f4fc13492c91b10857b9c6e658d | 2021-12-03T00:13:25.000Z | [
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"dataset:wmt16",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | alexrfelicio | null | alexrfelicio/t5-small-finetuned8-en-to-de | 1 | null | transformers | 28,559 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
model-index:
- name: t5-small-finetuned8-en-to-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned8-en-to-de
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 136 | 3.6717 | 3.9127 | 4.0207 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
alexyalunin/RuBioBERT | 048cc02fb23c7035d7c635e820c3d3cd4af85cd3 | 2022-01-24T16:30:44.000Z | [
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | alexyalunin | null | alexyalunin/RuBioBERT | 1 | null | transformers | 28,560 | Entry not found |
ali2066/finetuned_token_2e-05_16_02_2022-14_15_41 | 0e87a0ad0394a2bbf099338296ad766a3c37e2cc | 2022-02-16T13:18:14.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_16_02_2022-14_15_41 | 1 | null | transformers | 28,561 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_16_02_2022-14_15_41
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_15_41
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1746
- Precision: 0.3191
- Recall: 0.3382
- F1: 0.3284
- Accuracy: 0.9439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.2908 | 0.1104 | 0.1905 | 0.1398 | 0.8731 |
| No log | 2.0 | 76 | 0.2253 | 0.1682 | 0.3206 | 0.2206 | 0.9114 |
| No log | 3.0 | 114 | 0.2041 | 0.2069 | 0.3444 | 0.2585 | 0.9249 |
| No log | 4.0 | 152 | 0.1974 | 0.2417 | 0.3603 | 0.2894 | 0.9269 |
| No log | 5.0 | 190 | 0.1958 | 0.2707 | 0.3683 | 0.3120 | 0.9299 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_16_02_2022-14_23_23 | 00b22b82c05a52c686b1377c3098f89cd339e6bd | 2022-02-16T13:25:42.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_16_02_2022-14_23_23 | 1 | null | transformers | 28,562 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_16_02_2022-14_23_23
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_23_23
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_16_02_2022-14_25_47 | 6385b1a5e7891e6eb5469251bbe52ec0341a466a | 2022-02-16T13:28:05.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_16_02_2022-14_25_47 | 1 | null | transformers | 28,563 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_16_02_2022-14_25_47
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_25_47
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_16_02_2022-14_28_10 | 0d965ad4cd99ac7a10aea1f068476edcafb04807 | 2022-02-16T13:30:28.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_16_02_2022-14_28_10 | 1 | null | transformers | 28,564 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_16_02_2022-14_28_10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_28_10
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_16_02_2022-14_30_32 | 000849a7a6eadc53fc171f3cd8926883611ecdab | 2022-02-16T13:32:52.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_16_02_2022-14_30_32 | 1 | null | transformers | 28,565 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_16_02_2022-14_30_32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_30_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_16_02_2022-14_35_19 | 6aece39a62b65c9047c301e9a53acdf5ad383057 | 2022-02-16T13:37:37.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_16_02_2022-14_35_19 | 1 | null | transformers | 28,566 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_16_02_2022-14_35_19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_16_02_2022-14_35_19
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1722
- Precision: 0.3378
- Recall: 0.3615
- F1: 0.3492
- Accuracy: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 |
| No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 |
| No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 |
| No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 |
| No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_41_15 | a156441da779ba3b3eb3bbb15ff89069ecbbf5b1 | 2022-02-16T14:43:38.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_41_15 | 1 | null | transformers | 28,567 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_41_15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_41_15
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1742
- Precision: 0.3447
- Recall: 0.3410
- F1: 0.3428
- Accuracy: 0.9455
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3692 | 0.0868 | 0.2030 | 0.1216 | 0.8238 |
| No log | 2.0 | 76 | 0.3198 | 0.1674 | 0.3029 | 0.2157 | 0.8567 |
| No log | 3.0 | 114 | 0.3156 | 0.1520 | 0.3096 | 0.2039 | 0.8510 |
| No log | 4.0 | 152 | 0.3129 | 0.1753 | 0.3266 | 0.2281 | 0.8500 |
| No log | 5.0 | 190 | 0.3038 | 0.1716 | 0.3401 | 0.2281 | 0.8595 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_43_42 | e19257727c4a0e84e938fa684e630d76fa05275d | 2022-02-16T14:46:02.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_43_42 | 1 | null | transformers | 28,568 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_43_42
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_43_42
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_46_07 | a4e622bc3b37d0a17579efca4ac6783c41c48d74 | 2022-02-16T14:48:28.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_46_07 | 1 | null | transformers | 28,569 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_46_07
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_46_07
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_48_32 | 06c5948ea8178c98599daf101c3f09c79079e393 | 2022-02-16T14:50:50.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_48_32 | 1 | null | transformers | 28,570 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_48_32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_48_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_50_54 | f24944c4c3adb4afd97fca9094d2d7a3f9db0b73 | 2022-02-16T14:53:12.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_50_54 | 1 | null | transformers | 28,571 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_50_54
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_50_54
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_53_17 | 7dd54a510d0a302c5261bbc35cd86c44a2559f96 | 2022-02-16T14:56:28.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_53_17 | 1 | null | transformers | 28,572 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_53_17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_53_17
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_56_33 | 2024c8521acbe5978bff566f1ba726bf3b72d8df | 2022-02-16T14:59:46.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_56_33 | 1 | null | transformers | 28,573 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_56_33
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_56_33
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-15_59_50 | 50973bda8898fd0daa24a6666ef69184e8e2596c | 2022-02-16T15:03:01.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-15_59_50 | 1 | null | transformers | 28,574 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-15_59_50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-15_59_50
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-16_03_05 | a78a5b4dbe982b837d2b4575f80e333b09064e82 | 2022-02-16T15:06:16.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-16_03_05 | 1 | null | transformers | 28,575 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-16_03_05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-16_03_05
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_2e-05_all_16_02_2022-16_06_20 | 763c926722bd1449f5611326c66a781a053b8443 | 2022-02-16T15:09:31.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_2e-05_all_16_02_2022-16_06_20 | 1 | null | transformers | 28,576 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_2e-05_all_16_02_2022-16_06_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_2e-05_all_16_02_2022-16_06_20
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- Precision: 0.3286
- Recall: 0.3334
- F1: 0.3310
- Accuracy: 0.9447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 |
| No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 |
| No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 |
| No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 |
| No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_09_36 | 0f288fadd2d8b40326fef9d47cd120750d0d2b42 | 2022-02-16T15:12:47.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_3e-05_all_16_02_2022-16_09_36 | 1 | null | transformers | 28,577 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_3e-05_all_16_02_2022-16_09_36
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_09_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_12_51 | 1a9c34499060f2336344c96a521fb057e9fce13c | 2022-02-16T15:16:04.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_3e-05_all_16_02_2022-16_12_51 | 1 | null | transformers | 28,578 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_3e-05_all_16_02_2022-16_12_51
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_12_51
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_16_08 | 6af63a234f3f529c9cf3090731b4047ed160aa0d | 2022-02-16T15:19:19.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_3e-05_all_16_02_2022-16_16_08 | 1 | null | transformers | 28,579 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_3e-05_all_16_02_2022-16_16_08
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_16_08
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_22_39 | aef4818f02b3e935d9e473b3595bb530990d2c98 | 2022-02-16T15:25:52.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_3e-05_all_16_02_2022-16_22_39 | 1 | null | transformers | 28,580 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_3e-05_all_16_02_2022-16_22_39
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_22_39
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_25_56 | ca466dff28b3e5ed333ee9b4790415c37942c84c | 2022-02-16T15:29:08.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_3e-05_all_16_02_2022-16_25_56 | 1 | null | transformers | 28,581 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_3e-05_all_16_02_2022-16_25_56
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_25_56
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_3e-05_all_16_02_2022-16_29_13 | 91ef0bd2f10ce6354604d0dd7c8930705c051708 | 2022-02-16T15:32:26.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_3e-05_all_16_02_2022-16_29_13 | 1 | null | transformers | 28,582 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_3e-05_all_16_02_2022-16_29_13
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_3e-05_all_16_02_2022-16_29_13
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Precision: 0.3684
- Recall: 0.3714
- F1: 0.3699
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 |
| No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 |
| No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 |
| No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 |
| No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27 | e78c3e63c985082725df94704cbfc7cb5f735e39 | 2022-02-16T19:16:44.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27 | 1 | null | transformers | 28,583 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_all_16_02_2022-20_14_27
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1588
- Precision: 0.4510
- Recall: 0.5622
- F1: 0.5005
- Accuracy: 0.9477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.2896 | 0.1483 | 0.1981 | 0.1696 | 0.8745 |
| No log | 2.0 | 76 | 0.2553 | 0.2890 | 0.3604 | 0.3207 | 0.8918 |
| No log | 3.0 | 114 | 0.2507 | 0.246 | 0.4642 | 0.3216 | 0.8925 |
| No log | 4.0 | 152 | 0.2540 | 0.2428 | 0.4792 | 0.3223 | 0.8922 |
| No log | 5.0 | 190 | 0.2601 | 0.2747 | 0.4717 | 0.3472 | 0.8965 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10 | c716c9fa4cb7873b997af2f9d24ba9453f23f818 | 2022-02-16T20:15:07.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10 | 1 | null | transformers | 28,584 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_all_16_02_2022-21_13_10
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3057
- Precision: 0.2857
- Recall: 0.4508
- F1: 0.3497
- Accuracy: 0.8741
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3018 | 0.2097 | 0.2546 | 0.2300 | 0.8727 |
| No log | 2.0 | 60 | 0.2337 | 0.3444 | 0.3652 | 0.3545 | 0.9024 |
| No log | 3.0 | 90 | 0.2198 | 0.3463 | 0.3869 | 0.3655 | 0.9070 |
| No log | 4.0 | 120 | 0.2112 | 0.3757 | 0.4405 | 0.4056 | 0.9173 |
| No log | 5.0 | 150 | 0.2131 | 0.4163 | 0.5126 | 0.4595 | 0.9212 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38 | e7894ae526b9fdb639d649fc9206e305543ad1e9 | 2022-02-16T20:08:50.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38 | 1 | null | transformers | 28,585 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_editorials_16_02_2022-21_07_38
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1146
- Precision: 0.4662
- Recall: 0.4718
- F1: 0.4690
- Accuracy: 0.9773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0756 | 0.2960 | 0.4505 | 0.3573 | 0.9775 |
| No log | 2.0 | 30 | 0.0626 | 0.3615 | 0.4231 | 0.3899 | 0.9808 |
| No log | 3.0 | 45 | 0.0602 | 0.4898 | 0.5275 | 0.5079 | 0.9833 |
| No log | 4.0 | 60 | 0.0719 | 0.5517 | 0.5275 | 0.5393 | 0.9849 |
| No log | 5.0 | 75 | 0.0754 | 0.5765 | 0.5385 | 0.5568 | 0.9849 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02 | f860f920c0306a71db781a4cf1a7823767d5d473 | 2022-02-16T20:05:00.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02 | 1 | null | transformers | 28,586 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_essays_16_02_2022-21_04_02
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2158
- Precision: 0.5814
- Recall: 0.7073
- F1: 0.6382
- Accuracy: 0.9248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.3920 | 0.4392 | 0.6069 | 0.5096 | 0.8593 |
| No log | 2.0 | 22 | 0.3304 | 0.4282 | 0.6260 | 0.5085 | 0.8672 |
| No log | 3.0 | 33 | 0.3361 | 0.4840 | 0.6336 | 0.5488 | 0.8685 |
| No log | 4.0 | 44 | 0.3258 | 0.5163 | 0.6641 | 0.5810 | 0.8722 |
| No log | 5.0 | 55 | 0.3472 | 0.5192 | 0.6718 | 0.5857 | 0.8743 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50 | b4a8017bd5a3c1f69b1359ce2194a759b598afdf | 2022-02-16T20:01:47.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50 | 1 | null | transformers | 28,587 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_0.0002_webDiscourse_16_02_2022-21_00_50
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5530
- Precision: 0.0044
- Recall: 0.0182
- F1: 0.0071
- Accuracy: 0.7268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.7051 | 0.0645 | 0.0323 | 0.0430 | 0.4465 |
| No log | 2.0 | 20 | 0.6928 | 0.0476 | 0.0161 | 0.0241 | 0.5546 |
| No log | 3.0 | 30 | 0.6875 | 0.0069 | 0.0484 | 0.0120 | 0.5533 |
| No log | 4.0 | 40 | 0.6966 | 0.0064 | 0.0323 | 0.0107 | 0.5832 |
| No log | 5.0 | 50 | 0.7093 | 0.0061 | 0.0323 | 0.0102 | 0.5742 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36 | 322530910efe413020bb55fe7bd71f0be85995b7 | 2022-02-16T19:11:58.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36 | 1 | null | transformers | 28,588 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1743
- Precision: 0.3429
- Recall: 0.3430
- F1: 0.3430
- Accuracy: 0.9446
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3322 | 0.0703 | 0.1790 | 0.1010 | 0.8318 |
| No log | 2.0 | 76 | 0.2644 | 0.1180 | 0.2343 | 0.1570 | 0.8909 |
| No log | 3.0 | 114 | 0.2457 | 0.1624 | 0.2583 | 0.1994 | 0.8980 |
| No log | 4.0 | 152 | 0.2487 | 0.1486 | 0.2583 | 0.1887 | 0.8931 |
| No log | 5.0 | 190 | 0.2395 | 0.1670 | 0.2694 | 0.2062 | 0.8988 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06 | ef893b55633d55592118b81ec6808e17ce270793 | 2022-02-16T19:27:31.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06 | 1 | null | transformers | 28,589 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1778
- Precision: 0.3270
- Recall: 0.3348
- F1: 0.3309
- Accuracy: 0.9439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.4023 | 0.1050 | 0.2331 | 0.1448 | 0.8121 |
| No log | 2.0 | 76 | 0.3629 | 0.1856 | 0.3414 | 0.2405 | 0.8368 |
| No log | 3.0 | 114 | 0.3329 | 0.1794 | 0.3594 | 0.2394 | 0.8504 |
| No log | 4.0 | 152 | 0.3261 | 0.1786 | 0.3684 | 0.2405 | 0.8503 |
| No log | 5.0 | 190 | 0.3244 | 0.1872 | 0.3684 | 0.2482 | 0.8534 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28 | f27c8bcf8086c1d4dc21a29b0baadf37ab275c13 | 2022-02-16T19:42:54.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28 | 1 | null | transformers | 28,590 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1736
- Precision: 0.3358
- Recall: 0.3447
- F1: 0.3402
- Accuracy: 0.9452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3058 | 0.1200 | 0.2102 | 0.1528 | 0.8629 |
| No log | 2.0 | 76 | 0.2488 | 0.1605 | 0.2774 | 0.2034 | 0.9003 |
| No log | 3.0 | 114 | 0.2296 | 0.1947 | 0.2880 | 0.2324 | 0.9057 |
| No log | 4.0 | 152 | 0.2208 | 0.2201 | 0.2986 | 0.2534 | 0.9113 |
| No log | 5.0 | 190 | 0.2235 | 0.2110 | 0.3039 | 0.2491 | 0.9101 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51 | 863b750f6844623f943c5dd9b2ab4717ccc3e292 | 2022-02-16T20:02:54.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51 | 1 | null | transformers | 28,591 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_essays_16_02_2022-21_01_51
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2525
- Precision: 0.3997
- Recall: 0.5117
- F1: 0.4488
- Accuracy: 0.9115
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.4652 | 0.1528 | 0.3588 | 0.2144 | 0.7851 |
| No log | 2.0 | 22 | 0.3646 | 0.2913 | 0.4847 | 0.3639 | 0.8521 |
| No log | 3.0 | 33 | 0.3453 | 0.3789 | 0.5611 | 0.4523 | 0.8708 |
| No log | 4.0 | 44 | 0.3270 | 0.3673 | 0.5496 | 0.4404 | 0.8729 |
| No log | 5.0 | 55 | 0.3268 | 0.4011 | 0.5725 | 0.4717 | 0.8760 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45 | 30cd42f1f99919ae82947c631eb3839b36b4c320 | 2022-02-16T19:59:45.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45 | 1 | null | transformers | 28,592 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_2e-05_webDiscourse_16_02_2022-20_58_45
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6373
- Precision: 0.0024
- Recall: 0.0072
- F1: 0.0036
- Accuracy: 0.6329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 10 | 0.5913 | 0.0 | 0.0 | 0.0 | 0.7023 |
| No log | 2.0 | 20 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.7062 |
| No log | 3.0 | 30 | 0.5717 | 0.0 | 0.0 | 0.0 | 0.7059 |
| No log | 4.0 | 40 | 0.5696 | 0.0 | 0.0 | 0.0 | 0.7008 |
| No log | 5.0 | 50 | 0.5669 | 0.0 | 0.0 | 0.0 | 0.7010 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04 | 69b8a2e9a9b7da13f4e2238ecf1e5739bd376269 | 2022-02-16T19:14:21.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04 | 1 | null | transformers | 28,593 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1620
- Precision: 0.3509
- Recall: 0.3793
- F1: 0.3646
- Accuracy: 0.9468
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.2997 | 0.1125 | 0.2057 | 0.1454 | 0.8669 |
| No log | 2.0 | 76 | 0.2620 | 0.1928 | 0.2849 | 0.2300 | 0.8899 |
| No log | 3.0 | 114 | 0.2497 | 0.1923 | 0.2906 | 0.2314 | 0.8918 |
| No log | 4.0 | 152 | 0.2474 | 0.1819 | 0.3377 | 0.2365 | 0.8905 |
| No log | 5.0 | 190 | 0.2418 | 0.2128 | 0.3264 | 0.2576 | 0.8997 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36 | 423456efa9ffc86ddc951274237bdb18385d5edc | 2022-02-16T19:29:55.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36 | 1 | null | transformers | 28,594 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-20_27_36
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1633
- Precision: 0.3632
- Recall: 0.3786
- F1: 0.3707
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3227 | 0.1237 | 0.2397 | 0.1631 | 0.8566 |
| No log | 2.0 | 76 | 0.2874 | 0.2128 | 0.3328 | 0.2596 | 0.8721 |
| No log | 3.0 | 114 | 0.2762 | 0.2170 | 0.3603 | 0.2709 | 0.8844 |
| No log | 4.0 | 152 | 0.2770 | 0.2274 | 0.3690 | 0.2814 | 0.8819 |
| No log | 5.0 | 190 | 0.2771 | 0.2113 | 0.3741 | 0.2701 | 0.8823 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00 | dd5e81efb78b2458f7f80fda1c56afcca7c48aa3 | 2022-02-16T19:45:21.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00 | 1 | null | transformers | 28,595 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1626
- Precision: 0.3811
- Recall: 0.3865
- F1: 0.3838
- Accuracy: 0.9482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 38 | 0.3697 | 0.0933 | 0.2235 | 0.1317 | 0.8259 |
| No log | 2.0 | 76 | 0.3193 | 0.1266 | 0.2948 | 0.1771 | 0.8494 |
| No log | 3.0 | 114 | 0.3025 | 0.1606 | 0.3160 | 0.2130 | 0.8540 |
| No log | 4.0 | 152 | 0.2978 | 0.1867 | 0.3449 | 0.2422 | 0.8605 |
| No log | 5.0 | 190 | 0.2984 | 0.1706 | 0.3507 | 0.2295 | 0.8551 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08 | 23b702f5b6cef35083f21d052f5f884ebcce1432 | 2022-02-16T20:13:06.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08 | 1 | null | transformers | 28,596 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_all_16_02_2022-21_11_08
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2731
- Precision: 0.1928
- Recall: 0.3457
- F1: 0.2475
- Accuracy: 0.8826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3010 | 0.1330 | 0.2345 | 0.1697 | 0.8707 |
| No log | 2.0 | 60 | 0.2446 | 0.1739 | 0.2948 | 0.2188 | 0.8949 |
| No log | 3.0 | 90 | 0.2235 | 0.2446 | 0.3032 | 0.2708 | 0.9080 |
| No log | 4.0 | 120 | 0.2226 | 0.2670 | 0.3350 | 0.2972 | 0.9058 |
| No log | 5.0 | 150 | 0.2166 | 0.2779 | 0.3417 | 0.3065 | 0.9063 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22 | 329ea18c807ce0a25e8c7315406c7252b8252abd | 2022-02-16T20:07:34.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22 | 1 | null | transformers | 28,597 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_editorials_16_02_2022-21_06_22
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1060
- Precision: 0.2003
- Recall: 0.1154
- F1: 0.1464
- Accuracy: 0.9712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.0897 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 2.0 | 30 | 0.0798 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 3.0 | 45 | 0.0743 | 0.08 | 0.0110 | 0.0193 | 0.9801 |
| No log | 4.0 | 60 | 0.0707 | 0.0741 | 0.0110 | 0.0191 | 0.9802 |
| No log | 5.0 | 75 | 0.0696 | 0.2727 | 0.1648 | 0.2055 | 0.9805 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59 | e8ebfac665ccb1270df4e032bc82442c0e109a09 | 2022-02-16T20:03:57.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59 | 1 | null | transformers | 28,598 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_essays_16_02_2022-21_02_59
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2374
- Precision: 0.4766
- Recall: 0.5549
- F1: 0.5127
- Accuracy: 0.9173
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.4155 | 0.1569 | 0.3168 | 0.2099 | 0.8163 |
| No log | 2.0 | 22 | 0.3584 | 0.3827 | 0.5725 | 0.4587 | 0.8691 |
| No log | 3.0 | 33 | 0.3483 | 0.4353 | 0.5649 | 0.4917 | 0.8737 |
| No log | 4.0 | 44 | 0.3187 | 0.4403 | 0.5916 | 0.5049 | 0.8770 |
| No log | 5.0 | 55 | 0.3188 | 0.4463 | 0.6031 | 0.5130 | 0.8806 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50 | 7ceb224a788e221b2a54d544599b2530fb60ef39 | 2022-02-16T20:00:45.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | false | ali2066 | null | ali2066/finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50 | 1 | null | transformers | 28,599 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_token_itr0_3e-05_webDiscourse_16_02_2022-20_59_50
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5450
- Precision: 0.0049
- Recall: 0.0146
- F1: 0.0074
- Accuracy: 0.7431
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.6830 | 0.0109 | 0.0323 | 0.0163 | 0.5685 |
| No log | 2.0 | 20 | 0.7187 | 0.0256 | 0.0323 | 0.0286 | 0.5668 |
| No log | 3.0 | 30 | 0.6839 | 0.0076 | 0.0484 | 0.0131 | 0.5848 |
| No log | 4.0 | 40 | 0.6988 | 0.0092 | 0.0484 | 0.0155 | 0.5918 |
| No log | 5.0 | 50 | 0.7055 | 0.0100 | 0.0484 | 0.0165 | 0.5946 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.