modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
SEBIS/legal_t5_small_multitask_es_cs
77f3a873bd03e37d16f448684e220ecad71b88df
2021-06-23T11:01:33.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_es_cs
1
null
transformers
28,300
--- language: Spanish Cszech tags: - translation Spanish Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "La política pesquera supone que se tenga en cuenta un gran número de dimensiones – social, medioambiental, económica – lo que exige un enfoque integrado y equilibrado, incompatible con una visión que los sobrestima, en particular, mediante una definición a priori de cualquier jerarquía de prioridades." --- # legal_t5_small_multitask_es_cs model Model on translating legal text from Spanish to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_es_cs model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Cszech. ### How to use Here is how to use this model to translate legal text from Spanish to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_es_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_es_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "La política pesquera supone que se tenga en cuenta un gran número de dimensiones – social, medioambiental, económica – lo que exige un enfoque integrado y equilibrado, incompatible con una visión que los sobrestima, en particular, mediante una definición a priori de cualquier jerarquía de prioridades." pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_es_cs model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_es_cs | 47.673| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_es_it
9c8bc6b921a4bfc59c00ab2885e23f333d491fc6
2021-06-23T11:04:49.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_es_it
1
null
transformers
28,301
--- language: Spanish Italian tags: - translation Spanish Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Por el Parlamento Europeo Por el Consejo" --- # legal_t5_small_multitask_es_it model Model on translating legal text from Spanish to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_es_it model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Italian. ### How to use Here is how to use this model to translate legal text from Spanish to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_es_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_es_it", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "Por el Parlamento Europeo Por el Consejo" pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_es_it model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_es_it | 37.386| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_fr_es
036b2da5629a7b9362f9d3b275e9ca18c472576a
2021-06-23T11:10:42.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_fr_es
1
null
transformers
28,302
--- language: French Spanish tags: - translation French Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "+ lettre autorités suédoises" --- # legal_t5_small_multitask_fr_es model Model on translating legal text from French to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_fr_es model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from French to Spanish. ### How to use Here is how to use this model to translate legal text from French to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_fr_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_fr_es", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "+ lettre autorités suédoises" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_fr_es model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_fr_es | 43.807| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_it_es
008314e1e532699ac7ff3035e04514df1e8c2c7b
2021-06-23T11:14:49.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_it_es
1
null
transformers
28,303
--- language: Italian Spanish tags: - translation Italian Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "Interrogazione con richiesta di risposta scritta E-005808/2011" --- # legal_t5_small_multitask_it_es model Model on translating legal text from Italian to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_it_es model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Spanish. ### How to use Here is how to use this model to translate legal text from Italian to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_it_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_it_es", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Interrogazione con richiesta di risposta scritta E-005808/2011" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_it_es model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_it_es | 36.980| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_it_sv
404f2729e8bf5ecf47abcf590376384dc31cc0e6
2021-06-23T11:16:13.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_it_sv
1
null
transformers
28,304
--- language: Italian Swedish tags: - translation Italian Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Può il Commissario responsabile comunicare al Parlamento in che modo la DG Ricerca garantirà che l’Europa possa svolgere un ruolo di primo piano in questo sforzo globale di ricerca sul diabete?" --- # legal_t5_small_multitask_it_sv model Model on translating legal text from Italian to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_it_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Swedish. ### How to use Here is how to use this model to translate legal text from Italian to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_it_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_it_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Può il Commissario responsabile comunicare al Parlamento in che modo la DG Ricerca garantirà che l’Europa possa svolgere un ruolo di primo piano in questo sforzo globale di ricerca sul diabete?" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_it_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_it_sv | 41.523| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_sv_es
36f7114aa0aab1e68ce8aad1c7be859eefbaade6
2021-06-23T11:18:54.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_sv_es
1
null
transformers
28,305
--- language: Swedish Spanish tags: - translation Swedish Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "med beaktande av sin resolution av den 14 april 2005 om torkan i Portugal," --- # legal_t5_small_multitask_sv_es model Model on translating legal text from Swedish to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_es model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Spanish. ### How to use Here is how to use this model to translate legal text from Swedish to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_es", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "med beaktande av sin resolution av den 14 april 2005 om torkan i Portugal," pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_es model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_es | 35.506| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_summ_multitask_es
10543fc3c597c020fbe5a198499aa397f9ad6fae
2021-06-23T11:26:19.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_multitask_es
1
null
transformers
28,306
Entry not found
SEBIS/legal_t5_small_summ_multitask_fr
5ac6a258af4bb1593d44f79420059bf94bb11825
2021-06-23T11:26:56.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_multitask_fr
1
null
transformers
28,307
Entry not found
SEBIS/legal_t5_small_summ_multitask_it
a4890125e467733a93806354d9b33ee20d5e821b
2021-06-23T11:27:32.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_multitask_it
1
null
transformers
28,308
Entry not found
SEBIS/legal_t5_small_summ_sv
e9bb9bd30f9a87f661fdc8708ef57b44215b0d8f
2021-06-23T11:28:45.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish", "dataset:jrc-acquis", "transformers", "summarization Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_sv
1
null
transformers
28,309
--- language: Swedish tags: - summarization Swedish model datasets: - jrc-acquis widget: - text: "EUROPEISKA GEMENSKAPERNAS RÅD HAR ANTAGIT DENNA FÖRORDNING med beaktande av Fördraget om upprättandet av Europeiska ekonomiska gemenskapen, särskilt artiklarna 43 och 100a i detta, med beaktande av kommissionens förslag(1), i samarbete med Europaparlamentet(2), med beaktande av Ekonomiska och sociala kommitténs yttrande(3), och med beaktande av följande: Det bör införas förbud mot användning av blybaserade kapsyler eller blybaserad folie i förslutningar på förpackningar som används då aromatiserade viner, aromatiserade vinbaserade drycker och aromatiserade drinkar baserade på vinprodukter släpps ut på marknaden i syfte att undvika risken för kontaminering, särskilt vid oavsiktlig kontakt med sådana produkter, samt risken för miljöförorening på grund av avfall som innehåller bly från kapsyler och folie av detta slag. Tillverkarna och användarna av kapsylerna och folien i fråga bör dock ges tid att anpassa sig genom att förbudet inte tillämpas förrän från och med den 1 januari 1993. Det är även nödvändigt att tillåta att produkter som före detta datum tappats på buteljer med blybaserade kapsyler eller blybaserad folie får säljas till dess att lagren är uttömda. Vissa definitioner av aromatiserade vinbaserade drycker bör anpassas så att större hänsyn tas till traditionella framställningsmetoder. Förordning (EEG) nr 1601/91(4) bör därför ändras. HÄRIGENOM FÖRESKRIVS FÖLJANDE. Artikel 1 Förordning (EEG) nr 1601/91 ändras på följande sätt: 1. Artikel 2.3 a första stycket skall ersättas med följande: %quot%a) Sangria: en dryck som framställs av vin - som smaksatts genom tillsats av naturliga extrakt eller essenser av citrusfrukt, - med eller utan saft av sådan frukt, - eventuellt: - med tillsats av kryddor, - sötat, - med tillsats av CO2, och med en slutlig alkoholstyrka på under 12 volymprocent.%quot% 2. Artikel 2.3 e skall ersättas med följande: %quot%e) Kalte Ente: Smaksatt vinbaserad dryck som framställs genom att vin, pärlande vin eller pärlande vin med tillsatt CO2 blandas med mousserande vin eller mousserande vin med tillsatt CO2 och tillsätts naturlig citronsubstans eller extrakt av detta som måste ge en tydligt framträdande smak. Slutprodukten måste innehålla minst 25 volymprocent mousserande vin eller mousserande vin med tillsatt CO2.%quot% 3. Följande punkt skall införas i artikel 8: %quot%4.a Från och med den 1 januari 1993 får buteljerade produkter som omfattas av denna förordning inte saluhållas eller släppas ut på marknaden i förpackningar med förslutningar som täckts med blybaserade kapsyler eller blybaserad folie. Dock får produkter som före detta datum tappats på flaskor med detta slag av kapsyler eller folie avyttras till dess att lagren tömts.%quot% Artikel 2 Denna förordning träder i kraft den tredje dagen efter det att den har offentliggjorts i Europeiska gemenskapernas officiella tidning. Denna förordning är till alla delar bindande och direkt tillämplig i alla medlemsstater. Utfärdad i Bryssel den 9 november 1992. På rådets vägnar D. HURD Ordförande (1) EGT nr C 69, 18.3.1992, s. 11. (2) EGT nr C 241, 21.9.1992, s. 97 och beslut av den 28 oktober 1992. (3) EGT nr C 169, 6.7.1992, s. 1. (4) EGT nr L 149, 14.6.1991, s. 1. " --- # legal_t5_small_summ_sv model Model for Summarization of legal text written in Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_summ_sv is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for summarization of legal texts written in Swedish. ### How to use Here is how to use this model to summarize legal text written in Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_summ_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_summ_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "EUROPEISKA GEMENSKAPERNAS RÅD HAR ANTAGIT DENNA FÖRORDNING med beaktande av Fördraget om upprättandet av Europeiska ekonomiska gemenskapen, särskilt artiklarna 43 och 100a i detta, med beaktande av kommissionens förslag(1), i samarbete med Europaparlamentet(2), med beaktande av Ekonomiska och sociala kommitténs yttrande(3), och med beaktande av följande: Det bör införas förbud mot användning av blybaserade kapsyler eller blybaserad folie i förslutningar på förpackningar som används då aromatiserade viner, aromatiserade vinbaserade drycker och aromatiserade drinkar baserade på vinprodukter släpps ut på marknaden i syfte att undvika risken för kontaminering, särskilt vid oavsiktlig kontakt med sådana produkter, samt risken för miljöförorening på grund av avfall som innehåller bly från kapsyler och folie av detta slag. Tillverkarna och användarna av kapsylerna och folien i fråga bör dock ges tid att anpassa sig genom att förbudet inte tillämpas förrän från och med den 1 januari 1993. Det är även nödvändigt att tillåta att produkter som före detta datum tappats på buteljer med blybaserade kapsyler eller blybaserad folie får säljas till dess att lagren är uttömda. Vissa definitioner av aromatiserade vinbaserade drycker bör anpassas så att större hänsyn tas till traditionella framställningsmetoder. Förordning (EEG) nr 1601/91(4) bör därför ändras. HÄRIGENOM FÖRESKRIVS FÖLJANDE. Artikel 1 Förordning (EEG) nr 1601/91 ändras på följande sätt: 1. Artikel 2.3 a första stycket skall ersättas med följande: %quot%a) Sangria: en dryck som framställs av vin - som smaksatts genom tillsats av naturliga extrakt eller essenser av citrusfrukt, - med eller utan saft av sådan frukt, - eventuellt: - med tillsats av kryddor, - sötat, - med tillsats av CO2, och med en slutlig alkoholstyrka på under 12 volymprocent.%quot% 2. Artikel 2.3 e skall ersättas med följande: %quot%e) Kalte Ente: Smaksatt vinbaserad dryck som framställs genom att vin, pärlande vin eller pärlande vin med tillsatt CO2 blandas med mousserande vin eller mousserande vin med tillsatt CO2 och tillsätts naturlig citronsubstans eller extrakt av detta som måste ge en tydligt framträdande smak. Slutprodukten måste innehålla minst 25 volymprocent mousserande vin eller mousserande vin med tillsatt CO2.%quot% 3. Följande punkt skall införas i artikel 8: %quot%4.a Från och med den 1 januari 1993 får buteljerade produkter som omfattas av denna förordning inte saluhållas eller släppas ut på marknaden i förpackningar med förslutningar som täckts med blybaserade kapsyler eller blybaserad folie. Dock får produkter som före detta datum tappats på flaskor med detta slag av kapsyler eller folie avyttras till dess att lagren tömts.%quot% Artikel 2 Denna förordning träder i kraft den tredje dagen efter det att den har offentliggjorts i Europeiska gemenskapernas officiella tidning. Denna förordning är till alla delar bindande och direkt tillämplig i alla medlemsstater. Utfärdad i Bryssel den 9 november 1992. På rådets vägnar D. HURD Ordförande (1) EGT nr C 69, 18.3.1992, s. 11. (2) EGT nr C 241, 21.9.1992, s. 97 och beslut av den 28 oktober 1992. (3) EGT nr C 169, 6.7.1992, s. 1. (4) EGT nr L 149, 14.6.1991, s. 1. " pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_summ_sv model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 19 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | Rouge1 | Rouge2 | Rouge Lsum | |:-----:|:-----:|:-----:|:-----:| | legal_t5_small_summ_sv | 78.84|69.97 |77.59| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_it
0708dd677d8e688b3abe91a5820e8c5a4dcc9044
2021-06-23T11:35:03.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_it
1
null
transformers
28,310
--- language: Cszech Italian tags: - translation Cszech Italian model datasets: - dcep europarl jrc-acquis widget: - text: "– Měly by se podporovat normy sportovní správy prostřednictvím výměny osvědčených postupů." --- # legal_t5_small_trans_cs_it model Model on translating legal text from Cszech to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Italian. ### How to use Here is how to use this model to translate legal text from Cszech to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_it", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "– Měly by se podporovat normy sportovní správy prostřednictvím výměny osvědčených postupů." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_it | 46.67| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_fr_small_finetuned
6bab4bb73ec0e822e5d6a10e963091772ea0adf7
2021-06-23T09:30:54.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_fr_small_finetuned
1
null
transformers
28,311
--- language: Deustch French tags: - translation Deustch French model datasets: - dcep europarl jrc-acquis widget: - text: "SCHRIFTLICHE ANFRAGE P-0029/06" --- # legal_t5_small_trans_de_fr_small_finetuned model Model on translating legal text from Deustch to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_fr_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_de_fr_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to French. ### How to use Here is how to use this model to translate legal text from Deustch to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_fr_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "SCHRIFTLICHE ANFRAGE P-0029/06" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_fr_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_fr_small_finetuned | 47.461| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_it
7270319e19e02c5092a633792a4bb8fb9e80a26f
2021-06-23T09:31:31.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_it
1
null
transformers
28,312
--- language: Deustch Italian tags: - translation Deustch Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Zum Zeitpunkt der Schlussabstimmung anwesende Stellvertreter(innen)" --- # legal_t5_small_trans_de_it model Model on translating legal text from Deustch to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Italian. ### How to use Here is how to use this model to translate legal text from Deustch to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_it", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Zum Zeitpunkt der Schlussabstimmung anwesende Stellvertreter(innen)" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_it | 43.3| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_it_small_finetuned
d92554f79f802706ebfbd0cbc6c9e107c132eb7b
2021-06-23T09:32:07.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_it_small_finetuned
1
null
transformers
28,313
--- language: Deustch Italian tags: - translation Deustch Italian model datasets: - dcep europarl jrc-acquis widget: - text: "sicherstellen, dass alle Bürger gemäß der Richtlinie .../.../EG [über den Universaldienst und Nutzerrechte bei elektronischen Kommunikationsnetzen und -diensten[ zu erschwinglichen Preisen Zugang zum Universaldienst erhalten;" --- # legal_t5_small_trans_de_it_small_finetuned model Model on translating legal text from Deustch to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_it_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_de_it_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Italian. ### How to use Here is how to use this model to translate legal text from Deustch to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_it_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_it", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "sicherstellen, dass alle Bürger gemäß der Richtlinie .../.../EG [über den Universaldienst und Nutzerrechte bei elektronischen Kommunikationsnetzen und -diensten[ zu erschwinglichen Preisen Zugang zum Universaldienst erhalten;" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_it_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_it_small_finetuned | 42.895| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_sv
b6f478b92493ae5049cce2ca751ac84acac40fac
2021-06-23T09:32:41.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_sv
1
null
transformers
28,314
--- language: Deustch Swedish tags: - translation Deustch Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Betrifft: Leader-Programm" --- # legal_t5_small_trans_de_sv model Model on translating legal text from Deustch to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_sv is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Swedish. ### How to use Here is how to use this model to translate legal text from Deustch to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Betrifft: Leader-Programm" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_sv model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_sv | 41.69| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_en_small_finetuned
59c182ac33785fbbd20acc53dbeaf20beb8b5e4a
2021-06-23T09:45:22.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_en_small_finetuned
1
null
transformers
28,315
--- language: Spanish English tags: - translation Spanish English model datasets: - dcep europarl jrc-acquis widget: - text: "de Jonas Sjöstedt (GUE/NGL)" --- # legal_t5_small_trans_es_en_small_finetuned model Model on translating legal text from Spanish to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_es_en_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_es_en_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to English. ### How to use Here is how to use this model to translate legal text from Spanish to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_es_en_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_es_en", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "de Jonas Sjöstedt (GUE/NGL)" pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_trans_es_en_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_es_en_small_finetuned | 54.481| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_fr_small_finetuned
0ea7d184884ea07580e74f7a1c1772973fbaa183
2021-06-23T09:46:42.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_fr_small_finetuned
1
null
transformers
28,316
--- language: Spanish French tags: - translation Spanish French model datasets: - dcep europarl jrc-acquis widget: - text: "Pide a las autoridades eritreas que levanten la prohibición de prensa independiente en el país y que liberen de inmediato a los periodistas independientes y a todos los demás encarcelados por el simple hecho de haber ejercido su derecho a la libertad de expresión;" --- # legal_t5_small_trans_es_fr_small_finetuned model Model on translating legal text from Spanish to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_es_fr_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_es_fr_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to French. ### How to use Here is how to use this model to translate legal text from Spanish to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_es_fr_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_es_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "Pide a las autoridades eritreas que levanten la prohibición de prensa independiente en el país y que liberen de inmediato a los periodistas independientes y a todos los demás encarcelados por el simple hecho de haber ejercido su derecho a la libertad de expresión;" pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_trans_es_fr_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_es_fr_small_finetuned | 52.694| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_it
32dcca84549024c4a0ea34f9faee84fcf1ce1799
2021-06-23T09:47:25.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_it
1
null
transformers
28,317
Entry not found
SEBIS/legal_t5_small_trans_sv_it
d60bcc7810483137215784435fca8041d12b9cb7
2021-06-23T10:11:48.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_it
1
null
transformers
28,318
--- language: Swedish Italian tags: - translation Swedish Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Den 25 juni 2002 lade kommissionen fram ett förslag till förordning om ”kontroller av kontanta medel som förs in i eller ut ur gemenskapen” i syfte att komplettera direktiv 91/308/EEG om penningtvätt." --- # legal_t5_small_trans_sv_it model Model on translating legal text from Swedish to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Italian. ### How to use Here is how to use this model to translate legal text from Swedish to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_it", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Den 25 juni 2002 lade kommissionen fram ett förslag till förordning om ”kontroller av kontanta medel som förs in i eller ut ur gemenskapen” i syfte att komplettera direktiv 91/308/EEG om penningtvätt." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_it | 42.577| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SJSui/AstroBot
86d9f5e9e89669743de8d7521758434fea86366e
2021-11-17T00:39:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SJSui
null
SJSui/AstroBot
1
null
transformers
28,319
Entry not found
SJSui/RickBot
6b73748eb1e1b8e50779271de792e63804dce8af
2021-11-17T01:29:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
SJSui
null
SJSui/RickBot
1
null
transformers
28,320
--- tags: - conversational --- # RickBot
Sadaf/God
610f42015e86af624510e437c78e9003cd4fc791
2021-10-25T03:54:50.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
Sadaf
null
Sadaf/God
1
null
transformers
28,321
Entry not found
SalmanMo/ALBERT_QA_1e
cbbbbac91311c3012a1c088fa9806e054fadf853
2020-08-04T14:44:32.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SalmanMo
null
SalmanMo/ALBERT_QA_1e
1
null
transformers
28,322
Entry not found
Santiagot1105/wav2vec2-lar-xlsr-es-col
41363e6072cac4cf771b0c6134194a7ff1bddb78
2022-02-22T20:58:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Santiagot1105
null
Santiagot1105/wav2vec2-lar-xlsr-es-col
1
null
transformers
28,323
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-lar-xlsr-es-col results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-lar-xlsr-es-col This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0947 - Wer: 0.1884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8446 | 8.51 | 400 | 2.8174 | 0.9854 | | 0.5146 | 17.02 | 800 | 0.1022 | 0.2020 | | 0.0706 | 25.53 | 1200 | 0.0947 | 0.1884 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
Santiagot1105/wav2vec2-large-xlsr-finetune-es-col
40c900caeb35fc085dfec89cf10fa67290796903
2022-02-21T21:19:46.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Santiagot1105
null
Santiagot1105/wav2vec2-large-xlsr-finetune-es-col
1
null
transformers
28,324
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-finetune-es-col results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-finetune-es-col This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6514 - Wer: 0.9874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9709 | 3.25 | 400 | 2.9673 | 1.0 | | 2.9488 | 6.5 | 800 | 2.9075 | 0.9973 | | 2.907 | 9.76 | 1200 | 2.8772 | 0.9688 | | 2.886 | 13.01 | 1600 | 2.8245 | 0.9484 | | 2.8043 | 16.26 | 2000 | 2.7134 | 0.9874 | | 2.7288 | 19.51 | 2400 | 2.6750 | 0.9874 | | 2.7072 | 22.76 | 2800 | 2.6651 | 0.9874 | | 2.6892 | 26.02 | 3200 | 2.6573 | 0.9874 | | 2.683 | 29.27 | 3600 | 2.6514 | 0.9874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
SauravMaheshkar/bert-base-cased-chaii
a83da6b86ae2c86e30494599f72b4a02815abaa7
2021-10-14T11:52:17.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/bert-base-cased-chaii
1
null
transformers
28,325
Entry not found
SauravMaheshkar/bert-base-multilingual-cased-finetuned-chaii
2e1178c71c13eea942218254a7b6009eea48c92e
2021-10-13T18:17:55.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/bert-base-multilingual-cased-finetuned-chaii
1
null
transformers
28,326
Entry not found
SauravMaheshkar/bert-large-uncased-whole-word-masking-finetuned-chaii
335fb6737da97714274a6e228fe2764988af363f
2021-10-14T16:13:30.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/bert-large-uncased-whole-word-masking-finetuned-chaii
1
null
transformers
28,327
Entry not found
SauravMaheshkar/clr-pretrained-albert-base
3ab80cf056b3ae7eca44a6e3485b8d6cbce78cc5
2021-09-23T15:57:51.000Z
[ "pytorch", "albert", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-pretrained-albert-base
1
null
transformers
28,328
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility metrics: - Perplexity --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # PreTraining | **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 | | electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 | | electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 | | electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 | | distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
SauravMaheshkar/electra-base-chaii
0fa01b4e63d36f7cf738a719745f31d856189ec4
2021-10-14T12:40:27.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/electra-base-chaii
1
null
transformers
28,329
Entry not found
SauravMaheshkar/xlm-roberta-base-chaii
0651c832c31f3f4be3bc13245e288cd014022347
2021-10-14T06:31:30.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/xlm-roberta-base-chaii
1
null
transformers
28,330
Entry not found
Science-geek32/DialoGPT-small-doctor
55044198c34817a7354443a68edfd0e84aba8c36
2021-10-19T17:51:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Science-geek32
null
Science-geek32/DialoGPT-small-doctor
1
null
transformers
28,331
--- tags: - conversational --- #13th Doctor DialoGPT model
Scoops/SandalBot
b43e50a1ce4b41830ed4800db62d9d67595add38
2021-06-04T01:12:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Scoops
null
Scoops/SandalBot
1
null
transformers
28,332
--- tags: - conversational --- # Sandal Bot Quick and dumb model for a discord chat bot. Based on DialoGPT-Medium
Sebastianthecrab/DialoGPT-small-melchior
d9519091e26e4464beb15737ddbf0948c0235645
2022-01-29T23:53:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Sebastianthecrab
null
Sebastianthecrab/DialoGPT-small-melchior
1
null
transformers
28,333
--- tags: - conversational --- # Melchior DialoGPT Model
Semih/wav2vec2_Irish_Large
6e55277cfc008e631486bb5477970f1d710b2275
2021-07-05T17:32:43.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ga-IE", "dataset:common_voice", "transformers", "audio", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Semih
null
Semih/wav2vec2_Irish_Large
1
null
transformers
28,334
--- language: ga-IE datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Irish by Semih GULUM results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice gle type: common_voice args: ga-IE metrics: - name: Test WER type: wer --- # wav2vec2-irish-lite Speech to Text ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Semih/wav2vec2_Irish_Large") model = Wav2Vec2ForCTC.from_pretrained("Semih/wav2vec2_Irish_Large") resampler = torchaudio.transforms.Resample(48_000, 16_000) ``` Test Result: 55.11
Shauli/IE-metric-model-spike
b85085569947b27651cfa0acc1d71283d521695d
2021-05-18T22:33:59.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Shauli
null
Shauli/IE-metric-model-spike
1
null
transformers
28,335
Entry not found
ShayoGun/DialoGPT-small-shayo
fb53e43408a81e0a58fe15cec098e09c7f4851e6
2021-12-23T09:11:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ShayoGun
null
ShayoGun/DialoGPT-small-shayo
1
null
transformers
28,336
--- tags: - conversational --- # SHAY0 Dialo GPT Model
ShengdingHu/adapter_roberta-base_rte
3afdaaf550170ee71b8623ce615d5e7738dd689d
2022-01-29T06:34:42.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_roberta-base_rte
1
null
transformers
28,337
Entry not found
ShengdingHu/adapter_roberta-large_rte
1355f45485d5c9533f2b8e6af6535e8dfb45eb91
2022-01-29T08:34:56.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_roberta-large_rte
1
null
transformers
28,338
Entry not found
ShengdingHu/adapter_t5-base_cola
cdff133771c2b16a470a731817b07a353722845b
2022-01-31T17:41:48.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_cola
1
null
transformers
28,339
Entry not found
ShengdingHu/adapter_t5-base_mnli
336c90260dbec12d30528425161e74d0b1e16861
2022-02-01T00:24:38.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_mnli
1
null
transformers
28,340
Entry not found
ShengdingHu/adapter_t5-base_mrpc
a8e3942a19aec445e70b8f02aecdc0b890ab6d46
2022-02-13T15:09:30.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_mrpc
1
null
transformers
28,341
Entry not found
ShengdingHu/adapter_t5-base_qnli
6a6a11e138a6ab89179d8ec4ed4773e726d82e56
2022-02-01T01:50:26.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_qnli
1
null
transformers
28,342
Entry not found
ShengdingHu/adapter_t5-base_qqp
6291cef767ad4477383dba62fe767ef9a3277761
2022-02-01T05:44:32.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_qqp
1
null
transformers
28,343
Entry not found
ShengdingHu/adapter_t5-base_rte
7af997cab5908e81f29a6797f153f6be47b3c3fb
2022-01-31T17:16:48.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_rte
1
null
transformers
28,344
Entry not found
ShengdingHu/adapter_t5-base_sst2
f1f4ff8671ec9200ee14ec93054b52bdfa4b6db5
2022-01-31T17:52:55.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_sst2
1
null
transformers
28,345
Entry not found
ShengdingHu/adapter_t5-base_stsb
e0b4aa0974a7289ec45093131464c7731de8a421
2022-01-31T18:18:06.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_stsb
1
null
transformers
28,346
Entry not found
ShengdingHu/adapter_t5-base_superglue-boolq
f72a11c74b6c4ee133aed89bee6a1d817f8fec41
2022-01-31T18:58:03.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_superglue-boolq
1
null
transformers
28,347
Entry not found
ShengdingHu/adapter_t5-base_superglue-cb
478657060640b338814d3be7402d47b5815589c8
2022-01-31T19:02:36.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_superglue-cb
1
null
transformers
28,348
Entry not found
ShengdingHu/adapter_t5-base_superglue-copa
d8304a35422ed2148e5576fbf26802b4efbda1d8
2022-01-31T17:13:03.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_superglue-copa
1
null
transformers
28,349
Entry not found
ShengdingHu/adapter_t5-base_superglue-record
1b0de959d436d8e705cdd9f5c7b7dcfe9e99b3b1
2022-01-31T22:45:21.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_superglue-record
1
null
transformers
28,350
Entry not found
ShengdingHu/adapter_t5-base_superglue-wic
1f2fbead692efdc9d1fae1d710fc70ceca6484bf
2022-01-31T23:15:45.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_superglue-wic
1
null
transformers
28,351
Entry not found
ShengdingHu/adapter_t5-base_superglue-wsc.fixed
c9ec49ad514689a7813ccea13ad47be623280883
2022-01-31T23:22:20.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/adapter_t5-base_superglue-wsc.fixed
1
null
transformers
28,352
Entry not found
ShengdingHu/autodelta_try
b4d844d2c36532910fe1cd67b1662354044b7d24
2022-01-13T09:21:08.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/autodelta_try
1
null
transformers
28,353
Entry not found
ShengdingHu/bitfit_roberta-base_rte
8ae96352774b29ee643f7d0383858ae69fb2bc88
2022-01-29T03:37:50.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_roberta-base_rte
1
null
transformers
28,354
Entry not found
ShengdingHu/bitfit_t5-base_mnli
38d5486c43f97298309b8bdf9ee375bcc88fcde0
2022-01-31T14:26:04.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_mnli
1
null
transformers
28,355
Entry not found
ShengdingHu/bitfit_t5-base_mrpc
bdb70888e90aa4f28002e34ec5efe0190d1cd3ca
2022-02-14T12:33:37.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_mrpc
1
null
transformers
28,356
Entry not found
ShengdingHu/bitfit_t5-base_qnli
4e5c1cbf84142e8df2eaca090bfcb3ed4ae3444a
2022-01-31T14:57:09.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_qnli
1
null
transformers
28,357
Entry not found
ShengdingHu/bitfit_t5-base_qqp
8672b037be51667e818145236a16df41bfd01de7
2022-01-31T16:06:49.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_qqp
1
null
transformers
28,358
Entry not found
ShengdingHu/bitfit_t5-base_rte
0a3dd07f894a22f628f39b6943b022e875be793c
2022-01-31T12:32:27.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_rte
1
null
transformers
28,359
Entry not found
ShengdingHu/bitfit_t5-base_sst2
9f9279cc5972832b5cb507851c7b52a996bf87e9
2022-01-31T12:46:21.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_sst2
1
null
transformers
28,360
Entry not found
ShengdingHu/bitfit_t5-base_superglue-boolq
f7e62ce740bef501ee9f57074c24d2c93844261f
2022-01-31T13:53:52.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-boolq
1
null
transformers
28,361
Entry not found
ShengdingHu/bitfit_t5-base_superglue-cb
e18b37acfe3ce8960eaa4e0aa8abde552e5ac0e7
2022-01-31T13:57:51.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-cb
1
null
transformers
28,362
Entry not found
ShengdingHu/bitfit_t5-base_superglue-copa
dbd006c21b0392a55b3179484476a0bce7baf99d
2022-01-31T12:28:15.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-copa
1
null
transformers
28,363
Entry not found
ShengdingHu/bitfit_t5-base_superglue-multirc
db155e7b20702b724ad9f28c46ddb149ca1c2607
2022-01-31T13:18:28.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-multirc
1
null
transformers
28,364
Entry not found
ShengdingHu/bitfit_t5-base_superglue-record
2363e2abc74f958e2d9d543550fb4b56d3a48412
2022-01-31T14:57:46.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-record
1
null
transformers
28,365
Entry not found
ShengdingHu/bitfit_t5-base_superglue-wic
1100551489c28bbe49633d89a8651a8245cbd376
2022-01-31T15:11:25.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-wic
1
null
transformers
28,366
Entry not found
ShengdingHu/bitfit_t5-base_superglue-wsc.fixed
f04e0c234039325a86a7c4f5babc41ef556eda3b
2022-01-31T16:30:04.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_superglue-wsc.fixed
1
null
transformers
28,367
Entry not found
ShengdingHu/cola
8438c26ae8a9c3ded492a535b29736384189c7e3
2022-02-03T16:58:23.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/cola
1
null
transformers
28,368
Entry not found
ShengdingHu/compacter_t5-base_cola
146c8ffaf92791d4c47d1bb60b38a266a9387a7c
2022-02-02T15:48:33.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/compacter_t5-base_cola
1
null
transformers
28,369
Entry not found
ShengdingHu/compacter_t5-base_mnli
e86e895a3c1466f7a7fb2b700fa4c26a7528e719
2022-02-02T21:40:35.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/compacter_t5-base_mnli
1
null
transformers
28,370
Entry not found
ShengdingHu/compacter_t5-base_mrpc
56f011887d1210963bb07830ab9b2d81730108f4
2022-02-02T10:10:38.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/compacter_t5-base_mrpc
1
null
transformers
28,371
Entry not found
ShengdingHu/compactor_roberta-base_rte
cd6c152cf25304fdbb77fcedd8f80792bcb2219a
2022-01-29T07:51:17.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/compactor_roberta-base_rte
1
null
transformers
28,372
Entry not found
ShengdingHu/lora_t5-base_cola
a7f57ac8ec6c6df56146cac87f67879d33a02366
2022-02-02T07:55:42.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_cola
1
null
transformers
28,373
Entry not found
ShengdingHu/lora_t5-base_mnli
2c477e98283632b4e2b6b3ff59f748991fe55148
2022-02-02T12:19:26.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_mnli
1
null
transformers
28,374
Entry not found
ShengdingHu/lora_t5-base_qnli
8ba141d9ea55bd02db4d1f2d37f1090ca81b5bda
2022-02-02T13:24:11.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_qnli
1
null
transformers
28,375
Entry not found
ShengdingHu/lora_t5-base_qqp
240c21abd1d134d263a7c2a42a3d055bb27a5a08
2022-02-02T15:56:01.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_qqp
1
null
transformers
28,376
Entry not found
ShengdingHu/lora_t5-base_rte
e7a9c5a06874a5e84dc516f93f2c25a7c25c8dd9
2022-02-02T07:44:08.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_rte
1
null
transformers
28,377
Entry not found
ShengdingHu/lora_t5-base_sst2
f84a35fcbc8900165317086e333005dc319a7fc1
2022-02-02T08:02:58.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_sst2
1
null
transformers
28,378
Entry not found
ShengdingHu/lora_t5-base_superglue-cb
9b53f2438ccf4e90f9de5440e7cf20ae97e6f346
2022-02-02T08:21:03.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_superglue-cb
1
null
transformers
28,379
Entry not found
ShengdingHu/lora_t5-base_superglue-copa
19e782502949190a97f981f4baa6e800f5950f88
2022-02-02T07:40:57.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_superglue-copa
1
null
transformers
28,380
Entry not found
ShengdingHu/lora_t5-base_superglue-multirc
6e23ab60d999cf76526683a8633dd10400b4f85a
2022-02-02T07:54:08.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_superglue-multirc
1
null
transformers
28,381
Entry not found
ShengdingHu/lora_t5-base_superglue-record
79626087e78c6de6e9ace91dc16c356692c4d6a2
2022-02-02T10:10:31.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_superglue-record
1
null
transformers
28,382
Entry not found
ShengdingHu/lora_t5-base_superglue-wic
01e6505c5e89bdd17a2c876adf44e488720e0da2
2022-02-02T10:30:44.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_superglue-wic
1
null
transformers
28,383
Entry not found
ShengdingHu/low_rank_adapter_roberta-base_rte
e3553380c77285144eac1e16b343bd47679a5c69
2022-01-29T06:49:02.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/low_rank_adapter_roberta-base_rte
1
null
transformers
28,384
Entry not found
ShengdingHu/mnli
15c06930050c55631609202d97e2785b371bdcd8
2022-02-02T21:38:29.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/mnli
1
null
transformers
28,385
Entry not found
ShengdingHu/mrpc
427c7b6b7b2203f89acd7b3c29b16b2ba9d24ca6
2022-02-13T17:52:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/mrpc
1
null
transformers
28,386
Entry not found
ShengdingHu/prefix_roberta-base_mrpc
09ec0f8cf92c6c3dc98a9e5951f44ad6e09c0d3f
2022-02-14T12:40:11.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/prefix_roberta-base_mrpc
1
null
transformers
28,387
Entry not found
ShengdingHu/prefix_t5-base_mrpc
15aec5ccbc29c8e4d57febf1587082342868e5f6
2022-02-12T05:59:14.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/prefix_t5-base_mrpc
1
null
transformers
28,388
Entry not found
ShengdingHu/rte
e85956c11cb2191ca647d9c74d2d45878fc70d00
2022-02-02T07:43:41.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/rte
1
null
transformers
28,389
Entry not found
ShengdingHu/soft_prompt_t5-base_cola
7e68ee6fc9cd3779fdcaff843b4023a5470c99b3
2022-02-03T16:58:52.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/soft_prompt_t5-base_cola
1
null
transformers
28,390
Entry not found
ShengdingHu/soft_prompt_t5-base_mrpc
a7ac8dabd71fd43334364a891278ddc034eaef2d
2022-02-04T03:19:21.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/soft_prompt_t5-base_mrpc
1
null
transformers
28,391
Entry not found
ShengdingHu/soft_prompt_t5-base_sst2
8f59b8dfd64ba6d4dfc38503bba9698c53fbd089
2022-02-04T03:08:58.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/soft_prompt_t5-base_sst2
1
null
transformers
28,392
Entry not found
ShengdingHu/stsb
6fa6ca27060c6878e1a2bc8e4c1a2dd21913deea
2022-02-04T11:14:21.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/stsb
1
null
transformers
28,393
Entry not found
ShengdingHu/superglue-boolq-multig
b43b9c34ed79b1d99ae69de8da76452e58449269
2022-01-30T13:14:33.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-boolq-multig
1
null
transformers
28,394
Entry not found
ShengdingHu/superglue-cb
e0dc0d9750f098dff27bc44f7a5ecc816fbb4b30
2022-02-02T08:20:32.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-cb
1
null
transformers
28,395
Entry not found
ShengdingHu/superglue-copa
1335ff274098bb06604fecc6b8237964d26cc39c
2022-02-02T07:40:21.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-copa
1
null
transformers
28,396
Entry not found
ShengdingHu/superglue-record
fa2cb3fd737d9e461a0522b889739a87f53dbd70
2022-02-02T10:06:08.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-record
1
null
transformers
28,397
Entry not found
ShengdingHu/superglue-wsc.fixed
2a275687860949eecbddf73e81582746fad1c1ee
2022-02-02T10:34:18.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-wsc.fixed
1
null
transformers
28,398
Entry not found
ShreyaH/DialoGPT-small-harrypotter
980e2cf1b5e5bd5379e8a71bf99074619e535541
2021-08-27T04:52:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ShreyaH
null
ShreyaH/DialoGPT-small-harrypotter
1
null
transformers
28,399
--- tags: - conversational --- #Harry Potter DialoGPT Model