modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Shubham-Kumar-DTU/DialoGPT-small-goku
1bba2e9f223eddaf08536447fa51d3e05077fb0c
2021-09-01T21:40:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Shubham-Kumar-DTU
null
Shubham-Kumar-DTU/DialoGPT-small-goku
1
null
transformers
28,400
--- tags: - conversational --- #goku DialoGPT Model
Shushant/ContaminationQuestionAnsweringTry
bcc3fe46dd97ba694c0987cf53a6e64de0cb7169
2022-01-13T07:14:28.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Shushant
null
Shushant/ContaminationQuestionAnsweringTry
1
null
transformers
28,401
Entry not found
Sid51/CB
3d8ccd8113e57b24117fd7480f9c0ceb98ff328e
2021-06-12T17:36:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Sid51
null
Sid51/CB
1
null
transformers
28,402
Entry not found
Simovod/testSIM
653a5b901245118117208561b0117ae1793c9e09
2021-08-03T09:56:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Simovod
null
Simovod/testSIM
1
null
transformers
28,403
Entry not found
Sired/DialoGPT-small-trumpbot
a685a7c3c97e71a4359b3fc1848ba7f064a0d0ea
2021-11-09T22:36:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Sired
null
Sired/DialoGPT-small-trumpbot
1
null
transformers
28,404
--- tags: - conversational --- # Trump Insults GPT Bot
Snaky/StupidEdwin
e1426bcb8257f12d3c87e4a1012adb77cfb89e95
2021-11-14T15:12:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Snaky
null
Snaky/StupidEdwin
1
null
transformers
28,405
--- tags: - conversational --- #StupidEdwin
Sonny/dummy-model
4bf400edc0e6cdd30e7523968bc06cab51418a70
2022-01-19T21:55:22.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Sonny
null
Sonny/dummy-model
1
null
transformers
28,406
Entry not found
Soonhwan-Kwon/xlm-roberta-xxlarge
90febdb12bb980657f5ae449fa97a494c9aa2c76
2021-11-14T09:54:29.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Soonhwan-Kwon
null
Soonhwan-Kwon/xlm-roberta-xxlarge
1
null
transformers
28,407
Entry not found
SophieTr/results
62c52cf9da1ebbe7339105a619595520b52854ce
2021-12-28T19:59:38.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
SophieTr
null
SophieTr/results
1
2
transformers
28,408
--- tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [sshleifer/distill-pegasus-xsum-16-4](https://huggingface.co/sshleifer/distill-pegasus-xsum-16-4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.2378 | 0.51 | 100 | 7.1853 | | 7.2309 | 1.01 | 200 | 6.6342 | | 6.4796 | 1.52 | 300 | 6.3206 | | 6.2691 | 2.02 | 400 | 6.0184 | | 5.7382 | 2.53 | 500 | 5.5754 | | 4.9922 | 3.03 | 600 | 4.5178 | | 3.6031 | 3.54 | 700 | 2.8579 | | 2.5203 | 4.04 | 800 | 2.4718 | | 2.2563 | 4.55 | 900 | 2.4128 | | 2.1425 | 5.05 | 1000 | 2.3767 | | 2.004 | 5.56 | 1100 | 2.3982 | | 2.0437 | 6.06 | 1200 | 2.3787 | | 1.9407 | 6.57 | 1300 | 2.3952 | | 1.9194 | 7.07 | 1400 | 2.3964 | | 1.758 | 7.58 | 1500 | 2.4056 | | 1.918 | 8.08 | 1600 | 2.4101 | | 1.9162 | 8.59 | 1700 | 2.4085 | | 1.8983 | 9.09 | 1800 | 2.4058 | | 1.6939 | 9.6 | 1900 | 2.4050 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
SouvikGhosh/DialoGPT-Souvik
e05834dcee6b05ae2fa2453940dcd74a979a128a
2021-06-21T13:00:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SouvikGhosh
null
SouvikGhosh/DialoGPT-Souvik
1
null
transformers
28,409
Entry not found
Splend1dchan/phoneme-bart-base
8b6df48e9081fcb3b43655bf9fbecc10bb9cad29
2022-02-21T18:15:19.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Splend1dchan
null
Splend1dchan/phoneme-bart-base
1
null
transformers
28,410
Entry not found
Spoon/DialoGPT-small-engineer
5465b404065771376952cf32f75afb1c5752d8c4
2021-09-13T15:38:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Spoon
null
Spoon/DialoGPT-small-engineer
1
null
transformers
28,411
--- tags: - conversational --- # Engineer DialoGPT Model
Srulikbdd/Wav2Vec2-large-xlsr-welsh
39c6c896a05271ca7b012fccfe8afcae245de172
2021-07-05T17:38:11.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sv", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Srulikbdd
null
Srulikbdd/Wav2Vec2-large-xlsr-welsh
1
null
transformers
28,412
--- language: sv tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Welsh by Srulik Ben David results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cy type: common_voice args: cy metrics: - name: Test WER type: wer value: 29.4 --- Wav2Vec2-Large-XLSR-Welsh Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Welsh Common Voice dataset. The data was augmented using standard augmentation approach. When using this model, make sure that your speech input is sampled at 16kHz. Test Result: 29.4% Usage The model can be used directly (without a language model) as follows: ``` import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cy", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Srulikbdd/Wav2vec2-large-xlsr-welsh") model = Wav2Vec2ForCTC.from_pretrained("Srulikbdd/Wav2vec2-large-xlsr-welsh") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` Evaluation The model can be evaluated as follows on the Welsh test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cy", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Srulikbdd/Wav2Vec2-large-xlsr-welsh") model = Wav2Vec2ForCTC.from_pretrained("Srulikbdd/Wav2Vec2-large-xlsr-welsh") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\u2013\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\u2014\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ```
StephennFernandes/wav2vec2-XLS-R-300m-assamese
5f7c476deab069103ac89b35126d83eda2224ba3
2022-02-08T18:26:31.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
StephennFernandes
null
StephennFernandes/wav2vec2-XLS-R-300m-assamese
1
null
transformers
28,413
Entry not found
SteveC/sdc_bot_15K
b784e301338acaddf38c7bf08f5426c35d5bc0e2
2022-02-21T02:04:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SteveC
null
SteveC/sdc_bot_15K
1
null
transformers
28,414
It's just a dialog bot trained on my Tweets. Unfortunately as tweets aren\'t very conversational it comes off pretty random.
SteveC/sdc_bot_medium
8416cf84aa0d78ec2e475bfcc8c496e04ab0c8c8
2022-02-11T16:05:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SteveC
null
SteveC/sdc_bot_medium
1
1
transformers
28,415
Entry not found
StevenShoemakerNLP/pitchfork
0ad2a7f1d265cddec8d72ed99e5e1d856cb88bc6
2021-05-21T11:15:10.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
StevenShoemakerNLP
null
StevenShoemakerNLP/pitchfork
1
null
transformers
28,416
Entry not found
StormZJ/test1
433a185af655878ed6841825fe7aede850524e88
2022-02-11T05:54:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
StormZJ
null
StormZJ/test1
1
null
transformers
28,417
Entry not found
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab-new
07f13bfc8939c4be9e06bd784d630dbf6050a2bb
2022-02-04T08:22:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Subhashini17
null
Subhashini17/wav2vec2-large-xls-r-300m-ta-colab-new
1
null
transformers
28,418
Entry not found
SuperAI2-Machima/wangchan-finetune-ner-pos-v3
d5054912c33b30e41bb6bee320c61aa082499c20
2022-02-24T05:26:02.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
SuperAI2-Machima
null
SuperAI2-Machima/wangchan-finetune-ner-pos-v3
1
null
transformers
28,419
Entry not found
SuperDoge/DialoGPT-small-harrypotter
77ddc615ac86305244b025abdff1a1b1fc2ce35c
2021-09-01T03:29:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SuperDoge
null
SuperDoge/DialoGPT-small-harrypotter
1
null
transformers
28,420
Entry not found
T-Systems-onsite/cross-de-es-roberta-sentence-transformer
e5a811f8803d1cfd92e72bb56b17902905f0dd05
2021-04-06T05:37:15.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-de-es-roberta-sentence-transformer
1
null
transformers
28,421
Entry not found
T-Systems-onsite/cross-de-zh-roberta-sentence-transformer
3a01731358978df1edcb1a6bfff0957627c59ac4
2021-04-06T11:09:56.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-de-zh-roberta-sentence-transformer
1
null
transformers
28,422
Entry not found
T-Systems-onsite/cross-en-de-es-roberta-sentence-transformer
b3799e45b0be57f49367130e66f5b719be999396
2020-12-30T06:14:24.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-de-es-roberta-sentence-transformer
1
null
transformers
28,423
Entry not found
T-Systems-onsite/cross-en-de-nl-roberta-sentence-transformer
52a781f333060d9b7ed3a08d0f05624905d10f7b
2020-12-30T07:03:00.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-de-nl-roberta-sentence-transformer
1
null
transformers
28,424
Entry not found
T-Systems-onsite/cross-en-it-roberta-sentence-transformer
50cbe498cf4663cd960839683de3a2609d7ebe27
2022-06-28T19:56:04.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-it-roberta-sentence-transformer
1
null
transformers
28,425
Entry not found
T-Systems-onsite/cross-en-nl-fr-roberta-sentence-transformer
0dac0efaac0382e73372a168460782c88d45d614
2021-01-01T16:26:52.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-nl-fr-roberta-sentence-transformer
1
null
transformers
28,426
Entry not found
T-Systems-onsite/cross-en-nl-roberta-sentence-transformer
61e5f6a636f9abf4262c6aeb4a2930de2b8b1017
2021-04-06T16:19:50.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-nl-roberta-sentence-transformer
1
null
transformers
28,427
Entry not found
T1Berger/bert-base-cased-goemotions-emotion5
eb66ae920f8ad82e238f671922244681e8758089
2021-11-13T16:01:54.000Z
[ "pytorch", "bert", "transformers" ]
null
false
T1Berger
null
T1Berger/bert-base-cased-goemotions-emotion5
1
null
transformers
28,428
Entry not found
Taekyoon/neg_komrc_train
17628b2437bbbd02f5c96e1199d790bcce909654
2022-03-12T16:36:37.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Taekyoon
null
Taekyoon/neg_komrc_train
1
null
transformers
28,429
--- tags: - generated_from_trainer model-index: - name: neg_komrc_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # neg_komrc_train This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1234 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.277 | 0.51 | 10000 | 0.4016 | | 0.1671 | 1.03 | 20000 | 0.4116 | | 0.1725 | 1.54 | 30000 | 0.4390 | | 0.0868 | 2.06 | 40000 | 0.5147 | | 0.0868 | 2.57 | 50000 | 0.5064 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.10.3
Taekyoon/test_bert_model
251b3ce3555ef65916f2ac6b4142dfe4bfcb8682
2022-02-16T07:26:16.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/test_bert_model
1
null
transformers
28,430
Entry not found
Taekyoon/test_model
fd614ed1434b55cc49f09de8f53ddead55f43c82
2021-12-20T10:27:26.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/test_model
1
null
transformers
28,431
Entry not found
Taekyoon/v0.41_uniclova
4d45f8366010469ef533bdc240775a0528e1dd15
2022-01-16T11:46:24.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/v0.41_uniclova
1
null
transformers
28,432
Entry not found
Taekyoon/v0.4_uniclova
4e31307f4cceda7422c8ba19db81b427d291bf84
2022-01-16T11:49:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/v0.4_uniclova
1
null
transformers
28,433
Entry not found
Teepika/Sentence-Transformer-NSP-Fine-Tuned
25a47a6683a85952572bc860c54d33fea0ac7ebc
2021-10-25T22:02:24.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Teepika
null
Teepika/Sentence-Transformer-NSP-Fine-Tuned
1
null
transformers
28,434
Entry not found
Teepika/roberta-base-squad2-finetuned-selqa
3abcf22e3c2d007e982e1b121e23d044cd01fb5e
2021-12-08T21:49:27.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Teepika
null
Teepika/roberta-base-squad2-finetuned-selqa
1
null
transformers
28,435
Entry not found
Teepika/t5-small-finetuned-xsum-gcloud1
3eb9e6bbbf3ac13ba838a6591626f4e8cd3e6152
2021-11-02T08:05:04.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Teepika
null
Teepika/t5-small-finetuned-xsum-gcloud1
1
null
transformers
28,436
Entry not found
Teepika/t5-small-finetuned-xsum-proplus
eda00e7ee51613089f743a179580fc26bb127ace
2021-11-02T02:02:31.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Teepika
null
Teepika/t5-small-finetuned-xsum-proplus
1
null
transformers
28,437
Entry not found
Tejasvb/DialoGPT-small-rick
33dbef825a58d217a1204b37963ab5c0eb12117b
2021-08-29T05:05:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tejasvb
null
Tejasvb/DialoGPT-small-rick
1
null
transformers
28,438
--- tags: - conversational ---
Tejaswini/opus-mt-en-ro-finetuned-en-to-ro
b268563e529ddfea62097d79cae560ea1fd148cd
2022-02-18T04:35:21.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Tejaswini
null
Tejaswini/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
28,439
Entry not found
TheLongSentance/t5-small-finetuned-toxic
ce20c3ad99da45453d5bb5e50e6a19dbbaab6c1c
2021-08-03T09:25:06.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
TheLongSentance
null
TheLongSentance/t5-small-finetuned-toxic
1
null
transformers
28,440
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model_index: - name: t5-small-finetuned-toxic results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Rouge1 type: rouge value: 93.7659 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-toxic This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1295 - Rouge1: 93.7659 - Rouge2: 3.6618 - Rougel: 93.7652 - Rougelsum: 93.7757 - Gen Len: 2.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1595 | 1.0 | 7979 | 0.1295 | 93.7659 | 3.6618 | 93.7652 | 93.7757 | 2.5481 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
TheLongSentance/t5_large_baseline
bddd59761ed9aa42494782ae3de6f6f0da808c9b
2021-08-24T11:11:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
TheLongSentance
null
TheLongSentance/t5_large_baseline
1
null
transformers
28,441
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model_index: - name: t5_large_baseline results: - task: name: Summarization type: summarization metric: name: Rouge1 type: rouge value: 99.8958 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large_baseline This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Rouge1: 99.8958 - Rouge2: 99.8696 - Rougel: 99.8958 - Rougelsum: 99.8958 - Gen Len: 46.715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.9852 | 0.33 | 50 | 0.1098 | 55.1421 | 49.8248 | 54.4294 | 54.7377 | 19.0 | | 0.1186 | 0.67 | 100 | 0.0176 | 58.0994 | 54.8973 | 57.7383 | 57.9538 | 19.0 | | 0.0417 | 1.0 | 150 | 0.0057 | 58.3685 | 55.7353 | 58.279 | 58.2729 | 19.0 | | 0.0225 | 1.33 | 200 | 0.0029 | 58.8981 | 56.2457 | 58.8202 | 58.7906 | 19.0 | | 0.0131 | 1.67 | 250 | 0.0024 | 58.8439 | 56.2535 | 58.7557 | 58.7218 | 19.0 | | 0.0112 | 2.0 | 300 | 0.0013 | 58.9538 | 56.4749 | 58.9322 | 58.8817 | 19.0 | | 0.0077 | 2.33 | 350 | 0.0013 | 58.9538 | 56.4749 | 58.9322 | 58.8817 | 19.0 | | 0.0043 | 2.67 | 400 | 0.0010 | 59.0124 | 56.5806 | 58.9867 | 58.9342 | 19.0 | | 0.0052 | 3.0 | 450 | 0.0010 | 59.0402 | 56.6982 | 59.0385 | 58.986 | 19.0 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
TheLongSentance/t5_mimic_final_chkpnt150000
e73eb3d21ef1d8b8b3604b93466f90f97ec2a658
2021-09-16T09:44:19.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt150000
1
null
transformers
28,442
Entry not found
TheLongSentance/t5_mimic_final_chkpnt25000
d81130e51b3e83d0d53da03cf16c3c1362b19089
2021-09-16T13:34:10.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt25000
1
null
transformers
28,443
Entry not found
TheLongSentance/t5_mimic_final_chkpnt30000
42908f1aa864d4cef1fa258ef552f1152b41093c
2021-09-16T14:01:53.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt30000
1
null
transformers
28,444
Entry not found
TheLongSentance/t5_mimic_final_chkpnt5000
8e080e696d1cfbc6c3dbae6efd345a23247d1452
2021-09-15T22:17:10.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt5000
1
null
transformers
28,445
Entry not found
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_1_nbn_lr1e4c_chkpnt20000
d30f5ccae646f8df98a74af772cc2d4ee5c0ac3a
2021-09-15T21:50:06.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_1_nbn_lr1e4c_chkpnt20000
1
null
transformers
28,446
Entry not found
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_chkpnt20000
50e3fff0a75ce3926d10f06e823593f437bbfa32
2021-09-15T19:22:15.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_chkpnt20000
1
null
transformers
28,447
Entry not found
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_lr3e4c
e04eeb1cfff34a9ab3ba3967db0686a61467cbb1
2021-09-10T17:23:05.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_lr3e4c
1
null
transformers
28,448
Entry not found
ThePeachOx/DialoGPT-small-harry
367d40ea5d811fa867c751d5dc5855ee771d3243
2022-02-12T00:35:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ThePeachOx
null
ThePeachOx/DialoGPT-small-harry
1
null
transformers
28,449
--- tags: - conversational --- # Harry DialoGPT Model
ThePixOne/EconBERTa
754395f71294bf5d408b63d0b53f17d7ebab2b56
2021-11-29T19:13:33.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ThePixOne
null
ThePixOne/EconBERTa
1
1
transformers
28,450
EconBERTa - RoBERTa further trained for 25k steps (T=512, batch_size = 256) on text sourced from economics books. Example usage for MLM: ```python from transformers import RobertaTokenizer, RobertaForMaskedLM from transformers import pipeline tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaForMaskedLM.from_pretrained('models').cpu() model.eval() mlm = pipeline('fill-mask', model = model, tokenizer = tokenizer) test = "ECB - euro, FED - <mask>, BoJ - yen" print(mlm(test)[:2]) [{'sequence': 'ECB - euro, FED - dollar, BoJ - yen', 'score': 0.7342271208763123, 'token': 1404, 'token_str': ' dollar'}, {'sequence': 'ECB - euro, FED - dollars, BoJ - yen', 'score': 0.10828445851802826, 'token': 1932, 'token_str': ' dollars'}] ```
Thejas/DialoGPT-small-elon
60d29665a2fcecbce18735b17d11a0a08eeba1e2
2021-11-04T13:47:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Thejas
null
Thejas/DialoGPT-small-elon
1
null
transformers
28,451
--- tags: - conversational --- #Elon Musk DialoGPT Model
Thitaree/distilbert-base-uncased-finetuned-squad
35ea70c4b444d1dbd1e5f379966d6a05f7be0a31
2021-09-01T15:33:24.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Thitaree
null
Thitaree/distilbert-base-uncased-finetuned-squad
1
null
transformers
28,452
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ThoracicCosine/DialoGPT-small-harrypotter
b149f65018cc91ba8c8d214e37fefd5e12959957
2021-08-28T14:26:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ThoracicCosine
null
ThoracicCosine/DialoGPT-small-harrypotter
1
null
transformers
28,453
--- tags: - conversational --- # Harry Potter DialoGPT Model
Titantoe/XLMR-ENIS-finetuned-ner
783f5a524984540f37dcc89c4816296d89af29d6
2021-10-05T00:54:03.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
Titantoe
null
Titantoe/XLMR-ENIS-finetuned-ner
1
null
transformers
28,454
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8713799976550592 - name: Recall type: recall value: 0.8450255827174531 - name: F1 type: f1 value: 0.8580004617871162 - name: Accuracy type: accuracy value: 0.9827265378338392 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0941 - Precision: 0.8714 - Recall: 0.8450 - F1: 0.8580 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0572 | 1.0 | 2904 | 0.0998 | 0.8586 | 0.8171 | 0.8373 | 0.9802 | | 0.0313 | 2.0 | 5808 | 0.0868 | 0.8666 | 0.8288 | 0.8473 | 0.9822 | | 0.0199 | 3.0 | 8712 | 0.0941 | 0.8714 | 0.8450 | 0.8580 | 0.9827 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Tito/T5small_model1_fp16_false-finetuned-en-to-de
b0a7fa0ba64fb5b7509bc904a362d22ec2ac549e
2021-12-06T23:04:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Tito
null
Tito/T5small_model1_fp16_false-finetuned-en-to-de
1
null
transformers
28,455
Entry not found
Tito/T5small_model3_decay_001-finetuned-en-to-de
1bab47c16f417dd67f2da9c93afa502c5b6cc291
2021-12-07T00:28:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Tito
null
Tito/T5small_model3_decay_001-finetuned-en-to-de
1
null
transformers
28,456
Entry not found
Tofu05/DialoGPT-med-boon3
82d146b6e678be8931f524b8d806d021035e7bdb
2022-01-30T12:53:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tofu05
null
Tofu05/DialoGPT-med-boon3
1
null
transformers
28,457
--- tags: - conversational --- # Boon Bot DialoGPT Model
Tomasz/roberta
e45ab7593950c9e9ff152d597f0eeef117fd524f
2021-06-15T13:13:56.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Tomasz
null
Tomasz/roberta
1
null
transformers
28,458
Entry not found
Transabrar/roberta-base-finetuned-abs
143f06741db621053db9b780f9ab6092854bf49d
2021-10-12T09:14:46.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Transabrar
null
Transabrar/roberta-base-finetuned-abs
1
null
transformers
28,459
Entry not found
Transabrar/roberta-large-finetuned-abr
c3342a0f0c164e2fdd4953175f5c2301b4ddd78f
2021-10-10T15:33:04.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Transabrar
null
Transabrar/roberta-large-finetuned-abr
1
null
transformers
28,460
Entry not found
Trixzy/rickai-v1
1ff1aa6838dc57169ba66b7523be19eed7d48ee7
2021-10-31T20:17:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Trixzy
null
Trixzy/rickai-v1
1
1
transformers
28,461
--- tags: - conversational --- Rick chatbot made with GPT2 ai from the show Rick and Morty, discord bot available now! https://discord.com/oauth2/authorize?client_id=894569097818431519&permissions=1074113536&scope=bot (v1 is no longer supported with RickBot)
Tropics/DialoGPT-small-peppa
a3f1c11f322cdaa28aaa8b9f472b2aa53e487df9
2021-09-01T11:12:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tropics
null
Tropics/DialoGPT-small-peppa
1
null
transformers
28,462
--- tags: - conversational --- # Peppa Pig DialoGPT Model
TuhinColumbia/QAGenControlCode
e6eea9228b01c46a3ede51b7b2c5c177657b6035
2021-10-10T06:44:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/QAGenControlCode
1
null
transformers
28,463
Entry not found
TuhinColumbia/italianpoetrymany
04b408bb6d4eeffa8676e1c42f71559c7fc4f9be
2021-09-04T09:02:49.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/italianpoetrymany
1
null
transformers
28,464
Entry not found
TurkuNLP/wikibert-base-af-cased
81b848d37d1b90bbe8b6905366ada590433817b2
2020-05-24T19:58:31.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-af-cased
1
null
transformers
28,465
Entry not found
TurkuNLP/wikibert-base-be-cased
50939000cfd319f2293686f54b839a3bce396824
2020-05-24T19:58:44.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-be-cased
1
null
transformers
28,466
Entry not found
TurkuNLP/wikibert-base-cs-cased
96e72daf98259a29e4ed4a7ae9abce17ad7fb755
2020-05-24T19:59:01.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-cs-cased
1
null
transformers
28,467
Entry not found
TurkuNLP/wikibert-base-el-cased
9cda55cdc558481ba7c78d99dfbe629447aa5243
2020-05-24T19:59:19.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-el-cased
1
null
transformers
28,468
Entry not found
TurkuNLP/wikibert-base-eu-cased
96bcf3208203c68211963949aa1d30dbbd5f529e
2020-05-24T19:59:42.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-eu-cased
1
null
transformers
28,469
Entry not found
TurkuNLP/wikibert-base-hi-cased
6fc2b3db1a954c936f198f56c3ea344495ed3d59
2020-05-24T20:00:18.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-hi-cased
1
null
transformers
28,470
Entry not found
TurkuNLP/wikibert-base-hr-cased
268840f7c1629d3e069d5dcdbeaca7d230651546
2020-05-24T20:00:23.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-hr-cased
1
null
transformers
28,471
Entry not found
TurkuNLP/wikibert-base-it-cased
8ca641e94ebdfca59c4e6fd444d9f58e71a46cc3
2020-05-24T20:00:47.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-it-cased
1
null
transformers
28,472
Entry not found
TurkuNLP/wikibert-base-lt-cased
9f823751591892c26d162ab6b50fdcb501552f2a
2020-05-24T20:00:57.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-lt-cased
1
null
transformers
28,473
Entry not found
TurkuNLP/wikibert-base-pl-cased
ff8319bdf1dfcf07c2ea832816509e5bb5ceaca7
2020-05-24T20:01:17.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-pl-cased
1
null
transformers
28,474
Entry not found
TurkuNLP/wikibert-base-sk-cased
5293ab244a7f15aa599a91489be71cfa77899cc8
2020-05-24T20:01:37.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-sk-cased
1
null
transformers
28,475
Entry not found
TurkuNLP/wikibert-base-ur-cased
0c8466656c01950972001f3f01a0adc6ca9ab016
2020-05-24T20:02:19.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ur-cased
1
null
transformers
28,476
Entry not found
UKJ5/DialoGPT-small-harrypotter
fd750dcda4674369702c0949928643ec028d09c2
2021-12-30T16:07:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
UKJ5
null
UKJ5/DialoGPT-small-harrypotter
1
null
transformers
28,477
--- tags: - conversational --- # Harry Potter DialoGPT Model
Ulto/avengeeers
04e80591dbe477860194ffccbcbf76a4f5bf53d8
2021-11-21T00:35:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Ulto
null
Ulto/avengeeers
1
null
transformers
28,478
Entry not found
Ulto/avengers2
fce397619b860cdb4fd2cba6f5266c4be3bdb7d5
2021-11-21T01:13:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Ulto
null
Ulto/avengers2
1
null
transformers
28,479
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: avengers2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # avengers2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 56 | 3.9588 | | No log | 2.0 | 112 | 3.9996 | | No log | 3.0 | 168 | 4.0131 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0 - Datasets 1.2.1 - Tokenizers 0.10.1
Unbabel/xlm-roberta-wmt-metrics-da
d38479897b881f6b896d41170a932d9f7909c010
2021-07-25T15:34:49.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/xlm-roberta-wmt-metrics-da
1
null
transformers
28,480
Entry not found
Username1/Mourinhio-medium
74affbd170a022e0f5de2dab438b9dbda08e1a90
2021-09-10T20:52:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Username1
null
Username1/Mourinhio-medium
1
null
transformers
28,481
--- tags: - conversational --- # Mourinhio
Username1/Mourinho
60887756b9b5203e25ca4b60515201f41f28f495
2021-09-12T20:58:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Username1
null
Username1/Mourinho
1
null
transformers
28,482
--- tags: - conversational --- # Mourinhio
V3RX2000/distilbert-base-uncased-finetuned-squad
599d7a49c9a1ab1fca2357752c82a8f171d1dc75
2021-10-12T04:47:10.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
V3RX2000
null
V3RX2000/distilbert-base-uncased-finetuned-squad
1
null
transformers
28,483
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2246 | 1.0 | 5533 | 1.1484 | | 0.9433 | 2.0 | 11066 | 1.1294 | | 0.7625 | 3.0 | 16599 | 1.1580 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
VMET/DialoGPT-small-dumbassbot
494c4df38d2f2e9ae0282c9018f20004ff35a1cf
2021-12-22T17:24:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
VMET
null
VMET/DialoGPT-small-dumbassbot
1
null
transformers
28,484
--- tags: - conversational --- # Dumb bot
VaguelyCynical/DialoGPT-small-RickSanchez
e82d480cae1fbe6664c777fb975039bdbeab7237
2021-09-21T06:25:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
VaguelyCynical
null
VaguelyCynical/DialoGPT-small-RickSanchez
1
null
transformers
28,485
--- tags: - conversational --- #Rick Sanchez DiaploGPT Model
VincentButterfield/DialoGPT-small-harrypotter
cceec1033d1437f673d4a7fccd84b27e448325f5
2021-10-07T02:32:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
VincentButterfield
null
VincentButterfield/DialoGPT-small-harrypotter
1
null
transformers
28,486
--- tags: - conversational --- # Harry Potter DialoGPT Model
VlakoResker/wav2vec2-large-xls-r-300m-ru-en
84c562d514d70e2eb02f6066d47d6c0d11c0f4c2
2021-12-04T02:26:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
VlakoResker
null
VlakoResker/wav2vec2-large-xls-r-300m-ru-en
1
null
transformers
28,487
Entry not found
Vlasta/CDNA_bert_6
fc1612e52a7fdb3a292f7af2e178984375bacb10
2022-01-22T12:52:35.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Vlasta
null
Vlasta/CDNA_bert_6
1
null
transformers
28,488
Entry not found
VoVanPhuc/Wav2Vec_Vietnamese
b1efaddf37773896f124d67a890c80bc3c0c3f49
2021-08-03T01:15:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
VoVanPhuc
null
VoVanPhuc/Wav2Vec_Vietnamese
1
1
transformers
28,489
Entry not found
VoVanPhuc/wav2vec2-norwegian-and-english
3dfdd5211b73084e191f9ce8bd3e2ae9dcb8e8c4
2021-08-09T16:57:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
VoVanPhuc
null
VoVanPhuc/wav2vec2-norwegian-and-english
1
null
transformers
28,490
Entry not found
WSS/wav2vec2-large-xlsr-53-vietnamese
b9249703eed5da9ad1b7b9a2cd5ef0f65ac1108a
2021-11-12T09:21:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
WSS
null
WSS/wav2vec2-large-xlsr-53-vietnamese
1
null
transformers
28,491
"Hello"
Weipeng/dummy-model
80f915582e17ac2bb14544b4a0e713ed93840892
2021-07-02T11:16:59.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Weipeng
null
Weipeng/dummy-model
1
null
transformers
28,492
Entry not found
Weiqin/roberta-large-finetuned-race-roberta
82123785dbdc589f3e01222e73363b722db0c898
2021-11-15T04:29:33.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
Weiqin
null
Weiqin/roberta-large-finetuned-race-roberta
1
null
transformers
28,493
Entry not found
Wessel/DiabloGPT-medium-harrypotter
4598e126bab2d2ea9477bc7ef0f6eb818203c0f2
2021-09-11T20:37:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Wessel
null
Wessel/DiabloGPT-medium-harrypotter
1
null
transformers
28,494
--- tags: - conversational --- # Harry Potter DaibloGPT Model
White/white-bot
ea9158023ca3a4c7ea2509541e8741acb6accacd
2021-09-06T14:13:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
White
null
White/white-bot
1
null
transformers
28,495
--- tags: - conversational --- # White's Bot
Whitez/DialoGPT-small-twety
08b0ddeef6cc1018f86c7a5a8b41a11f0a11da21
2021-10-09T23:06:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Whitez
null
Whitez/DialoGPT-small-twety
1
null
transformers
28,496
--- tags: - conversational --- # Twety DialoGPT Model
Wikidepia/w2v2-id-tmp
a2896d63465a49bddc8c50d4b64d47ad4e462b6c
2022-02-18T07:55:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Wikidepia
null
Wikidepia/w2v2-id-tmp
1
null
transformers
28,497
Entry not found
WikinewsSum/bart-large-multi-combine-wiki-news
cf54e1db3626a16bde1aa3e24911a47587c3568f
2020-07-01T08:25:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/bart-large-multi-combine-wiki-news
1
null
transformers
28,498
Entry not found
WikinewsSum/bart-large-multi-fr-wiki-news
3e1c4aaa92b5f82bd2bcda0884124e640e5047d5
2020-07-01T08:35:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/bart-large-multi-fr-wiki-news
1
null
transformers
28,499
Entry not found