modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
jj-co/gtr-t5-base
feaa8f3ea9278066ecf6777ba135beb425ea5c8c
2022-02-24T19:57:08.000Z
[ "pytorch", "t5", "en", "arxiv:2112.07899", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
false
jj-co
null
jj-co/gtr-t5-base
3
null
sentence-transformers
21,900
--- pipeline_tag: feature-extraction language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/gtr-t5-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model was specifically trained for the task of sematic search. This model was converted from the Tensorflow model [gtr-base-1](https://tfhub.dev/google/gtr/gtr-base/1) to PyTorch. When using this model, have a look at the publication: [Large Dual Encoders Are Generalizable Retrievers](https://arxiv.org/abs/2112.07899). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results. The model uses only the encoder from a T5-base model. The weights are stored in FP16. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/gtr-t5-base') embeddings = model.encode(sentences) print(embeddings) ``` The model requires sentence-transformers version 2.2.0 or newer. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/gtr-t5-base) ## Citing & Authors If you find this model helpful, please cite the respective publication: [Large Dual Encoders Are Generalizable Retrievers](https://arxiv.org/abs/2112.07899)
anas-awadalla/bert-base-uncased-few-shot-k-16-finetuned-squad-seed-2
cb6899df22cabe4523e25b8fa62b6f7b6b56b9b4
2022-02-24T20:38:56.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-16-finetuned-squad-seed-2
3
null
transformers
21,901
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4
ebb975b2d45078c3a3fbbb151ec33416fab14326
2022-02-24T22:24:38.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4
3
null
transformers
21,902
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10
396e21c38294922a5cc4988448f3999005e3b629
2022-02-24T23:09:57.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10
3
null
transformers
21,903
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
mohamed-illiyas/wav2vec-malayalam-checkpoint
6945a1c6bd11fc2172d01a71766f28f1232eb9c4
2022-02-25T09:24:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mohamed-illiyas
null
mohamed-illiyas/wav2vec-malayalam-checkpoint
3
null
transformers
21,904
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-malayalam-checkpoint results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-malayalam-checkpoint This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6457 - Wer: 0.6608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6371 | 10.0 | 100 | 3.5200 | 1.0 | | 3.3014 | 20.0 | 200 | 3.2092 | 1.0 | | 1.2997 | 30.0 | 300 | 0.7134 | 0.8847 | | 0.5078 | 40.0 | 400 | 0.5805 | 0.7841 | | 0.3795 | 50.0 | 500 | 0.5604 | 0.7289 | | 0.2809 | 60.0 | 600 | 0.5962 | 0.7055 | | 0.2381 | 70.0 | 700 | 0.6099 | 0.6938 | | 0.2046 | 80.0 | 800 | 0.6237 | 0.6862 | | 0.1826 | 90.0 | 900 | 0.6204 | 0.6755 | | 0.1627 | 100.0 | 1000 | 0.6335 | 0.6751 | | 0.1453 | 110.0 | 1100 | 0.6446 | 0.6739 | | 0.1359 | 120.0 | 1200 | 0.6277 | 0.6648 | | 0.1274 | 130.0 | 1300 | 0.6356 | 0.6573 | | 0.1189 | 140.0 | 1400 | 0.6417 | 0.6601 | | 0.1146 | 150.0 | 1500 | 0.6457 | 0.6608 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8
46a0868726ec1923001646fcdaeee1c37670779b
2022-02-25T04:58:07.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8
3
null
transformers
21,905
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10
d841bcf5d4d53efe4d81c6f851ef289461d8a685
2022-02-25T05:13:42.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10
3
null
transformers
21,906
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0
3f04a9c71313a84e626db1fa6a8198af2f7dc7a6
2022-02-25T05:30:55.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0
3
null
transformers
21,907
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
moshew/bert-tiny-aug-sst2-distilled_v2
3e45157e213e879afdfa02cdf0f67a3e625e8ac3
2022-02-28T08:56:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/bert-tiny-aug-sst2-distilled_v2
3
null
transformers
21,908
Entry not found
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-8
ef8a9059a50616c6438d3f663b810e97e8a91111
2022-02-25T06:39:41.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-8
3
null
transformers
21,909
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-8
b33a8a04835667dd7f8609873e339d71bd9f36d0
2022-02-25T08:21:44.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-8
3
null
transformers
21,910
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-16-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
khavitidala/finetuned-indobartv2-id-su
084eeedac40186eebc4b6184572965e90b55a361
2022-02-25T09:23:22.000Z
[ "pytorch", "mbart", "text2text-generation", "id", "dataset:Indo4B+", "arxiv:2104.08200", "transformers", "indogpt", "indobenchmark", "indonlg", "license:mit", "autotrain_compatible" ]
text2text-generation
false
khavitidala
null
khavitidala/finetuned-indobartv2-id-su
3
null
transformers
21,911
--- language: id tags: - indogpt - indobenchmark - indonlg license: mit inference: false datasets: - Indo4B+ --- # IndoBART-v2 Model fine-tuned version Fine-tuned version of IndoBART-v2 with machine translation id->su using default hyperparameter from indoBART paper. by Ryan Abdurohman # IndoBART-v2 Model [IndoBART-v2](https://arxiv.org/abs/2104.08200) is a state-of-the-art language model for Indonesian based on the BART model. The pretrained model is trained using the BART training objective. ## All Pre-trained Models | Model | #params | Training data | |--------------------------------|--------------------------------|-----------------------------------| | `indobenchmark/indobart-v2` | 132M | Indo4B-Plus (26 GB of text) | ## Authors <b>IndoBART</b> was trained and evaluated by Samuel Cahyawijaya*, Genta Indra Winata*, Bryan Wilie*, Karissa Vincentio*, Xiaohong Li*, Adhiguna Kuncoro*, Sebastian Ruder, Zhi Yuan Lim, Syafri Bahar, Masayu Leylia Khodra, Ayu Purwarianti, Pascale Fung ## Citation If you use our work, please cite: ```bibtex @article{cahyawijaya2021indonlg, title={IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation}, author={Cahyawijaya, Samuel and Winata, Genta Indra and Wilie, Bryan and Vincentio, Karissa and Li, Xiaohong and Kuncoro, Adhiguna and Ruder, Sebastian and Lim, Zhi Yuan and Bahar, Syafri and Khodra, Masayu Leylia and others}, journal={arXiv preprint arXiv:2104.08200}, year={2021} } ```
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-4
df07ce9ae11c43473b916921abb037156ef71e69
2022-02-25T09:28:29.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-4
3
null
transformers
21,912
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-2
d1b8d28bc94d2c4530ea19d560d5a95e68ba3525
2022-02-25T12:34:14.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-2
3
null
transformers
21,913
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-8
ce648987e45302079102ead795cead1f7bbd8394
2022-02-25T13:25:47.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-8
3
null
transformers
21,914
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-10
fea17e9a6a2022f84d8f15cef29f63505a462245
2022-02-25T13:42:57.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-10
3
null
transformers
21,915
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Davlan/xlm-roberta-base-finetuned-english
0d42740b94b9bd52bb1c3ad206c5ca14d272a7da
2022-02-25T15:31:51.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/xlm-roberta-base-finetuned-english
3
null
transformers
21,916
--- license: apache-2.0 ---
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-8
4b6d4afaa4928f61a4906c1cd6f9d61a4fb2b738
2022-02-25T16:49:04.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-8
3
null
transformers
21,917
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-512-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-0
f2bdd8e2700d5bbdacd7fbde7baf876686ce8303
2022-02-25T17:25:37.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-0
3
null
transformers
21,918
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-10
6eab54e14c587142e7160df6903ce73aa52a4cd5
2022-02-25T19:01:18.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-10
3
null
transformers
21,919
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-1024-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4
021a822a556201310b2e184c999124902dc37ee5
2022-02-25T19:44:04.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4
3
null
transformers
21,920
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6
ad55a08a06bcb700022ef9b177193316f89ff975
2022-02-25T19:58:15.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6
3
null
transformers
21,921
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8
f9063681b66e04181e9fa4e45b25a6104102c7ec
2022-02-25T20:13:14.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8
3
null
transformers
21,922
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6
e7803d9577e9493d45093c95d14e3e114836c512
2022-02-25T22:58:38.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6
3
null
transformers
21,923
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4
e8534d4fcd753b09a0873c58f825e4216124ba2b
2022-02-26T04:23:41.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4
3
null
transformers
21,924
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8
eb17086ab57cd94f079915f7eafd36e141452838
2022-02-26T04:54:14.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8
3
null
transformers
21,925
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0
d40f456ca543eaaefaea512e26556751d0bb5dba
2022-02-26T05:24:05.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0
3
null
transformers
21,926
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8
4b0b5e913cc1bdb7646a359b3fda9650edc8785e
2022-02-26T07:53:21.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8
3
null
transformers
21,927
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0
00bd0ea2820d1d22d99c293e0ee0f953c3d450ad
2022-02-26T08:25:44.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0
3
null
transformers
21,928
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6
e0ce9e3c323fbf7f6587afe37b6e0ba87d9521c7
2022-02-26T09:16:54.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6
3
null
transformers
21,929
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8
0052f83b8dcc4cb79d17bbc26827fe5d84b738a9
2022-02-26T09:30:48.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8
3
null
transformers
21,930
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
RobW/distilbert-base-cased-finetuned-chunk
54c83f6503adf62749ea723bc2c2a7538ffa954f
2022-02-26T10:00:43.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
RobW
null
RobW/distilbert-base-cased-finetuned-chunk
3
null
transformers
21,931
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-finetuned-chunk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-chunk This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5180 - Precision: 0.8615 - Recall: 0.9088 - F1: 0.8845 - Accuracy: 0.8239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8391 | 1.0 | 878 | 0.5871 | 0.8453 | 0.9035 | 0.8734 | 0.8054 | | 0.6134 | 2.0 | 1756 | 0.5447 | 0.8555 | 0.8983 | 0.8764 | 0.8142 | | 0.5565 | 3.0 | 2634 | 0.5180 | 0.8615 | 0.9088 | 0.8845 | 0.8239 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Tokenizers 0.10.3
chitanda/merit-roberta-large-v2
fa2a4c649e8c5f990883545109931941306f7e34
2022-02-26T12:56:39.000Z
[ "pytorch", "roberta", "transformers", "license:mit" ]
null
false
chitanda
null
chitanda/merit-roberta-large-v2
3
null
transformers
21,932
--- license: mit ---
cnicu/led-booksum
74efa931992ced2a7aedeaa97680f59b4fc5e3cb
2022-02-28T12:12:55.000Z
[ "pytorch", "led", "text2text-generation", "dataset:kmfoda/booksum", "transformers", "summarization", "license:mit", "autotrain_compatible" ]
summarization
false
cnicu
null
cnicu/led-booksum
3
null
transformers
21,933
--- license: mit tags: - summarization datasets: - kmfoda/booksum ---
cnicu/pegasus-xsum-booksum
c99a82b747cb555172305922f27326ca6c1e9a52
2022-02-26T22:13:52.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
cnicu
null
cnicu/pegasus-xsum-booksum
3
null
transformers
21,934
--- license: mit ---
nsi319/distilbert-base-uncased-finetuned-app
0c04e35247420b8be70088d1b15897fcac0a25f3
2022-02-27T10:56:19.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "mobile app descriptions", "playstore", "license:mit" ]
text-classification
false
nsi319
null
nsi319/distilbert-base-uncased-finetuned-app
3
null
transformers
21,935
--- language: "en" thumbnail: "https://huggingface.co/nsi319" tags: - distilbert - pytorch - text-classification - mobile app descriptions - playstore license: "mit" inference: true --- # Mobile App Classification ## Model description DistilBERT is a transformer model, smaller and faster than BERT, which was pre-trained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. The [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) model is fine-tuned to classify an mobile app description into one of **6 play store categories**. Trained on 9000 samples of English App Descriptions and associated categories of apps available in [Google Play](https://play.google.com/store/apps). ## Fine-tuning The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 512. Since this was a classification task, the model was trained with a cross-entropy loss function. The best evaluation f1 score achieved by the model was 0.9034534096919489, found after 4 epochs. The accuracy of the model on the test set was 0.9033. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("nsi319/distilbert-base-uncased-finetuned-app") model = AutoModelForSequenceClassification.from_pretrained("nsi319/distilbert-base-uncased-finetuned-app") classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) classifier("Disney+ has something for everyone and every mood, all in one place. With endless entertainment from Disney, Pixar, Marvel, Star Wars, National Geographic and Star, there's always something exciting to watch. Watch the latest releases, Original series and movies, classic films, throwbacks and so much more.") '''Output''' [{'label': 'Entertainment', 'score': 0.9014402031898499}] ``` ## Limitations Training data consists of apps from 6 play store categories namely Education, Entertainment, Productivity, Sports, News & Magazines and Photography.
Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa
353604b90a581af2f80a49c873254b3b6f8330f6
2022-02-27T14:33:15.000Z
[ "pytorch", "bert", "question-answering", "en", "arxiv:2111.05754", "transformers", "autotrain_compatible" ]
question-answering
false
Intel
null
Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa
3
null
transformers
21,936
--- language: en --- # 80% 1x4 Block Sparse BERT-Base (uncased) Fine Tuned on SQuADv1.1 This model is a result of fine-tuning a Prune OFA 80% 1x4 block sparse pre-trained BERT-Base combined with knowledge distillation. This model yields the following results on SQuADv1.1 development set:<br> `{"exact_match": 81.2867, "f1": 88.4735}` For further details see our paper, [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754), and our open source implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
cyl/adapter_t5-3b_stsb
82e54e73adf6ab3a414842887295559aa8ff41e2
2022-02-27T14:38:57.000Z
[ "pytorch", "transformers" ]
null
false
cyl
null
cyl/adapter_t5-3b_stsb
3
null
transformers
21,937
Entry not found
MUNasir/umsuka-en-zu
083adeed1e0ecc9a6cf9f0c34385c45860cce1d7
2022-03-01T17:28:42.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
MUNasir
null
MUNasir/umsuka-en-zu
3
null
transformers
21,938
#### Languages: - Source language: English - Source language: isiZulu #### Model Details: - model: transformer - Architecture: MarianMT - pre-processing: normalization + SentencePiece #### Pre-trained Model: - https://huggingface.co/Helsinki-NLP/opus-mt-en-xh #### Corpus: - Umsuka English-isiZulu Parallel Corpus (https://zenodo.org/record/5035171#.Yh5NIOhBy3A) #### Benchmark: | Benchmark | Train | Test | |-----------|-------|-------| | Umsuka | 17.61 | 13.73 | #### GitHub: - https://github.com/umair-nasir14/Geographical-Distance-Is-The-New-Hyperparameter
cassandra-themis/test_tcp_ca
066be05b78099dd8d0a536823f5da0fdd50f2774
2022-02-27T20:08:32.000Z
[ "pytorch", "camembert", "token-classification", "dataset:cassandra-themis/ner-tcp-ca", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
cassandra-themis
null
cassandra-themis/test_tcp_ca
3
null
transformers
21,939
--- tags: - generated_from_trainer datasets: - cassandra-themis/ner-tcp-ca model-index: - name: camembert-ner-tcp-ca results: [] widget: - text: "RÉPUBLIQUE FRANCAISE\n\nAU NOM DU PEUPLE FRANCAIS\n\n\n\nCOUR D'APPEL D'AIX EN PROVENCE\n\n\n\n10e Chambre\n\n\n\nARRÊT MIXTE\n\nDU 14 JUIN 2006\n\n\n\nNo/2006\n\n\n\n\n\nRôle No 99/09967\n\n\n\n\n\nJohn X...\n\nArlette Y... épouse X...\n\nPatrick X...\n\n\n\n\n\nC/\n\n\n\nFONDS DE GARANTIE DES VICTIMES D'ACTES DE TERRORISME ET D'AUTRES INFRACTIONS\n\n\n\n\n\nDécision déférée à la Cour :\n\n\n\nDécision rendue le 20 Avril 1999 par la Commission d'Indemnisation des Victimes d'Infractions Pénales près le Tribunal de Grande Instance de MARSEILLE, enregistrée\n\nau répertoire général sous le no 98/00491.\n\n\n\n\n\nAPPELANTS\n\n\n\nMonsieur John X..., décédé\n\nné le 17 Mars 1973 à MARSEILLE (13000), demeurant ... - 13000 MARSEILLE\n\nreprésenté par la SCP COHEN - GUEDJ, avoués à la Cour\n\n\n\nMadame Arlette Y... épouse X...\n\nprise es qualité d'héritière de John X..., décédé le 25/11/2001\n\nnée le 18 Août 1951 à SAINT JEAN DE COLE (DORDOGNE), ... - 13012 MARSEILLE\n\nreprésentée par la SCP COHEN - GUEDJ, avoués à la Cour,\n\nassistée de la SELARL BAFFERT - FRUCTUS ET ASSOCIES, avocats au barreau de MARSEILLE\n\n\n\nMonsieur Patrick X...\n\npris en sa qualité d'héritier de John X..., décédé le 25/11/2001\n\nné le 12 Juin 1951 à MARSEILLE (BOUCHES DU RHÔNE), demeurant ... - 13012 MARSEILLE\n\nreprésenté par la SCP COHEN - GUEDJ, avoués à la Cour,\n\nassisté de la SELARL BAFFERT - FRUCTUS ET ASSOCIES, avocats au barreau de MARSEILLE\n\n\n\n\n\nINTIME\n\n\n\nFONDS DE GARANTIE DES VICTIMES D'ACTES DE TERRORISME ET D'AUTRES INFRACTIONS article L 422.1 du Code des Assurances, géré par le Fonds de Garantie contre les Accidents de Circulation et de Chasse, dont le siège social est sis 64 rue Defrance 94300 VINCENNES, 39 bd Vincent Delpuech - les Bureaux du Méditerranée - 13255 MARSEILLE\n\nreprésenté par la SCP GIACOMETTI - DESOMBRE, avoués à la Cour,\n\nassisté de Me Alain TUILLIER, avocat au barreau d'AIX EN PROVENCE\n\n\n\n\n\nCOMPOSITION DE LA COUR\n\n\n\nL'affaire a été débattue le 12 Avril 2006 en audience publique. Conformément à l'article 785 du Nouveau Code de Procédure Civile, Mr RAJBAUT, Conseiller a fait un rapport oral de l'affaire à l'audience avant les plaidoiries.\n\n\n\nLa Cour était composée de :\n\n\n\nMadame Elisabeth VIEUX, Présidente\n\nMonsieur Benjamin RAJBAUT, Conseiller\n\nMadame Dominique KLOTZ, Conseiller\n\n\n\n\n\nqui en ont délibéré\n\n\n\nGreffier lors des débats : Madame Geneviève JAUFFRES.\n\n\n\nLes parties ont été avisées que le prononcé public de la décision aura lieu par mise à disposition au greffe le 14 Juin 2006..\n\n\n\nMINISTÈRE PUBLIC :\n\nAuquel l'affaire a été régulièrement communiquée.\n\n" example_title: "Exemple 1" - text: "RÉPUBLIQUE FRANCAISE\n\nAU NOM DU PEUPLE FRANCAIS\n\n\n\nPhD / BLL\n\n\n\nNuméro / 06\n\n\n\nCOUR D'APPEL DE PAU\n\n2ème CH-Section 1\n\n\n\nARRÊT DU 19 janvier 2006\n\n\n\nDossier : 04 / 03078\n\n\n\nNature affaire :\n\n\n\nAutres demandes relatives à un bail d'habitation ou à un bail professionnel\n\n\n\nAffaire :\n\n\n\nBerthe X... épouse Y...\n\n\n\nC /\n\n\n\nDominique Z...,\n\nCorinne X...\n\n\n\nRÉPUBLIQUE FRANÇAISE\n\n\n\nAU NOM DU PEUPLE FRANÇAIS\n\n\n\nA R R Ê T\n\n\n\nprononcé par Monsieur GRANGER, conseiller,\n\nen vertu de l'article 452 du Nouveau Code de Procédure Civile,\n\n\n\nassisté de Monsieur LASBIATES, Greffier,\n\n\n\nà l'audience publique du 19 janvier 2006\n\ndate indiquée à l'issue des débats.\n\n\n\n* * * * *\n\n\n\nAPRES DÉBATS\n\n\n\nà l'audience publique tenue le 24 Novembre 2005, devant :\n\n\n\nMonsieur DARRACQ, magistrat chargé du rapport,\n\n\n\nassisté de Monsieur LASBIATES, greffier présent à l'appel des causes,\n\n\n\nMonsieur DARRACQ, en application des articles 786 et 910 du Nouveau Code de Procédure Civile et à défaut d'opposition a tenu l'audience pour entendre les plaidoiries et en a rendu compte à la Cour composée de :\n\n\n\nMonsieur PETRIAT, Conseiller faisant fonction de Président, par suite de l'empêchement légitime de tous les titulaires et des magistrats désignés par ordonnance et se trouvant le magistrat du siège présent le plus ancien dans l'ordre de nomination à la Cour\n\n\n\nMonsieur GRANGER, Conseiller\n\nMonsieur DARRACQ, Vice-Président placé, désigné par ordonnance du 12 septembre 2005\n\n\n\nqui en ont délibéré conformément à la loi.\n\n\n\ndans l'affaire opposant :\n\n\n\nAPPELANTE :\n\n\n\nMadame Berthe X... épouse Y...\n\nnée le 13 Juin 1942 à ARCANGUES (64)\n\nde nationalité française\n\n...\n\n...\n\n12500 ESPALION\n\n\n\nreprésentée par la S. C. P. LONGIN C. ET P., avoués à la Cour\n\nassistée de Maître BLAZY-ANDRIEU, avocat au barreau de BAYONNE\n\n\n\nINTIMES :\n\n\n\nMonsieur Dominique Camille Z...\n\nné le 13 juin 1954 à Chatou (78)\n\n...\n\n...\n\n64200 BIARRITZ\n\n\n\nMadame Corinne X...\n\nnée le 3 juillet 1969 à Bidart (64)\n\n...\n\n...\n\n64200 BIARRITZ\n\n\n\n(bénéficient d'une aide juridictionnelle Totale numéro 2004 / 006320 du 24 / 02 / 2005 accordée par le bureau d'aide juridictionnelle de PAU)\n\n\n\nreprésentés par la S. C. P. F. PIAULT / M. LACRAMPE-CARRAZE, avoués à la Cour\n\nassistés de Maître FOURGEAU, avocat au barreau de BAYONNE\n\n\n\nsur appel de la décision\n\nen date du 24 AOUT 2004\n\nrendue par le TRIBUNAL D'INSTANCE DE BIARRITZ" example_title: "Exemple 2" - text: "RÉPUBLIQUE FRANCAISE\n\nAU NOM DU PEUPLE FRANCAIS\n\n\n\nCOUR D'APPEL DE DOUAI\n\n\n\nTROISIÈME CHAMBRE\n\n\n\nARRÊT DU 26 / 01 / 2006\n\n\n\nBAUX RURAUX\n\n\n\nNo RG : 05 / 04854 jonction avec dossier RG No 05 / 04858\n\n\n\nTribunal paritaire des baux ruraux d'AVESNES SUR HELPE\n\ndu 27 Juillet 2005 jugements no 99 / 000010 et 04 / 000006\n\n\n\nAPPELANTE\n\nMadame Marie-Noëlle X... épouse Y...\n\nDemeurant\n\n...\n\n59138 PONT SUR SAMBRE\n\n\n\nreprésentée par Me STERLILN de la SCP JP STERLIN-C STERLIN, avocats au barreau d'AMIENS\n\n\n\nINTIMÉS\n\nMonsieur Michel Z...\n\nDemeurant\n\n...\n\n59138 BACHANT\n\n\n\nreprésenté par Me VILLESECHE de la SCP ROFFIAEN-LE FUR-VILLESECHE, avocats au barreau d'AVESNES SUR HELPE\n\n\n\nMonsieur Avit X...\n\nDemeurant\n\n...\n\n59138 BACHANT\n\n\n\nreprésenté par Me COLSON de la SCP CHABOT-COLSON, avocats au barreau d'AVESNES SUR HELPE\n\n\n\nMadame Marie-Christine X... épouse A...\n\nDemeurant\n\n...\n\n59750 FEIGNIES\n\n\n\nreprésentée par Me COLSON de la SCP CHABOT-COLSON, avocats au barreau d'AVESNES SUR HELPE\n\n\n\n\n\nMadame Marie-Claire X... épouse B...\n\nDemeurant\n\n...\n\n59550 PRISCHES\n\n\n\nreprésentée par Me COLSON de la SCP CHABOT-COLSON, avocats au barreau d'AVESNES SUR HELPE\n\n\n\n\n\nMadame Marie-Antoinette X... épouse C...\n\nDemeurant\n\n...\n\n59440 ST AUBIN\n\n\n\nreprésentée par Me COLSON de la SCP CHABOT-COLSON, avocats au barreau d'AVESNES SUR HELPE\n\n\n\nCOMPOSITION DE LA COUR LORS DES DÉBATS ET DU DÉLIBÉRÉ\n\nMadame MERFELD, Président de chambre\n\nMadame CONVAIN, Conseiller\n\nMadame PAOLI, Conseiller\n\n---------------------\n\nGREFFIER LORS DES DÉBATS : Madame GAMEZ\n\n" example_title: "Exemple 3" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-ner-tcp-ca This model is a fine-tuned version of [cassandra-themis/camembert-base-juri](https://huggingface.co/cassandra-themis/camembert-base-juri) on the cassandra-themis/ner-tcp-ca full dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
osanseviero/xlm-roberta-base-finetuned-panx-de
5c71826bbb84fe551aa04b56369997c1df507b16
2022-02-27T21:34:59.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
osanseviero
null
osanseviero/xlm-roberta-base-finetuned-panx-de
3
null
transformers
21,940
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8647022085959235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1344 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2568 | 1.0 | 525 | 0.1596 | 0.8210 | | 0.1279 | 2.0 | 1050 | 0.1368 | 0.8522 | | 0.0814 | 3.0 | 1575 | 0.1344 | 0.8647 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.18.0 - Tokenizers 0.10.3
danny911kr/tapas_simsiam_mlm_1
f8129e19ee3b5cad8de3b254ba1fd80b5bce6f09
2022-02-28T02:27:31.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
danny911kr
null
danny911kr/tapas_simsiam_mlm_1
3
null
transformers
21,941
Entry not found
Kevincp560/bart-large-cnn-finetuned-pubmed
28458c3d4a69027ab90f140ffb1139c58aaa6a07
2022-02-28T19:04:22.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/bart-large-cnn-finetuned-pubmed
3
null
transformers
21,942
--- license: mit tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: bart-large-cnn-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 40.4866 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-pubmed This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.8416 - Rouge1: 40.4866 - Rouge2: 16.7472 - Rougel: 24.9831 - Rougelsum: 36.4002 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.932 | 1.0 | 4000 | 1.8110 | 38.1151 | 15.2255 | 23.4286 | 34.2521 | 141.8905 | | 1.7001 | 2.0 | 8000 | 1.7790 | 39.8217 | 16.3042 | 24.649 | 35.831 | 142.0 | | 1.5 | 3.0 | 12000 | 1.7971 | 40.6108 | 17.0446 | 25.1977 | 36.5556 | 141.9865 | | 1.3316 | 4.0 | 16000 | 1.8106 | 40.0466 | 16.4851 | 24.7094 | 36.0998 | 141.9335 | | 1.1996 | 5.0 | 20000 | 1.8416 | 40.4866 | 16.7472 | 24.9831 | 36.4002 | 142.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
RobW/longformer-base-4096-finetuned-chunk-3
8979f668754d74441022d3f6e1edeeed3a8bd7b7
2022-03-03T12:03:34.000Z
[ "pytorch", "tensorboard", "longformer", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
RobW
null
RobW/longformer-base-4096-finetuned-chunk-3
3
null
transformers
21,943
Entry not found
neal49/distilbert-sst2-1
faaf755a00064fa83f836fcb7b81f6dfae471065
2022-03-01T05:11:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
neal49
null
neal49/distilbert-sst2-1
3
null
transformers
21,944
Entry not found
armageddon/bert-base-uncased-squad2-covid-qa-deepset
1cc87527719518b56fa4b202b2ee2bea89588e65
2022-02-28T19:18:32.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
armageddon
null
armageddon/bert-base-uncased-squad2-covid-qa-deepset
3
null
transformers
21,945
--- tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: covid_qa_analysis_bert_base_uncased_squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_bert_base_uncased_squad2 This model is a fine-tuned version of [twmkn9/bert-base-uncased-squad2](https://huggingface.co/twmkn9/bert-base-uncased-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
ali2066/twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-14_43_21
559f4dced8b9d17d0a7e379a3b3f0747a1436a8f
2022-03-01T13:44:36.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-14_43_21
3
null
transformers
21,946
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-14_43_21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-14_43_21 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1212 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 15 | 0.1113 | 0.0 | 0.0 | 0.0 | 0.9752 | | No log | 2.0 | 30 | 0.1069 | 0.0 | 0.0 | 0.0 | 0.9752 | | No log | 3.0 | 45 | 0.0992 | 0.0 | 0.0 | 0.0 | 0.9752 | | No log | 4.0 | 60 | 0.0938 | 0.0 | 0.0 | 0.0 | 0.9752 | | No log | 5.0 | 75 | 0.0920 | 0.0 | 0.0 | 0.0 | 0.9752 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ghazikhanihamed/MembraneBERT
b0cdbe45184e639a833b412fb2d174682c850fd6
2022-03-01T13:48:08.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
ghazikhanihamed
null
ghazikhanihamed/MembraneBERT
3
null
transformers
21,947
--- license: afl-3.0 ---
batterydata/batteryscibert-cased-squad-v1
532c3f873374cc6a27fccda118ef64fec536fbc5
2022-03-03T20:29:14.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "transformers", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
batterydata
null
batterydata/batteryscibert-cased-squad-v1
3
null
transformers
21,948
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BatterySciBERT-cased for QA **Language model:** batteryscibert-cased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 3 base_LM_model = "batteryscibert-cased" max_seq_len = 386 learning_rate = 2e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 79.66, "f1": 87.43, ``` Evaluated on the battery device dataset. ``` "precision": 65.09, "recall": 84.56, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/batteryscibert-cased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/bert-base-cased-squad-v1
8b5fa824f9e3bc3e087ff5ea883088d22ee178c3
2022-03-03T19:54:26.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "transformers", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
batterydata
null
batterydata/bert-base-cased-squad-v1
3
null
transformers
21,949
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BERT-base-cased for QA **Language model:** bert-base-cased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 2 base_LM_model = "bert-base-cased" max_seq_len = 386 learning_rate = 5e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 81.30, "f1": 88.58, ``` Evaluated on the battery device dataset. ``` "precision": 67.02, "recall": 80.15, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/bert-base-cased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
anasaqsme/distilbert-base-uncased-finetuned-squad
3adbee4c348079c924b51dc1f56c0ed550e587c4
2022-03-13T08:15:26.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anasaqsme
null
anasaqsme/distilbert-base-uncased-finetuned-squad
3
null
transformers
21,950
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
facebook/maskformer-swin-large-ade
16ebe37986e532ec41e1102dea41270cf97d6e38
2022-04-04T16:02:08.000Z
[ "pytorch", "maskformer", "dataset:ade-20k", "arxiv:2107.06278", "transformers", "vision", "image-segmentatiom", "license:apache-2.0" ]
null
false
facebook
null
facebook/maskformer-swin-large-ade
3
null
transformers
21,951
--- license: apache-2.0 tags: - vision - image-segmentatiom datasets: - ade-20k widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # Mask Mask model trained on ade-20k. It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169). Disclaimer: The team releasing Mask did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MaskFormer addresses semantic segmentation with a mask classification paradigm instead. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=maskformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-base-ade") >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to feature_extractor for postprocessing >>> output = feature_extractor.post_process_segmentation(outputs) >>> output = feature_extractor.post_process_semantic_segmentation(outputs) >>> output = feature_extractor.post_process_panoptic_segmentation(outputs) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer).
BigSalmon/NEO125InformalToFormalLincoln
78e9a8e5e46a2f8a7f566c860873d4a3dd0471fb
2022-03-02T21:29:36.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/NEO125InformalToFormalLincoln
3
null
transformers
21,952
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/NEO125InformalToFormalLincoln") model = AutoModelForCausalLM.from_pretrained("BigSalmon/NEO125InformalToFormalLincoln") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ```
yoavgur/gpt2-bash-history-baseline2
d9cc2a147a00036870a527d664a32615ddbd2ad4
2022-03-02T23:43:15.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
yoavgur
null
yoavgur/gpt2-bash-history-baseline2
3
null
transformers
21,953
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-bash-history-baseline2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-bash-history-baseline2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 158 | 1.8653 | | No log | 2.0 | 316 | 1.7574 | | No log | 3.0 | 474 | 1.6939 | | 1.9705 | 4.0 | 632 | 1.6597 | | 1.9705 | 5.0 | 790 | 1.6480 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
Kevincp560/t5-base-finetuned-pubmed
813ed7ddf9d60ed155eabd78f9afad1c3c96f4a1
2022-03-03T16:06:16.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/t5-base-finetuned-pubmed
3
null
transformers
21,954
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: t5-base-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 9.3771 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-pubmed This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.6311 - Rouge1: 9.3771 - Rouge2: 3.7042 - Rougel: 8.4912 - Rougelsum: 9.0013 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.0957 | 1.0 | 4000 | 1.9006 | 8.6968 | 3.2473 | 7.9565 | 8.3224 | 19.0 | | 2.0489 | 2.0 | 8000 | 1.8571 | 8.6877 | 3.2461 | 7.9311 | 8.2991 | 19.0 | | 2.7345 | 3.0 | 12000 | 2.6112 | 9.585 | 3.0129 | 8.4729 | 9.1109 | 19.0 | | 3.0585 | 4.0 | 16000 | 2.7222 | 9.7011 | 3.3549 | 8.6588 | 9.2646 | 19.0 | | 2.9437 | 5.0 | 20000 | 2.6311 | 9.3771 | 3.7042 | 8.4912 | 9.0013 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
QuickRead/pegasus-reddit-16000
84b360634c463fd02f98d9ce832fca77205204a1
2022-03-05T03:57:20.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
QuickRead
null
QuickRead/pegasus-reddit-16000
3
null
transformers
21,955
Entry not found
Britain/DialoGPT-small-ZifBotTwoFixed
9d0cada4c8bf8f299699cb08e121de4291d9e333
2022-03-05T03:43:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Britain
null
Britain/DialoGPT-small-ZifBotTwoFixed
3
null
transformers
21,956
--- tags: - conversational --- # ZifBotTwoFixed
Britain/DialoGPT-small-DanyBotThree
b6371fc288974d850fd914e36e65cde11065f6ea
2022-03-05T05:50:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Britain
null
Britain/DialoGPT-small-DanyBotThree
3
null
transformers
21,957
--- tags: - conversational --- # DanyBot
fabianrausch/german-financial-statements-bert
2ab7c15a64da71b35ca63bb37c54f1000e28582d
2022-03-16T09:58:56.000Z
[ "pytorch", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
fabianrausch
null
fabianrausch/german-financial-statements-bert
3
null
transformers
21,958
--- license: mit language: de --- # german-financial-statements-bert This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) using German financial statements. It achieves the following results on the evaluation set: - Loss: 1.2025 - Accuracy: 0.7376 - Perplexity: 3.3285 ## Model description Annual financial statements in Germany are published in the Federal Gazette and are freely accessible. The documents describe the entrepreneurial and in particular the financial situation of a company with reference to a reporting period. The german-financial-statements-bert model aims to provide a BERT model specifically for this domain. ## Training and evaluation data The training was performed with 100,000 natural language sentences from annual financial statements. 50,000 of these sentences were taken unfiltered and randomly from 5,500 different financial statement documents, and another 50,000 were also taken randomly from 5,500 different financial statement documents, but this half was filtered so that only sentences referring to a financial entity were selected. Specifically, this means that the second half of the sentences contains an indicator for a reference to a financial entity (EUR, Euro, TEUR, €, T€). The evaluation was carried out with 20,000 sentences of the same origin and distribution. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
QuickRead/Reward_training_Pegasus_reddit
1f61710411ee4ce73ca1efb267a1761cb696c282
2022-04-20T19:01:39.000Z
[ "pytorch", "pegasus", "feature-extraction", "transformers" ]
feature-extraction
false
QuickRead
null
QuickRead/Reward_training_Pegasus_reddit
3
null
transformers
21,959
Entry not found
maksym/bert-base-uncased-finetuned-swag
b2d0c56f82ffa02079891c119971882a774995a9
2022-03-05T23:45:29.000Z
[ "pytorch", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
maksym
null
maksym/bert-base-uncased-finetuned-swag
3
null
transformers
21,960
Entry not found
Kevincp560/distilbart-cnn-12-6-finetuned-pubmed
0dc1cd0a6d8c01147104ebe27b257a1443678da0
2022-03-06T22:33:03.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/distilbart-cnn-12-6-finetuned-pubmed
3
1
transformers
21,961
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 40.0985 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.9895 - Rouge1: 40.0985 - Rouge2: 16.5016 - Rougel: 24.8319 - Rougelsum: 36.0775 - Gen Len: 141.884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.1709 | 1.0 | 4000 | 2.0257 | 38.1012 | 15.112 | 23.4064 | 33.9373 | 141.9195 | | 1.9495 | 2.0 | 8000 | 1.9593 | 39.529 | 16.1693 | 24.487 | 35.5238 | 141.9785 | | 1.756 | 3.0 | 12000 | 1.9488 | 39.9623 | 16.5799 | 24.949 | 35.9194 | 141.8855 | | 1.6032 | 4.0 | 16000 | 1.9732 | 39.672 | 16.1994 | 24.5996 | 35.7021 | 141.921 | | 1.4817 | 5.0 | 20000 | 1.9895 | 40.0985 | 16.5016 | 24.8319 | 36.0775 | 141.884 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
cammy/bart-large-cnn-finetuned-weaksup-1000-pad-early-new
4c3ef05e606524ff6e4c97d6b9237ddbbc3fe10e
2022-03-06T17:51:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-1000-pad-early-new
3
null
transformers
21,962
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-1000-pad-early-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-pad-early-new This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4896 - Rouge1: 29.4505 - Rouge2: 14.4038 - Rougel: 23.1757 - Rougelsum: 26.3813 - Gen Len: 66.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.154 | 1.0 | 1000 | 0.4255 | 27.2971 | 12.4331 | 20.851 | 23.9583 | 66.64 | | 0.0806 | 2.0 | 2000 | 0.4896 | 29.4505 | 14.4038 | 23.1757 | 26.3813 | 66.55 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Britain/DialoGPT-small-DanyBotTwoNew
905476a8d07f2714bb52d4f3d225c11d5d3d9ee7
2022-03-06T19:11:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Britain
null
Britain/DialoGPT-small-DanyBotTwoNew
3
null
transformers
21,963
--- tags: - conversational --- # DanyBot
armageddon/roberta-base-squad2-covid-qa-deepset
80acbdd8ed68c0eeaedf51ca954e92028840a79c
2022-02-28T22:34:27.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
armageddon
null
armageddon/roberta-base-squad2-covid-qa-deepset
3
null
transformers
21,964
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: covid_qa_analysis_roberta-base-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_roberta-base-squad2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
squirro/distilroberta-base-squad_v2
5800a52e9e6511e2499fdbd8d9df0922b11da14b
2022-06-29T08:53:58.000Z
[ "pytorch", "tf", "onnx", "roberta", "question-answering", "en", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
squirro
null
squirro/distilroberta-base-squad_v2
3
1
transformers
21,965
--- license: apache-2.0 language: en tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilroberta-base-squad_v2 results: - task: name: Question Answering type: question-answering dataset: type: squad_v2 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: The Stanford Question Answering Dataset args: en metrics: - type: eval_exact value: 65.2405 - type: eval_f1 value: 68.6265 - type: eval_HasAns_exact value: 67.5776 - type: eval_HasAns_f1 value: 74.3594 - type: eval_NoAns_exact value: 62.91 - type: eval_NoAns_f1 value: 62.91 --- # distilroberta-base-squad_v2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad_v2 dataset. ## Model description This model is fine-tuned on the extractive question answering task -- The Stanford Question Answering Dataset -- [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/). For convenience this model is prepared to be used with the frameworks `PyTorch`, `Tensorflow` and `ONNX`. ## Intended uses & limitations This model can handle mismatched question-context pairs. Make sure to specify `handle_impossible_answer=True` when using `QuestionAnsweringPipeline`. __Example usage:__ ```python >>> from transformers import AutoModelForQuestionAnswering, AutoTokenizer, QuestionAnsweringPipeline >>> model = AutoModelForQuestionAnswering.from_pretrained("squirro/distilroberta-base-squad_v2") >>> tokenizer = AutoTokenizer.from_pretrained("squirro/distilroberta-base-squad_v2") >>> qa_model = QuestionAnsweringPipeline(model, tokenizer) >>> qa_model( >>> question="What's your name?", >>> context="My name is Clara and I live in Berkeley.", >>> handle_impossible_answer=True # important! >>> ) {'score': 0.9498472809791565, 'start': 11, 'end': 16, 'answer': 'Clara'} ``` ## Training and evaluation data Training and evaluation was done on [SQuAD2.0](https://huggingface.co/datasets/squad_v2). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Metric | Value | |:-------------------------|-------------:| | epoch | 3 | | eval_HasAns_exact | 67.5776 | | eval_HasAns_f1 | 74.3594 | | eval_HasAns_total | 5928 | | eval_NoAns_exact | 62.91 | | eval_NoAns_f1 | 62.91 | | eval_NoAns_total | 5945 | | eval_best_exact | 65.2489 | | eval_best_exact_thresh | 0 | | eval_best_f1 | 68.6349 | | eval_best_f1_thresh | 0 | | eval_exact | 65.2405 | | eval_f1 | 68.6265 | | eval_samples | 12165 | | eval_total | 11873 | | train_loss | 1.40336 | | train_runtime | 1365.28 | | train_samples | 131823 | | train_samples_per_second | 289.662 | | train_steps_per_second | 0.567 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6 --- # About Us <img src="https://squirro.com/wp-content/themes/squirro/img/squirro_logo.svg" alt="Squirro Logo" width="250"/> Squirro marries data from any source with your intent, and your context to intelligently augment decision-making - right when you need it! An Insight Engine at its core, Squirro works with global organizations, primarily in financial services, public sector, professional services, and manufacturing, among others. Customers include Bank of England, European Central Bank (ECB), Deutsche Bundesbank, Standard Chartered, Henkel, Armacell, Candriam, and many other world-leading firms. Founded in 2012, Squirro is currently present in Zürich, London, New York, and Singapore. Further information about AI-driven business insights can be found at http://squirro.com. ## Social media profiles: - Redefining AI Podcast (Spotify): https://open.spotify.com/show/6NPLcv9EyaD2DcNT8v89Kb - Redefining AI Podcast (Apple Podcasts): https://podcasts.apple.com/us/podcast/redefining-ai/id1613934397 - Squirro LinkedIn: https://www.linkedin.com/company/squirroag - Squirro Academy LinkedIn: https://www.linkedin.com/showcase/the-squirro-academy - Twitter: https://twitter.com/Squirro - Facebook: https://www.facebook.com/squirro - Instagram: https://www.instagram.com/squirro/
cammy/bart-large-cnn-1000-pad-early-lit
83874d8a339c68a668ee15d8df2ee3527bbf845c
2022-03-07T10:56:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-1000-pad-early-lit
3
null
transformers
21,966
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-1000-pad-early-lit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-1000-pad-early-lit This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4800 - Rouge1: 28.4538 - Rouge2: 13.5656 - Rougel: 22.2066 - Rougelsum: 25.3361 - Gen Len: 66.53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1556 | 1.0 | 1000 | 0.4383 | 29.1275 | 14.1415 | 22.5802 | 26.37 | 65.93 | | 0.0853 | 2.0 | 2000 | 0.4800 | 28.4538 | 13.5656 | 22.2066 | 25.3361 | 66.53 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
koenvdv/my-test-model
bbd3b526dc553b2055e90e38bdec3d126e3375b3
2022-03-08T08:28:03.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
koenvdv
null
koenvdv/my-test-model
3
null
transformers
21,967
Entry not found
fenixobia/distilbert-base-uncased-finetuned-cola
5c62c094f55e084f390ff18217ea5ee54a2e68bf
2022-03-14T11:52:00.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fenixobia
null
fenixobia/distilbert-base-uncased-finetuned-cola
3
null
transformers
21,968
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5595884617444483 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7808 - Matthews Correlation: 0.5596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.522 | 1.0 | 535 | 0.5361 | 0.4215 | | 0.3472 | 2.0 | 1070 | 0.5309 | 0.5046 | | 0.2342 | 3.0 | 1605 | 0.6451 | 0.5351 | | 0.1673 | 4.0 | 2140 | 0.7808 | 0.5596 | | 0.1249 | 5.0 | 2675 | 0.8750 | 0.5565 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1 - Datasets 1.18.4 - Tokenizers 0.11.6
MrAnderson/nystrom-1024-full-trivia
6371bc5437414f5c4d0cfb8d57d7c88c62173bee
2022-03-08T15:39:40.000Z
[ "pytorch", "nystromformer", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/nystrom-1024-full-trivia
3
null
transformers
21,969
Entry not found
gayanin/t5-small-med-term-mlm
3e6a9457bf7fe5d5105c1ca052b67f0016b14392
2022-03-08T11:46:57.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-med-term-mlm
3
null
transformers
21,970
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-med-term-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-med-term-mlm This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4736 - Rouge2 Precision: 0.7731 - Rouge2 Recall: 0.5541 - Rouge2 Fmeasure: 0.6251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6498 | 1.0 | 15827 | 0.5480 | 0.7629 | 0.5457 | 0.6161 | | 0.5674 | 2.0 | 31654 | 0.4989 | 0.7697 | 0.551 | 0.622 | | 0.5631 | 3.0 | 47481 | 0.4795 | 0.7726 | 0.5541 | 0.625 | | 0.534 | 4.0 | 63308 | 0.4736 | 0.7731 | 0.5541 | 0.6251 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
z-uo/bert-qasper
cf52cceb3e1d52950818d86dc18b77f222dc05ef
2022-03-08T18:31:21.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:z-uo/qasper-squad", "transformers", "autotrain_compatible" ]
question-answering
false
z-uo
null
z-uo/bert-qasper
3
null
transformers
21,971
--- language: en datasets: - z-uo/qasper-squad --- # bert-base for QA with qasper Train from bert-base-uncased. How to use by python code: ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # Load model with pipeline model_name = "z-uo/bert-qasper" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) # Get predictions QA_input = { 'question': 'what they propose?', 'context': "In this paper, we provide an innovative contribution in the research domain dedicated to crop mapping by exploiting the of Sentinel-2 satellite images time series, with the specific aim to extract information on 'where and when' crops are grown. The final goal is to set up a workflow able to reliably identify (classify) the different crops that are grown in a given area by exploiting an end-to-end (3+2)D convolutional neural network (CNN) for semantic segmentation. The method also has the ambition to provide information, at pixel level, regarding the period in which a given crop is cultivated during the season. To this end, we propose a solution called Class Activation Interval (CAI) which allows us to interpret, for each pixel, the reasoning made by CNN in the classification determining in which time interval, of the input time series, the class is likely to be present or not. Our experiments, using a public domain dataset, show that the approach is able to accurately detect crop classes with an overall accuracy of about 93% and that the network can detect discriminatory time intervals in which crop is cultivated. These results have twofold importance: (i) demonstrate the ability of the network to correctly interpret the investigated physical process (i.e., bare soil condition, plant growth, senescence and harvesting according to specific cultivated variety) and (ii) provide further information to the end-user (e.g., the presence of crops and its temporal dynamics)." } res = nlp(QA_input) # Load model & tokenizer without pipeline model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
alirezafarashah/wav2vec2-base-ks
752406f88b75bf09114b63d1b7631fd58acc86fb
2022-03-08T11:41:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
alirezafarashah
null
alirezafarashah/wav2vec2-base-ks
3
null
transformers
21,972
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0982 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.8465 | 1.0 | 399 | 0.8179 | 0.7516 | | 0.2962 | 2.0 | 798 | 0.9771 | 0.2077 | | 0.1891 | 3.0 | 1197 | 0.9819 | 0.1195 | | 0.19 | 4.0 | 1596 | 0.9825 | 0.0982 | | 0.1685 | 5.0 | 1995 | 0.9825 | 0.0952 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
mrm8488/electricidad-small-finetuned-paws-x-es
d0b55c70e67c40e6b28174ae98f316386e18ff19
2022-03-07T20:22:24.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/electricidad-small-finetuned-paws-x-es
3
null
transformers
21,973
Entry not found
negfir/SQUAD10L
4c98bbf3e0efaaacc63213967a1a8a2713852039
2022-03-09T01:32:54.000Z
[ "pytorch", "squeezebert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
negfir
null
negfir/SQUAD10L
3
null
transformers
21,974
Entry not found
EngNada/wav2vec2-large-xlsr-53-demo1
5ebc3afe82bc14241acba15a3a738c8f4a92aa13
2022-03-09T20:54:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
EngNada
null
EngNada/wav2vec2-large-xlsr-53-demo1
3
null
transformers
21,975
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-demo1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9692 - Wer: 0.8462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.978 | 0.06 | 100 | 3.5377 | 1.0 | | 3.5026 | 0.13 | 200 | 3.4366 | 1.0 | | 3.4084 | 0.19 | 300 | 3.3831 | 1.0 | | 3.3551 | 0.26 | 400 | 3.2563 | 1.0 | | 3.2668 | 0.32 | 500 | 3.2109 | 1.0 | | 2.9398 | 0.38 | 600 | 2.4548 | 0.9987 | | 2.2204 | 0.45 | 700 | 1.8870 | 1.0135 | | 1.7401 | 0.51 | 800 | 1.6816 | 1.0247 | | 1.5748 | 0.57 | 900 | 1.4741 | 0.9953 | | 1.4539 | 0.64 | 1000 | 1.4573 | 0.9852 | | 1.3612 | 0.7 | 1100 | 1.3534 | 0.9529 | | 1.3328 | 0.77 | 1200 | 1.3380 | 0.9320 | | 1.2459 | 0.83 | 1300 | 1.2984 | 0.9247 | | 1.1976 | 0.89 | 1400 | 1.2515 | 0.9252 | | 1.1593 | 0.96 | 1500 | 1.2345 | 0.9030 | | 1.1094 | 1.02 | 1600 | 1.2135 | 0.9305 | | 1.0485 | 1.09 | 1700 | 1.2045 | 0.9121 | | 0.9893 | 1.15 | 1800 | 1.1876 | 0.8990 | | 1.0099 | 1.21 | 1900 | 1.1663 | 0.8889 | | 0.982 | 1.28 | 2000 | 1.1674 | 0.8901 | | 0.9975 | 1.34 | 2100 | 1.1181 | 0.8812 | | 0.952 | 1.4 | 2200 | 1.1119 | 0.8817 | | 0.9311 | 1.47 | 2300 | 1.0786 | 0.8773 | | 0.9398 | 1.53 | 2400 | 1.1016 | 0.8720 | | 0.9148 | 1.6 | 2500 | 1.0878 | 0.8778 | | 0.9114 | 1.66 | 2600 | 1.1004 | 0.8712 | | 0.902 | 1.72 | 2700 | 1.0223 | 0.8744 | | 0.8978 | 1.79 | 2800 | 1.0616 | 0.8459 | | 0.8675 | 1.85 | 2900 | 1.0974 | 0.8643 | | 0.8373 | 1.92 | 3000 | 1.0389 | 0.8547 | | 0.8575 | 1.98 | 3100 | 1.0388 | 0.8480 | | 0.8313 | 2.04 | 3200 | 1.0001 | 0.8648 | | 0.7357 | 2.11 | 3300 | 1.0222 | 0.8705 | | 0.743 | 2.17 | 3400 | 1.0859 | 0.8765 | | 0.7306 | 2.23 | 3500 | 1.0109 | 0.8515 | | 0.7525 | 2.3 | 3600 | 0.9942 | 0.8619 | | 0.7308 | 2.36 | 3700 | 1.0004 | 0.8578 | | 0.7266 | 2.43 | 3800 | 1.0003 | 0.8497 | | 0.737 | 2.49 | 3900 | 1.0146 | 0.8505 | | 0.7202 | 2.55 | 4000 | 1.0172 | 0.8653 | | 0.6945 | 2.62 | 4100 | 0.9894 | 0.8415 | | 0.6633 | 2.68 | 4200 | 0.9894 | 0.8496 | | 0.6972 | 2.75 | 4300 | 0.9805 | 0.8505 | | 0.6872 | 2.81 | 4400 | 0.9939 | 0.8509 | | 0.7238 | 2.87 | 4500 | 0.9740 | 0.8532 | | 0.6847 | 2.94 | 4600 | 0.9692 | 0.8462 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
MrAnderson/yoso-1024-full-trivia
0edb95d90b671a25df6ab0aee717619ca690bfb1
2022-03-09T16:29:23.000Z
[ "pytorch", "yoso", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/yoso-1024-full-trivia
3
null
transformers
21,976
Entry not found
ctoraman/RoBERTa-TR-medium-bpe-7k
6dae64fc9aeec2b1154e83f78e40c42d71c7ff1c
2022-04-20T06:56:02.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-bpe-7k
3
null
transformers
21,977
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium BPE 7k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is BPE. Vocabulary size is 7.5k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-bpe-28k
d710d28207b9682c976c09e5a430fa617831975b
2022-04-20T06:48:33.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-bpe-28k
3
null
transformers
21,978
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium BPE 28k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is BPE. Vocabulary size is 28.6k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-bpe-44k
b3604dba368e75494b33297b5202ca487ec68b82
2022-04-20T06:54:12.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-bpe-44k
3
null
transformers
21,979
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium BPE 44k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is BPE. Vocabulary size is 44.5k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-bpe-66k
ef980f617c4d04ac3b826ea6d8d3808b4051a7b0
2022-04-20T06:54:49.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-bpe-66k
3
null
transformers
21,980
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium BPE 66k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is BPE. Vocabulary size is 66.7k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-morph-28k
a7b678dc50a02b1525790e5cebf24b9259ca278e
2022-04-20T06:57:33.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-morph-28k
3
null
transformers
21,981
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Morph-level 28k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 28.3k. ## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-word-28k
8c7256ce3413f674f023032150181f61f1da7988
2022-04-20T07:00:00.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-word-28k
3
null
transformers
21,982
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Word-level 28k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Word-level, which means text is split by white space. Vocabulary size is 28.6k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-word-44k
ed940239ec8fee8a908492e0f1b5cbed4164ae7e
2022-04-20T06:47:08.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-word-44k
3
null
transformers
21,983
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Word-level 44k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Word-level, which means text is split by white space. Vocabulary size is 44.5k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
Kevincp560/bigbird-pegasus-large-arxiv-finetuned-pubmed
6a50e1d2ea91c24af1740144dc97259d8155e105
2022-03-09T19:30:11.000Z
[ "pytorch", "bigbird_pegasus", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/bigbird-pegasus-large-arxiv-finetuned-pubmed
3
0
transformers
21,984
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: bigbird-pegasus-large-arxiv-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 45.4807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-pegasus-large-arxiv-finetuned-pubmed This model is a fine-tuned version of [google/bigbird-pegasus-large-arxiv](https://huggingface.co/google/bigbird-pegasus-large-arxiv) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.6049 - Rouge1: 45.4807 - Rouge2: 20.0199 - Rougel: 28.3621 - Rougelsum: 41.4618 - Gen Len: 219.144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.594 | 1.0 | 500 | 1.9879 | 33.6364 | 13.5074 | 21.4286 | 29.7158 | 189.014 | | 1.9146 | 2.0 | 1000 | 1.6494 | 44.0056 | 19.0069 | 27.5142 | 40.0492 | 210.528 | | 1.7378 | 3.0 | 1500 | 1.6213 | 44.7071 | 19.3559 | 27.6806 | 40.6124 | 213.596 | | 1.692 | 4.0 | 2000 | 1.6081 | 45.1505 | 19.7355 | 28.06 | 41.0108 | 213.674 | | 1.6656 | 5.0 | 2500 | 1.6049 | 45.4807 | 20.0199 | 28.3621 | 41.4618 | 219.144 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
kevinjesse/codebert-MT4TS
e92091fe10ce32a103402bb41115ac2e7c7536f2
2022-03-09T18:51:44.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kevinjesse
null
kevinjesse/codebert-MT4TS
3
null
transformers
21,985
Entry not found
SuperAI2-Machima/mt5-small-thai_translation_th-en_en-th_V2
d233fa1f5738092c141967c6d093f59c094c98f6
2022-03-09T19:15:49.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SuperAI2-Machima
null
SuperAI2-Machima/mt5-small-thai_translation_th-en_en-th_V2
3
null
transformers
21,986
Entry not found
amanm27/bert-base-uncased-sports
491cd3cdad12ef854d2b6e252b549045b40ab05e
2022-03-10T06:40:10.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amanm27
null
amanm27/bert-base-uncased-sports
3
null
transformers
21,987
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-sports results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sports This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4926 | 1.0 | 912 | 2.1186 | | 2.2168 | 2.0 | 1824 | 2.0392 | | 2.1327 | 3.0 | 2736 | 2.0081 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
davanstrien/vit-base-patch16-224-in21k-base-manuscripts
d2c85823b39c4ab49d0bc731050cfcad578aff92
2022-03-10T08:01:01.000Z
[ "pytorch", "tensorboard", "vit", "transformers", "masked-image-modeling", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
davanstrien
null
davanstrien/vit-base-patch16-224-in21k-base-manuscripts
3
null
transformers
21,988
--- license: apache-2.0 tags: - masked-image-modeling - generated_from_trainer model-index: - name: vit-base-patch16-224-in21k-base-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-base-manuscripts This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 0.5210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1333 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5198 | 1.0 | 32 | 0.5208 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
pratt3000/wav2vec2-base-finetuned-ks
d425c9fc875f2e46132035f8a8db8ffdef27ae2d
2022-03-11T12:23:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
pratt3000
null
pratt3000/wav2vec2-base-finetuned-ks
3
null
transformers
21,989
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: name: wav2vec2-base-finetuned-ks --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0029 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0037 | 1.0 | 400 | 0.0054 | 0.9991 | | 0.0007 | 2.0 | 800 | 0.0029 | 0.9997 | | 0.0004 | 3.0 | 1200 | 0.0028 | 0.9997 | | 0.0003 | 4.0 | 1600 | 0.0029 | 0.9997 | | 0.0003 | 5.0 | 2000 | 0.0028 | 0.9997 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.10.3
cambridgeltl/c2_mbert_de2tr_1k
c8a913f85f8663b7f6288e990c0966044c65fd31
2022-03-10T14:26:35.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
cambridgeltl
null
cambridgeltl/c2_mbert_de2tr_1k
3
null
transformers
21,990
Entry not found
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-9-epoch-tweak
eca7dafd7dfea9f634dc91b08315ef7c9e1b6bfc
2022-03-10T16:53:08.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
Ameer05
null
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-9-epoch-tweak
3
null
transformers
21,991
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-9-epoch-tweak results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-9-epoch-tweak This model is a fine-tuned version of [Ameer05/model-token-repo](https://huggingface.co/Ameer05/model-token-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4511 - Rouge1: 59.76 - Rouge2: 52.1999 - Rougel: 57.3631 - Rougelsum: 59.3075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.0185 | 52.2186 | 45.4675 | 49.3152 | 51.9415 | | No log | 1.91 | 10 | 1.6571 | 60.7728 | 52.8611 | 57.3487 | 60.1676 | | No log | 2.91 | 15 | 1.5323 | 60.5674 | 52.2246 | 57.9846 | 60.073 | | No log | 3.91 | 20 | 1.4556 | 61.2167 | 53.5087 | 58.9609 | 60.893 | | 1.566 | 4.91 | 25 | 1.4632 | 62.918 | 55.4544 | 60.7116 | 62.6614 | | 1.566 | 5.91 | 30 | 1.4360 | 60.4173 | 52.5859 | 57.8131 | 59.8864 | | 1.566 | 6.91 | 35 | 1.4361 | 61.4273 | 53.9663 | 59.4445 | 60.9672 | | 1.566 | 7.91 | 40 | 1.4477 | 60.3401 | 52.7276 | 57.7504 | 59.8209 | | 0.6928 | 8.91 | 45 | 1.4511 | 59.76 | 52.1999 | 57.3631 | 59.3075 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.10.3
Vasily/reduce
f59b4d713b7f89770537796b4d2b81ea853e69da
2022-03-11T12:25:18.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
Vasily
null
Vasily/reduce
3
null
transformers
21,992
Entry not found
l3cube-pune/mahahate-bert
b0fd4b921b1ce4adcb81b2c3dcecd73ba2576e1c
2022-06-26T14:43:01.000Z
[ "pytorch", "bert", "text-classification", "mr", "dataset:L3Cube-MahaHate", "arxiv:2203.13778", "transformers", "license:cc-by-4.0" ]
text-classification
false
l3cube-pune
null
l3cube-pune/mahahate-bert
3
null
transformers
21,993
--- language: mr tags: license: cc-by-4.0 datasets: - L3Cube-MahaHate widget: - text: "I like you. </s></s> I love you." --- ## MahaHate-BERT MahaHate-BERT (Marathi Hate speech identification) is a MahaBERT(l3cube-pune/marathi-bert) model fine-tuned on L3Cube-MahaHate - a Marathi tweet-based hate speech detection dataset. This is a two-class model with labels as hate (LABEL_1) and not (LABEL_0). The 4-class model can be found <a href='https://huggingface.co/l3cube-pune/mahahate-multi-roberta'> here </a> [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2203.13778)
Splend1dchan/deberta-large-slue-goldtrascription-e50
327d25d951e89f00f195c330ee7dae55a4e7ace9
2022-03-12T10:30:29.000Z
[ "pytorch", "deberta", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/deberta-large-slue-goldtrascription-e50
3
null
transformers
21,994
Deberta large trained on slue transcriptions for 50 epochs, lr = 5e-6
MrAnderson/nystrom-2048-full-trivia-copied-embeddings
3ac4a97a880ab466498e1f70a7dd843858c07662
2022-03-12T11:15:46.000Z
[ "pytorch", "nystromformer", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/nystrom-2048-full-trivia-copied-embeddings
3
null
transformers
21,995
Entry not found
StivenLancheros/Roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_en_es
3e8fd15e623120d7cd29441adb1d9ea03bc05fe1
2022-03-12T11:39:55.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/Roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_en_es
3
null
transformers
21,996
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_en_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_en_es This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.8664 - Recall: 0.8587 - F1: 0.8625 - Accuracy: 0.9727 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the [CRAFT](https://github.com/UCDenver-ccp/CRAFT/releases)(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0564 | 1.0 | 1360 | 0.1459 | 0.8296 | 0.8489 | 0.8392 | 0.9696 | | 0.0222 | 2.0 | 2720 | 0.1554 | 0.8650 | 0.8320 | 0.8482 | 0.9702 | | 0.0124 | 3.0 | 4080 | 0.1670 | 0.8588 | 0.8564 | 0.8576 | 0.9717 | | 0.0052 | 4.0 | 5440 | 0.1750 | 0.8664 | 0.8587 | 0.8625 | 0.9727 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-gpt2-medium-no-adapter-long-run
02bb4cd5bb608c02a4aad3ae9ecd087e15bacc17
2022-03-13T17:42:05.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-gpt2-medium-no-adapter-long-run
3
null
transformers
21,997
Entry not found
test1345/autonlp-savesome-631818261
6b6859a39ff9c74984f3471eb642f5807d529fc0
2022-03-12T19:00:24.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:test1345/autonlp-data-savesome", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
test1345
null
test1345/autonlp-savesome-631818261
3
null
transformers
21,998
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - test1345/autonlp-data-savesome co2_eq_emissions: 5.714250590300453 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 631818261 - CO2 Emissions (in grams): 5.714250590300453 ## Validation Metrics - Loss: 0.44651690125465393 - Accuracy: 0.8792873051224944 - Macro F1: 0.839261602941426 - Micro F1: 0.8792873051224943 - Weighted F1: 0.8790427387522044 - Macro Precision: 0.8407634723656228 - Micro Precision: 0.8792873051224944 - Weighted Precision: 0.8801219917819031 - Macro Recall: 0.8400328140795883 - Micro Recall: 0.8792873051224944 - Weighted Recall: 0.8792873051224944 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/test1345/autonlp-savesome-631818261 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("test1345/autonlp-savesome-631818261", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("test1345/autonlp-savesome-631818261", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
anwesham/indicbert_ur
bb2701a942b95cbf6c424ee4e3072d6f642e2589
2022-03-13T07:58:10.000Z
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
anwesham
null
anwesham/indicbert_ur
3
null
transformers
21,999
Entry not found