modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Daryaflp/roberta-retrained_ru_covid_papers
a4e1a6e45437cc378304871efbd79cb18cef5d36
2022-03-29T13:30:45.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Daryaflp
null
Daryaflp/roberta-retrained_ru_covid_papers
3
null
transformers
22,100
--- tags: - generated_from_trainer model-index: - name: roberta-retrained_ru_covid_papers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-retrained_ru_covid_papers This model is a fine-tuned version of [Daryaflp/roberta-retrained_ru_covid](https://huggingface.co/Daryaflp/roberta-retrained_ru_covid) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
regel-corpus/hunflair-enhancer
be18c76ed2629914835a9ead9ccb3b5278deee11
2022-04-12T15:35:04.000Z
[ "pytorch", "en", "flair", "hunflair", "token-classification", "sequence-tagger-model" ]
token-classification
false
regel-corpus
null
regel-corpus/hunflair-enhancer
3
null
flair
22,101
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "Isolate an enhancer element located between -89 and -50 bp in PAI-1" --- ## HunFlair model for ENHANCER [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for enhancer entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Enhancer | DNA enhancer region | --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-promoter") text = "An upstream activator of the mitogen-activated protein (MAP) kinase pathways was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [18,19,20,21,22,23,24,25,26,27,28,29,30]: "enhancer element located between - 89 and - 50 bp in PAI-1 promoter" [− Labels: Enhancer (0.992)] ``` So, the entity "*enhancer element located between - 89 and - 50 bp in PAI-1*" (labeled as a **enhancer**) is found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ``` --- ### Cite Please cite the following paper when using this model. ``` @Article{regel, author = {Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Schülke, Markus and Seelow, Dominik and Leser, Ulf}, date = {2022}, journaltitle = {Under review}, title = {RegEl corpus: Identifying DNA regulatory elements in the scientific literature}, volume = {-}, groups = {-}, publisher = {-}, } ```
regel-corpus/hunflair-tfbs
83732799ccaac7f70d66c6c1edd529dccf5c2dbb
2022-04-05T08:55:06.000Z
[ "pytorch", "en", "flair", "hunflair", "token-classification", "sequence-tagger-model" ]
token-classification
false
regel-corpus
null
regel-corpus/hunflair-tfbs
3
null
flair
22,102
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "It contains a functional GCGGCGGCG Egr-1-binding site" --- ## HunFlair model for Transcription Factor Binding Site (TFBS) [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for TFBS entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Tfbs | DNA region bound by transcription factor | --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-tfbs") text = "We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [19,20,21]: "GCGGCGGCG Egr-1-binding site" [− Labels: Tfbs (0.9631)] ``` So, the entity "*GCGGCGGCG Egr-1-binding site*" is found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ``` --- ### Cite Please cite the following paper when using this model. ``` @Article{regel, author = {Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Schülke, Markus and Seelow, Dominik and Leser, Ulf}, date = {2022}, journaltitle = {Under review}, title = {RegEl corpus: Identifying DNA regulatory elements in the scientific literature}, volume = {-}, groups = {-}, publisher = {-}, } ```
mengzhouxia/dummy
a5e938854419c8f764ffe1b9f3772d94e1352712
2022-03-29T20:00:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mengzhouxia
null
mengzhouxia/dummy
3
null
transformers
22,103
Entry not found
CenIA/distillbert-base-spanish-uncased-finetuned-qa-tar
d85d6bc45bc79f345be4ce1c058daaf027696c83
2022-03-30T02:28:28.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-qa-tar
3
null
transformers
22,104
Entry not found
IIC/beto-base-cased-bioasq
828e8d13940b59ef8a42188776294f2821ae57a3
2022-04-02T15:04:24.000Z
[ "pytorch", "bert", "question-answering", "es", "dataset:IIC/bioasq22_es", "arxiv:2107.07253", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
IIC
null
IIC/beto-base-cased-bioasq
3
null
transformers
22,105
--- language: - es tags: - question-answering # Example: audio datasets: - IIC/bioasq22_es metrics: - f1 # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: beto-base-cased-bioasq results: - task: type: question-answering # Required. Example: automatic-speech-recognition name: question-answering # Optional. Example: Speech Recognition dataset: type: SQAC # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: IIC/bioasq22_es # Required. Example: Common Voice zh-CN metrics: - type: f1 value: name: f1 --- This model was trained on the [bioasq22_es](https://huggingface.co/datasets/IIC/bioasq22_es) dataset, provided by [IIC](https://www.iic.uam.es/). It is an automatically translated version of the [bioasq](https://huggingface.co/datasets/kroshan/BioASQ) dataset. As for the model, it is a fine-tuned version of [BETO](https://github.com/dccuchile/beto), a spanish BERT developed by the Catholic University of Chile. For training the model, we followed the recommendations given in [this paper](https://arxiv.org/abs/2107.07253). You can use the model like this: ```python from transformers import RobertaTokenizer, RobertaForQuestionAnswering import torch tokenizer = RobertaTokenizer.from_pretrained("IIC/beto-base-cased-bioasq") model = RobertaForQuestionAnswering.from_pretrained("IIC/beto-base-cased-bioasq") question, text = "Quién es el padre de Luke Skywalker?", "En la famosa película, Darth Veider le dice a Luke Skywalker aquella frase que todos recordamos: yo soy tu padre." inputs = tokenizer(question, text, return_tensors="pt") start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ``` ### Contributions Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model.
abdusahmbzuai/aradia-ctc-v2
f9554d16910a523706a36f8a49b890f7f8906561
2022-03-31T00:08:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
abdusahmbzuai
null
abdusahmbzuai/aradia-ctc-v2
3
null
transformers
22,106
Entry not found
sanchit-gandhi/output_dir
9b6bd964a041b126b754806cbf1ff99dca8bf16b
2022-04-04T14:13:05.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/output_dir
3
null
transformers
22,107
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: output_dir results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_dir This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 4.5391 - Wer: 1.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.3595795069097574e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8561 | 2.24 | 500 | 4.7094 | 1.0737 | | 4.3008 | 4.48 | 1000 | 4.5391 | 1.6766 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
Sakonii/distilgpt2-nepali
c9248aaff7db4e8287bbad9609a0c27dd96e67f0
2022-04-03T16:26:47.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:1911.02116", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Sakonii
null
Sakonii/distilgpt2-nepali
3
null
transformers
22,108
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-nepali results: [] widget: - text: "नेपाल र भारतबीच" example_title: "Example 1" - text: "प्रधानमन्त्री" example_title: "Example 2" - text: "दस वर्ष लामो " example_title: "Example 3" - text: "जापानमा आज " example_title: "Example 4" - text: "नेपालका धेरैजसो चाडपर्वहरूमध्ये," example_title: "Example 5" --- # distilgpt2-nepali This model is pre-trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset consisting of over 13 million Nepali text sequences using a Causal language modeling (CLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to [XLM-ROBERTa](https://arxiv.org/abs/1911.02116) and trains [distilgpt2](https://huggingface.co/distilgpt2) for language modeling. It achieves the following results on the evaluation set: | Training Loss | Validation Loss | Perplexity |:-------------:|:---------------:|:----------:| | 3.3968 | 3.2705 | 26.3245 ## Model description Refer to original [distilgpt2](https://huggingface.co/distilgpt2) ## Intended uses & limitations This raw model can be used for Nepali text generation and intends to be fine-tuned on Nepali language focused downstream task. The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences. ## Usage This model can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> set_seed(42) >>> generator = pipeline('text-generation', model='Sakonii/distilgpt2-nepali') >>> generator("नेपालका धेरैजसो चाडपर्वहरूमध्ये,", max_length=30, num_return_sequences=5) Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. [{'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, तिहार र छठपर्व विशेष रूपमा मनाइने भएकाले नेपाली मौलिक पर्व पनि हो । हिन्दू धर्म र संस्कृतिक... काठमाडौं ।'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, तिहारको मुख्य दिन आज साँझ अस्ताउँदो सूर्यलाई अर्घ्य दिइएको छ । वैदिक विधि...विस्तृतमा पढ्नुस् काठमाडौं । नेपाल चिकित्सक संघका'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, चाडपर्व, विवाह,... नेपाली काँग्रेसका प्रवक्ता विश्वप्रकाश शर्माले पार्टीभित्र आन्तरिक झगडा हुने निश्चित भएको र गुटबन्दीका कारण चुनावमा हार बेहोर्नु'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, दशैं नेपालीहरूको मौलिक पर्वका रूपमा मनाउँछन् । नेपालीहरूको दोस्रो महान् पर्व तिहार हो । तिहारले दाजुभाइ तथा दिदीबहिनीहरूको बीचमा प्रगाढ सम्बन्ध स्थापित'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, माघे संक्रान्ति र माघे संक्रान्तिमा माघे संक्रान्तिमा मात्र नभएर फागुन महिनाभर नै विशेष महत्व रहने गरेको छ । काठमाडौं ।'}] ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('Sakonii/distilgpt2-nepali') model = AutoModelForCausalLM.from_pretrained('Sakonii/distilgpt2-nepali') # prepare input text = "चाहिएको text यता राख्नु होला।" encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ## Training data This model is trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) language modeling dataset which combines the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia. As for training the language model, the texts are tokenized using Sentence Piece Model (SPM), a vocabulary size of 24,576 and texts are are grouped to a block of 512 tokens. ## Training procedure The model is trained with the same configuration as the original [distilgpt2](https://huggingface.co/distilgpt2); but with 512 tokens per instance, 12 instances per batch, and around 188.8K training steps. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Perplexity | |:-------------:|:-----:|:------:|:---------------:|:----------:| | 3.7645 | 1.0 | 94395 | 3.6291 | 37.6789 | | 3.5857 | 2.0 | 188790 | 3.4442 | 31.3182 | | 3.505 | 3.0 | 283185 | 3.3749 | 29.2214 | | 3.4688 | 4.0 | 377580 | 3.3439 | 28.3294 | | 3.3968 | 5.0 | 471975 | 3.2705 | 26.3245 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.11.6
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5
fb552f5820e882858b68e3a2c9f3773ff2c63ef3
2022-03-31T02:22:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-5
3
null
transformers
22,109
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-mnli-rte-wnli-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mnli-rte-wnli-5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4400 - Accuracy: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2253 | 1.0 | 16558 | 0.2346 | 0.9139 | | 0.1667 | 2.0 | 33116 | 0.2973 | 0.9143 | | 0.1207 | 3.0 | 49674 | 0.3361 | 0.9203 | | 0.0553 | 4.0 | 66232 | 0.4400 | 0.9209 | | 0.033 | 5.0 | 82790 | 0.5175 | 0.9203 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.0.0 - Tokenizers 0.11.6
yinde/fatimah_fake_news_bert
cf1bb4a98948f6750f189d30ff652256b1c9af96
2022-03-30T22:41:12.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
yinde
null
yinde/fatimah_fake_news_bert
3
1
transformers
22,110
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: fatimah_fake_news_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fatimah_fake_news_bert This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on [Fake and real dataset on kaggle ]([distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)) It achieves the following results on the evaluation set: - Loss: 0.0010 - Accuracy: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3298 | 0.06 | 200 | 0.0094 | 0.9987 | | 0.0087 | 0.11 | 400 | 0.0091 | 0.9988 | | 0.0126 | 0.17 | 600 | 0.0132 | 0.9965 | | 0.0081 | 0.22 | 800 | 0.0100 | 0.9987 | | 0.0132 | 0.28 | 1000 | 0.0086 | 0.9990 | | 0.0131 | 0.33 | 1200 | 0.0070 | 0.9986 | | 0.0086 | 0.39 | 1400 | 0.0079 | 0.9990 | | 0.0041 | 0.45 | 1600 | 0.0057 | 0.9991 | | 0.0069 | 0.5 | 1800 | 0.0083 | 0.9989 | | 0.0052 | 0.56 | 2000 | 0.0043 | 0.9993 | | 0.0 | 0.61 | 2200 | 0.0047 | 0.9993 | | 0.003 | 0.67 | 2400 | 0.0052 | 0.9994 | | 0.0126 | 0.72 | 2600 | 0.0028 | 0.9997 | | 0.0047 | 0.78 | 2800 | 0.0018 | 0.9996 | | 0.0 | 0.84 | 3000 | 0.0027 | 0.9996 | | 0.0001 | 0.89 | 3200 | 0.0029 | 0.9996 | | 0.0079 | 0.95 | 3400 | 0.0010 | 0.9998 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
GleamEyeBeast/ascend_with_english
6b19a552e7d6ea6a3b7848993be5af8eab682efd
2022-03-30T23:35:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/ascend_with_english
3
null
transformers
22,111
--- tags: - generated_from_trainer datasets: - timit_asr model-index: - name: ascend_with_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ascend_with_english This model is a fine-tuned version of [GleamEyeBeast/ascend](https://huggingface.co/GleamEyeBeast/ascend) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.3049 - Wer: 0.2251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.3524 | 0.3016 | | 0.4246 | 2.0 | 578 | 0.3132 | 0.2607 | | 0.4246 | 3.0 | 867 | 0.3044 | 0.2373 | | 0.2008 | 4.0 | 1156 | 0.3075 | 0.2302 | | 0.2008 | 5.0 | 1445 | 0.3049 | 0.2251 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DioLiu/distilroberta-base-test1
6015ff16f9063e9e46d4d7461424e047f8eddc4a
2022-04-05T12:33:35.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/distilroberta-base-test1
3
null
transformers
22,112
Entry not found
yaswanth/distilbert-base-uncased_fakenews_identification
2e1209d7c6797c68cfb2f62c9078e959145ae13d
2022-04-02T13:18:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
yaswanth
null
yaswanth/distilbert-base-uncased_fakenews_identification
3
null
transformers
22,113
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased_fakenews_identification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fakenews_identification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the below dataset. https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset It achieves the following results on the evaluation set: - Loss: 0.0059 - Accuracy: 0.999 - F1: 0.9990 ## Label Description LABEL_0 - Fake News LABEL_1 - Real News ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0014 | 1.0 | 1000 | 0.0208 | 0.9965 | 0.9965 | | 0.0006 | 2.0 | 2000 | 0.0041 | 0.9994 | 0.9994 | | 0.0006 | 3.0 | 3000 | 0.0044 | 0.9992 | 0.9993 | | 0.0 | 4.0 | 4000 | 0.0059 | 0.999 | 0.9990 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
AnonymousSub/news_fpdm_models_bert
2a2811431da85047bb02d155e9813dd4aa3a7be0
2022-03-31T08:34:08.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/news_fpdm_models_bert
3
null
transformers
22,114
Entry not found
raquiba/distilbert-base-uncased-finetuned-cola
09b78c47fa7f5c994576ef8f31d503fbb7228ecc
2022-04-15T13:34:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
raquiba
null
raquiba/distilbert-base-uncased-finetuned-cola
3
null
transformers
22,115
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5285049056800905 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6015 - Matthews Correlation: 0.5285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5266 | 1.0 | 535 | 0.5474 | 0.4015 | | 0.3561 | 2.0 | 1070 | 0.4830 | 0.5214 | | 0.2416 | 3.0 | 1605 | 0.6015 | 0.5285 | | 0.1695 | 4.0 | 2140 | 0.7748 | 0.5162 | | 0.1302 | 5.0 | 2675 | 0.8369 | 0.5268 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
joniponi/multilabel_inpatient_comments_30labels
351bc8bd73225affdd79545026502cf6e5a58f08
2022-03-31T19:44:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/multilabel_inpatient_comments_30labels
3
null
transformers
22,116
Entry not found
redwoodresearch/injuriousness-classifier-29apr-baseline
9ebf70f36e1e53c3d9c321224ab60cc833aa6993
2022-03-31T17:24:11.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
redwoodresearch
null
redwoodresearch/injuriousness-classifier-29apr-baseline
3
null
transformers
22,117
Entry not found
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-3
ccda4b4171514a74b9b5d5c8a44754da03c770df
2022-03-31T21:07:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-rte-wnli-3
3
null
transformers
22,118
Entry not found
redwoodresearch/injuriousness-classifier-29apr-tool-assisted
a90f67582f533e8947aae55c2f2c7e2a1168fd42
2022-03-31T18:37:24.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
redwoodresearch
null
redwoodresearch/injuriousness-classifier-29apr-tool-assisted
3
null
transformers
22,119
Entry not found
osanseviero/test_model_bertmesh
b0d71f7607cfb63d379442b47a791b656d0b67a9
2022-03-31T20:35:05.000Z
[ "pytorch", "bert", "transformers", "license:apache-2.0" ]
null
false
osanseviero
null
osanseviero/test_model_bertmesh
3
null
transformers
22,120
--- license: apache-2.0 --- # WellcomeBertMesh WellcomeBertMesh is build from the data science team at the WellcomeTrust to tag biomedical grants with Medical Subject Headings ([Mesh](https://www.nlm.nih.gov/mesh/meshhome.html)). Even though developed with the intention to be used towards research grants, it should be applicable to any type of biomedical text close to the domain it was trained which is abstracts from biomedical publications. # Model description The model is inspired from [BertMesh](https://pubmed.ncbi.nlm.nih.gov/32976559/) which is trained on the full text of biomedical publications and uses BioBert as its pretrained model. WellcomeBertMesh is utilising the latest state of the art model in the biomedical domain which is [PubMedBert](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) from Microsoft and attach a Multilabel attention head which essentially allows the model to pay attention to different tokens per label to decide whether it applies. We train the model using data from the [BioASQ](http://bioasq.org) competition which consists of abstracts from PubMed publications. We use 2016-2019 data for training and 2020-2021 for testing which gives us ~2.5M publications to train and 220K to test. This is out of a total of 14M publications. It takes 4 days to train WellcomeBertMesh on 8 Nvidia P100 GPUs. The model achieves 63% micro f1 with a 0.5 threshold for all labels. The code for developing the model is open source and can be found in https://github.com/wellcometrust/grants_tagger # How to use ⚠️ You need transformers 4.17+ for the example to work due to its recent support for custom models. You can use the model straight from the hub but because it contains a custom forward function due to the multilabel attention head you have to pass `trust_remote_code=True`. You can get access to the probabilities for all labels by omitting `return_labels=True`. ``` from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Wellcome/WellcomeBertMesh" ) model = AutoModel.from_pretrained( "Wellcome/WellcomeBertMesh", trust_remote_code=True ) text = "This grant is about malaria and not about HIV." inputs = tokenizer([text], padding="max_length") labels = model(**inputs, return_labels=True) print(labels) ``` You can inspect the model code if you navigate to the files and see `model.py`.
benwoodyear/byt5-small-cryptic-crosswords
1f4fd2dea7f699fe7d0a821e862ef9a34af630ef
2022-03-31T22:07:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
benwoodyear
null
benwoodyear/byt5-small-cryptic-crosswords
3
null
transformers
22,121
Entry not found
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_low_pass
21b1eb11c63cb33f1f9cfa3a4b931d84eae22697
2022-04-01T11:40:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_low_pass
3
null
transformers
22,122
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_random_low_pass results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_random_low_pass This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6572 - Wer: 0.4973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0834 | 2.1 | 500 | 3.4478 | 1.0 | | 1.0735 | 4.2 | 1000 | 0.9113 | 0.7815 | | 0.5516 | 6.3 | 1500 | 0.7035 | 0.6081 | | 0.4023 | 8.4 | 2000 | 0.6647 | 0.5649 | | 0.3423 | 10.5 | 2500 | 0.6613 | 0.5450 | | 0.2938 | 12.6 | 3000 | 0.6967 | 0.5318 | | 0.2902 | 14.7 | 3500 | 0.6430 | 0.5089 | | 0.2372 | 16.81 | 4000 | 0.6653 | 0.5045 | | 0.2148 | 18.91 | 4500 | 0.6572 | 0.4973 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.0
joniponi/multilabel_inpatient_comments_10labels
6ef754ce10a1e15c2e888acc2f4cc9268528e764
2022-04-01T07:23:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/multilabel_inpatient_comments_10labels
3
null
transformers
22,123
Entry not found
Timur1984/sbert_large_nlu_ru-finetuned-squad-full
5df2ff5257ad989378a849ce2c888ae56544ecd6
2022-04-07T11:43:31.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Timur1984
null
Timur1984/sbert_large_nlu_ru-finetuned-squad-full
3
null
transformers
22,124
--- tags: - generated_from_trainer model-index: - name: sbert_large_nlu_ru-finetuned-squad-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sbert_large_nlu_ru-finetuned-squad-full This model is a fine-tuned version of [ruselkomp/sbert_large_nlu_ru-finetuned-squad-full](https://huggingface.co/ruselkomp/sbert_large_nlu_ru-finetuned-squad-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 17 | 0.5747 | | No log | 2.0 | 34 | 0.6119 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
AvengingPrime/Argument_Generation_GPT-2_model
c415a8501a393b2d39e079e01f04496786909c9c
2022-04-01T13:56:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AvengingPrime
null
AvengingPrime/Argument_Generation_GPT-2_model
3
null
transformers
22,125
Entry not found
CenIA/bert-base-spanish-wwm-uncased-finetuned-qa-tar
963f3aa9f573b2b9c5bec3f523db69e889ef91cd
2022-04-01T19:53:30.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-qa-tar
3
null
transformers
22,126
Entry not found
vicl/canine-c-finetuned-cola
420ef687b35aaf46bc335209d21d10f15ca9ccba
2022-04-01T17:38:35.000Z
[ "pytorch", "tensorboard", "canine", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vicl
null
vicl/canine-c-finetuned-cola
3
null
transformers
22,127
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: canine-c-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0990441507705203 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-c-finetuned-cola This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6246 - Matthews Correlation: 0.0990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6142 | 1.0 | 535 | 0.6268 | 0.0 | | 0.607 | 2.0 | 1070 | 0.6234 | 0.0 | | 0.6104 | 3.0 | 1605 | 0.6226 | 0.0 | | 0.5725 | 4.0 | 2140 | 0.6246 | 0.0990 | | 0.5426 | 5.0 | 2675 | 0.6866 | 0.0495 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
birgermoell/psst-libri960_big
49bf1ae1bd12b98521f4b647d22b01c3ecfd2d57
2022-04-01T20:17:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-libri960_big
3
null
transformers
22,128
pssteval INFO: ASR metrics for split `valid` FER: 9.8% PER: 20.9%
youssefadarrab/TP_NLP_SNLI_Adarrab_Baziz_Malige
75ba6c012559001d241904d8d9ddebc508ebc82c
2022-04-02T00:40:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
youssefadarrab
null
youssefadarrab/TP_NLP_SNLI_Adarrab_Baziz_Malige
3
null
transformers
22,129
# CentraleSupelec - Natural language processing # Practical session n°7 ## Natural Language Inferencing (NLI): (NLI) is a classical NLP (Natural Language Processing) problem that involves taking two sentences (the premise and the hypothesis ), and deciding how they are related (if the premise *entails* the hypothesis, *contradicts* it, or *neither*). Ex: | Premise | Label | Hypothesis | | --- | --- | --- | | A man inspects the uniform of a figure in some East Asian country. | contradiction | The man is sleeping. | | An older and younger man smiling. | neutral | Two men are smiling and laughing at the cats playing on the floor. | | A soccer game with multiple males playing. | entailment | Some men are playing a sport. | ### Stanford NLI (SNLI) corpus In this labwork, I propose to use the Stanford NLI (SNLI) corpus ( https://nlp.stanford.edu/projects/snli/ ), available in the *Datasets* library by Huggingface. from datasets import load_dataset snli = load_dataset("snli") #Removing sentence pairs with no label (-1) snli = snli.filter(lambda example: example['label'] != -1) ## Quick summary of the model This is the model from : Youssef Adarrab, Othmane Baziz and Alain Malige - Fist we import the corpus and do some visualization - Second we apply DistilBert for sequence classification - We illustrate through our work the code used for training, to obtain better results, one should run the training on more epochs
AnonymousSub/fpdm_triplet_roberta_FT_newsqa
a0de70c0100fcad6d2bdde65d74a9ffeb05a14e7
2022-04-01T21:51:02.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_triplet_roberta_FT_newsqa
3
null
transformers
22,130
Entry not found
AnonymousSub/fpdm_hier_roberta_FT_newsqa
0efbe24cb398a47499e4273209da732a6d0a76d1
2022-04-01T21:54:57.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_hier_roberta_FT_newsqa
3
null
transformers
22,131
Entry not found
AnonymousSub/fpdm_roberta_FT_newsqa
b22a470f10d39a453b2c26d309948f0dc749aab3
2022-04-01T21:58:27.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_roberta_FT_newsqa
3
null
transformers
22,132
Entry not found
BigSalmon/Points4
5065b407917739aa91ead3a6cf13be37425b65a4
2022-04-02T03:04:08.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/Points4
3
null
transformers
22,133
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points4") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points4") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - middle schools do not have recess - should get back to doing it - amazing for communication - and getting kids to move around text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity. *** - ``` It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27 Keywords to sentences or sentence.
DMetaSoul/sbert-chinese-qmc-finance-v1-distill
7db2d26cdc795edeef0e56f152fc00743165f85b
2022-04-02T10:07:58.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-qmc-finance-v1-distill
3
null
sentence-transformers
22,134
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-qmc-finance-v1-distill 此模型是之前[开源金融问题匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-finance-v1)的蒸馏轻量化版本(仅4层 BERT),适用于**金融领域的问题匹配**场景,比如: - 8千日利息400元? VS 10000元日利息多少钱 - 提前还款是按全额计息 VS 还款扣款不成功怎么还款? - 为什么我借钱交易失败 VS 刚申请的借款为什么会失败 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 5% 左右(具体结果详见下文评估小节)。 # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1-distill') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 这里主要跟蒸馏前对应的 teacher 模型作了对比: *性能:* | | Teacher | Student | Gap | | ---------- | --------------------- | ------------------- | ----- | | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | | Cost | 23s | 12s | -47% | | Latency | 38ms | 20ms | -47% | | Throughput | 418 sentence/s | 791 sentence/s | 1.9x | *精度:* | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | | **Teacher** | 77.40% | 74.55% | 36.00% | 75.75% | 73.24% | 11.58% | 54.75% | 57.61% | | **Student** | 75.02% | 71.99% | 32.40% | 67.06% | 66.35% | 7.57% | 49.26% | 52.80% | | **Gap** (abs.) | - | - | - | - | - | - | - | -4.81% | *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* ## Citing & Authors E-mail: [email protected]
itaihay/wav2vec_asr_swbd_10_epochs
93a7d678966cd9af30dd5d12f2066feb687dc0d5
2022-04-05T19:02:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
itaihay
null
itaihay/wav2vec_asr_swbd_10_epochs
3
null
transformers
22,135
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec_asr_swbd_10_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec_asr_swbd_10_epochs This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 0.9627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 1.0682 | 0.22 | 5000 | 0.7383 | 0.4431 | | 0.9143 | 0.44 | 10000 | 0.7182 | 0.4058 | | 0.8905 | 0.66 | 15000 | 0.6291 | 0.3987 | | 0.8354 | 0.87 | 20000 | 0.5976 | 0.3954 | | 0.7749 | 1.09 | 25000 | 0.5773 | 0.3901 | | 0.7336 | 1.31 | 30000 | 0.5812 | 0.3871 | | 0.7314 | 1.53 | 35000 | 0.5802 | 0.3895 | | 0.0 | 1.75 | 40000 | nan | 0.9627 | | 0.0 | 1.97 | 45000 | nan | 0.9627 | | 0.0 | 2.19 | 50000 | nan | 0.9627 | | 0.0 | 2.4 | 55000 | nan | 0.9627 | | 0.0 | 2.62 | 60000 | nan | 0.9627 | | 0.0 | 2.84 | 65000 | nan | 0.9627 | | 0.0 | 3.06 | 70000 | nan | 0.9627 | | 0.0 | 3.28 | 75000 | nan | 0.9627 | | 0.0 | 3.5 | 80000 | nan | 0.9627 | | 0.0 | 3.72 | 85000 | nan | 0.9627 | | 0.0 | 3.93 | 90000 | nan | 0.9627 | | 0.0 | 4.15 | 95000 | nan | 0.9627 | | 0.0 | 4.37 | 100000 | nan | 0.9627 | | 0.0 | 4.59 | 105000 | nan | 0.9627 | | 0.0 | 4.81 | 110000 | nan | 0.9627 | | 0.0 | 5.03 | 115000 | nan | 0.9627 | | 0.0 | 5.25 | 120000 | nan | 0.9627 | | 0.0 | 5.46 | 125000 | nan | 0.9627 | | 0.0 | 5.68 | 130000 | nan | 0.9627 | | 0.0 | 5.9 | 135000 | nan | 0.9627 | | 0.0 | 6.12 | 140000 | nan | 0.9627 | | 0.0 | 6.34 | 145000 | nan | 0.9627 | | 0.0 | 6.56 | 150000 | nan | 0.9627 | | 0.0 | 6.78 | 155000 | nan | 0.9627 | | 0.0 | 7.0 | 160000 | nan | 0.9627 | | 0.0 | 7.21 | 165000 | nan | 0.9627 | | 0.0 | 7.43 | 170000 | nan | 0.9627 | | 0.0 | 7.65 | 175000 | nan | 0.9627 | | 0.0 | 7.87 | 180000 | nan | 0.9627 | | 0.0 | 8.09 | 185000 | nan | 0.9627 | | 0.0 | 8.31 | 190000 | nan | 0.9627 | | 0.0 | 8.53 | 195000 | nan | 0.9627 | | 0.0 | 8.74 | 200000 | nan | 0.9627 | | 0.0 | 8.96 | 205000 | nan | 0.9627 | | 0.0 | 9.18 | 210000 | nan | 0.9627 | | 0.0 | 9.4 | 215000 | nan | 0.9627 | | 0.0 | 9.62 | 220000 | nan | 0.9627 | | 0.0 | 9.84 | 225000 | nan | 0.9627 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
mainuliitkgp/ROBERTa_fake_news_classification
32b250db35ee7a3cee6368a15d12d1ea73bb5bbb
2022-04-02T18:33:14.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
mainuliitkgp
null
mainuliitkgp/ROBERTa_fake_news_classification
3
null
transformers
22,136
Entry not found
vocab-transformers/distilbert-mlm-1000k
8981c8d20ccc34a7886fd2b5a0ad784cda9425ae
2022-04-02T21:16:58.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-mlm-1000k
3
null
transformers
22,137
distilbert-base-uncased trained for 1000K steps with batch size 64 on C4, MSMARCO, Wikipedia, S2ORC, News
vicl/distilbert-base-uncased-finetuned-stsb
ae4a58008cb0d7be2d600695670e59cff92d2891
2022-04-02T22:24:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vicl
null
vicl/distilbert-base-uncased-finetuned-stsb
3
null
transformers
22,138
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert-base-uncased-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8636303639161342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-stsb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5644 - Pearson: 0.8666 - Spearmanr: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.6366 | 0.8537 | 0.8516 | | 1.0464 | 2.0 | 720 | 0.6171 | 0.8632 | 0.8626 | | 0.4002 | 3.0 | 1080 | 0.6082 | 0.8663 | 0.8643 | | 0.4002 | 4.0 | 1440 | 0.5644 | 0.8666 | 0.8636 | | 0.2479 | 5.0 | 1800 | 0.5780 | 0.8654 | 0.8624 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
vicl/canine-s-finetuned-cola
e3d65069ca29ae4c5cbf72b8a95fdf8696370330
2022-04-02T23:01:51.000Z
[ "pytorch", "tensorboard", "canine", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vicl
null
vicl/canine-s-finetuned-cola
3
null
transformers
22,139
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: canine-s-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.059386434587477076 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-s-finetuned-cola This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6653 - Matthews Correlation: 0.0594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6132 | 1.0 | 535 | 0.6289 | 0.0 | | 0.6062 | 2.0 | 1070 | 0.6179 | 0.0 | | 0.6122 | 3.0 | 1605 | 0.6160 | 0.0 | | 0.5939 | 4.0 | 2140 | 0.6159 | 0.0 | | 0.5721 | 5.0 | 2675 | 0.6653 | 0.0594 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/clortown-elonmusk-stephencurry30
e25f9e18ecdef4e7921d3afe34dc1c15dc676d76
2022-04-02T23:03:14.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/clortown-elonmusk-stephencurry30
3
null
transformers
22,140
--- language: en thumbnail: http://www.huggingtweets.com/clortown-elonmusk-stephencurry30/1648940589601/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488574779351187458/RlIQNUFG_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484233608793518081/tOID8aXq_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & yeosang elf agenda & Stephen Curry</div> <div style="text-align: center; font-size: 14px;">@clortown-elonmusk-stephencurry30</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & yeosang elf agenda & Stephen Curry. | Data | Elon Musk | yeosang elf agenda | Stephen Curry | | --- | --- | --- | --- | | Tweets downloaded | 221 | 3143 | 3190 | | Retweets | 7 | 541 | 384 | | Short tweets | 62 | 463 | 698 | | Tweets kept | 152 | 2139 | 2108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sqcbnn5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clortown-elonmusk-stephencurry30's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mq1ftjh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mq1ftjh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clortown-elonmusk-stephencurry30') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jorge-henao/gpt2-small-spanish-disco-poetry-wt
f096b2a55c3f3ff8804ef038df65ea15d042db2e
2022-04-03T00:04:31.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
jorge-henao
null
jorge-henao/gpt2-small-spanish-disco-poetry-wt
3
null
transformers
22,141
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-small-spanish-disco-poetry-wt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-disco-poetry-wt This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
munozariasjm/writter_bert_hep
a5185f86e54c5d5898f6f898e7b585e5d1ed8ebc
2022-06-16T00:56:21.000Z
[ "pytorch", "onnx", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
munozariasjm
null
munozariasjm/writter_bert_hep
3
null
transformers
22,142
Entry not found
reichenbach/fake-news-detector
3dc79ce22619257ccbc4fdf4833f468bcfaff778
2022-04-03T12:02:48.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
reichenbach
null
reichenbach/fake-news-detector
3
null
transformers
22,143
Entry not found
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_noise
8c3c9dd735edd737404b7d210d38af2446fba918
2022-04-03T16:23:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_noise
3
null
transformers
22,144
Entry not found
alina1997/de_en_translation
88f39ce5c18a8f6fa2a807a1ae418333ef93d534
2022-05-10T19:43:28.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alina1997
null
alina1997/de_en_translation
3
null
transformers
22,145
Zarkit/Gpt2ESP-finetuned-p
957543d4107a7d6d84cee894029b824dd14da6a7
2022-04-04T15:44:29.000Z
[ "pytorch", "tensorboard", "gpt2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Zarkit
null
Zarkit/Gpt2ESP-finetuned-p
3
null
transformers
22,146
Entry not found
tartuNLP/m2m100_418M_smugri
2d844b861f6f87161b4e4d1fbb0dde3ad1064142
2022-04-12T06:38:16.000Z
[ "pytorch", "m2m_100", "text2text-generation", "en", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
tartuNLP
null
tartuNLP/m2m100_418M_smugri
3
null
transformers
22,147
--- license: mit language: - en widget: - text: "Let us translate some text from Livonian to Võro!" --- # NMT for Finno-Ugric Languages This is an NMT system for translating between Võro, Livonian, North Sami, South Sami as well as Estonian, Finnish, Latvian and English. It was created by fine-tuning Facebook's m2m100-418M on the liv4ever and smugri datasets. ## Tokenizer Four language codes were added to the tokenizer: __liv__, __vro__, __sma__ and __sme__. Currently the m2m100 tokenizer loads the list of languages from a hard-coded list, so it has to be updated after loading; see the code example below. ## Usage example Install the transformers and sentencepiece libraries: `pip install sentencepiece transformers` ```from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("tartuNLP/m2m100_418M_smugri") #Fix the language codes in the tokenizer tokenizer.id_to_lang_token = dict(list(tokenizer.id_to_lang_token.items()) + list(tokenizer.added_tokens_decoder.items())) tokenizer.lang_token_to_id = dict(list(tokenizer.lang_token_to_id.items()) + list(tokenizer.added_tokens_encoder.items())) tokenizer.lang_code_to_token = { k.replace("_", ""): k for k in tokenizer.additional_special_tokens } tokenizer.lang_code_to_id = { k.replace("_", ""): v for k, v in tokenizer.lang_token_to_id.items() } model = AutoModelForSeq2SeqLM.from_pretrained("tartuNLP/m2m100_418M_smugri") tokenizer.src_lang = 'liv' encoded_src = tokenizer("Līvõ kēļ jelāb!", return_tensors="pt") encoded_out = model.generate(**encoded_src, forced_bos_token_id = tokenizer.get_lang_id("sme")) print(tokenizer.batch_decode(encoded_out, skip_special_tokens=True)) ``` The output is `Livčča giella eallá.`
Yaxin/ernie_2.0_skep_large_en
89872abfa3d1b390c5cf87911b6e04c1ccb51fa9
2022-04-04T14:23:29.000Z
[ "pytorch", "bert", "en", "transformers" ]
null
false
Yaxin
null
Yaxin/ernie_2.0_skep_large_en
3
null
transformers
22,148
--- language: en --- # SKEP- ## Introduction SKEP (SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis) is proposed by Baidu in 2020, SKEP propose Sentiment Knowledge Enhanced Pre-training for sentiment analysis. Sentiment masking and three sentiment pre-training objectives are designed to incorporate various types of knowledge for pre-training model. More detail: https://aclanthology.org/2020.acl-main.374.pdf ## ⚠️ attention Compared with the full version of the ernie_2.0_skep_large_en, we lost the task_embeddings part in order to adapt to the Bert framework. ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |skep-ernie2-bert-large| English |Layer:24, Hidden:1024, Heads:24| This released pytorch model is converted from the officially released PaddlePaddle SKEP model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle SKEP repo: 1. https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/skep 2. https://github.com/baidu/Senta - Pytorch Conversion repo: Not released yet ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Yaxin/ernie_2.0_skep_large_en") model = AutoModel.from_pretrained("Yaxin/ernie_2.0_skep_large_en") ``` ## Citation ```bibtex @article{tian2020skep, title={SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis}, author={Tian, Hao and Gao, Can and Xiao, Xinyan and Liu, Hao and He, Bolei and Wu, Hua and Wang, Haifeng and Wu, Feng}, journal={arXiv preprint arXiv:2005.05635}, year={2020} } ``` ``` reference: https://github.com/nghuyong/ERNIE-Pytorch ```
Sevil/t5-small-finetuned-wikihow_3epoch_v2
b8ad302cba9cece89eccfa4fdf85519f1d748184
2022-04-04T20:03:46.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Sevil
null
Sevil/t5-small-finetuned-wikihow_3epoch_v2
3
null
transformers
22,149
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-wikihow_3epoch_v2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.48 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikihow_3epoch_v2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.2758 - Rouge1: 27.48 - Rouge2: 10.7621 - Rougel: 23.4136 - Rougelsum: 26.7923 - Gen Len: 18.5424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.8423 | 0.13 | 5000 | 2.5715 | 25.2685 | 8.6964 | 21.229 | 24.5773 | 18.4479 | | 2.7345 | 0.25 | 10000 | 2.5236 | 24.982 | 8.7823 | 21.1609 | 24.3066 | 18.3631 | | 2.6811 | 0.38 | 15000 | 2.4911 | 25.7585 | 9.3372 | 21.8388 | 25.1052 | 18.3997 | | 2.6611 | 0.51 | 20000 | 2.4510 | 26.022 | 9.4708 | 22.0899 | 25.3236 | 18.5472 | | 2.6133 | 0.64 | 25000 | 2.4272 | 26.3481 | 9.6769 | 22.4484 | 25.7046 | 18.3863 | | 2.6083 | 0.76 | 30000 | 2.4108 | 26.4131 | 9.6643 | 22.4021 | 25.6958 | 18.5585 | | 2.5842 | 0.89 | 35000 | 2.3866 | 26.2852 | 9.7505 | 22.4525 | 25.5908 | 18.5485 | | 2.5554 | 1.02 | 40000 | 2.3816 | 26.3018 | 9.7218 | 22.3673 | 25.6515 | 18.4912 | | 2.4895 | 1.14 | 45000 | 2.3730 | 26.6439 | 9.9665 | 22.6593 | 25.9521 | 18.5635 | | 2.4781 | 1.27 | 50000 | 2.3541 | 26.8488 | 10.0364 | 22.8202 | 26.1598 | 18.4254 | | 2.4821 | 1.4 | 55000 | 2.3440 | 26.9511 | 10.2079 | 23.0133 | 26.2821 | 18.5712 | | 2.4593 | 1.53 | 60000 | 2.3370 | 26.945 | 10.3123 | 22.9245 | 26.2493 | 18.5978 | | 2.4521 | 1.65 | 65000 | 2.3309 | 26.9652 | 10.314 | 22.9657 | 26.298 | 18.4837 | | 2.4523 | 1.78 | 70000 | 2.3249 | 27.0548 | 10.4204 | 23.1286 | 26.379 | 18.4717 | | 2.4563 | 1.91 | 75000 | 2.3079 | 27.4563 | 10.6452 | 23.3985 | 26.7812 | 18.5642 | | 2.4229 | 2.03 | 80000 | 2.3115 | 27.0538 | 10.44 | 22.9957 | 26.349 | 18.5914 | | 2.3694 | 2.16 | 85000 | 2.3017 | 27.332 | 10.6556 | 23.3135 | 26.629 | 18.459 | | 2.3749 | 2.29 | 90000 | 2.2941 | 27.3294 | 10.5967 | 23.2039 | 26.6411 | 18.5179 | | 2.3779 | 2.42 | 95000 | 2.2891 | 27.3725 | 10.6539 | 23.3455 | 26.707 | 18.5367 | | 2.3638 | 2.54 | 100000 | 2.2895 | 27.3487 | 10.6738 | 23.2894 | 26.681 | 18.6128 | | 2.3549 | 2.67 | 105000 | 2.2833 | 27.408 | 10.6903 | 23.3575 | 26.7137 | 18.6035 | | 2.3652 | 2.8 | 110000 | 2.2788 | 27.561 | 10.8202 | 23.4672 | 26.8584 | 18.5565 | | 2.3553 | 2.93 | 115000 | 2.2758 | 27.48 | 10.7621 | 23.4136 | 26.7923 | 18.5424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
reichenbach/fake-news-detector-v3
8f50daf1275587a8df0f9556bea0e2e9195f9d94
2022-04-04T17:54:30.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
reichenbach
null
reichenbach/fake-news-detector-v3
3
null
transformers
22,150
Entry not found
GleamEyeBeast/ascend_with_timit
913fa7ff91f8b441b4829f615a63ad1a9f6440e1
2022-04-05T03:08:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/ascend_with_timit
3
null
transformers
22,151
--- tags: - generated_from_trainer model-index: - name: ascend_with_timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ascend_with_timit This model is a fine-tuned version of [GleamEyeBeast/ascend_with_timit](https://huggingface.co/GleamEyeBeast/ascend_with_timit) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8013 - Wer: 0.4781 - Cer: 0.1727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.4026 | 1.0 | 890 | 1.3419 | 0.9083 | 0.3670 | | 1.1926 | 2.0 | 1780 | 0.9730 | 0.6491 | 0.2585 | | 0.9104 | 3.0 | 2670 | 0.8483 | 0.5368 | 0.1963 | | 0.7718 | 4.0 | 3560 | 0.8122 | 0.4913 | 0.1791 | | 0.7013 | 5.0 | 4450 | 0.8013 | 0.4781 | 0.1727 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mgreenbe/607-demo-model
ed1f7c156345c7b5c4e4caf93ed716e6ad656be3
2022-04-04T17:35:06.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:yelp_polarity", "transformers", "tag2", "license:apache-2.0" ]
text-classification
false
mgreenbe
null
mgreenbe/607-demo-model
3
null
transformers
22,152
--- language: - en tags: - text-classification - tag2 license: apache-2.0 datasets: - yelp_polarity metrics: - accuracy --- Demo model for predicting the polarity of Yelp reviews. Trained for 1 epoch on 4096 reviews.
Sevil/t5-small-finetuned-cnndm_3epoch_v2
6473364728a19caa775f6f10426d44aba0db4436
2022-04-05T17:13:07.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Sevil
null
Sevil/t5-small-finetuned-cnndm_3epoch_v2
3
null
transformers
22,153
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm_3epoch_v2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.7696 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_3epoch_v2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6070 - Rouge1: 24.7696 - Rouge2: 11.9467 - Rougel: 20.4495 - Rougelsum: 23.3341 - Gen Len: 18.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9695 | 0.07 | 5000 | 1.7781 | 24.2253 | 11.472 | 20.0367 | 22.8469 | 18.9962 | | 1.9536 | 0.14 | 10000 | 1.7575 | 24.2983 | 11.469 | 20.0054 | 22.9144 | 18.9995 | | 1.9452 | 0.21 | 15000 | 1.7406 | 24.2068 | 11.4601 | 20.0021 | 22.8375 | 19.0 | | 1.931 | 0.28 | 20000 | 1.7302 | 24.1589 | 11.4183 | 19.9736 | 22.7804 | 18.9996 | | 1.9182 | 0.35 | 25000 | 1.7381 | 24.1634 | 11.5435 | 19.9643 | 22.7371 | 18.9999 | | 1.9072 | 0.42 | 30000 | 1.7239 | 24.4401 | 11.6323 | 20.1243 | 22.9468 | 19.0 | | 1.9027 | 0.49 | 35000 | 1.7162 | 24.1801 | 11.4788 | 20.0011 | 22.832 | 18.9996 | | 1.8962 | 0.56 | 40000 | 1.7060 | 24.4153 | 11.6275 | 20.1742 | 23.0865 | 18.9998 | | 1.8905 | 0.63 | 45000 | 1.7004 | 24.1446 | 11.5402 | 19.9986 | 22.7949 | 18.9983 | | 1.8764 | 0.7 | 50000 | 1.6876 | 24.342 | 11.5448 | 20.0993 | 22.9509 | 18.9993 | | 1.8772 | 0.77 | 55000 | 1.6879 | 24.3596 | 11.6063 | 20.1592 | 22.9966 | 19.0 | | 1.8669 | 0.84 | 60000 | 1.6776 | 24.6201 | 11.6668 | 20.2639 | 23.201 | 18.9994 | | 1.8692 | 0.91 | 65000 | 1.6838 | 24.2924 | 11.6129 | 20.1071 | 22.9112 | 18.9997 | | 1.8552 | 0.98 | 70000 | 1.6885 | 24.2878 | 11.6773 | 20.1272 | 22.8797 | 18.9992 | | 1.8205 | 1.04 | 75000 | 1.6717 | 24.5579 | 11.6421 | 20.2593 | 23.1442 | 19.0 | | 1.8074 | 1.11 | 80000 | 1.6604 | 24.495 | 11.6542 | 20.1854 | 23.1091 | 18.9996 | | 1.7951 | 1.18 | 85000 | 1.6705 | 24.4504 | 11.6601 | 20.2185 | 23.0597 | 18.9999 | | 1.7937 | 1.25 | 90000 | 1.6645 | 24.5535 | 11.6921 | 20.2087 | 23.1099 | 18.9999 | | 1.8017 | 1.32 | 95000 | 1.6647 | 24.5179 | 11.8005 | 20.2903 | 23.13 | 18.9993 | | 1.7918 | 1.39 | 100000 | 1.6568 | 24.518 | 11.7528 | 20.222 | 23.0767 | 18.9991 | | 1.7985 | 1.46 | 105000 | 1.6588 | 24.4636 | 11.636 | 20.1038 | 23.032 | 19.0 | | 1.7944 | 1.53 | 110000 | 1.6498 | 24.6611 | 11.78 | 20.3059 | 23.2404 | 18.9999 | | 1.7934 | 1.6 | 115000 | 1.6551 | 24.7267 | 11.823 | 20.3377 | 23.273 | 18.9997 | | 1.7764 | 1.67 | 120000 | 1.6467 | 24.5052 | 11.8052 | 20.2617 | 23.1228 | 18.9996 | | 1.7846 | 1.74 | 125000 | 1.6489 | 24.5423 | 11.8407 | 20.3464 | 23.1433 | 18.9999 | | 1.7799 | 1.81 | 130000 | 1.6438 | 24.4915 | 11.7827 | 20.2592 | 23.1299 | 18.9999 | | 1.7806 | 1.88 | 135000 | 1.6353 | 24.7804 | 11.9212 | 20.4678 | 23.359 | 19.0 | | 1.7784 | 1.95 | 140000 | 1.6338 | 24.7892 | 11.8836 | 20.4227 | 23.373 | 18.9997 | | 1.7551 | 2.02 | 145000 | 1.6341 | 24.6828 | 11.8257 | 20.3862 | 23.2536 | 18.9997 | | 1.728 | 2.09 | 150000 | 1.6328 | 24.6697 | 11.851 | 20.3943 | 23.2738 | 18.9993 | | 1.7201 | 2.16 | 155000 | 1.6309 | 24.7364 | 11.8505 | 20.365 | 23.2885 | 18.9992 | | 1.7233 | 2.23 | 160000 | 1.6346 | 24.7298 | 12.0026 | 20.4444 | 23.3156 | 18.9999 | | 1.7096 | 2.3 | 165000 | 1.6253 | 24.6443 | 11.9004 | 20.4138 | 23.2583 | 18.9999 | | 1.7084 | 2.37 | 170000 | 1.6233 | 24.6688 | 11.8885 | 20.3623 | 23.2608 | 18.9996 | | 1.7236 | 2.44 | 175000 | 1.6243 | 24.7174 | 11.8924 | 20.4012 | 23.2948 | 18.9996 | | 1.7108 | 2.51 | 180000 | 1.6188 | 24.6013 | 11.8153 | 20.2969 | 23.1867 | 18.9997 | | 1.711 | 2.58 | 185000 | 1.6125 | 24.7673 | 11.8646 | 20.3805 | 23.3114 | 18.9997 | | 1.7108 | 2.65 | 190000 | 1.6101 | 24.8047 | 11.9763 | 20.494 | 23.3873 | 18.9998 | | 1.7114 | 2.72 | 195000 | 1.6123 | 24.7019 | 11.9201 | 20.414 | 23.2823 | 18.9999 | | 1.7004 | 2.79 | 200000 | 1.6083 | 24.7525 | 11.9197 | 20.4581 | 23.3371 | 18.9999 | | 1.7104 | 2.86 | 205000 | 1.6061 | 24.7057 | 11.8818 | 20.4017 | 23.286 | 18.9999 | | 1.7063 | 2.93 | 210000 | 1.6063 | 24.7707 | 11.934 | 20.4473 | 23.3316 | 18.9999 | | 1.7039 | 3.0 | 215000 | 1.6070 | 24.7696 | 11.9467 | 20.4495 | 23.3341 | 18.9999 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
birgermoell/psst-augmented
a4caf8a194250910a966f5168a830b3b16ab5bf0
2022-04-05T08:42:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-augmented
3
null
transformers
22,154
Entry not found
justinlyli/fyp_pegasus_cnndailymail
b9bf476ee3948b711de07949533820f95b3f92ea
2022-04-05T10:55:53.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
justinlyli
null
justinlyli/fyp_pegasus_cnndailymail
3
null
transformers
22,155
Entry not found
AnonymousSub/fpdm_triplet_bert_FT_new_newsqa
df5090700ebdc18705600a4a6b676bb3bdfe45a1
2022-04-05T14:48:58.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_triplet_bert_FT_new_newsqa
3
null
transformers
22,156
Entry not found
BigSalmon/InformalToFormalLincolnConciseWordy
931903c41b16e153c82bf78e0254f55884b2a61f
2022-04-05T15:21:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincolnConciseWordy
3
null
transformers
22,157
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy") ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` Keywords to sentences or sentence.
spencer/wav2vec2-base-960h
3eae3450fb592f2b04729638bdc25885cbf8ed6e
2022-04-09T19:18:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
spencer
null
spencer/wav2vec2-base-960h
3
null
transformers
22,158
Entry not found
linhthi/fake-news-detector-bert-v1.0
4b8529fa4406e5440413a460d4ef4f729c27f8bc
2022-04-06T07:04:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
linhthi
null
linhthi/fake-news-detector-bert-v1.0
3
null
transformers
22,159
Entry not found
chiba/distilbert-base-japanese_test
fd5b5bf7e56b536ec9e5d2b05ad59bb3f6301494
2022-04-08T06:17:25.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
chiba
null
chiba/distilbert-base-japanese_test
3
null
transformers
22,160
Entry not found
nealmgkr/bert-base-uncased-tminer-hs
8c2440dca4c897e2996619e7f0519c72f70c4b3c
2022-04-06T08:58:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
nealmgkr
null
nealmgkr/bert-base-uncased-tminer-hs
3
null
transformers
22,161
Entry not found
birgermoell/psst-fairseq-gaussian
ec6ea9e7172e7ae76fc2abd2a22b7626c688148b
2022-04-06T09:01:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-fairseq-gaussian
3
null
transformers
22,162
Entry not found
ankitkupadhyay/bert-finetuned-squad
395295d7a50a97c5c988f65682cd365093b5c6e0
2022-04-06T18:38:57.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ankitkupadhyay
null
ankitkupadhyay/bert-finetuned-squad
3
1
transformers
22,163
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
moshew/distilbert-base-uncased-finetuned-clinc
e71fb15efc26d201ee404857eff36ce05d9a28be
2022-04-06T15:38:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
moshew
null
moshew/distilbert-base-uncased-finetuned-clinc
3
null
transformers
22,164
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9187096774193548 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7703 - Accuracy: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2887 | 0.7419 | | 2.6309 | 2.0 | 636 | 1.8797 | 0.8310 | | 1.5443 | 3.0 | 954 | 1.1537 | 0.8974 | | 1.0097 | 4.0 | 1272 | 0.8560 | 0.9135 | | 0.7918 | 5.0 | 1590 | 0.7703 | 0.9187 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
arampacha/electra-base-inqg-span
b7f8ce7e93a277c431f74813fa6af0d1485757e6
2022-04-06T17:21:08.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
arampacha
null
arampacha/electra-base-inqg-span
3
null
transformers
22,165
Entry not found
raileymontalan/distilbert-base-cased-finetuned-fake-news-detection
4230a0a30f68fb9cef958ce2756e1fc91cf6b285
2022-04-06T18:38:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
raileymontalan
null
raileymontalan/distilbert-base-cased-finetuned-fake-news-detection
3
null
transformers
22,166
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: distilbert-base-cased-finetuned-fake-news-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-fake-news-detection This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0043 - F1: 0.9996 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | No log | 1.0 | 1684 | 0.0043 | 0.9993 | 0.9993 | | No log | 2.0 | 3368 | 0.0043 | 0.9996 | 0.9996 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
frankxu/gpt-neo-125M-code
82b5df98b0ecea00b1104b2307e1648f519d528b
2022-04-13T18:24:14.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
frankxu
null
frankxu/gpt-neo-125M-code
3
null
transformers
22,167
Entry not found
birgermoell/psst-fairseq-combined-augmented
4fbc363267811839ecbad882e78a2f96c1ba1f6a
2022-04-07T08:25:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-fairseq-combined-augmented
3
null
transformers
22,168
Entry not found
luffycodes/roberta-base-mrpc
ed7af87d8d45b654de5cbac55ea47d2ca7ad86af
2022-04-07T19:24:44.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/roberta-base-mrpc
3
null
transformers
22,169
Entry not found
dennishe97/longformer-code-mlm-v2
3fadb92ba64e5f735b4c17066fbd15faaba359be
2022-04-09T06:08:06.000Z
[ "pytorch", "longformer", "feature-extraction", "transformers" ]
feature-extraction
false
dennishe97
null
dennishe97/longformer-code-mlm-v2
3
null
transformers
22,170
Entry not found
chiba/bert-base-japanese-whole-word-masking_test
cac4b961f28a64a9d5386dc48b31db90d6255a5f
2022-04-12T07:24:23.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
chiba
null
chiba/bert-base-japanese-whole-word-masking_test
3
null
transformers
22,171
Entry not found
Annas/the-world-machine-3
4285a40d54be23ea148ada0ec0a574e34d2ef87d
2022-04-08T14:34:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Annas
null
Annas/the-world-machine-3
3
1
transformers
22,172
trained openai gpt2 using data crawled by gwitr
projecte-aina/mbert-base-gencata
d30cafd44b9f1a83053a5ffcb152983fc11ab43a
2022-07-27T10:55:38.000Z
[ "pytorch", "bert", "text-classification", "ca", "dataset:projecte-aina/gencata", "transformers", "text classification", "license:mit" ]
text-classification
false
projecte-aina
null
projecte-aina/mbert-base-gencata
3
null
transformers
22,173
--- language: "ca" license: mit tags: - text classification task_categories: - text-scoring task_ids: - semantic-similarity-scoring datasets: - projecte-aina/gencata inference: false --- ## mBERT fine-tuned on the GEnCaTa dataset for Parallel Corpus Filtering ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-use) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Tokenization](#tokenization) - [Hyperparameters](#hyperparameters) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Citation Information](#citation-information) - [Contributions](#contributions) - [Funding](#funding) ## Model description We fine-tuned [mBERT](https://huggingface.co/bert-base-multilingual-cased) for the task of Catalan-English Parallel Corpus Filtering with the [GEnCaTa](https://huggingface.co/datasets/projecte-aina/gencata) dataset. The model has been fine-tuned on general domain data and is expected to work best with that type of text. ## Intended Uses and Limitations You can use this model for parallel corpus fitering, also known as, sentence alignment filtering. ## How to Use Here is how to use this model with the [pipeline API](https://huggingface.co/transformers/main_classes/pipelines.html): ```python from transformers import pipeline filterer = pipeline("text-classification", model="projecte-aina/mbert-base-gencata") ca = '- El vostre vehicle quedi immobilitzat per l'aigua' en = 'You must leave your car and head for higher ground when:' print(filterer([(ca, en)], max_length=512, truncation=True)) ``` ## Training ### Training Data As training data, we used the [GEnCaTa](https://huggingface.co/datasets/projecte-aina/gencata) dataset, a Catalan-English dataset annotated for Parallel Corpus Filtering for MT. It is extracted from a general domain corpus crawled from the Catalan Government domains and subdomains. ### Training Procedure #### Tokenization The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) with a vocabulary size of 51,200 tokens. #### Hyperparameters | Hyper-parameter | Value | |------------------------------------|--------| | Learning Rate | 0.8e-5 | | Learning Rate Decay | Linear | | Warmup | 0.06 | | Batch Size | 64 | | Weight Decay | 0.01 | | Max. Training Epochs | 10 | ## Variable and Metrics Although we can report accuracy scores, the best way to evaluate this model is to filter a parallel corpus and train a Machine Translation system with the filtered data. For that, we train two different MT models and evaluate them on [Flores-101](https://huggingface.co/datasets/gsarti/flores_101) with BLEU scores. ## Evaluation Results Below the evaluation results on [Flores-101](https://huggingface.co/datasets/gsarti/flores_101) from two MT systems: RAW and FIL (filtered corpus with our model). |Direction | RAW | FIL | | -----|-----|------| |EN > CA | 35.7 | **38.0** | |CA > EN | 34.7 | **37.6** | ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation If you use any of these resources (datasets or models) in your work, please cite our latest paper: ``` @inproceedings{degibertbonet-EtAl:2022:SIGUL, abstract = {In this work, we make the case of quality over quantity when training a MT system for a medium-to-low-resource language pair, namely Catalan-English. We compile our training corpus out of existing resources of varying quality and a new high-quality corpus. We also provide new evaluation translation datasets in three different domains. In the process of building Catalan-English parallel resources, we evaluate the impact of drastically filtering alignments in the resulting MT engines. Our results show that even when resources are limited, as in this case, it is worth filtering for quality. We further explore the cross-lingual transfer learning capabilities of the proposed model for parallel corpus filtering by applying it to other languages. All resources generated in this work are released under open license to encourage the development of language technology in Catalan.}, address = {Marseille, France}, author = {{de Gibert Bonet}, Ona and Kharitonova, Ksenia and {Calvo Figueras}, Blanca and Armengol-Estap{\'{e}}, Jordi and Melero, Maite}, booktitle = {Proceedings of the the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages}, pages = {59--69}, publisher = {European Language Resources Association}, title = {{Quality versus Quantity: Building Catalan-English MT Resources}}, url = {http://www.lrec-conf.org/proceedings/lrec2022/workshops/SIGUL/pdf/2022.sigul-1.8.pdf}, year = {2022} } ``` ## Contributions [N/A] ## Funding This work was funded by MT4All CEF project and the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
DioLiu/distilroberta-base-Ctrl
65427ef6f277748edc45c5f87a4f6ae17fef6948
2022-04-08T15:48:21.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/distilroberta-base-Ctrl
3
null
transformers
22,174
Entry not found
akanksha-b14/songs-transcription-2
5ac25312640168e4e02b8bc0b3c25a1992bf4614
2022-04-09T02:32:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
akanksha-b14
null
akanksha-b14/songs-transcription-2
3
null
transformers
22,175
Entry not found
nepp1d0/SingleBertSmilesTargetInteraction
9d9928941cc59986b2c048d8de5f9803e5192cae
2022-04-10T18:55:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
nepp1d0
null
nepp1d0/SingleBertSmilesTargetInteraction
3
null
transformers
22,176
Prot_bert finetuned on GPCR_train dataset of Drug Target prediction Trainig paramenters: overwrite_output_dir=True, evaluation_strategy="epoch", learning_rate=1e-3, weight_decay=0.001, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, push_to_hub=True, fp16=True, logging_steps=logging_steps, save_strategy='epoch', num_train_epochs=2
davidcheungo123/pegasus-samsum
08a47e90502d5ca014023f4f51aed1974bf13750
2022-04-09T15:44:09.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
davidcheungo123
null
davidcheungo123/pegasus-samsum
3
null
transformers
22,177
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6936 | 0.54 | 500 | 1.4844 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
anton-l/xtreme_s_xlsr_300m_fleurs_asr_test
d1ef95cc9c7d3218b74919adac692d4539c43e30
2022-04-10T10:14:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_fleurs_asr_test
3
null
transformers
22,178
Entry not found
vaariis/distilbert-base-uncased-finetuned-emotion
8a286e01d1928a761aad5754a8dd162e7532e31d
2022-04-21T06:20:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vaariis
null
vaariis/distilbert-base-uncased-finetuned-emotion
3
null
transformers
22,179
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2218 - Accuracy: 0.9205 - F1: 0.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8262 | 1.0 | 250 | 0.3223 | 0.9005 | 0.8971 | | 0.2474 | 2.0 | 500 | 0.2218 | 0.9205 | 0.9208 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.12.1
Brendan/random-in-domain-5-demos-t5-small
f04b6a13b92a809f8ab98d25528345c4449f750d
2022-04-11T19:44:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Brendan
null
Brendan/random-in-domain-5-demos-t5-small
3
null
transformers
22,180
Entry not found
baikal/bert-wp30
69a763d63004a2d05e0106f72d0ae72c11dc0f85
2022-04-11T01:44:58.000Z
[ "pytorch", "ko", "dataset:한국어 위키", "dataset:국립국어원 문어/뉴스 데이터셋", "transformers" ]
null
false
baikal
null
baikal/bert-wp30
3
null
transformers
22,181
--- language: ko datasets: - 한국어 위키 - 국립국어원 문어/뉴스 데이터셋 --- baikal-BERT-base --- - model: bert-base - vocab: bert-wordpiece, 30,000 - version: latest
Splend1dchan/XDBERT-base
c52826515cc87e50b523f5f345d6290aa990491a
2022-04-11T03:56:29.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Splend1dchan
null
Splend1dchan/XDBERT-base
3
null
transformers
22,182
Entry not found
philschmid/minilm-l12-h384-sst2-distilled
82ceba105fa40282ef977de2ca97832d437af47f
2022-04-11T08:39:58.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
philschmid
null
philschmid/minilm-l12-h384-sst2-distilled
3
null
transformers
22,183
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: minilm-l12-h384-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9220183486238532 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # minilm-l12-h384-sst2-distilled This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5417 - Accuracy: 0.9220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001400785945474408 - train_batch_size: 512 - eval_batch_size: 512 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2689 | 1.0 | 132 | 0.7102 | 0.8979 | | 0.8295 | 2.0 | 264 | 0.5669 | 0.9117 | | 0.5059 | 3.0 | 396 | 0.5545 | 0.9220 | | 0.3722 | 4.0 | 528 | 0.5378 | 0.9209 | | 0.2924 | 5.0 | 660 | 0.5417 | 0.9220 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
maretamasaeva/thesis-freeform
ece4535833435668e87ca3843551615e7c936c71
2022-04-11T09:42:15.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
maretamasaeva
null
maretamasaeva/thesis-freeform
3
null
transformers
22,184
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: thesis-freeform results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # thesis-freeform This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Accuracy: 0.4636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6922 | 1.0 | 5684 | 0.6928 | 0.4636 | | 0.6946 | 2.0 | 11368 | 0.6918 | 0.4636 | | 0.692 | 3.0 | 17052 | 0.6949 | 0.4636 | | 0.6901 | 4.0 | 22736 | 0.6933 | 0.4636 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
openclimatefix/nowcasting_cnn
4757ebc59ba1e3ed2d61c042e504237a2e303c79
2022-05-19T10:53:53.000Z
[ "pytorch", "transformers", "nowcasting", "forecasting", "timeseries", "remote-sensing", "license:mit" ]
null
false
openclimatefix
null
openclimatefix/nowcasting_cnn
3
null
transformers
22,185
--- license: mit tags: - nowcasting - forecasting - timeseries - remote-sensing --- # Nowcasting CNN ## Model description 3d conv model, that takes in different data streams architecture is roughly 1. satellite image time series goes into many 3d convolution layers. 2. nwp time series goes into many 3d convolution layers. 3. Final convolutional layer goes to full connected layer. This is joined by other data inputs like - pv yield - time variables Then there ~4 fully connected layers which end up forecasting the pv yield / gsp into the future ## Intended uses & limitations Forecasting short term PV power for different regions and nationally in the UK ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data Training data is EUMETSAT RSS imagery over the UK, on-the-ground PV data, and NWP predictions. ## Training procedure [More information needed] ## Evaluation results [More information needed]
Kuray107/ls-timit-100percent-supervised-meta
496059c09cbf74375ed59ce4303ea02ed86b8f0b
2022-04-11T19:44:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/ls-timit-100percent-supervised-meta
3
null
transformers
22,186
--- tags: - generated_from_trainer model-index: - name: ls-timit-100percent-supervised-meta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ls-timit-100percent-supervised-meta This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0649 - Wer: 0.0253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0964 | 7.04 | 1000 | 0.0706 | 0.0342 | | 0.0445 | 14.08 | 2000 | 0.0649 | 0.0253 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
LysandreJik/my-new-model
84ec09ca8500f4eea798094d46832bd6fbda047b
2022-04-11T21:24:36.000Z
[ "pytorch", "transformers" ]
null
false
LysandreJik
null
LysandreJik/my-new-model
3
null
transformers
22,187
Entry not found
rajiv003/ernie-finetuned-qqp
cf05cd342bcf0ad77b58b9cee03757bbd23e8e67
2022-04-12T11:47:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
rajiv003
null
rajiv003/ernie-finetuned-qqp
3
null
transformers
22,188
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: ernie-finetuned-qqp results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.9156566905763047 - name: F1 type: f1 value: 0.8860522622468757 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ernie-finetuned-qqp This model is a fine-tuned version of [nghuyong/ernie-2.0-en](https://huggingface.co/nghuyong/ernie-2.0-en) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4381 - Accuracy: 0.9157 - F1: 0.8861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 0.2522 | 1.0 | 22741 | 0.2505 | 0.8997 | 0.8633 | | 0.1903 | 2.0 | 45482 | 0.2645 | 0.9071 | 0.8761 | | 0.1599 | 3.0 | 68223 | 0.2986 | 0.9115 | 0.8816 | | 0.1214 | 4.0 | 90964 | 0.3640 | 0.9133 | 0.8828 | | 0.0809 | 5.0 | 113705 | 0.4381 | 0.9157 | 0.8861 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/codeparrot-ds-500sample-gpt-neo-2ep
17fcc6414830f916a6d126e5bd70e67fe5fed850
2022-04-13T05:43:26.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Pavithra
null
Pavithra/codeparrot-ds-500sample-gpt-neo-2ep
3
null
transformers
22,189
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds-500sample-gpt-neo-2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-500sample-gpt-neo-2ep This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.5248 | 0.19 | 1000 | 2.9757 | | 2.5422 | 0.37 | 2000 | 2.4397 | | 2.1642 | 0.56 | 3000 | 2.1880 | | 1.9135 | 0.74 | 4000 | 1.9884 | | 1.7236 | 0.93 | 5000 | 1.8470 | | 1.5459 | 1.11 | 6000 | 1.7501 | | 1.4363 | 1.3 | 7000 | 1.6761 | | 1.3639 | 1.49 | 8000 | 1.6105 | | 1.3046 | 1.67 | 9000 | 1.5667 | | 1.273 | 1.86 | 10000 | 1.5483 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ali-issa/lebanese
2b767da43ab5a9bcc443c13855abc743ea2962e8
2022-04-12T08:13:32.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali-issa
null
ali-issa/lebanese
3
null
transformers
22,190
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-lebanese-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-lebanese-epoch This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1662 - Wer: 0.8306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.5946 | 2.5 | 50 | 5.0090 | 1.0 | | 4.0559 | 5.0 | 100 | 3.2772 | 1.0 | | 3.153 | 7.5 | 150 | 2.9716 | 1.0 | | 2.9739 | 10.0 | 200 | 2.9512 | 1.0 | | 2.93 | 12.5 | 250 | 2.9072 | 1.0 | | 2.5458 | 15.0 | 300 | 1.8472 | 0.9987 | | 1.3716 | 17.5 | 350 | 1.2279 | 0.8588 | | 0.8123 | 20.0 | 400 | 1.1662 | 0.8306 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
jegormeister/Multilingual-MiniLM-L12-H384-mmarco-finetuned
9d3df2e0ebcb096a40d86b5c270afdfbd2cd8a4c
2022-04-12T07:26:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jegormeister
null
jegormeister/Multilingual-MiniLM-L12-H384-mmarco-finetuned
3
null
transformers
22,191
Entry not found
cestwc/roberta-base-emb
e0af59b8bf2461f80b19d2ceef9d44d6ef6735f2
2022-06-02T10:25:58.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
cestwc
null
cestwc/roberta-base-emb
3
null
transformers
22,192
Entry not found
CenIA/bert-base-spanish-wwm-cased-finetuned-qa-sqac
7f9a0f22def029d1a58b9b544835556506398108
2022-04-13T13:30:56.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/bert-base-spanish-wwm-cased-finetuned-qa-sqac
3
null
transformers
22,193
Entry not found
eagles/focus_sum
02eaccae435844a61ddda42bffa13ad50f5595c5
2022-04-14T04:26:44.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
eagles
null
eagles/focus_sum
3
null
transformers
22,194
--- tags: - generated_from_trainer model-index: - name: focus_sum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # focus_sum This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9644 | 3.75 | 500 | 0.6880 | | 0.4682 | 7.52 | 1000 | 0.4350 | | 0.4672 | 11.28 | 1500 | 0.2599 | | 0.3439 | 15.04 | 2000 | 0.1568 | | 0.2753 | 18.79 | 2500 | 0.1064 | | 0.1885 | 22.55 | 3000 | 0.0737 | | 0.2185 | 26.31 | 3500 | 0.0575 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
CenIA/albert-xxlarge-spanish-finetuned-qa-sqac
c48255be06ce61acc753df2fc80ac6f49265e87d
2022-04-13T13:50:11.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/albert-xxlarge-spanish-finetuned-qa-sqac
3
null
transformers
22,195
Entry not found
potatobunny/results-yelp
a630e70a3a5e2feb18163090de65666217d87562
2022-04-13T15:36:11.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
potatobunny
null
potatobunny/results-yelp
3
null
transformers
22,196
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results-yelp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results-yelp This model is a fine-tuned version of [textattack/bert-base-uncased-yelp-polarity](https://huggingface.co/textattack/bert-base-uncased-yelp-polarity) on a filtered and manually reviewed Yelp dataset containing restaurant reviews only. It achieves the following results on the evaluation set: - Loss: 0.3563 - Accuracy: 0.9302 - Precision: 0.9461 - Recall: 0.9608 - F1: 0.9534 Note: to use this tokenizer, please use the following code to load all the required files: `tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", config=AutoConfig.from_pretrained("potatobunny/results-yelp"))` ## Model description This model is fine-tuned on a Yelp dataset with labelled data containing a restaurant review (text) and whether it has a positive (1) or negative (0) sentiment. ## Intended uses & limitations This is intended to perform text classification, specifically sentiment analysis, on text data obtained from restaurant reviews to determine if the particular review is positive or negative. ## Training and evaluation data The training and evaluation data were both obtained from the same Yelp dataset. The data was split into 70% training and 30% validation. <!-- ## Training procedure --> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results The training loss obtained was 0.265741667. ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
htufgg/roberta-finetuned-CPV_Spanish
36c612bda40ba02fa1481d00df68157cba5f4fa3
2022-04-14T09:01:23.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
htufgg
null
htufgg/roberta-finetuned-CPV_Spanish
3
null
transformers
22,197
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-finetuned-CPV_Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-CPV_Spanish This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0422 - F1: 0.7739 - Roc Auc: 0.8704 - Accuracy: 0.7201 - Coverage Error: 11.5798 - Label Ranking Average Precision Score: 0.7742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Coverage Error | Label Ranking Average Precision Score | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|:--------------:|:-------------------------------------:| | 0.0579 | 1.0 | 2039 | 0.0548 | 0.6327 | 0.7485 | 0.5274 | 21.7879 | 0.5591 | | 0.0411 | 2.0 | 4078 | 0.0441 | 0.7108 | 0.8027 | 0.6386 | 16.8647 | 0.6732 | | 0.0294 | 3.0 | 6117 | 0.0398 | 0.7437 | 0.8295 | 0.6857 | 14.6700 | 0.7249 | | 0.0223 | 4.0 | 8156 | 0.0389 | 0.7568 | 0.8453 | 0.7056 | 13.3552 | 0.7494 | | 0.0163 | 5.0 | 10195 | 0.0397 | 0.7626 | 0.8569 | 0.7097 | 12.5895 | 0.7620 | | 0.0132 | 6.0 | 12234 | 0.0395 | 0.7686 | 0.8620 | 0.7126 | 12.1926 | 0.7656 | | 0.0095 | 7.0 | 14273 | 0.0409 | 0.7669 | 0.8694 | 0.7109 | 11.5978 | 0.7700 | | 0.0066 | 8.0 | 16312 | 0.0415 | 0.7705 | 0.8726 | 0.7107 | 11.4252 | 0.7714 | | 0.0055 | 9.0 | 18351 | 0.0417 | 0.7720 | 0.8689 | 0.7163 | 11.6987 | 0.7716 | | 0.0045 | 10.0 | 20390 | 0.0422 | 0.7739 | 0.8704 | 0.7201 | 11.5798 | 0.7742 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
QuickRead/PPO-policy_v2
5e671dda61e723d7a208482900f866522ec8d7d6
2022-04-14T23:56:45.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
QuickRead
null
QuickRead/PPO-policy_v2
3
null
transformers
22,198
Entry not found
nepp1d0/SingleBertModel-ProtBertfinetuned-smilesBindingDB
3a7e1669ea0948f3ae55436308b201ebe3f6339a
2022-04-29T12:23:55.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
nepp1d0
null
nepp1d0/SingleBertModel-ProtBertfinetuned-smilesBindingDB
3
null
transformers
22,199
--- tags: - generated_from_trainer model-index: - name: SingleBertModel-ProtBertfinetuned-smilesBindingDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SingleBertModel-ProtBertfinetuned-smilesBindingDB This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5245 | 1.0 | 10000 | nan | | 2.5037 | 2.0 | 20000 | nan | | 2.4967 | 3.0 | 30000 | nan | | 2.4983 | 4.0 | 40000 | nan | | 2.4926 | 5.0 | 50000 | nan | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1