modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Niphredil/DialoGPT-small-lotr
4eff8f211d7173a4841c2861c0d0355668eb5e96
2021-08-27T21:32:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Niphredil
null
Niphredil/DialoGPT-small-lotr
1
null
transformers
28,200
--- tags: - conversational --- #LOTR DialoGPT Model
NlpHUST/electra-legal-vi
5f98929d520eb48da0e8d0062dfb2aea8a70ae8f
2021-11-30T14:49:57.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
NlpHUST
null
NlpHUST/electra-legal-vi
1
null
transformers
28,201
Entry not found
NoLawz/DialoGPT-medium-harrypotter
ecc07d24f5efb2741e0399316117ce258c4a5ea1
2021-08-27T08:23:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
NoLawz
null
NoLawz/DialoGPT-medium-harrypotter
1
null
transformers
28,202
--- tags: - conversational --- # Harry Potter DialoGPT medium model
Norrawee/monsoon-ner
305180828a719f6c9299e6d2004e512de4c2a6cc
2022-02-16T06:22:30.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Norrawee
null
Norrawee/monsoon-ner
1
null
transformers
28,203
Entry not found
Norrawee/wangchanberta-ner-2
dca76aa5fa39fd3046e2d35ca62c373d25aebcf2
2022-02-17T05:45:26.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Norrawee
null
Norrawee/wangchanberta-ner-2
1
null
transformers
28,204
Entry not found
Norrawee/wangchanberta-w10
9d84ba86a6c9d4206f52ff3c783d82863aceb668
2022-02-17T05:51:03.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Norrawee
null
Norrawee/wangchanberta-w10
1
null
transformers
28,205
Entry not found
NtDNlp/cmcbert
9c9e8bce9ed74a6d330753cdec570748f008e603
2021-04-23T01:25:55.000Z
[ "pytorch", "transformers" ]
null
false
NtDNlp
null
NtDNlp/cmcbert
1
null
transformers
28,206
Ogayo/mt-ach-en
92fdc7a4f2c81cb8d696b23781d568b09144604f
2021-04-23T06:46:11.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ogayo
null
Ogayo/mt-ach-en
1
null
transformers
28,207
Entry not found
Ogayo/mt-en-ach
4b621df28014e3126841d782f8236cbacb37cdba
2021-04-23T06:42:54.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ogayo
null
Ogayo/mt-en-ach
1
null
transformers
28,208
Entry not found
Ogayo/mt-en-adh
322cd640a727b0123c261503908d5a3fe65385f9
2021-04-23T05:00:15.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ogayo
null
Ogayo/mt-en-adh
1
null
transformers
28,209
Entry not found
Oji/DialoGPT-small-Rick
126ee3e5ca4b87f2c257f623f9bdff31a7b3eeda
2022-02-04T11:41:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Oji
null
Oji/DialoGPT-small-Rick
1
null
transformers
28,210
--- tags: - conversational --- # Rick and Morty DialoGPT Model
Optimal/Harry
aca019d6b4b21df01d1768cac70b0641dbd2c04d
2021-12-15T09:52:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Optimal
null
Optimal/Harry
1
null
transformers
28,211
--- tags: - conversational --- #harry potter dialogpt model
OscarNav/dialoGPT_translate
9aad3030837254dd07f53b456cff375694cfded5
2021-12-03T01:30:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
OscarNav
null
OscarNav/dialoGPT_translate
1
null
transformers
28,212
# Finetuned DialoGPT model for Eng-Spa translation DialoGPT-small model was used and finetuned on English to Spanish translations, extracted from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip some examples of translations | Role | Response | | :---: |------------------------| | User | please, sing me a song | | Bot | Por favor, canta una canción. | | User | I really want to go to China | | Bot | Realmente quiero ir a China. | | User | Can you do me a favor? | | Bot | ¿Me puedes hacer un favor? | | User | I don't know what you are talking about | | Bot | No sé de qué estás hablando. | | User | I don't want to go to China | | Bot | No quiero ir a China. | # Using the model example code for trying out the model ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small') model = AutoModelWithLMHead.from_pretrained('OscarNav/dialoGPT_translate') # Let's traslate 5 sentences for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( new_user_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_p=0.92, top_k = 50 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, new_user_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
OwOmeister/DialoGPT-small-rick
52afa22facb04f970a9f2ed157a61304cccfbbfa
2021-09-05T07:54:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
OwOmeister
null
OwOmeister/DialoGPT-small-rick
1
null
transformers
28,213
--- tags: - conversational --- #rick
OwOmeister/killme
ce21f4e0d127c303dcdcbceda9bf751d5773dedd
2021-09-05T08:49:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
OwOmeister
null
OwOmeister/killme
1
null
transformers
28,214
--- tags: - conversational --- #ughhh
P4RZ1V4L/DialoGPT-Medium-Tony
af2e6dbb1fd50b73aac153cd43e7a922f3943e9e
2022-03-06T12:00:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
P4RZ1V4L
null
P4RZ1V4L/DialoGPT-Medium-Tony
1
null
transformers
28,215
--- tags: - conversational --- 0 Tony Stark DialoGPT Model
Palak/albert-base-v2_squad
af0741963b922a7832e09d5a6a6845a8277771b9
2021-12-24T18:16:45.000Z
[ "pytorch", "albert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Palak
null
Palak/albert-base-v2_squad
1
null
transformers
28,216
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2_squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the **squadV1** dataset. - "eval_exact_match": 82.69631031220435 - "eval_f1": 90.10806626207174 - "eval_samples": 10808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/google_electra-small-discriminator_squad
3061981233cf713b36de4f507e3c2594aca81844
2021-12-24T18:15:49.000Z
[ "pytorch", "electra", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Palak
null
Palak/google_electra-small-discriminator_squad
1
null
transformers
28,217
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: google_electra-small-discriminator_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_electra-small-discriminator_squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the **squadV1** dataset. - "eval_exact_match": 76.95364238410596 - "eval_f1": 84.98869246841396 - "eval_samples": 10784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
PedroR/xlm-roberta-7-pretrained
40cefafed12a3753e25c93bd222b7eb5192aa62f
2021-07-29T10:50:38.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-7-pretrained
1
null
transformers
28,218
Entry not found
PereLluis13/wav2vec2-large-xlsr-53-ca
09948ea6a5817ba50fcc7bd33b701c97f4dc570e
2022-02-04T14:25:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/wav2vec2-large-xlsr-53-ca
1
null
transformers
28,219
Entry not found
PereLluis13/wav2vec2-xls-r-1b-ca-old
0665b23bd031b5326302ea37efb801a512bcaed0
2022-02-03T10:40:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/wav2vec2-xls-r-1b-ca-old
1
null
transformers
28,220
Entry not found
PereLluis13/wav2vec2-xls-r-300m-ca
a7ec237b899e4d4a5ca950e1d39dba46af9f5057
2022-03-29T08:43:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "transformers", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/wav2vec2-xls-r-300m-ca
1
1
transformers
28,221
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-300m-ca results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 13.170091241317552 - name: Test CER type: cer value: 3.356726205534543 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 8.048005647723261 - name: Test CER type: cer value: 2.240912911020065 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 23.320629787889285 - name: Test CER type: cer value: 10.439216202089989 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: speech-recognition-community-v2/dev_data ca type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 31.99671115046487 - name: Test CER type: cer value: 15.820020687277325 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 22.04 --- # wav2vec2-xls-r-300m-ca This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. It achieves the following results on the evaluation set (for the three datasets): - Loss: 0.2472 - Wer: 0.1499 ## Model description Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data More information needed ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 18.0 - mixed_precision_training: Native AMP ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2099 | 0.09 | 500 | 3.4125 | 1.0 | | 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 | | 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 | | 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 | | 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 | | 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 | | 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 | | 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 | | 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 | | 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 | | 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 | | 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 | | 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 | | 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 | | 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 | | 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 | | 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 | | 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 | | 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 | | 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 | | 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 | | 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 | | 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 | | 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 | | 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 | | 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 | | 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 | | 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 | | 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 | | 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 | | 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 | | 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 | | 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 | | 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 | | 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 | | 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 | | 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 | | 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 | | 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 | | 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 | | 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 | | 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 | | 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 | | 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 | | 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 | | 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 | | 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 | | 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 | | 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 | | 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 | | 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 | | 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 | | 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 | | 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 | | 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 | | 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 | | 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 | | 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 | | 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 | | 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 | | 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 | | 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
Phantomhive/Noelle-bot
2512b6083e45646bdd681336c0138b1bae06921c
2021-06-26T16:10:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Phantomhive
null
Phantomhive/Noelle-bot
1
null
transformers
28,222
Phiion/DialoGPT-large-dilucbot
b4af998b2c8b52287e8be731d3302f59975ec5bf
2022-01-17T18:29:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Phiion
null
Phiion/DialoGPT-large-dilucbot
1
null
transformers
28,223
Entry not found
PhilipTheGreat/DiabloGPT-small-Traveller
beb611e5292b7b58f43b441eaa09cb937cae5a1e
2021-09-19T05:19:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
PhilipTheGreat
null
PhilipTheGreat/DiabloGPT-small-Traveller
1
null
transformers
28,224
--- tags: - conversational --- #Traveller DiabloGPT Model
Poly-Pixel/shrek-medium-full
ae9e43b75aa07898c4ac0bfaf42967f25a38e11d
2021-09-01T00:03:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Poly-Pixel
null
Poly-Pixel/shrek-medium-full
1
null
transformers
28,225
--- tags: - conversational --- Shrek, with all 4 scripts!
Poly-Pixel/shrek-test-small
ee4ba81dbc3a9b6b3bc8873aadf6e00b539f52f3
2021-08-28T21:45:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Poly-Pixel
null
Poly-Pixel/shrek-test-small
1
null
transformers
28,226
--- tags: - conversational --- # Shrek Small DialoGPT Model
Preeyank/roberta-base-education-domain
22937f1539d2629a527ffdd24eb275b6b974eb78
2021-05-20T12:17:05.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Preeyank
null
Preeyank/roberta-base-education-domain
1
null
transformers
28,227
Pupihed/DialoGPT-small-shrek
d620bd42ab09526570594ce98d3ad43b04776a11
2021-09-02T01:22:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Pupihed
null
Pupihed/DialoGPT-small-shrek
1
null
transformers
28,228
--- tags: - conversational --- # Shrek DialoGPT Model
Pyke/DS-config-2
af3c34876886f44686bfa2a348a8a3fe267e5604
2021-08-18T17:32:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-2
1
null
transformers
28,229
Entry not found
Pyke/DS-config-5
cd1d233af02b87b9e9ece350eb1d1b3d4242063b
2021-08-18T18:16:59.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-5
1
null
transformers
28,230
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-DS-04
e90528cca6537f2ae6f366a889bfb30a2875b253
2021-08-18T03:24:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-DS-04
1
null
transformers
28,231
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-DS-2
a1c44eed97b8a9eadd02202da789a387ebce5955
2021-08-18T02:19:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-DS-2
1
null
transformers
28,232
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-01
3dd5c054d8fee34a50352e40f44d81e5a9401ca9
2021-08-17T13:52:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-01
1
null
transformers
28,233
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-02
e0f62ff48e48893e12af2701427ccb6d84aff2bb
2021-08-17T13:54:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-02
1
null
transformers
28,234
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-05
46d57fe62bfe77a9f65bc529d4637e2895b8855f
2021-08-17T14:00:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-05
1
null
transformers
28,235
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-1
3cd98db45af31ca66fd696236a6173abde34e260
2021-08-16T18:02:59.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-1
1
null
transformers
28,236
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-2
db3b74b01be20f5063a236d3f1d1b6a965b74001
2021-08-17T17:06:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-2
1
null
transformers
28,237
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-4
64cc4969f910be9feb57989a4d0717f1391e32f8
2021-08-17T15:26:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test-Formal-4
1
null
transformers
28,238
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test13
f156120305d90aceda1034aff9463f4eb2dba269
2021-08-15T18:19:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test13
1
null
transformers
28,239
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test14
eff98905b11058e4964a8f2fed6b06aea4be3e50
2021-08-15T18:22:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test14
1
null
transformers
28,240
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test15
0e82eeaae2a42314ceaf0c9e57ad1484d3904c00
2021-08-15T18:23:48.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test15
1
null
transformers
28,241
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test18
db7301d19f2c9ae920396c11836805bf6ffbe065
2021-08-15T18:50:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test18
1
null
transformers
28,242
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test23
28f3c688feae731431ebffbc60a6b66d9a258969
2021-08-15T19:25:52.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test23
1
null
transformers
28,243
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test25
fb822dc829349342afe0549ab3fb40901fa70f30
2021-08-15T19:49:18.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test25
1
null
transformers
28,244
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test27
7c0c69c592f26786746efa2a4338d9bbcc2104cb
2021-08-16T15:27:08.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test27
1
null
transformers
28,245
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test28
66f9114a25476d1e35cc020ee7add47c9ed6c940
2021-08-16T15:30:39.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test28
1
null
transformers
28,246
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test29
09fe4678f79fa9325710f15cd8ccd2a2cbe8f425
2021-08-16T15:37:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test29
1
null
transformers
28,247
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test3
d665933d47b9d96bf11dd942e499c6c8f466aeae
2021-08-13T20:07:39.000Z
[ "pytorch", "bart", "transformers" ]
null
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test3
1
null
transformers
28,248
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test32
e8558fa9a9a4787e38e065272f6ee1013b384133
2021-08-16T15:55:45.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test32
1
null
transformers
28,249
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test34
90388e2bcb67ad607b382ab7e346452ff02e4cd1
2021-08-16T16:00:54.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test34
1
null
transformers
28,250
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test36
eea37a03cb645a01053e5f50505af8aea6e09c8f
2021-08-16T16:13:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test36
1
null
transformers
28,251
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test4
75cab30c05ac439d6228ca07b6305dafaf6f209f
2021-08-14T09:12:58.000Z
[ "pytorch", "bart", "transformers" ]
null
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test4
1
null
transformers
28,252
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test7
4be75a3bef828e4d5089dce18cca0d65217662a5
2021-08-14T18:12:46.000Z
[ "pytorch", "bart", "transformers" ]
null
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test7
1
null
transformers
28,253
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test8
9f5120e5b7e6f036c8fbb32dab01a2fd552dbf45
2021-08-15T04:34:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test8
1
null
transformers
28,254
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test9
869f3caec686df9a5b683d2c553072bb714872ad
2021-08-15T17:42:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test9
1
null
transformers
28,255
Entry not found
Pyke/bart-finetuned-with-patent-test
4906a32854ed67a4548528229dc258048de4a303
2021-08-06T16:42:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-with-patent-test
1
null
transformers
28,256
Entry not found
QuickRead/Reward_training_Pegasus_xsum
d5ecdbb615f7e3c2c414dd6dcd9778c4cd83f39b
2022-02-09T13:23:35.000Z
[ "pytorch", "pegasus", "feature-extraction", "transformers" ]
feature-extraction
false
QuickRead
null
QuickRead/Reward_training_Pegasus_xsum
1
null
transformers
28,257
Entry not found
RASMUS/wav2vec2-xlsr-1b-et-lm
0e53ecf23b5c8e2fc0a3f976dafeb102d5f9d1ce
2022-02-05T22:16:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-1b-et-lm
1
null
transformers
28,258
Entry not found
RASMUS/wav2vec2-xlsr-300-lm
68eb49ae3ba86ffad150cd769b4f1d789d76699a
2022-01-16T11:24:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-300-lm
1
null
transformers
28,259
Entry not found
RASMUS/wav2vec2-xlsr-300-versatile-test
95cfd36d3a104664c742811948239a49e2ce47a2
2022-01-09T04:29:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-300-versatile-test
1
null
transformers
28,260
Entry not found
RASMUS/wav2vec2-xlsr-300m-et
45f463bd872638a45df4cf3621d708428ac89fb6
2022-02-04T22:03:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-300m-et
1
null
transformers
28,261
Entry not found
RASMUS/wav2vec2-xlsr-fi-train-aug-bigLM-1B
e27e2a5b323992973e27edeb0a8074b796564442
2022-01-27T23:00:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "mozilla-foundation/common_voice_7_0", "audio", "speech", "model-index" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-fi-train-aug-bigLM-1B
1
null
transformers
28,262
--- language: fi datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer tags: - generated_from_trainer - mozilla-foundation/common_voice_7_0 - audio - automatic-speech-recognition - speech model-index: - name: XLS-R 1B Wav2Vec2 Finnish by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-fi-train-aug-lm-1B This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1499 - Wer: 0.1955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6473 | 0.29 | 400 | 0.2857 | 0.3825 | | 0.6039 | 0.58 | 800 | 0.2459 | 0.3476 | | 0.4757 | 0.87 | 1200 | 0.2338 | 0.3274 | | 0.4473 | 1.15 | 1600 | 0.2246 | 0.3128 | | 0.4322 | 1.44 | 2000 | 0.1962 | 0.2805 | | 0.3961 | 1.73 | 2400 | 0.2070 | 0.2797 | | 0.3642 | 2.02 | 2800 | 0.1790 | 0.2473 | | 0.3561 | 2.31 | 3200 | 0.1769 | 0.2375 | | 0.282 | 2.6 | 3600 | 0.1672 | 0.2263 | | 0.2978 | 2.89 | 4000 | 0.1636 | 0.2192 | | 0.2722 | 3.17 | 4400 | 0.1637 | 0.2102 | | 0.2924 | 3.46 | 4800 | 0.1506 | 0.2021 | | 0.2631 | 3.75 | 5200 | 0.1499 | 0.1955 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
RASMUS/wav2vec2-xlsr-fi-train-aug-lm-1B-lower-lr
847116a5b693d79c94e3df4937325dcdf28caf7d
2022-01-28T22:17:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-fi-train-aug-lm-1B-lower-lr
1
null
transformers
28,263
Entry not found
RadhikaSatam/CovBert-radhika
ff53193f40e36239316adfe3ec946f827ef74354
2021-05-19T11:27:50.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
RadhikaSatam
null
RadhikaSatam/CovBert-radhika
1
null
transformers
28,264
Entry not found
RahulRaman/Kannada-LM-DeBERTa
1145f7f7dcf75e708424584537adc24dfc4e4047
2022-02-04T13:02:51.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Kannada-LM-DeBERTa
1
null
null
28,265
Entry not found
RahulRaman/Kannada-LM-RoBERTa
e7928a945ba98b218bbeecf5030e36d0bbe29281
2022-02-04T12:47:49.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Kannada-LM-RoBERTa
1
null
null
28,266
Entry not found
RahulRaman/Malayalam-LM-DeBERTa
1b6d5cbce2e52bb3977372bdcd0539e1e1548ebb
2022-02-04T13:09:37.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Malayalam-LM-DeBERTa
1
null
null
28,267
Entry not found
RahulRaman/Tamil-LM-DeBERTa
34a5afb1e3de4e83c013dee853e6efcc3ae12c2b
2022-02-04T13:04:58.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Tamil-LM-DeBERTa
1
null
null
28,268
Entry not found
RahulRaman/Tamil-LM-Electra
432ccb0ff4f1e8c07190c9516556be6c8407aee2
2022-01-25T13:20:22.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Tamil-LM-Electra
1
null
null
28,269
Entry not found
RahulRaman/Tamil-LM-RoBERTa
a81772a29e44370a38dbc3d8a46b14f8215bec7c
2022-02-04T12:54:55.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Tamil-LM-RoBERTa
1
null
null
28,270
Entry not found
RahulRaman/Telugu-LM-DeBERTa
e22d4ec4b0fecbfc4eed8e4dc20524aa465205cc
2022-02-04T13:06:49.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Telugu-LM-DeBERTa
1
null
null
28,271
Entry not found
RahulRaman/Telugu-LM-Electra
852e4dd91bf835fcb75fc8f82f83a20c61d6c08b
2022-02-02T10:01:47.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Telugu-LM-Electra
1
null
null
28,272
Entry not found
RahulRaman/Telugu-LM-RoBERTa
f46c7a50c76e44f20bad091066c4585d263e89c2
2022-02-04T12:56:35.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/Telugu-LM-RoBERTa
1
null
null
28,273
Entry not found
RahuramThiagarajan/rass
0362a9b3fa43511e5cd63ccdbe8f1f22baa9983b
2021-11-11T02:46:12.000Z
[ "pytorch" ]
null
false
RahuramThiagarajan
null
RahuramThiagarajan/rass
1
null
null
28,274
Entry not found
Rashid11/DialoGPT-small-rick
024ec69d612950a987bbd22d8063e4198923cdd6
2021-09-18T10:28:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Rashid11
null
Rashid11/DialoGPT-small-rick
1
null
transformers
28,275
--- tags: - conversational --- # Rick Morty DialoGPT Model
Rathod/DialoGPT-small-harrypotter
0da1e45a2cbf5b205d7061c3ff7283609b751644
2021-09-28T08:00:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Rathod
null
Rathod/DialoGPT-small-harrypotter
1
null
transformers
28,276
--- tags: - conversational --- # Harry Potter DialoGPT Model
Rattana/wav2vec2-thai-colab
593327431459b1d91987e3cd3057500e4b2acdda
2022-02-22T08:32:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Rattana
null
Rattana/wav2vec2-thai-colab
1
null
transformers
28,277
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-thai-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-thai-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Recognai/veganuary_ner
c2dd32d9a9be30c9c7c608029f212b0f4cce641e
2022-02-07T13:29:52.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Recognai
null
Recognai/veganuary_ner
1
null
transformers
28,278
Entry not found
RishabhRawatt/DialoGPT-small-kela
b2d32639120173d97e645e301f4aa65b6a725cb6
2021-09-05T16:34:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
RishabhRawatt
null
RishabhRawatt/DialoGPT-small-kela
1
null
transformers
28,279
--- tags: - conversational --- # Kela DialoGPT Model
RizqFarIDN/DialoGPT-small-harrypotter
8f35eacaedec1d8f2c4657de054486417fc49b03
2021-11-25T02:58:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
RizqFarIDN
null
RizqFarIDN/DialoGPT-small-harrypotter
1
null
transformers
28,280
--- tags: - conversational --- #harry potter DialoGPT model
RollingMuffin/scripts_ru
33a1aed22c1949332f204a13e2c276924d7354ab
2022-02-23T16:18:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
RollingMuffin
null
RollingMuffin/scripts_ru
1
null
transformers
28,281
Entry not found
S34NtheGuy/DialoGPT-medium-Glass_Of_Water
8455d6e8083b6776feb898f370041c91951eddcc
2021-10-14T12:28:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
S34NtheGuy
null
S34NtheGuy/DialoGPT-medium-Glass_Of_Water
1
null
transformers
28,282
--- tags: - conversational --- # DialoGPT chat bot model using discord messages as data
S34NtheGuy/DialoGPT-medium-Mona
ced64c621a7f450299cb532d334a9295062a77ad
2021-12-14T18:49:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
S34NtheGuy
null
S34NtheGuy/DialoGPT-medium-Mona
1
null
transformers
28,283
--- tags: - conversational --- # DialoGPT chat bot model using discord messages as data
S34NtheGuy/DialoGPT-small-Harry282
8f7256ef286bafb40a93c8e83cc1ca9d0eefe9d4
2021-10-12T17:21:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
S34NtheGuy
null
S34NtheGuy/DialoGPT-small-Harry282
1
null
transformers
28,284
--- tags: - conversational --- # DialoGPT chat bot model using discord messages as data
S34NtheGuy/DialoGPT-small-pikamew362
cdc44847da3979914250c30083341a8f9cfcc23d
2021-10-14T02:01:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
S34NtheGuy
null
S34NtheGuy/DialoGPT-small-pikamew362
1
null
transformers
28,285
--- tags: - conversational --- # DialoGPT chat bot model using discord messages as data
SEBIS/legal_t5_small_cls_finetuned_cs
d4b756259e074487376a05e39a8096ea6c9231be
2021-06-23T10:29:51.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_finetuned_cs
1
null
transformers
28,286
Entry not found
SEBIS/legal_t5_small_cls_finetuned_en
4ac3cb8c38efb63c92d6004f2c5c6f00ea5ab99a
2021-06-23T10:31:51.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_finetuned_en
1
null
transformers
28,287
Entry not found
SEBIS/legal_t5_small_cls_finetuned_es
30ef1b1fcd3bd903420e6c38dd0a2bc68c4014d8
2021-06-23T10:32:45.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_finetuned_es
1
null
transformers
28,288
Entry not found
SEBIS/legal_t5_small_cls_finetuned_it
9c2d67e27d5a442445f39dda3f5cac054a0539f4
2021-06-23T10:34:35.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_finetuned_it
1
null
transformers
28,289
Entry not found
SEBIS/legal_t5_small_cls_it
05fef21cf0332b0319d067df96bd7531a663fbb2
2021-06-23T10:36:37.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian", "dataset:jrc-acquis", "transformers", "classification Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_it
1
null
transformers
28,290
--- language: Italian tags: - classification Italian model datasets: - jrc-acquis widget: - text: "Regolamento (CE) n. 435/2005 della Commissione del 17 marzo 2005 relativo all'applicazione di un coefficiente di riduzione ai certificati di restituzione per le merci non comprese nell'allegato I del trattato come statuito all'articolo 8, paragrafo 5, del regolamento (CE) n. 1520/2000 LA COMMISSIONE DELLE COMUNITÀ EUROPEE, visto il trattato che istituisce la Comunità europea, visto il regolamento (CE) n. 3448/93 del Consiglio, del 6 dicembre 1993, sul regime di scambi per talune merci ottenute dalla trasformazione di prodotti agricoli [1], visto il regolamento (CE) n. 1520/2000 della Commissione, del 13 luglio 2000, che stabilisce, per taluni prodotti agricoli esportati sotto forma di merci non comprese nell'allegato I del trattato, le modalità comuni di applicazione relative al versamento delle restituzioni all'esportazione e i criteri per stabilirne l'importo [2], in particolare l'articolo 8, paragrafo 5, considerando quanto segue: (1) Dalle comunicazioni degli Stati membri di cui all'articolo 8, paragrafo 2, del regolamento (CE) n. 1520/2000 si evince che l'importo totale delle domande ricevute ammonta a 178002906 EUR, mentre l'importo disponibile per la tranche di titoli di restituzione di cui all'articolo 8, paragrafo 4, del regolamento (CE) n. 1520/2000 ammonta a 68116869 EUR. (2) Un coefficiente di riduzione è calcolato sulla base dell'articolo 8, paragrafi 3 e 4, del regolamento (CE) n. 1520/2000. Siffatto coefficiente dovrebbe pertanto essere applicato agli importi richiesti sotto forma di certificati di restituzione per il periodo dal 1o aprile 2005 come stabilito all'articolo 8, paragrafo 6, del regolamento (CE) n. 1520/2000, HA ADOTTATO IL PRESENTE REGOLAMENTO: Articolo 1 Gli importi delle domande di certificati di restituzione per il periodo dal 1o aprile 2005 sono soggetti a un coefficiente di riduzione pari a 0,618. Articolo 2 Il presente regolamento entra in vigore il 18 marzo 2005. Il presente regolamento è obbligatorio in tutti i suoi elementi e direttamente applicabile in ciascuno degli Stati membri. Fatto a Bruxelles, il 17 marzo 2005. Per la Commissione Günter Verheugen Vicepresidente [1] GU L 318 del 20.12.1993, pag. 18. Regolamento modificato da ultimo dal regolamento (CE) n. 2580/2000 (GU L 298 del 25.11.2000, pag. 5). [2] GU L 177 del 15.7.2000, pag. 1. Regolamento modificato da ultimo dal regolamento (CE) n. 886/2004 (GU L 168 del 1.5.2004, pag. 14). --------------------------------------------------" --- # legal_t5_small_cls_it model Model for classification of legal text written in Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_cls_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for classification of legal texts written in Italian. ### How to use Here is how to use this model to classify legal text written in Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_cls_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_cls_it", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Regolamento (CE) n. 435/2005 della Commissione del 17 marzo 2005 relativo all'applicazione di un coefficiente di riduzione ai certificati di restituzione per le merci non comprese nell'allegato I del trattato come statuito all'articolo 8, paragrafo 5, del regolamento (CE) n. 1520/2000 LA COMMISSIONE DELLE COMUNITÀ EUROPEE, visto il trattato che istituisce la Comunità europea, visto il regolamento (CE) n. 3448/93 del Consiglio, del 6 dicembre 1993, sul regime di scambi per talune merci ottenute dalla trasformazione di prodotti agricoli [1], visto il regolamento (CE) n. 1520/2000 della Commissione, del 13 luglio 2000, che stabilisce, per taluni prodotti agricoli esportati sotto forma di merci non comprese nell'allegato I del trattato, le modalità comuni di applicazione relative al versamento delle restituzioni all'esportazione e i criteri per stabilirne l'importo [2], in particolare l'articolo 8, paragrafo 5, considerando quanto segue: (1) Dalle comunicazioni degli Stati membri di cui all'articolo 8, paragrafo 2, del regolamento (CE) n. 1520/2000 si evince che l'importo totale delle domande ricevute ammonta a 178002906 EUR, mentre l'importo disponibile per la tranche di titoli di restituzione di cui all'articolo 8, paragrafo 4, del regolamento (CE) n. 1520/2000 ammonta a 68116869 EUR. (2) Un coefficiente di riduzione è calcolato sulla base dell'articolo 8, paragrafi 3 e 4, del regolamento (CE) n. 1520/2000. Siffatto coefficiente dovrebbe pertanto essere applicato agli importi richiesti sotto forma di certificati di restituzione per il periodo dal 1o aprile 2005 come stabilito all'articolo 8, paragrafo 6, del regolamento (CE) n. 1520/2000, HA ADOTTATO IL PRESENTE REGOLAMENTO: Articolo 1 Gli importi delle domande di certificati di restituzione per il periodo dal 1o aprile 2005 sono soggetti a un coefficiente di riduzione pari a 0,618. Articolo 2 Il presente regolamento entra in vigore il 18 marzo 2005. Il presente regolamento è obbligatorio in tutti i suoi elementi e direttamente applicabile in ciascuno degli Stati membri. Fatto a Bruxelles, il 17 marzo 2005. Per la Commissione Günter Verheugen Vicepresidente [1] GU L 318 del 20.12.1993, pag. 18. Regolamento modificato da ultimo dal regolamento (CE) n. 2580/2000 (GU L 298 del 25.11.2000, pag. 5). [2] GU L 177 del 15.7.2000, pag. 1. Regolamento modificato da ultimo dal regolamento (CE) n. 886/2004 (GU L 168 del 1.5.2004, pag. 14). --------------------------------------------------" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_cls_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 23 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | F1 score | |:-----:|:-----:| | legal_t5_small_cls_it | 0.6296| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_cls_multitask_fr
be583ff3d06b03a7512bcc8699e17cd0a5049f55
2021-06-23T10:43:14.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_multitask_fr
1
null
transformers
28,291
Entry not found
SEBIS/legal_t5_small_finetuned_summ_cs
14f987012ab08369e3133b2a18df25da95d18589
2021-06-23T10:46:26.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_finetuned_summ_cs
1
null
transformers
28,292
Entry not found
SEBIS/legal_t5_small_finetuned_summ_en
986b807c41dc291d0ffa7ed420e3a53ffb83d521
2021-06-23T10:47:37.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_finetuned_summ_en
1
null
transformers
28,293
Entry not found
SEBIS/legal_t5_small_finetuned_summ_fr
4f05b33f7470565ccd8f89a55ca4c0f41a86717a
2021-06-23T10:48:49.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_finetuned_summ_fr
1
null
transformers
28,294
Entry not found
SEBIS/legal_t5_small_finetuned_summ_it
dcd4eac9dc4374f5a594cac27748688c10c1e0e7
2021-06-23T10:49:23.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_finetuned_summ_it
1
null
transformers
28,295
Entry not found
SEBIS/legal_t5_small_multitask_cs_it
be6bc2affe928ef3d05b6730c187edd35a924cc1
2021-06-23T10:53:09.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_cs_it
1
null
transformers
28,296
--- language: Cszech Italian tags: - translation Cszech Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Příprava Evropské rady (29.-30. října 2009)" --- # legal_t5_small_multitask_cs_it model Model on translating legal text from Cszech to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_cs_it model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Italian. ### How to use Here is how to use this model to translate legal text from Cszech to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_cs_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_cs_it", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Příprava Evropské rady (29.-30. října 2009)" pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_cs_it model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_cs_it | 45.297| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_cs_sv
6836d9c5e09a1b2daf6857fcd18bdddeb2727081
2021-06-23T10:53:46.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_cs_sv
1
null
transformers
28,297
--- language: Cszech Swedish tags: - translation Cszech Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Hračky určené pro častý kontakt s kůží obsahující alergenní látky jiné než vonné, které jsou známé vyvoláváním vážných nebo dokonce osudných účinků na zdraví dětí (například látky, které mohou vyvolat anafylaktický šok), musí být v souladu s ustanoveními týkajícími se označování uvedenými ve směrnici Komise 2006/125/ES ze dne 5. prosince 2006 o obilných a ostatních příkrmech pro kojence a malé děti." --- # legal_t5_small_multitask_cs_sv model Model on translating legal text from Cszech to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_cs_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Swedish. ### How to use Here is how to use this model to translate legal text from Cszech to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_cs_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_cs_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Hračky určené pro častý kontakt s kůží obsahující alergenní látky jiné než vonné, které jsou známé vyvoláváním vážných nebo dokonce osudných účinků na zdraví dětí (například látky, které mohou vyvolat anafylaktický šok), musí být v souladu s ustanoveními týkajícími se označování uvedenými ve směrnici Komise 2006/125/ES ze dne 5. prosince 2006 o obilných a ostatních příkrmech pro kojence a malé děti." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_cs_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_cs_sv | 35.871| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_de_fr
e55bc95cec341a509e72a68b912a8fee29767850
2021-06-23T10:55:38.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_de_fr
1
null
transformers
28,298
--- language: Deustch French tags: - translation Deustch French model datasets: - dcep europarl jrc-acquis widget: - text: "Wegen einer in Ausübung ihres Amtes erfolgten Äußerung oder Abstimmung dürfen Mitglieder des Europäischen Parlaments weder in ein Ermittlungsverfahren verwickelt noch festgenommen oder verfolgt werden." --- # legal_t5_small_multitask_de_fr model Model on translating legal text from Deustch to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_de_fr model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to French. ### How to use Here is how to use this model to translate legal text from Deustch to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_de_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_de_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Wegen einer in Ausübung ihres Amtes erfolgten Äußerung oder Abstimmung dürfen Mitglieder des Europäischen Parlaments weder in ein Ermittlungsverfahren verwickelt noch festgenommen oder verfolgt werden." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_de_fr model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_de_fr | 41.003| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_en_de
bdea191a5fb1514f6a9d92f3b2805a3d9224a9a6
2021-06-23T10:58:16.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_en_de
1
null
transformers
28,299
--- language: English Deustch tags: - translation English Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Reiterates its call on the Commission to submit a proposal to the Parliament and Council as soon as possible in order to ensure that bunker oil for engine fuel in new ships is stored in safer, double-hull tanks since freight or container ships often contain heavy fuel as engine fuel in their bunkers the quantity of which may considerably exceed the cargoes of smaller oil tankers; considers that, before submitting such a proposal, the Commission should ascertain whether or not the existing IMO rules laid down in Resolution MEPC.141(54) are sufficient to guarantee the safe transport of bunker oil used as fuel;" --- # legal_t5_small_multitask_en_de model Model on translating legal text from English to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_en_de model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from English to Deustch. ### How to use Here is how to use this model to translate legal text from English to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_en_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_en_de", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "Reiterates its call on the Commission to submit a proposal to the Parliament and Council as soon as possible in order to ensure that bunker oil for engine fuel in new ships is stored in safer, double-hull tanks since freight or container ships often contain heavy fuel as engine fuel in their bunkers the quantity of which may considerably exceed the cargoes of smaller oil tankers; considers that, before submitting such a proposal, the Commission should ascertain whether or not the existing IMO rules laid down in Resolution MEPC.141(54) are sufficient to guarantee the safe transport of bunker oil used as fuel;" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_en_de model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_en_de | 41.337| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)