modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
alireza7/ARMAN-MSR-persian-base-parsinlu-sentiment-movie
e97b744f510fdbd98184591b34232e24d78e57b7
2021-09-29T19:15:47.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-parsinlu-sentiment-movie
1
null
transformers
28,600
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-tebyan
526dcd841fb148f38a3822dc41f3fea7422bd40a
2021-09-29T19:22:16.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-tebyan
1
null
transformers
28,601
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-voa-title
36351e617ac6f81edd07fed3c6c3bd038f130d72
2021-09-29T19:22:22.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-voa-title
1
null
transformers
28,602
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-parsinlu-multiple-choice
08621ac29067639431e2c25be09f8b56de2870ab
2021-09-29T19:22:50.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-parsinlu-multiple-choice
1
null
transformers
28,603
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
am-shb/xlm-roberta-base-pretrained
942e5ca123b9a41b35689ed823d882ad656caa4d
2022-02-09T15:53:08.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
am-shb
null
am-shb/xlm-roberta-base-pretrained
1
null
transformers
28,604
--- tags: - generated_from_trainer model-index: - name: roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
aman21/DialoGPT-medium-Morty
5ea203929fc7b93593f3bc6de41aea3334133946
2021-09-03T10:38:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
aman21
null
aman21/DialoGPT-medium-Morty
1
null
transformers
28,605
--- - conversation ---
ami-wav2vec2/ami-dummy-nithin
fd2ef3becd32ae2f3f53020e03f0d8eb912e31bb
2021-10-14T07:47:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/ami-dummy-nithin
1
null
transformers
28,606
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: ami-dummy-nithin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ami-dummy-nithin This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 25.1441 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 1.24 | 15 | 85.3333 | 1.0 | | No log | 2.48 | 30 | 43.9463 | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/ami-dummy-vumichien
966f5299b7be5136bc7888644811ac72c4f8ba7f
2021-10-22T05:35:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/ami-dummy-vumichien
1
null
transformers
28,607
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: ami-dummy-vumichien results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ami-dummy-vumichien This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 90.3471 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin2
dd363a55338b00ef42ff3ae9cfa98cad5a9fc74c
2021-10-17T05:29:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin2
1
null
transformers
28,608
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 2.3235 - Wer: 0.4971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.7645 | 1.07 | 2500 | 3.0172 | 0.9979 | | 2.0313 | 2.13 | 5000 | 2.0832 | 0.5786 | | 1.9158 | 3.2 | 7500 | 1.9347 | 0.5201 | | 1.8579 | 4.27 | 10000 | 2.1931 | 0.4882 | | 1.8222 | 5.33 | 12500 | 2.1480 | 0.4706 | | 1.7784 | 6.4 | 15000 | 2.0791 | 0.4638 | | 1.7736 | 7.47 | 17500 | 2.0789 | 0.4590 | | 1.7471 | 8.53 | 20000 | 2.1862 | 0.4533 | | 1.7264 | 9.6 | 22500 | 2.0762 | 0.4543 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin4
426d7956576c225607db4f0ab3b4283c8d1069e9
2021-10-28T05:25:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin4
1
null
transformers
28,609
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 2.0790 - Wer: 0.4478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.8893 | 1.07 | 2500 | 3.7944 | 1.0000 | | 2.0331 | 2.13 | 5000 | 2.0323 | 0.5840 | | 1.9009 | 3.2 | 7500 | 1.8876 | 0.5173 | | 1.8367 | 4.27 | 10000 | 2.1239 | 0.4847 | | 1.8007 | 5.33 | 12500 | 1.9126 | 0.4684 | | 1.743 | 6.4 | 15000 | 2.0750 | 0.4570 | | 1.7329 | 7.47 | 17500 | 1.9226 | 0.4460 | | 1.7013 | 8.53 | 20000 | 1.9677 | 0.4392 | | 1.6674 | 9.6 | 22500 | 1.9064 | 0.4360 | | 1.6568 | 10.67 | 25000 | 1.8144 | 0.4304 | | 1.6507 | 11.73 | 27500 | 1.8881 | 0.4248 | | 1.5973 | 12.8 | 30000 | 1.7907 | 0.4267 | | 1.6316 | 13.87 | 32500 | 1.7567 | 0.4207 | | 1.6053 | 14.93 | 35000 | 1.7838 | 0.4192 | | 1.599 | 16.0 | 37500 | 1.8054 | 0.4181 | | 1.5629 | 17.06 | 40000 | 1.7739 | 0.4135 | | 1.6124 | 18.13 | 42500 | 2.0690 | 0.4138 | | 1.5623 | 19.2 | 45000 | 1.9308 | 0.4144 | | 1.5524 | 20.26 | 47500 | 1.8130 | 0.4121 | | 1.5654 | 21.33 | 50000 | 1.8344 | 0.4131 | | 1.5552 | 22.4 | 52500 | 1.9365 | 0.4116 | | 1.5357 | 23.46 | 55000 | 1.9330 | 0.4114 | | 1.534 | 24.53 | 57500 | 1.8155 | 0.4079 | | 1.5333 | 25.6 | 60000 | 1.7895 | 0.4069 | | 1.5315 | 26.66 | 62500 | 1.7903 | 0.4082 | | 1.5174 | 27.73 | 65000 | 1.8356 | 0.4080 | | 1.5209 | 28.8 | 67500 | 1.8147 | 0.4077 | | 1.5696 | 29.86 | 70000 | 1.8219 | 0.4076 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin7
9eb9265b7cb5989561935117c43b160001468a63
2021-11-12T04:49:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin7
1
null
transformers
28,610
Entry not found
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.00005_4
6d85fc4c769b54839275a5d71f117fc84e25fd41
2021-11-08T10:41:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.00005_4
1
null
transformers
28,611
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-tune_0.00005_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-tune_0.00005_4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5405 - Wer: 0.4744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.4032 | 0.86 | 1000 | 2.1379 | 0.8193 | | 1.4611 | 1.72 | 2000 | 1.4984 | 0.5155 | | 1.315 | 2.59 | 3000 | 1.4401 | 0.4707 | | 1.2574 | 3.45 | 4000 | 1.3587 | 0.4559 | | 1.1924 | 4.31 | 5000 | 1.3372 | 0.4450 | | 1.1313 | 5.17 | 6000 | 1.3187 | 0.4351 | | 1.0911 | 6.03 | 7000 | 1.3446 | 0.4354 | | 1.0753 | 6.9 | 8000 | 1.3450 | 0.4396 | | 1.0504 | 7.76 | 9000 | 1.3342 | 0.4378 | | 1.0249 | 8.62 | 10000 | 1.3442 | 0.4335 | | 1.0327 | 9.48 | 11000 | 1.3412 | 0.4293 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.00005_8
27bd74261f63550935e22dd9fba87c5300be2356
2021-11-08T10:36:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.00005_8
1
null
transformers
28,612
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-tune_0.00005_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-tune_0.00005_8 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5701 - Wer: 0.4927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8189 | 1.72 | 1000 | 1.7820 | 0.6588 | | 1.3459 | 3.45 | 2000 | 1.4136 | 0.4750 | | 1.2262 | 5.17 | 3000 | 1.3611 | 0.4546 | | 1.1661 | 6.9 | 4000 | 1.3832 | 0.4610 | | 1.122 | 8.62 | 5000 | 1.3735 | 0.4485 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0001_4
569e9de6307c2df4fecc24ebc702e3eb502d750e
2021-11-08T10:55:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0001_4
1
null
transformers
28,613
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-tune_0.0001_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-tune_0.0001_4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5284 - Wer: 0.4735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.971 | 0.86 | 1000 | 1.8257 | 0.6751 | | 1.4062 | 1.72 | 2000 | 1.4239 | 0.4815 | | 1.2763 | 2.59 | 3000 | 1.3776 | 0.4461 | | 1.2106 | 3.45 | 4000 | 1.3215 | 0.4428 | | 1.1394 | 4.31 | 5000 | 1.3168 | 0.4343 | | 1.0651 | 5.17 | 6000 | 1.2975 | 0.4258 | | 1.0268 | 6.03 | 7000 | 1.3086 | 0.4242 | | 1.0056 | 6.9 | 8000 | 1.3209 | 0.4295 | | 0.9655 | 7.76 | 9000 | 1.3159 | 0.4284 | | 0.9283 | 8.62 | 10000 | 1.3286 | 0.4259 | | 0.9244 | 9.48 | 11000 | 1.3411 | 0.4243 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0001_8
15c5312bcfcf14833e2e8d11b64c635380545292
2021-11-08T10:57:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0001_8
1
null
transformers
28,614
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-tune_0.0001_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-tune_0.0001_8 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5750 - Wer: 0.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.5458 | 1.72 | 1000 | 1.5351 | 0.5397 | | 1.2552 | 3.45 | 2000 | 1.3582 | 0.4540 | | 1.1246 | 5.17 | 3000 | 1.3412 | 0.4378 | | 1.0614 | 6.9 | 4000 | 1.3356 | 0.4344 | | 1.0007 | 8.62 | 5000 | 1.3410 | 0.4352 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0005_4
867d13382998f2aa2623852107d3157666c43a70
2021-11-08T10:50:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0005_4
1
null
transformers
28,615
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-tune_0.0005_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-tune_0.0005_4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 3.9286 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.0115 | 0.86 | 1000 | 3.8103 | 1.0 | | 2.9818 | 1.72 | 2000 | 3.6096 | 1.0 | | 2.9991 | 2.59 | 3000 | 3.6555 | 1.0 | | 2.9914 | 3.45 | 4000 | 3.6829 | 1.0 | | 2.9958 | 4.31 | 5000 | 3.5873 | 1.0 | | 2.9921 | 5.17 | 6000 | 3.5026 | 1.0 | | 3.0256 | 6.03 | 7000 | 3.5531 | 1.0 | | 2.9892 | 6.9 | 8000 | 3.6803 | 1.0 | | 2.9994 | 7.76 | 9000 | 3.5720 | 1.0 | | 2.9796 | 8.62 | 10000 | 3.6583 | 1.0 | | 2.9837 | 9.48 | 11000 | 3.6397 | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0005_8
4b4cde96deb56d7c7c2e37e55e4e111b204dc7fe
2021-11-08T10:52:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-tune_0.0005_8
1
null
transformers
28,616
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-tune_0.0005_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-tune_0.0005_8 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5092 - Wer: 0.4821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.5221 | 1.72 | 1000 | 1.6180 | 0.5266 | | 1.3259 | 3.45 | 2000 | 1.4400 | 0.4921 | | 1.1732 | 5.17 | 3000 | 1.3968 | 0.4669 | | 1.0888 | 6.9 | 4000 | 1.3652 | 0.4569 | | 0.9659 | 8.62 | 5000 | 1.3176 | 0.4332 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.00005_16
a57476cdfb0c8997cb7208bf9bdd30b656bf247e
2021-11-18T19:20:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.00005_16
1
null
transformers
28,617
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_0.00005_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_0.00005_16 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5257 - Wer: 0.4840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7983 | 1.72 | 1000 | 2.6819 | 0.9987 | | 1.4 | 3.45 | 2000 | 1.3997 | 0.4810 | | 1.2656 | 5.17 | 3000 | 1.3366 | 0.4491 | | 1.2027 | 6.9 | 4000 | 1.3150 | 0.4385 | | 1.1618 | 8.62 | 5000 | 1.3018 | 0.4348 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
amitesh863/fin_embeds
c16cffe910da71896afaf86d9937907cb26f2ea1
2021-09-30T14:42:20.000Z
[ "pytorch", "transformers" ]
null
false
amitesh863
null
amitesh863/fin_embeds
1
null
transformers
28,618
Entry not found
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-42
d289393de4836514f393f1a117cfc57c7cb9f662
2022-02-21T21:29:23.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-42
1
null
transformers
28,619
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 39.04446546830653, 'f1': 49.90230650794353} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42
3959b64f7b1e21997a3969aee25cb1f179145012
2022-02-21T22:44:41.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42
1
null
transformers
28,620
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 64.02081362346263, 'f1': 75.36439229517165} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
andi611/distilbert-base-uncased-squad
26b42bf3a50656230e75f135cd0210e3f6abc745
2021-07-15T00:45:07.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad
1
null
transformers
28,621
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: distilbert-base-uncased-qa results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat
c5bfc64309c183461bee935e0ea9d4ee94a03edf
2021-08-14T13:58:51.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:conll2003", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat
1
null
transformers
28,622
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
ange/DialoGPT-medium-Monke
1fb0a62810680d983d283fee75a6641150c0e88c
2022-01-03T15:15:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ange
null
ange/DialoGPT-medium-Monke
1
null
transformers
28,623
--- tags: - conversational --- #Monke Messenger DialoGPT Model
ankimt01/DialoGPT-small-anch
2e8b86ff8a4f28c25753f289b9f02170ea602c86
2022-02-16T17:40:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ankimt01
null
ankimt01/DialoGPT-small-anch
1
null
transformers
28,624
--- tags: - conversational --- # myself DialoGPT Model
ankitkupadhyay/dummy-model
c27c48af32c750682f3f9a5a22e850367845d6e6
2022-02-04T17:47:15.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ankitkupadhyay
null
ankitkupadhyay/dummy-model
1
null
transformers
28,625
Entry not found
anondo/test_anon
169cd7687c51fe0d3ce05a73b57cc0125fa1a52d
2022-02-09T11:04:14.000Z
[ "pytorch", "bert", "transformers" ]
null
false
anondo
null
anondo/test_anon
1
null
transformers
28,626
Entry not found
anton-l/wav2vec2-base-960h
cd5d5f83554cf69c7df59deb1fb3e164dec8650a
2021-07-05T19:38:21.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
anton-l
null
anton-l/wav2vec2-base-960h
1
null
transformers
28,627
Entry not found
anton-l/wav2vec2-large-xlsr-53-mongolian
52113105371bd2df959d366f524103ae6d7ca09d
2021-07-05T20:13:41.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mn", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-mongolian
1
null
transformers
28,628
--- language: mn datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Mongolian XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice mn type: common_voice args: mn metrics: - name: Test WER type: wer value: 38.53 --- # Wav2Vec2-Large-XLSR-53-Mongolian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "mn", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Mongolian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/mn.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/mn/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/mn/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 38.53 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anton-l/wav2vec2-xls-r-common_voice-tr-ft
40844e2b1a433b29a26f7a1396fe6324c0549459
2022-01-31T09:48:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-xls-r-common_voice-tr-ft
1
null
transformers
28,629
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer model-index: - name: wav2vec2-xls-r-common_voice-tr-ft-500sh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft-500sh This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5794 - Wer: 0.4009 - Cer: 0.1032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.5288 | 17.0 | 500 | 0.5099 | 0.5426 | 0.1432 | | 0.2967 | 34.0 | 1000 | 0.5421 | 0.4746 | 0.1256 | | 0.2447 | 51.0 | 1500 | 0.5347 | 0.4831 | 0.1267 | | 0.122 | 68.01 | 2000 | 0.5854 | 0.4479 | 0.1161 | | 0.1035 | 86.0 | 2500 | 0.5597 | 0.4457 | 0.1166 | | 0.081 | 103.0 | 3000 | 0.5748 | 0.4250 | 0.1144 | | 0.0849 | 120.0 | 3500 | 0.5598 | 0.4337 | 0.1145 | | 0.0542 | 137.01 | 4000 | 0.5687 | 0.4223 | 0.1097 | | 0.0318 | 155.0 | 4500 | 0.5904 | 0.4057 | 0.1052 | | 0.0106 | 172.0 | 5000 | 0.5794 | 0.4009 | 0.1032 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
anuragshas/wav2vec2-large-xls-r-300m-hi
fdd9879255249a48cdfeb928b1265f103e583b41
2022-01-20T20:38:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-hi
1
null
transformers
28,630
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.4156 - Wer: 0.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7703 | 2.72 | 400 | 2.2274 | 0.9259 | | 0.6515 | 5.44 | 800 | 1.5812 | 0.7581 | | 0.339 | 8.16 | 1200 | 2.0590 | 0.7825 | | 0.2262 | 10.88 | 1600 | 2.0324 | 0.7603 | | 0.1665 | 13.6 | 2000 | 2.1396 | 0.7481 | | 0.1311 | 16.33 | 2400 | 2.2090 | 0.7379 | | 0.1079 | 19.05 | 2800 | 2.3907 | 0.7612 | | 0.0927 | 21.77 | 3200 | 2.5294 | 0.7478 | | 0.0748 | 24.49 | 3600 | 2.5024 | 0.7452 | | 0.0644 | 27.21 | 4000 | 2.4715 | 0.7307 | | 0.0569 | 29.93 | 4400 | 2.4156 | 0.7181 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anuragshas/wav2vec2-large-xls-r-300m-ur
68b9a689b9b3bb98f4e53538c307fc734bddb883
2022-01-21T04:32:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-ur
1
null
transformers
28,631
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ur results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur This model is a fine-tuned version of [anuragshas/wav2vec2-large-xls-r-300m-ur](https://huggingface.co/anuragshas/wav2vec2-large-xls-r-300m-ur) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.0508 - Wer: 0.7328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0719 | 66.67 | 400 | 1.8510 | 0.7432 | | 0.0284 | 133.33 | 800 | 2.0088 | 0.7415 | | 0.014 | 200.0 | 1200 | 2.0508 | 0.7328 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anuragshas/wav2vec2-large-xlsr-53-hsb
2247e1055eeba8978514d3858ca53be44a8f2f3a
2021-07-05T20:57:25.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "hsb", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-hsb
1
null
transformers
28,632
--- language: hsb datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Sorbian, Upper results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hsb type: common_voice args: hsb metrics: - name: Test WER type: wer value: 65.05 --- # Wav2Vec2-Large-XLSR-53-Sorbian, Upper Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sorbian, Upper using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sorbian, Upper test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hsb", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 65.05 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-large-xlsr-53-odia
355811285d7023e86b669cd881e63a5f0c24ba0f
2021-07-05T21:08:48.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "or", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-odia
1
null
transformers
28,633
--- language: or datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Odia results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice or type: common_voice args: or metrics: - name: Test WER type: wer value: 57.10 --- # Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.10 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-xlsr-53-pa-in
1aa6b15be1b2082ac86c63c097411045f841b4ac
2021-07-05T21:47:48.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xlsr-53-pa-in
1
null
transformers
28,634
--- language: pa-IN datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Punjabi results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pa-IN type: common_voice args: pa-IN metrics: - name: Test WER type: wer value: 58.05 --- # Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\'\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.05 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-xlsr-53-tamil
b1843f913ddd58d76011ebdbf3f28733947351af
2021-07-05T21:55:09.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ta", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xlsr-53-tamil
1
null
transformers
28,635
--- language: ta datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Tamil results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ta type: common_voice args: ta metrics: - name: Test WER type: wer value: 71.87 --- # Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 71.87 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anushakamath/wav2vec2-xls-r-300m-punjabi-in
ea6e1c0c225b5550d21c37d8bb93684f68301b6c
2022-02-08T16:59:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anushakamath
null
anushakamath/wav2vec2-xls-r-300m-punjabi-in
1
null
transformers
28,636
Entry not found
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2_covid-qna
4f28439f4867d4fc824e2b653e67d0b9bbaa90c2
2021-05-18T23:45:57.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2_covid-qna
1
null
transformers
28,637
Entry not found
aodiniz/bert_uncased_L-10_H-512_A-8_squad2_covid-qna
7cb3b1b70734722ceff7f23f18ad924ad095b22f
2021-05-18T23:47:06.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-10_H-512_A-8_squad2_covid-qna
1
null
transformers
28,638
Entry not found
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616_squad2
60a9bca6ff41c96e9bf6a9b9ead63c0bfb2a3842
2021-05-18T23:49:22.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616_squad2
1
null
transformers
28,639
Entry not found
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616_squad2
401c629c9d1d448c5f92d308723d9dfaa6955f63
2021-05-18T23:51:46.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616_squad2
1
null
transformers
28,640
Entry not found
aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616
fd80c4df83c26e4d026ce88fc0f9ced740ef7810
2021-05-18T23:53:15.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616
1
null
transformers
28,641
Entry not found
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616
f46c0227955b47f67b532ce34a64276d30035ec4
2021-05-18T23:58:53.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616
1
null
transformers
28,642
Entry not found
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616_squad2_covid-qna
71958a25627dac4c32125638466b6d89caf224c8
2021-05-18T23:59:30.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616_squad2_covid-qna
1
null
transformers
28,643
Entry not found
aodiniz/bert_uncased_L-6_H-128_A-2_squad2_covid-qna
c10728df8ccee3dd4c2b226203fc7fd950c12f7b
2021-05-19T00:00:06.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-6_H-128_A-2_squad2_covid-qna
1
null
transformers
28,644
Entry not found
aozorahime/my-new-model
49177e8a1e3db05afd88a88316f2766fd2d1e3c4
2021-11-19T03:15:33.000Z
[ "pytorch", "bert", "question-answering", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
aozorahime
null
aozorahime/my-new-model
1
null
transformers
28,645
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: my-new-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-new-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
apeguero/wav2vec2-large-xls-r-300m-tr-colab-3
9f84e898b31551009359a0e0a6656bce17a08ca9
2021-11-23T02:27:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
apeguero
null
apeguero/wav2vec2-large-xls-r-300m-tr-colab-3
1
null
transformers
28,646
Entry not found
aplnestrella/Aladdin-Bot
da5b6e2fd852e1b71756d12befaf08116f074b13
2022-01-24T15:30:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
aplnestrella
null
aplnestrella/Aladdin-Bot
1
null
transformers
28,647
--- tags: - conversational --- # Aladdin Bot
arampacha/wav2vec2-xls-r-1b-hy-cv
b1960da0f376244f91860ce732c50ee8d7ff92f2
2022-03-24T11:51:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hy-AM", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-1b-hy-cv
1
null
transformers
28,648
--- language: - hy-AM license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hy - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-hy-cv results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice hy-AM args: hy-AM metrics: - type: wer value: 0.2755659640905542 name: WER LM - type: cer value: 0.08659585230146687 name: CER LM --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: **0.4521** - Wer: **0.5141** - Cer: **0.1100** - Wer+LM: **0.2756** - Cer+LM: **0.0866** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: tristage - lr_scheduler_ratios: [0.1, 0.4, 0.5] - training_steps: 1400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 6.1298 | 19.87 | 100 | 3.1204 | 1.0 | 1.0 | | 2.7269 | 39.87 | 200 | 0.6200 | 0.7592 | 0.1755 | | 1.4643 | 59.87 | 300 | 0.4796 | 0.5921 | 0.1277 | | 1.1242 | 79.87 | 400 | 0.4637 | 0.5359 | 0.1145 | | 0.9592 | 99.87 | 500 | 0.4521 | 0.5141 | 0.1100 | | 0.8704 | 119.87 | 600 | 0.4736 | 0.4914 | 0.1045 | | 0.7908 | 139.87 | 700 | 0.5394 | 0.5250 | 0.1124 | | 0.7049 | 159.87 | 800 | 0.4822 | 0.4754 | 0.0985 | | 0.6299 | 179.87 | 900 | 0.4890 | 0.4809 | 0.1028 | | 0.5832 | 199.87 | 1000 | 0.5233 | 0.4813 | 0.1028 | | 0.5145 | 219.87 | 1100 | 0.5350 | 0.4781 | 0.0994 | | 0.4604 | 239.87 | 1200 | 0.5223 | 0.4715 | 0.0984 | | 0.4226 | 259.87 | 1300 | 0.5167 | 0.4625 | 0.0953 | | 0.3946 | 279.87 | 1400 | 0.5248 | 0.4614 | 0.0950 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
arampacha/wav2vec2-xls-r-1b-ka
8c9615d1d7bb8e3209377d7142b84a1f5dbcf8a9
2022-03-24T11:51:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ka", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-1b-ka
1
null
transformers
28,649
--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-ka results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ka args: ka metrics: - type: wer value: 7.39778066580026 name: WER LM - type: cer value: 1.1882089427096434 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 22.61 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 21.58 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
arampacha/wav2vec2-xls-r-300m-ka
43b259481ada489eedd53f5908c184d57f86f91b
2022-02-07T16:50:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-300m-ka
1
null
transformers
28,650
Entry not found
aristotletan/bart-large-finetuned-xsum
b084aae3ff6f0112158768c2a1a5d0d89afe0eb8
2021-07-22T01:45:40.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:wsj_markets", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
text2text-generation
false
aristotletan
null
aristotletan/bart-large-finetuned-xsum
1
null
transformers
28,651
--- license: mit tags: - generated_from_trainer datasets: - wsj_markets metrics: - rouge model_index: - name: bart-large-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wsj_markets type: wsj_markets args: default metric: name: Rouge1 type: rouge value: 15.3934 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-xsum This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the wsj_markets dataset. It achieves the following results on the evaluation set: - Loss: 0.8497 - Rouge1: 15.3934 - Rouge2: 7.0378 - Rougel: 13.9522 - Rougelsum: 14.3541 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.0964 | 1.0 | 1735 | 0.9365 | 18.703 | 12.7539 | 18.1293 | 18.5397 | 20.0 | | 0.95 | 2.0 | 3470 | 0.8871 | 19.5223 | 13.0938 | 18.9148 | 18.8363 | 20.0 | | 0.8687 | 3.0 | 5205 | 0.8587 | 15.0915 | 7.142 | 13.6693 | 14.5975 | 20.0 | | 0.7989 | 4.0 | 6940 | 0.8569 | 18.243 | 11.4495 | 17.4326 | 17.489 | 20.0 | | 0.7493 | 5.0 | 8675 | 0.8497 | 15.3934 | 7.0378 | 13.9522 | 14.3541 | 20.0 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.10.0 - Tokenizers 0.10.3
arredondos/my_sentence_transformer
1b664ac982886f2b4ba02b2010b16d44734dd917
2022-02-08T13:10:36.000Z
[ "pytorch", "bert", "feature-extraction", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "sentence-transformers", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
false
arredondos
null
arredondos/my_sentence_transformer
1
null
sentence-transformers
28,652
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
arvalinno/albert-base-v2-finetuned-squad
48b1bdab1fe50337d9e2eb4e0480507b9e124638
2021-11-20T12:05:42.000Z
[ "pytorch", "tensorboard", "albert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
arvalinno
null
arvalinno/albert-base-v2-finetuned-squad
1
null
transformers
28,653
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1893 | 1.0 | 3052 | 0.2808 | | 0.1209 | 2.0 | 6104 | 0.2787 | | 0.069 | 3.0 | 9156 | 0.3222 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
asad/DialoGPT-small-harryporter_bot
9d8c624fb477561b4afb2dd382b6f6d863aaa1ef
2021-08-30T20:03:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
asad
null
asad/DialoGPT-small-harryporter_bot
1
null
transformers
28,654
--- tags: - conversational --- # Harry porter DialoGPT model
asahi417/relbert-roberta-large-autoprompt
906fae8581dcb3ab3c53e7de01baf8da450026e4
2021-07-05T13:44:37.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
asahi417
null
asahi417/relbert-roberta-large-autoprompt
1
null
transformers
28,655
# RelBERT RoBERTa finetuned on the contrastive loss for lexical relation. Please take a look [the official repository](https://github.com/asahi417/relbert).
asahi417/relbert-roberta-large-ptuning
336eae9156d8c962a90b8047c6d23455cca8b78a
2021-07-05T13:45:58.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
asahi417
null
asahi417/relbert-roberta-large-ptuning
1
null
transformers
28,656
# RelBERT RoBERTa finetuned on the contrastive loss for lexical relation. Please take a look [the official repository](https://github.com/asahi417/relbert).
tner/xlm-roberta-base-bionlp2004
18200eff294ece59a4894c346903336dccc92a0b
2021-02-12T23:32:10.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-bionlp2004
1
null
transformers
28,657
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-bionlp2004") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-bionlp2004") ```
tner/xlm-roberta-base-uncased-bionlp2004
89f696e19c878cef1fd15d9b573dcebef10306ab
2021-02-12T23:35:21.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-uncased-bionlp2004
1
null
transformers
28,658
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-bionlp2004") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-bionlp2004") ```
tner/xlm-roberta-base-uncased-conll2003
391abb9d03797a8190b182f12dd9669eff533458
2021-02-13T00:08:16.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-uncased-conll2003
1
null
transformers
28,659
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-conll2003") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-conll2003") ```
tner/xlm-roberta-base-uncased-fin
2e0484b89059294ff8f294929349a4e327880da1
2021-02-12T23:47:27.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-uncased-fin
1
null
transformers
28,660
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-fin") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-fin") ```
tner/xlm-roberta-base-uncased-wnut2017
6256e02178a6a23df64ad33e5228f5e82c7a7599
2021-02-12T23:48:34.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-uncased-wnut2017
1
null
transformers
28,661
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-wnut2017") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-wnut2017") ```
tner/xlm-roberta-base-wnut2017
246bce25ad65c4b94a613c35babda0e4871a5517
2021-02-13T00:10:57.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-wnut2017
1
null
transformers
28,662
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-wnut2017") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-wnut2017") ```
tner/xlm-roberta-large-bionlp2004
6afa746cbaf1edca1f40c5a2ce44020d20ac4289
2021-02-13T00:04:14.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-bionlp2004
1
null
transformers
28,663
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-bionlp2004") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-bionlp2004") ```
tner/xlm-roberta-large-conll2003
993cdb4505d73d8334d34c337fd4f431506a6f4c
2021-02-13T00:11:10.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-conll2003
1
null
transformers
28,664
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-conll2003") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-conll2003") ```
tner/xlm-roberta-large-panx-dataset-ko
eed173cccd2a276b418c3be9e7539de89fce2f78
2021-02-13T00:05:08.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-panx-dataset-ko
1
null
transformers
28,665
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ko") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ko") ```
tner/xlm-roberta-large-uncased-bionlp2004
c828d3ee06bebaab5e825d51d4297c119934c4bf
2021-02-13T00:05:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-bionlp2004
1
null
transformers
28,666
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bionlp2004") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bionlp2004") ```
tner/xlm-roberta-large-uncased-conll2003
67880b85888913cc4c1f3932a63032706ae527e7
2021-02-13T00:11:51.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-conll2003
1
null
transformers
28,667
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-conll2003") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-conll2003") ```
tner/xlm-roberta-large-uncased-mit-restaurant
9261f8aa32fcfcdf75e582a842f324c4b3ac28a9
2021-02-13T00:06:06.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-mit-restaurant
1
null
transformers
28,668
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-restaurant") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-mit-restaurant") ```
tner/xlm-roberta-large-uncased-panx-dataset-en
ac489112a1976f0676fc8983be6b1cd85b7dc68b
2021-02-13T00:06:19.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-panx-dataset-en
1
null
transformers
28,669
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-panx-dataset-en") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-panx-dataset-en") ```
tner/xlm-roberta-large-wnut2017
6de5f0a4823ba9e61de7e89e1f8f7a42a8429549
2021-02-13T00:06:30.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-wnut2017
1
null
transformers
28,670
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-wnut2017") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-wnut2017") ```
asakawa/distilgpt2-finetuned-wikitext2
065cc225fd17948f22fd53961c63e746706f299f
2022-01-06T07:50:50.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
asakawa
null
asakawa/distilgpt2-finetuned-wikitext2
1
null
transformers
28,671
Entry not found
asakawa/gpt2-wikitext2
5f301c1ebacc8af38a5dd83d11e0f9e608cfa9fd
2022-01-06T02:41:39.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
asakawa
null
asakawa/gpt2-wikitext2
1
null
transformers
28,672
Entry not found
asapp/sew-d-base-100k
baa619cd5e0d12bcd4ed2a31f37cb0813f52f04d
2021-10-28T13:44:39.000Z
[ "pytorch", "sew-d", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
asapp
null
asapp/sew-d-base-100k
1
null
transformers
28,673
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-base [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
asapp/sew-d-mid-400k
0b74b6e7f270b1b95e27003d45f85ae105a15e62
2021-10-28T13:59:38.000Z
[ "pytorch", "sew-d", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
asapp
null
asapp/sew-d-mid-400k
1
1
transformers
28,674
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-mid [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
asapp/sew-d-mid-k127-100k
094aae1a58c27399314f6db1b9d8bd628a66b758
2021-10-28T14:01:21.000Z
[ "pytorch", "sew-d", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
asapp
null
asapp/sew-d-mid-k127-100k
1
null
transformers
28,675
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-mid [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
asapp/sew-d-mid-k127-400k-ft-ls100h
a7cd98a3eca1f685a3223e5deae1bc2cce1f305d
2022-05-24T13:09:50.000Z
[ "pytorch", "sew-d", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "audio", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
asapp
null
asapp/sew-d-mid-k127-400k-ft-ls100h
1
null
transformers
28,676
--- language: en datasets: - librispeech_asr tags: - audio - speech - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: sew-d-mid-k127-400k-ft-ls100h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 10.95 --- # SEW-D-mid-k127 [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, SEWDForCTC from datasets import load_dataset import soundfile as sf import torch # load the model and preprocessor processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h") model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h") # load the dummy dataset with speech samples ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # preprocess input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **asapp/sew-d-mid-k127-400k-ft-ls100hh** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import SEWDForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = SEWDForCTC.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-mid-k127-400k-ft-ls100h") def map_to_pred(batch): input_values = processor(batch["audio"][0]["array"], sampling_rate=16000, return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | | --- | --- | | 4.99 | 10.95 |
asapp/sew-d-mid-k127-400k
051e112e1e7b4fb16b156167e06cc54eb395bbc2
2021-10-28T14:04:35.000Z
[ "pytorch", "sew-d", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
asapp
null
asapp/sew-d-mid-k127-400k
1
null
transformers
28,677
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-mid [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
asheads/PredreamBERT
00546ec02ac6a8c2ca8223d528ae1e187a531d06
2022-02-19T17:13:42.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
asheads
null
asheads/PredreamBERT
1
null
transformers
28,678
Entry not found
ashwani-tanwar/Gujarati-XLM-R-Base
892ae30c8b57428e02c60ba95fbfc9a26a5cd5e1
2020-12-11T21:34:15.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "gu", "transformers", "autotrain_compatible" ]
fill-mask
false
ashwani-tanwar
null
ashwani-tanwar/Gujarati-XLM-R-Base
1
null
transformers
28,679
--- language: gu --- # Gujarati-XLM-R-Base This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) (XLM-R) using its base variant with the Gujarati language using the [OSCAR](https://oscar-corpus.com/) monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model. ## Dataset OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets. ## Preprocessing and Training Procedure Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure. ## Usage - This model can be used for further finetuning for different NLP tasks using the Gujarati language. - It can be used to generate contextualised word representations for the Gujarati words. - It can be used for domain adaptation. - It can be used to predict the missing words from the Gujarati sentences. ## Demo ### Using the model to predict missing words ``` from transformers import pipeline unmasker = pipeline('fill-mask', model='ashwani-tanwar/Gujarati-XLM-R-Base') pred_word = unmasker("અમદાવાદ એ ગુજરાતનું એક <mask> છે.") print(pred_word) ``` ``` [{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક શહેર છે.</s>', 'score': 0.9463568329811096, 'token': 85227, 'token_str': '▁શહેર'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક ગામ છે.</s>', 'score': 0.013311690650880337, 'token': 66346, 'token_str': '▁ગામ'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એકનગર છે.</s>', 'score': 0.012945962138473988, 'token': 69702, 'token_str': 'નગર'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક સ્થળ છે.</s>', 'score': 0.0045941537246108055, 'token': 135436, 'token_str': '▁સ્થળ'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક મહત્વ છે.</s>', 'score': 0.00402021361514926, 'token': 126763, 'token_str': '▁મહત્વ'}] ``` ### Using the model to generate contextualised word representations ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Base") model = AutoModel.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Base") sentence = "અમદાવાદ એ ગુજરાતનું એક શહેર છે." encoded_sentence = tokenizer(sentence, return_tensors='pt') context_word_rep = model(**encoded_sentence) ```
ashwani-tanwar/Gujarati-XLM-R-Large
0d969e4113b2ba5dc4dd10b726e1ea97ae9a9f85
2020-12-12T01:39:10.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "gu", "transformers", "autotrain_compatible" ]
fill-mask
false
ashwani-tanwar
null
ashwani-tanwar/Gujarati-XLM-R-Large
1
null
transformers
28,680
--- language: gu --- # Gujarati-XLM-R-Large This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-large) (XLM-R) using its large variant with the Gujarati language using the [OSCAR](https://oscar-corpus.com/) monolingual dataset. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model. ## Dataset OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets. ## Preprocessing and Training Procedure Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure. ## Usage - This model can be used for further finetuning for different NLP tasks using the Gujarati language. - It can be used to generate contextualised word representations for the Gujarati words. - It can be used for domain adaptation. - It can be used to predict the missing words from the Gujarati sentences. ## Demo ### Using the model to predict missing words ``` from transformers import pipeline unmasker = pipeline('fill-mask', model='ashwani-tanwar/Gujarati-XLM-R-Large') pred_word = unmasker("અમદાવાદ એ ગુજરાતનું એક <mask> છે.") print(pred_word) ``` ``` [{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક શહેર છે.</s>', 'score': 0.9790881276130676, 'token': 85227, 'token_str': '▁શહેર'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક રાજ્ય છે.</s>', 'score': 0.004246668424457312, 'token': 63678, 'token_str': '▁રાજ્ય'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક ગામ છે.</s>', 'score': 0.0038021174259483814, 'token': 66346, 'token_str': '▁ગામ'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક મહત્વ છે.</s>', 'score': 0.002798238070681691, 'token': 126763, 'token_str': '▁મહત્વ'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક અમદાવાદ છે.</s>', 'score': 0.0021192911081016064, 'token': 69499, 'token_str': '▁અમદાવાદ'}] ``` ### Using the model to generate contextualised word representations ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Large") model = AutoModel.from_pretrained("ashwani-tanwar/Gujarati-XLM-R-Large") sentence = "અમદાવાદ એ ગુજરાતનું એક શહેર છે." encoded_sentence = tokenizer(sentence, return_tensors='pt') context_word_rep = model(**encoded_sentence) ```
ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base
7ccc8fe2e10d5840dda04fb01e5794ce0dd7db9e
2020-12-12T02:22:48.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "gu", "transformers", "autotrain_compatible" ]
fill-mask
false
ashwani-tanwar
null
ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base
1
null
transformers
28,681
--- language: gu --- # Gujarati-in-Devanagari-XLM-R-Base This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) (XLM-R) using its base variant with the Gujarati language using the [OSCAR](https://oscar-corpus.com/) monolingual dataset. We converted the Gujarati script to the Devanagari using [Indic-NLP](https://github.com/anoopkunchukuttan/indic_nlp_library) library. For example, the sentence 'અમદાવાદ એ ગુજરાતનું એક શહેર છે.' was converted to 'अमदावाद ए गुजरातनुं एक शहेर छे.'. This helped to get better contextualised representations for some words as the XLM-R was pre-trained with several languages written in Devanagari script such as Hindi, Marathi, Sanskrit, and so on. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model. ## Dataset OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets. ## Preprocessing and Training Procedure Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure. ## Usage - This model can be used for further finetuning for different NLP tasks using the Gujarati language. - It can be used to generate contextualised word representations for the Gujarati words. - It can be used for domain adaptation. - It can be used to predict the missing words from the Gujarati sentences. ## Demo ### Using the model to predict missing words ``` from transformers import pipeline unmasker = pipeline('fill-mask', model='ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base') pred_word = unmasker("अमदावाद ए गुजरातनुं एक <mask> छे.") print(pred_word) ``` ``` [{'sequence': '<s> अमदावाद ए गुजरातनुं एक नगर छे.</s>', 'score': 0.24843722581863403, 'token': 18576, 'token_str': '▁नगर'}, {'sequence': '<s> अमदावाद ए गुजरातनुं एक महानगर छे.</s>', 'score': 0.21455222368240356, 'token': 122519, 'token_str': '▁महानगर'}, {'sequence': '<s> अमदावाद ए गुजरातनुं एक राज्य छे.</s>', 'score': 0.16832049190998077, 'token': 10665, 'token_str': '▁राज्य'}, {'sequence': '<s> अमदावाद ए गुजरातनुं एक जिल्ला छे.</s>', 'score': 0.06764694303274155, 'token': 20396, 'token_str': '▁जिल्ला'}, {'sequence': '<s> अमदावाद ए गुजरातनुं एक शहर छे.</s>', 'score': 0.05364946648478508, 'token': 22770, 'token_str': '▁शहर'}] ``` ### Using the model to generate contextualised word representations ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base") model = AutoModel.from_pretrained("ashwani-tanwar/Gujarati-in-Devanagari-XLM-R-Base") sentence = "अमदावाद ए गुजरातनुं एक शहेर छे." encoded_sentence = tokenizer(sentence, return_tensors='pt') context_word_rep = model(**encoded_sentence) ```
asifm43/bert-bn
42bc072fbabd8c4db2e1868c40ccb8a6fa4c13d1
2022-01-15T12:22:19.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
asifm43
null
asifm43/bert-bn
1
null
transformers
28,682
Entry not found
astrobreazy/DialoGPT-small-harrypotter
23b144f02ae3b8adfa2a147c4773b42d8e075ba2
2022-02-14T05:56:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
astrobreazy
null
astrobreazy/DialoGPT-small-harrypotter
1
null
transformers
28,683
--- tags: - conversational --- #Harry Potter DialoGPT Model
aszidon/distilbertcustom3
debe9b61f0462ada8cb91906e4844fa6289c85f2
2021-11-06T03:47:59.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aszidon
null
aszidon/distilbertcustom3
1
null
transformers
28,684
Entry not found
aszidon/distilbertcustom4
692eff779e58d364612755f3966839ac3f833377
2021-11-08T01:33:03.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aszidon
null
aszidon/distilbertcustom4
1
null
transformers
28,685
Entry not found
atharvapatil128/JakeBot
1b4b047ea979a504ebe17be359eea0b109ceebb8
2021-12-03T05:23:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
atharvapatil128
null
atharvapatil128/JakeBot
1
null
transformers
28,686
Entry not found
atomsspawn/DialoGPT-small-dumbledore
df931add605ef655a01f71faec7bc3792b941f8b
2022-04-12T20:36:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
atomsspawn
null
atomsspawn/DialoGPT-small-dumbledore
1
null
transformers
28,687
--- tags: - conversational --- # Dumbledore DialoGPT Model
augustojaba/DialoGPT-small-harrypotter
3a6d061458037d880dac4104c31fe1698b0782b9
2021-09-02T00:59:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
augustojaba
null
augustojaba/DialoGPT-small-harrypotter
1
null
transformers
28,688
--- tags: - conversational --- #Harry Potter DialoGPT Model
avichr/ar_hd
0588e15d88ed83d122a251f10f77954a99c61cd8
2021-05-19T12:01:47.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
avichr
null
avichr/ar_hd
1
null
transformers
28,689
Entry not found
aws-ai/pairsupcon-bert-large-uncased
fbf1fb66e0799bf7fc8f925d4e37db8c2e9dd100
2021-12-18T19:41:42.000Z
[ "pytorch", "bert", "transformers" ]
null
false
aws-ai
null
aws-ai/pairsupcon-bert-large-uncased
1
null
transformers
28,690
Entry not found
awvik360/DialoGPT-small-plemons
2b0582b02026c1e021ccec224aede5e7fa0d08a9
2021-06-19T23:55:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
awvik360
null
awvik360/DialoGPT-small-plemons
1
null
transformers
28,691
--- tags: - conversational --- # My Awesome Model
azwierzc/plt5-small-pl-to-sql
5dab53061da5adad2cb4383c7a54271c36a1a0cd
2022-02-13T19:42:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
azwierzc
null
azwierzc/plt5-small-pl-to-sql
1
null
transformers
28,692
Entry not found
b0shakk/DialoGPT-small-Ragnar
cf9b36646f1d5ae7ba11727291d7ea022515e835
2021-08-31T07:39:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
b0shakk
null
b0shakk/DialoGPT-small-Ragnar
1
null
transformers
28,693
--- tags: - conversational --- #Ragnar Lothbrok DialoGPT Model
bagdaebhishek/IndianPoliticalTweetsLMMedium
bbcf0a2ec986527467afb3110a446e20d513186b
2021-09-22T08:13:46.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:Twitter", "dataset:IndianPolitics", "transformers", "India", "politics", "tweets", "BJP", "Congress", "AAP", "lm-head", "license:apache-2.0" ]
text-generation
false
bagdaebhishek
null
bagdaebhishek/IndianPoliticalTweetsLMMedium
1
null
transformers
28,694
--- language: en thumbnail: https://bagdeabhishek.github.io/twitterAnalysis_files/networkfin.jpg tags: - India - politics - tweets - BJP - Congress - AAP - pytorch - gpt2 - lm-head - text-generation license: apache-2.0 datasets: - Twitter - IndianPolitics --- # Model name Indian Political Tweets LM Medium (Based on GPT2-Medium) ## Model description This is a GPT2 Language model with LM head fine-tuned on tweets crawled from handles which belong predominantly to Indian Politics. For more information about the crawled data, you can go through this [blog](https://bagdeabhishek.github.io/twitterAnalysis) post. This model is finetuned using GPT2-medium instead of the vanilla GPT2 implementation. This model has more parameters but it is able to model language slightly better. ## Intended uses & limitations This finetuned model can be used to generate tweets which are related to Indian politics. #### How to use ```python from transformers import AutoTokenizer,AutoModelWithLMHead,pipeline tokenizer = AutoTokenizer.from_pretrained("bagdaebhishek/IndianPoliticalTweetsLM") model = AutoModelWithLMHead.from_pretrained("bagdaebhishek/IndianPoliticalTweetsLM") text_generator = pipeline("text-generation",model=model, tokenizer=tokenizer) init_sentence = "India will always be" print(text_generator(init_sentence)) ``` #### Limitations and bias 1. The tweets used to train the model were not manually labelled, so the generated text may not always be in English. I've cleaned the data to remove non-English tweets but the model may generate "Hinglish" text and hence no assumptions should be made about the language of the generated text. 2. I've taken enough care to remove tweets from twitter handles which are not very influential but since it's not curated by hand there might be some artefacts like "-sent via NamoApp" etc. 3. Like any language model trained on real-world data this model also exhibits some biases which unfortunately are a part of the political discourse on Twitter. Please keep this in mind while using the output from this model. ## Training data I used the pre-trained gpt2-medium model from Huggingface transformers repository and fine-tuned it on custom data set crawled from twitter. The method used to identify the political handles is mentioned in detail in a [blog](https://bagdeabhishek.github.io/twitterAnalysis) post. I used tweets from both the Pro-BJP and Anti-BJP clusters mentioned in the blog. ## Training procedure For pre-processing, I removed tweets from handles which are not very influential in their cluster. I removed them by calculating Eigenvector centrality on the twitter graph and pruning handles which have this measure below a certain threshold. This threshold was set manually after experimenting with different values. I then separated tweets by these handles based on their language. I trained the LM with English tweets from both handles. ### Hardware 1. GPU: GTX 1080Ti 2. CPU: Ryzen 3900x 3. RAM: 32GB This model took roughly 36 hours to fine-tune.
baicuya/bert_cn
30721f0841e7beddde3cb43df24308432012a388
2021-06-27T13:37:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
baicuya
null
baicuya/bert_cn
1
null
transformers
28,695
hello
balta/DialoGPT-small-TestBot
cd24ee53d7a6775ebf8d4901284b2574643b4388
2021-09-16T21:26:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
balta
null
balta/DialoGPT-small-TestBot
1
null
transformers
28,696
--- tags: - conversational --- # Test Bot DialoGTP Model
bana513/opennmt-translator-en-hu
1d34f28faae951a3ae275d73e1a9ef0e80a3986e
2021-12-16T14:42:36.000Z
[ "pytorch", "opennmt-translator6", "transformers" ]
null
false
bana513
null
bana513/opennmt-translator-en-hu
1
null
transformers
28,697
Entry not found
baophuc27/tbwt_grammar
0eca024afe8b91bbe3ed1243bb260970ffcc617b
2021-12-11T14:51:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
baophuc27
null
baophuc27/tbwt_grammar
1
null
transformers
28,698
Entry not found
bayartsogt/wav2vec2-large-xlsr-mongolian
8211dbbd10fc7444eac153f69266a8128e8a7472
2021-07-05T22:56:55.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mn", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
bayartsogt
null
bayartsogt/wav2vec2-large-xlsr-mongolian
1
null
transformers
28,699
--- language: mn datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Mongolian by Bayartsogt results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice mn type: common_voice args: mn metrics: - name: Test WER type: wer value: 45.82 --- # Wav2Vec2-Large-XLSR-53-Mongolian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "mn", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian") model = Wav2Vec2ForCTC.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Mongolian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "mn", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian") model = Wav2Vec2ForCTC.from_pretrained("bayartsogt/wav2vec2-large-xlsr-mongolian") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�\\\\'h\\\\«\\\\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 45.82% ## Training ❌ The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. ❌ The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.