modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
leonadase/distilbert-base-uncased-finetuned-sem
80803988cf0261705ea8c388d227c8983af50d88
2022-03-13T19:41:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:sem_eval2010_task8", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
leonadase
null
leonadase/distilbert-base-uncased-finetuned-sem
3
null
transformers
22,000
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sem_eval2010_task8 metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sem results: - task: name: Text Classification type: text-classification dataset: name: sem_eval2010_task8 type: sem_eval2010_task8 args: default metrics: - name: Accuracy type: accuracy value: 0.8314317261685683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sem This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the sem_eval2010_task8 dataset. It achieves the following results on the evaluation set: - Loss: 0.6704 - Accuracy: 0.8314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9556 | 1.0 | 800 | 0.7859 | 0.7814 | | 0.6136 | 2.0 | 1600 | 0.6069 | 0.8193 | | 0.4314 | 3.0 | 2400 | 0.6179 | 0.8211 | | 0.2315 | 4.0 | 3200 | 0.6617 | 0.8281 | | 0.1655 | 5.0 | 4000 | 0.6704 | 0.8314 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
snoop2head/Deep-Shallow-En2Ko
2054631bfdc0c478887c84d2638265c5b7b2c855
2022-03-21T00:09:29.000Z
[ "pytorch", "transformer", "transformers" ]
null
false
snoop2head
null
snoop2head/Deep-Shallow-En2Ko
3
null
transformers
22,001
Entry not found
Sivakumar/distilbert-base-uncased-finetuned-squad
5f59860ef11ad7ba7f6b205b5a979849a388b1d9
2022-03-13T21:52:35.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Sivakumar
null
Sivakumar/distilbert-base-uncased-finetuned-squad
3
null
transformers
22,002
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2109 | 1.0 | 8235 | 1.2303 | | 0.9385 | 2.0 | 16470 | 1.2412 | | 0.7448 | 3.0 | 24705 | 1.4101 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
robertou2/roberta-base-bne-finetuned-amazon_reviews_multi
a0e68c1807c1912eb4e055bf90d91ff2cd717345
2022-03-14T09:17:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
robertou2
null
robertou2/roberta-base-bne-finetuned-amazon_reviews_multi
3
null
transformers
22,003
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.9325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2368 - Accuracy: 0.9325 ## Model description Modelo de prueba del curso NLP de 0 a 100 sesion 4 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1919 | 1.0 | 1250 | 0.1690 | 0.933 | | 0.0972 | 2.0 | 2500 | 0.2368 | 0.9325 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
aaraki/distilbert-base-uncased-finetuned-squad
43e2a021b0de3604d9e86226c6c49db3464ae1b9
2022-03-15T00:52:37.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
aaraki
null
aaraki/distilbert-base-uncased-finetuned-squad
3
null
transformers
22,004
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2636 | 1.0 | 5533 | 1.2248 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
lijingxin/distilbert-base-uncased-finetuned-clinc
1f738f8aec9d4b6a1807c6a920d3a2343a8e5d85
2022-03-14T09:09:37.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
lijingxin
null
lijingxin/distilbert-base-uncased-finetuned-clinc
3
null
transformers
22,005
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7755 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2992 | 1.0 | 318 | 3.2969 | 0.7339 | | 2.6329 | 2.0 | 636 | 1.8817 | 0.8235 | | 1.5442 | 3.0 | 954 | 1.1561 | 0.8939 | | 1.0132 | 4.0 | 1272 | 0.8595 | 0.9103 | | 0.7953 | 5.0 | 1590 | 0.7755 | 0.9161 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.16.1 - Tokenizers 0.10.3
lijingxin/distilbert-base-uncased-distilled-clinc
7bdc2344322402ce3dc98726280dba73a9f1953b
2022-03-14T10:42:34.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
lijingxin
null
lijingxin/distilbert-base-uncased-distilled-clinc
3
null
transformers
22,006
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9470967741935484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Accuracy: 0.9471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3365 | 1.0 | 318 | 1.6602 | 0.7361 | | 1.2799 | 2.0 | 636 | 0.8378 | 0.8548 | | 0.6739 | 3.0 | 954 | 0.4872 | 0.9132 | | 0.4143 | 4.0 | 1272 | 0.3640 | 0.9352 | | 0.3051 | 5.0 | 1590 | 0.3168 | 0.9406 | | 0.2585 | 6.0 | 1908 | 0.2970 | 0.9442 | | 0.235 | 7.0 | 2226 | 0.2876 | 0.9458 | | 0.2236 | 8.0 | 2544 | 0.2824 | 0.9458 | | 0.2168 | 9.0 | 2862 | 0.2794 | 0.9468 | | 0.2138 | 10.0 | 3180 | 0.2782 | 0.9471 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.16.1 - Tokenizers 0.10.3
GPL/bioasq-distilbert-tas-b-gpl-self_miner
4f786c5032702a8b876d79592b6c35215d5b3ae8
2022-03-14T14:22:31.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/bioasq-distilbert-tas-b-gpl-self_miner
3
null
sentence-transformers
22,007
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/quora-distilbert-tas-b-gpl-self_miner
c66a1c6d91dbfc61a4425e41fc9dd931e650fec0
2022-03-14T14:24:46.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/quora-distilbert-tas-b-gpl-self_miner
3
null
sentence-transformers
22,008
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lewtun/distilhubert-finetuned-gtzan
704a8d6ba38eac087c660fa0b9d0cfd385f5e777
2022-03-14T20:33:49.000Z
[ "pytorch", "hubert", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
lewtun
null
lewtun/distilhubert-finetuned-gtzan
3
null
transformers
22,009
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6310 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 56 | 1.9996 | 0.4 | | 2.0202 | 1.99 | 112 | 1.5102 | 0.51 | | 2.0202 | 2.99 | 168 | 1.2698 | 0.67 | | 1.289 | 3.99 | 224 | 1.0391 | 0.73 | | 1.289 | 4.99 | 280 | 0.8988 | 0.75 | | 0.8787 | 5.99 | 336 | 0.7758 | 0.82 | | 0.8787 | 6.99 | 392 | 0.6896 | 0.83 | | 0.6254 | 7.99 | 448 | 0.6936 | 0.81 | | 0.6254 | 8.99 | 504 | 0.6433 | 0.84 | | 0.4879 | 9.99 | 560 | 0.6310 | 0.84 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
kurianbenoy/kde_en_ml_translation_model
766c8a06c07bb6352d0537ac1972d3c70360fd53
2022-05-11T16:57:11.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ml", "fastai", "translation", "license:mit" ]
translation
false
kurianbenoy
null
kurianbenoy/kde_en_ml_translation_model
3
2
fastai
22,010
--- language: - en - ml license: mit tags: - fastai - translation --- # Fine Tune En-ML translation * source group: English * target group: Malayalam This is a Machine translation model created for fun to translate from English text to Malayalam which was fine-tuned for KDE-Dataset. [Tweet](https://twitter.com/kurianbenoy2/status/1503082136009465857?s=20&t=7Hn-KUqHZRY6VJ16-i1qdA) # Model card ## Model description Used a fine tuned model on top of MarianMT models created by Helsinki-NLP group. The [training code is described here](https://kurianbenoy.com/ml-blog/fastai/huggingface/translation/fine%20tuning/malayalam/2022/03/12/_03_13_huggingace_translation_models.html). ## Intended uses & limitations Intended to use just for fun, and for sake of learning Limitations: Returns really bad predictions occasionally
internetoftim/upload_test
684d36b157a2f837c6ce285d3b362792ceb1c3d2
2022-03-14T18:24:09.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
internetoftim
null
internetoftim/upload_test
3
null
transformers
22,011
Entry not found
Kevincp560/pegasus-large-finetuned-Pubmed
783ba784981c4d13d688079ca0034c4928e0c8b3
2022-03-14T20:57:20.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/pegasus-large-finetuned-Pubmed
3
null
transformers
22,012
--- tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: pegasus-large-finetuned-Pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 39.1107 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-large-finetuned-Pubmed This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.7669 - Rouge1: 39.1107 - Rouge2: 15.4127 - Rougel: 24.3729 - Rougelsum: 35.1236 - Gen Len: 226.594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.065 | 1.0 | 1000 | 1.8262 | 37.1986 | 14.3685 | 23.7153 | 33.0713 | 218.902 | | 1.9552 | 2.0 | 2000 | 1.7933 | 38.0663 | 14.7813 | 23.8412 | 33.9574 | 217.488 | | 1.8983 | 3.0 | 3000 | 1.7768 | 38.3975 | 15.0983 | 24.0247 | 34.314 | 222.32 | | 1.882 | 4.0 | 4000 | 1.7687 | 39.1311 | 15.4167 | 24.2978 | 35.078 | 222.564 | | 1.8456 | 5.0 | 5000 | 1.7669 | 39.1107 | 15.4127 | 24.3729 | 35.1236 | 226.594 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
gabitoo1234/autonlp-mut_uchile-640218740
34f7c4911d03031a1a6be285a9bac4bff2cd6654
2022-03-14T19:26:47.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:gabitoo1234/autonlp-data-mut_uchile", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
gabitoo1234
null
gabitoo1234/autonlp-mut_uchile-640218740
3
null
transformers
22,013
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - gabitoo1234/autonlp-data-mut_uchile co2_eq_emissions: 43.078469852595994 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 640218740 - CO2 Emissions (in grams): 43.078469852595994 ## Validation Metrics - Loss: 0.8302136063575745 - Accuracy: 0.7887341933835739 - Macro F1: 0.5756730305293746 - Micro F1: 0.7887341933835739 - Weighted F1: 0.7878942570915727 - Macro Precision: 0.620883634472996 - Micro Precision: 0.7887341933835739 - Weighted Precision: 0.8009430092038783 - Macro Recall: 0.5521761315904072 - Micro Recall: 0.7887341933835739 - Weighted Recall: 0.7887341933835739 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/gabitoo1234/autonlp-mut_uchile-640218740 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("gabitoo1234/autonlp-mut_uchile-640218740", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("gabitoo1234/autonlp-mut_uchile-640218740", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
internetoftim/demo
9d6459a431eada1320cbb5971e66d85a4a807b98
2022-03-17T12:22:09.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
internetoftim
null
internetoftim/demo
3
null
transformers
22,014
Entry not found
mansidw/finetuning-sentiment-model-12000-samples
7f9738152927c2ca7132c717474faeb19a4a3c48
2022-03-15T09:40:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:ag_news", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mansidw
null
mansidw/finetuning-sentiment-model-12000-samples
3
null
transformers
22,015
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ag_news model-index: - name: results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-12000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
bettertextapp/m2m-tai-en-de-gen-1.2B-1k-steps
5bd528b5e6c0eb357805c871c71c8ff9b0e66887
2022-03-14T20:46:00.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
bettertextapp
null
bettertextapp/m2m-tai-en-de-gen-1.2B-1k-steps
3
null
transformers
22,016
--- tags: - generated_from_trainer model-index: - name: m2m-tai-en-de-gen-1.2B-1k-steps results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m-tai-en-de-gen-1.2B-1k-steps This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-base-finetuned-ks
1ecf6c326003b8b61316e32d71b7164c3cdee0e0
2022-03-15T17:32:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-base-finetuned-ks
3
null
transformers
22,017
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0817 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6386 | 1.0 | 399 | 0.5305 | 0.9601 | | 0.2358 | 2.0 | 798 | 0.1774 | 0.9747 | | 0.1982 | 3.0 | 1197 | 0.1172 | 0.9794 | | 0.1554 | 4.0 | 1596 | 0.0884 | 0.9835 | | 0.1261 | 5.0 | 1995 | 0.0817 | 0.9844 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-rnd-no-adapter
111e2cf102fb7fd24355423b24766efdd2376aa4
2022-03-17T06:35:21.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd-no-adapter
3
null
transformers
22,018
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.8384 - Wer: 0.1367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2245 | 1.68 | 1500 | 6.1442 | 1.5986 | | 5.4521 | 3.36 | 3000 | 5.4335 | 1.6439 | | 3.3659 | 5.04 | 4500 | 3.6455 | 0.6503 | | 1.5724 | 6.73 | 6000 | 2.3554 | 0.3386 | | 1.4759 | 8.41 | 7500 | 1.7423 | 0.2889 | | 1.0826 | 10.09 | 9000 | 1.3818 | 0.2209 | | 0.6769 | 11.77 | 10500 | 1.1268 | 0.1737 | | 0.7348 | 13.45 | 12000 | 0.9990 | 0.1575 | | 0.5419 | 15.13 | 13500 | 0.9435 | 0.1560 | | 0.4212 | 16.82 | 15000 | 0.8678 | 0.1405 | | 0.3805 | 18.5 | 16500 | 0.8384 | 0.1367 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
sap-ai-research/RoBERTa-base-SCD-ACL2022
1f67e9071623048610b976ec42fee43745ffde6c
2022-03-16T00:41:41.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
sap-ai-research
null
sap-ai-research/RoBERTa-base-SCD-ACL2022
3
null
transformers
22,019
--- license: apache-2.0 ---
clapika2010/rayyan_finetuned
dab04ccfd658de154a56b88ddfeeaac8d43ab7c6
2022-03-16T00:12:10.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
clapika2010
null
clapika2010/rayyan_finetuned
3
null
transformers
22,020
Entry not found
deepakvk/roberta-base-squad2-finetuned-squad
1fa9400507fde61d75ce2f0aa1abcf4049af13f2
2022-03-16T12:50:16.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
deepakvk
null
deepakvk/roberta-base-squad2-finetuned-squad
3
null
transformers
22,021
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-finetuned-squad This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.01 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
ixa-ehu/roberta-eus-euscrawl-base-cased
41f92c95224f18977000e212ae16074f54c4cc63
2022-03-16T11:48:42.000Z
[ "pytorch", "roberta", "fill-mask", "eu", "arxiv:2203.08111", "transformers", "basque", "license:cc-by-nc-4.0", "autotrain_compatible" ]
fill-mask
false
ixa-ehu
null
ixa-ehu/roberta-eus-euscrawl-base-cased
3
null
transformers
22,022
--- language: eu license: cc-by-nc-4.0 tags: - basque - roberta --- # Roberta-eus Euscrawl base cased This is a RoBERTa model for Basque model presented in [Does corpus quality really matter for low-resource languages?](https://arxiv.org/abs/2203.08111). There are several models for Basque using the RoBERTa architecture, which are pre-trained using different corpora: - roberta-eus-euscrawl-base-cased: Basque RoBERTa trained on Euscrawl, a corpus created using tailored crawling from Basque sites. EusCrawl contains 12,528k documents and 423M tokens. - roberta-eus-euscrawl-large-cased: Basque RoBERTa large trained on EusCrawl. - roberta-eus-mC4-base-cased: Basque RoBERTa trained on the Basque portion of mc4 dataset. - roberta-eus-CC100-base-cased: Basque RoBERTa trained on Basque portion of cc100 dataset. The models have been tested on five different downstream tasks for Basque: Topic classification, Sentiment analysis, Stance detection, Named Entity Recognition (NER), and Question Answering (refer to the [paper](https://arxiv.org/abs/2203.08111) for more details). See summary of results below: | Model | Topic class. | Sentiment | Stance det. | NER | QA | Average | |----------------------------------|--------------|-----------|-------------|----------|----------|----------| | roberta-eus-euscrawl-base-cased | 76.2 | 77.7 | 57.4 | 86.8 | 34.6 | 66.5 | | roberta-eus-euscrawl-large-cased | **77.6** | 78.8 | 62.9 | **87.2** | **38.3** | **69.0** | | roberta-eus-mC4-base-cased | 75.3 | **80.4** | 59.1 | 86.0 | 35.2 | 67.2 | | roberta-eus-CC100-base-cased | 76.2 | 78.8 | **63.4** | 85.2 | 35.8 | 67.9 | If you use any of these models, please cite the following paper: ``` @misc{artetxe2022euscrawl, title={Does corpus quality really matter for low-resource languages?}, author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de-Viñaspre, Aitor Soroa}, year={2022}, eprint={2203.08111}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ai4bharat/MultiIndicWikiBioSS
c48c3bd663d83d2bda576ab585b52147eb0418ae
2022-03-29T09:22:47.000Z
[ "pytorch", "mbart", "text2text-generation", "as", "bn", "hi", "kn", "ml", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicWikiBio", "arxiv:2203.05437", "transformers", "wikibio", "multilingual", "nlp", "indicnlp", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/MultiIndicWikiBioSS
3
null
transformers
22,023
--- tags: - wikibio - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicWikiBio language: - as - bn - hi - kn - ml - or - pa - ta - te licenses: - cc-by-nc-4.0 widget: - text: <TAG> name </TAG> राम नरेश पांडेय <TAG> office </TAG> विधायक - 205 - कुशीनगर विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश <TAG> term </TAG> 1967 से 1968 <TAG> nationality </TAG> भारतीय </s> <2hi> --- # MultiIndicWikiBioSS MultiIndicWikiBioSS is a multilingual, sequence-to-sequence pre-trained model, a [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint fine-tuned on the 9 languages of [IndicWikiBio](https://huggingface.co/datasets/ai4bharat/IndicWikiBio) dataset. For fine-tuning details, see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicWikiBioSS to build biography generation applications for Indian languages by fine-tuning the model with supervised training data. Some salient features of the MultiIndicWikiBioSS are: <ul> <li >Supported languages: Assamese, Bengali, Hindi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li> <li> Fine-tuned on an Indic language corpora (34,653 examples). </li> <li> Unlike ai4bharat/MultiIndicWikiBioUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li> </ul> You can read more about MultiIndicWikiBioSS in this <a href="https://arxiv.org/abs/2203.05437">paper</a>. ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioSS", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioSS", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicWikiBioSS") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicWikiBioSS") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2hi>', '<2kn>', '<2ml>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("<TAG> name </TAG> भीखा लाल <TAG> office </TAG> विधायक - 318 - हसनगंज विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश <TAG> term </TAG> 1957 से 1962 <TAG> nationality </TAG> भारतीय</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # __भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। ``` ## Benchmarks Scores on the `IndicWikiBio` test sets are as follows: Language | RougeL ---------|---------------------------- as | 56.50 bn | 56.58 hi | 67.34 kn | 39.37 ml | 38.42 or | 70.71 pa | 52.78 ta | 51.11 te | 51.72 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ``` # License The model is available under the MIT License.
newtonkwan/gpt2-xl-ft-with-non-challenging-0.8
56a8c58a437f3b064d052d314d97ec138cef2d61
2022-03-16T13:27:02.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-with-non-challenging-0.8
3
null
transformers
22,024
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-with-non-challenging-0.8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-with-non-challenging-0.8 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.3121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 5.4443 | | No log | 2.0 | 2 | 5.4221 | | No log | 3.0 | 3 | 5.3779 | | No log | 4.0 | 4 | 5.3121 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 10
nqcccccc/phobert-asba-qab
fabfedf152fec957132f7559d1fdb7bdb5561f30
2022-03-16T15:53:43.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/phobert-asba-qab
3
0
transformers
22,025
zdepablo/distilbert-base-uncased-finetuned-clinc
2df99fdc26134b0d3b94aa4d475ab512e404cfd2
2022-03-16T23:33:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
zdepablo
null
zdepablo/distilbert-base-uncased-finetuned-clinc
3
null
transformers
22,026
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7712 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2892 | 1.0 | 318 | 3.2831 | 0.7429 | | 2.6246 | 2.0 | 636 | 1.8742 | 0.8326 | | 1.5444 | 3.0 | 954 | 1.1526 | 0.8939 | | 1.0097 | 4.0 | 1272 | 0.8568 | 0.9106 | | 0.7929 | 5.0 | 1590 | 0.7712 | 0.9174 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
negfir/distilbert-base-uncased-finetuned-qnli
727af72a35c382153e546c7a7a5991805c93742d
2022-03-17T03:59:45.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
negfir
null
negfir/distilbert-base-uncased-finetuned-qnli
3
null
transformers
22,027
Entry not found
KoichiYasuoka/roberta-small-belarusian-upos
bfff1310a81dc94b8f4e12996db256faecdcac51
2022-05-07T13:33:36.000Z
[ "pytorch", "roberta", "token-classification", "be", "dataset:universal_dependencies", "transformers", "belarusian", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-small-belarusian-upos
3
null
transformers
22,028
--- language: - "be" tags: - "belarusian" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # roberta-small-belarusian-upos ## Model Description This is a RoBERTa model pre-trained with [UD_Belarusian](https://universaldependencies.org/be/) for POS-tagging and dependency-parsing, derived from [roberta-small-belarusian](https://huggingface.co/KoichiYasuoka/roberta-small-belarusian). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-belarusian-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-belarusian-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-small-belarusian-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
cammy/led-large-16384-arxiv-100-lit-evalMA-MDS1
c9402a68fb3e4465f6ac98dafd41dc1c104081b1
2022-03-17T10:03:50.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/led-large-16384-arxiv-100-lit-evalMA-MDS1
3
null
transformers
22,029
Entry not found
sanchit-gandhi/wav2vec2-2-gpt2-no-adapter-regularisation
d38079fe6de5d36361370bbb6b7fa49bb1fca869
2022-03-19T17:43:39.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-gpt2-no-adapter-regularisation
3
null
transformers
22,030
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.7494 - Wer: 1.0532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4828 | 2.8 | 2500 | 4.0554 | 1.7873 | | 0.8683 | 5.61 | 5000 | 2.5401 | 1.3156 | | 0.4394 | 8.41 | 7500 | 1.7519 | 1.1129 | | 0.0497 | 11.21 | 10000 | 1.7102 | 1.0738 | | 0.031 | 14.01 | 12500 | 1.7395 | 1.0512 | | 0.0508 | 16.82 | 15000 | 1.7254 | 1.0463 | | 0.0462 | 19.62 | 17500 | 1.7494 | 1.0532 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
juns/imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english
6af2d0b6e2229406e1cfa941c1f0c240e9464e54
2022-06-10T07:37:10.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
juns
null
juns/imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english
3
null
transformers
22,031
imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english for boostcamp ai tech 3
groversakshi1998/vul
4fd285590b36a08b4171640d1c7961fcb7e2abb1
2022-03-18T17:13:55.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
groversakshi1998
null
groversakshi1998/vul
3
null
transformers
22,032
Entry not found
SophieTr/Reward_training_Pegasus_reddit
1998fe245e9992921fffa6b6ab87e2e0c3511513
2022-04-13T10:07:43.000Z
[ "pytorch", "pegasus", "feature-extraction", "transformers" ]
feature-extraction
false
SophieTr
null
SophieTr/Reward_training_Pegasus_reddit
3
null
transformers
22,033
Entry not found
facebook/regnet-x-120
3bc20d8ddd65429667acb8e1de4c64290ad31373
2022-06-28T15:40:50.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-120
3
null
transformers
22,034
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-y-080
878bf14306c150dbf346b0a22ecd1b996a13a1b1
2022-06-30T10:14:19.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-080
3
null
transformers
22,035
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
beston91/gpt2-xl_ft_mult_10k
db8503a70e125fdce58ac20d2d07f7fb9da6bbf4
2022-03-20T22:27:58.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl_ft_mult_10k
3
null
transformers
22,036
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_10k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 54 | 1.3358 | | No log | 1.99 | 108 | 0.7486 | | No log | 2.99 | 162 | 0.6997 | | No log | 3.99 | 216 | 0.6916 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 25.89222526550293 ### Dataset Size Size: 5000
facebook/regnet-y-640-seer-in1k
d06c7ac54598e22c0f4b08e1f68998fb593a130c
2022-03-31T12:05:50.000Z
[ "pytorch", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2202.08360", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-640-seer-in1k
3
null
transformers
22,037
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision](https://arxiv.org/abs/2202.08360) and first released in [this repository](https://github.com/facebookresearch/vissl/tree/main/projects/SEER). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors trained [RegNets](https://huggingface.co/?models=regnet) models in a self-supervised fashion on bilion of random images from the internet. This model is later finetuned on ImageNet ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
ShahafAricha/nqg-custom-bert2gpt-with-bert-finetuned
8b4cc18faf81da635d932c1c0be92313ceb7d33f
2022-03-18T21:16:12.000Z
[ "pytorch", "encoder-decoder", "transformers", "license:other" ]
null
false
ShahafAricha
null
ShahafAricha/nqg-custom-bert2gpt-with-bert-finetuned
3
null
transformers
22,038
--- license: other ---
ShahafAricha/nqg-gpt2
250a91e2a50d7184a3f0cf03dd49cccfc407cd3f
2022-03-19T17:20:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:other" ]
text-generation
false
ShahafAricha
null
ShahafAricha/nqg-gpt2
3
null
transformers
22,039
--- license: other --- --- datasets: - squad tags: - question-generation widget: - text: "The Technikum was conceived in the early 1900s by the German-Jewish fund Ezrah as a school of [HL]engineering and sciences[HL].[SEP]" --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version from distilled squad dataset** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ```
ShahafAricha/nqg-custom-bert2gpt-with-bert-uncased
34780d5ece1fab3ac433e5fa480ed5588ea3d1c6
2022-03-19T01:51:07.000Z
[ "pytorch", "encoder-decoder", "transformers", "license:other" ]
null
false
ShahafAricha
null
ShahafAricha/nqg-custom-bert2gpt-with-bert-uncased
3
null
transformers
22,040
--- license: other ---
Pavithra/code-parrot
64138d9eaea6ec3eb003e6e53f80f5d224a9f9fc
2022-03-19T04:04:29.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
Pavithra
null
Pavithra/code-parrot
3
null
transformers
22,041
# CodeParrot 🦜 (small) CodeParrot 🦜 is a GPT-2 model (110M parameters) trained to generate Python code. ## Usage You can load the CodeParrot model and tokenizer directly in `transformers`: ```Python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("lvwerra/codeparrot-small") model = AutoModelWithLMHead.from_pretrained("lvwerra/codeparrot-small") inputs = tokenizer("def hello_world():", return_tensors="pt") outputs = model(**inputs) ``` or with a `pipeline`: ```Python from transformers import pipeline pipe = pipeline("text-generation", model="lvwerra/codeparrot-small") outputs = pipe("def hello_world():") ``` ## Training The model was trained on the cleaned [CodeParrot 🦜 dataset](https://huggingface.co/datasets/lvwerra/codeparrot-clean) with the following settings: |Config|Value| |-------|-----| |Batch size| 192 | |Context size| 1024 | |Training steps| 150'000| |Gradient accumulation| 1| |Gradient checkpointing| False| |Learning rate| 5e-4 | |Weight decay | 0.1 | |Warmup steps| 2000 | |Schedule| Cosine | The training was executed on 16 x A100 (40GB) GPUs. This setting amounts to roughly 29 billion tokens. ## Performance We evaluated the model on OpenAI's [HumanEval](https://huggingface.co/datasets/openai_humaneval) benchmark which consists of programming challenges: | Metric | Value | |-------|-----| |pass@1 | 3.80% | |pass@10 | 6.57% | |pass@100 | 12.78% | The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests. ## Resources - Dataset: [full](https://huggingface.co/datasets/lvwerra/codeparrot-clean), [train](https://huggingface.co/datasets/lvwerra/codeparrot-clean-train), [valid](https://huggingface.co/datasets/lvwerra/codeparrot-clean-valid) - Code: [repository](https://github.com/huggingface/transformers/tree/master/examples/research_projects/codeparrot) - Spaces: [generation](), [highlighting]()
mansidw/fake-tipping-6000-samples
c3aa367990c8b8e1b517c52011f68e5e56ff8f12
2022-03-19T09:46:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mansidw
null
mansidw/fake-tipping-6000-samples
3
null
transformers
22,042
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: fake-tipping-6000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fake-tipping-6000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ShengdingHu/TriviaQA_T5-large_LoRA
84588c1f0362c76010d8b13a7c8d48302e6e61b3
2022-03-19T16:42:54.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/TriviaQA_T5-large_LoRA
3
null
transformers
22,043
Entry not found
msamogh/autonlp-cai-out-of-scope-649919112
fc32dea7abecfacb139de54ceed36be10e8255f2
2022-03-19T21:40:41.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
msamogh
null
msamogh/autonlp-cai-out-of-scope-649919112
3
null
transformers
22,044
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 0.49924480682533606 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919112 - CO2 Emissions (in grams): 0.49924480682533606 ## Validation Metrics - Loss: 0.49354293942451477 - Accuracy: 0.8064516129032258 - Precision: 0.8181818181818182 - Recall: 0.9 - AUC: 0.8689393939393939 - F1: 0.8571428571428572 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919112 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919112", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919112", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
doppel-neo/hubert-large-ami-shard-experiment-colab
55070c826a63c2dd0a5462e8cdec66b35da32df7
2022-03-29T00:39:37.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
doppel-neo
null
doppel-neo/hubert-large-ami-shard-experiment-colab
3
null
transformers
22,045
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hubert-large-ami-shard-experiment-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-large-ami-shard-experiment-colab This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: nan - eval_wer: 1.0 - eval_runtime: 6.0682 - eval_samples_per_second: 16.479 - eval_steps_per_second: 2.142 - epoch: 1.02 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga
f953f3989441a776219e38ca9d90916da8d75888
2022-03-20T14:36:20.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga
3
null
transformers
22,046
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-cnn_dailymail-1000-lit-evalMA-ga results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-1000-lit-evalMA-ga This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6852 - Rouge1: 25.789 - Rouge2: 11.0694 - Rougel: 20.7716 - Rougelsum: 22.4851 - Gen Len: 46.32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.7061 | 25.8286 | 10.8156 | 20.9502 | 22.6588 | 44.36 | | 1.4533 | 2.0 | 500 | 1.6876 | 26.0862 | 11.5197 | 21.1282 | 23.0963 | 45.65 | | 1.4533 | 3.0 | 750 | 1.6852 | 25.789 | 11.0694 | 20.7716 | 22.4851 | 46.32 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga1
c2aedf8d87d5d496e20a6f81882cabea3798818b
2022-03-20T16:07:53.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga1
3
null
transformers
22,047
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-cnn_dailymail-1000-lit-evalMA-ga1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-1000-lit-evalMA-ga1 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6852 - Rouge1: 25.8242 - Rouge2: 11.1309 - Rougel: 20.7946 - Rougelsum: 22.5591 - Gen Len: 46.32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.7061 | 25.8547 | 10.8573 | 20.8419 | 22.5942 | 44.36 | | 1.4533 | 2.0 | 500 | 1.6876 | 26.105 | 11.5635 | 21.132 | 23.044 | 45.65 | | 1.4533 | 3.0 | 750 | 1.6852 | 25.8242 | 11.1309 | 20.7946 | 22.5591 | 46.32 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
PSW/ut-del-two-at-once-ver2
4791b9487575564ccbfb6b457191d7c4f7a9c8f8
2022-03-21T05:50:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut-del-two-at-once-ver2
3
null
transformers
22,048
Entry not found
Ameer05/bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9
b71c77d7e8cb68186b57ff2c9b1f715e89d33ee0
2022-03-21T07:52:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
Ameer05
null
Ameer05/bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9
3
null
transformers
22,049
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9 This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5988 - Rouge1: 54.4865 - Rouge2: 45.2321 - Rougel: 50.0237 - Rougelsum: 53.2463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.3463 | 1.0 | 44 | 2.0015 | 50.2382 | 40.3332 | 45.6831 | 49.1811 | | 0.2771 | 2.0 | 88 | 2.0433 | 58.3265 | 50.1555 | 54.3681 | 56.9592 | | 0.172 | 3.0 | 132 | 2.2077 | 55.9801 | 47.6352 | 51.9102 | 54.3347 | | 0.1251 | 4.0 | 176 | 2.1834 | 53.3525 | 44.2643 | 49.9253 | 52.0145 | | 0.0901 | 5.0 | 220 | 2.2857 | 56.7259 | 46.7879 | 52.3245 | 55.16 | | 0.0506 | 6.0 | 264 | 2.5131 | 53.8128 | 44.9024 | 50.4617 | 52.8586 | | 0.0434 | 7.0 | 308 | 2.5274 | 52.076 | 41.8135 | 47.3822 | 50.2634 | | 0.0269 | 8.0 | 352 | 2.6374 | 54.7639 | 45.51 | 50.2608 | 53.6006 | | 0.0147 | 9.0 | 396 | 2.5988 | 54.4865 | 45.2321 | 50.0237 | 53.2463 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
danyaljj/gpt-j-6B-step-338500
33df4caf2ae37d2340c49babbdde9c5c6cb30c9b
2022-03-22T23:11:10.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-338500
3
null
transformers
22,050
Entry not found
danyaljj/gpt-j-6B-step-348500
6b0819deab2da7da0ab19fcb1d6ca1f0cf191b26
2022-03-22T23:09:30.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-348500
3
null
transformers
22,051
Entry not found
danyaljj/gpt-j-6B-step-358500
52174f25a3c2c34eaf02bac6b846e6f0fdd91900
2022-03-22T23:11:27.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-358500
3
null
transformers
22,052
Entry not found
danyaljj/gpt-j-6B-step-384000
06b760982498b54291fd3aad58e1e42e47f27ff0
2022-03-22T23:10:24.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-384000
3
null
transformers
22,053
Entry not found
Taekyoon/unicon_v0.5.2_alpha
17b20840fb9a7ce3b9fb24481bb0f93ea3d262d1
2022-03-22T04:03:23.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/unicon_v0.5.2_alpha
3
null
transformers
22,054
Entry not found
edwardjross/xlm-roberta-base-finetuned-panx-it
ff349097ffd8602d1b2a14a7afd527bcc971ff07
2022-03-22T13:30:39.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
edwardjross
null
edwardjross/xlm-roberta-base-finetuned-panx-it
3
null
transformers
22,055
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8330592105263157 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2532 - F1: 0.8331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6951 | 1.0 | 105 | 0.2967 | 0.7682 | | 0.2824 | 2.0 | 210 | 0.2569 | 0.8201 | | 0.1724 | 3.0 | 315 | 0.2532 | 0.8331 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
mukayese/mt5-base-turkish-sum
89b8bd053256c85e56de13a9fa50c97dc3709d7e
2022-03-22T14:32:20.000Z
[ "pytorch", "mt5", "text2text-generation", "dataset:mlsum", "arxiv:2203.01215", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mukayese
null
mukayese/mt5-base-turkish-sum
3
1
transformers
22,056
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-base-turkish-sum results: - task: name: Summarization type: summarization dataset: name: mlsum tu type: mlsum args: tu metrics: - name: Rouge1 type: rouge value: 47.4222 --- # [Mukayese: Turkish NLP Strikes Back](https://arxiv.org/abs/2203.01215) ## Summarization: mukayese/mbart-large-turkish-sum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the mlsum/tu dataset. It achieves the following results on the evaluation set: - Rouge1: 47.4222 - Rouge2: 34.8624 - Rougel: 42.2487 - Rougelsum: 43.9494 Check [this](https://arxiv.org/abs/2203.01215) paper for more details on the model and the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.2+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3 ### Citation ``` @misc{safaya-etal-2022-mukayese, title={Mukayese: Turkish NLP Strikes Back}, author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret}, year={2022}, eprint={2203.01215}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
buddhist-nlp/english-tibetan
71783a72e273d2be90c586542a063b3f8de4f800
2022-03-22T20:42:01.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
buddhist-nlp
null
buddhist-nlp/english-tibetan
3
null
transformers
22,057
mmohamme/distilbert-base-uncased-finetuned-btc_2_ue
570e586d269268eff5545c41151a107ec9bcc667
2022-04-05T23:54:51.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
mmohamme
null
mmohamme/distilbert-base-uncased-finetuned-btc_2_ue
3
null
transformers
22,058
Entry not found
g4ry/classification_experiment
a3cea6de40ca1020ced2a99fff0532c2f9366b48
2022-03-23T14:47:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
g4ry
null
g4ry/classification_experiment
3
null
transformers
22,059
Entry not found
rajeshradhakrishnan/malayalam_news_classifier
f8aac6cf599a76caa42b3a40e51aac40c69e139f
2022-03-23T06:04:12.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
rajeshradhakrishnan
null
rajeshradhakrishnan/malayalam_news_classifier
3
null
transformers
22,060
Entry not found
cammy/led-large-16384-arxiv-100-MDS-global
8fe34e2c356166282175689a6ccc9562aba6656d
2022-03-23T07:05:45.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/led-large-16384-arxiv-100-MDS-global
3
null
transformers
22,061
Entry not found
Gare/opus-mt-en-ro-finetuned-en-to-ro
fdb442380b6739a8490f86e720cef340758e455d
2022-03-23T12:51:55.000Z
[ "pytorch", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Gare
null
Gare/opus-mt-en-ro-finetuned-en-to-ro
3
null
transformers
22,062
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.0527 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2878 - Bleu: 28.0527 - Gen Len: 34.079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7445 | 1.0 | 38145 | 1.2878 | 28.0527 | 34.079 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
abdusahmbzuai/aradia-ctc-v1
ce169be1b9328ca91c22c3d639e8e19f53250838
2022-03-30T13:48:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "abdusahmbzuai/arabic_speech_massive_300hrs", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
abdusahmbzuai
null
abdusahmbzuai/aradia-ctc-v1
3
null
transformers
22,063
--- tags: - automatic-speech-recognition - abdusahmbzuai/arabic_speech_massive_300hrs - generated_from_trainer model-index: - name: aradia-ctc-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aradia-ctc-v1 This model is a fine-tuned version of [/l/users/abdulwahab.sahyoun/aradia/aradia-ctc-v1](https://huggingface.co//l/users/abdulwahab.sahyoun/aradia/aradia-ctc-v1) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.7171 - Wer: 0.3336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.22 | 100 | 5.1889 | 1.0 | | No log | 0.43 | 200 | 3.1129 | 1.0 | | No log | 0.65 | 300 | 3.0503 | 1.0 | | No log | 0.87 | 400 | 3.0279 | 1.0 | | 6.2756 | 1.09 | 500 | 2.9965 | 1.0 | | 6.2756 | 1.3 | 600 | 2.3618 | 0.9993 | | 6.2756 | 1.52 | 700 | 1.2715 | 0.8758 | | 6.2756 | 1.74 | 800 | 0.9971 | 0.7156 | | 6.2756 | 1.96 | 900 | 0.8927 | 0.6382 | | 1.712 | 2.17 | 1000 | 0.8252 | 0.5926 | | 1.712 | 2.39 | 1100 | 0.7794 | 0.5434 | | 1.712 | 2.61 | 1200 | 0.7557 | 0.5092 | | 1.712 | 2.83 | 1300 | 0.7347 | 0.5203 | | 1.712 | 3.04 | 1400 | 0.7189 | 0.4929 | | 0.9305 | 3.26 | 1500 | 0.6820 | 0.4595 | | 0.9305 | 3.48 | 1600 | 0.6792 | 0.4504 | | 0.9305 | 3.69 | 1700 | 0.6596 | 0.4442 | | 0.9305 | 3.91 | 1800 | 0.6756 | 0.4432 | | 0.9305 | 4.13 | 1900 | 0.6663 | 0.4392 | | 0.737 | 4.35 | 2000 | 0.6479 | 0.4372 | | 0.737 | 4.56 | 2100 | 0.6353 | 0.4203 | | 0.737 | 4.78 | 2200 | 0.6251 | 0.4088 | | 0.737 | 5.0 | 2300 | 0.6209 | 0.4177 | | 0.737 | 5.22 | 2400 | 0.6639 | 0.4094 | | 0.6247 | 5.43 | 2500 | 0.6408 | 0.3970 | | 0.6247 | 5.65 | 2600 | 0.6373 | 0.3932 | | 0.6247 | 5.87 | 2700 | 0.6411 | 0.3928 | | 0.6247 | 6.09 | 2800 | 0.6378 | 0.3897 | | 0.6247 | 6.3 | 2900 | 0.6396 | 0.3929 | | 0.5443 | 6.52 | 3000 | 0.6544 | 0.3864 | | 0.5443 | 6.74 | 3100 | 0.6218 | 0.3786 | | 0.5443 | 6.96 | 3200 | 0.6200 | 0.3784 | | 0.5443 | 7.17 | 3300 | 0.6157 | 0.3791 | | 0.5443 | 7.39 | 3400 | 0.6317 | 0.3798 | | 0.4845 | 7.61 | 3500 | 0.6540 | 0.3771 | | 0.4845 | 7.83 | 3600 | 0.6436 | 0.3670 | | 0.4845 | 8.04 | 3700 | 0.6335 | 0.3695 | | 0.4845 | 8.26 | 3800 | 0.6579 | 0.3610 | | 0.4845 | 8.48 | 3900 | 0.6170 | 0.3613 | | 0.4279 | 8.69 | 4000 | 0.6523 | 0.3617 | | 0.4279 | 8.91 | 4100 | 0.6349 | 0.3577 | | 0.4279 | 9.13 | 4200 | 0.6344 | 0.3673 | | 0.4279 | 9.35 | 4300 | 0.6215 | 0.3641 | | 0.4279 | 9.56 | 4400 | 0.6513 | 0.3608 | | 0.3825 | 9.78 | 4500 | 0.6386 | 0.3605 | | 0.3825 | 10.0 | 4600 | 0.6724 | 0.3549 | | 0.3825 | 10.22 | 4700 | 0.6776 | 0.3602 | | 0.3825 | 10.43 | 4800 | 0.6739 | 0.3544 | | 0.3825 | 10.65 | 4900 | 0.6688 | 0.3557 | | 0.3477 | 10.87 | 5000 | 0.6674 | 0.3564 | | 0.3477 | 11.09 | 5100 | 0.6786 | 0.3476 | | 0.3477 | 11.3 | 5200 | 0.6818 | 0.3478 | | 0.3477 | 11.52 | 5300 | 0.6874 | 0.3470 | | 0.3477 | 11.74 | 5400 | 0.6993 | 0.3424 | | 0.3101 | 11.96 | 5500 | 0.6950 | 0.3404 | | 0.3101 | 12.17 | 5600 | 0.6872 | 0.3406 | | 0.3101 | 12.39 | 5700 | 0.6846 | 0.3424 | | 0.3101 | 12.61 | 5800 | 0.7051 | 0.3405 | | 0.3101 | 12.83 | 5900 | 0.7051 | 0.3378 | | 0.2859 | 13.04 | 6000 | 0.6955 | 0.3403 | | 0.2859 | 13.26 | 6100 | 0.7115 | 0.3390 | | 0.2859 | 13.48 | 6200 | 0.7074 | 0.3384 | | 0.2859 | 13.69 | 6300 | 0.7002 | 0.3376 | | 0.2859 | 13.91 | 6400 | 0.7171 | 0.3360 | | 0.2714 | 14.13 | 6500 | 0.7193 | 0.3341 | | 0.2714 | 14.35 | 6600 | 0.7132 | 0.3347 | | 0.2714 | 14.56 | 6700 | 0.7184 | 0.3353 | | 0.2714 | 14.78 | 6800 | 0.7171 | 0.3331 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
Graphcore/roberta-base-squad2
0c6a5fb56d084dde2538bab108d23e79dfe2b23f
2022-05-25T18:25:20.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad_v2", "arxiv:1907.11692", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Graphcore
null
Graphcore/roberta-base-squad2
3
null
transformers
22,064
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-squad2 results: [] --- # Graphcore/roberta-base-squad2 Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description RoBERTa is based on BERT pretraining approach and improves on it by carefully evaluating a number of design decisions of BERT pretraining which it found to cause the model to be undertrained. It suggested a way to improve the performance by training the model longer, with bigger batches over more data, removing the next sentence prediction objectives, training on longer sequences and dynamically changing the mask pattern applied to the training data. As a result, it achieved state-of-the-art results on GLUE, RACE and SQuAD. Paper link : [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/pdf/1907.11692.pdf) ## Intended uses & limitations This model is a fine-tuned version of [HuggingFace/roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. ## Training and evaluation data Trained and evaluated on the SQuAD v2 dataset: - [HuggingFace/squad_v2](https://huggingface.co/datasets/squad_v2). ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/question-answering/run_qa.py \ --ipu_config_name Graphcore/roberta-base-ipu \ --model_name_or_path roberta-base \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 2 \ --pod_type pod16 \ --learning_rate 7e-5 \ --max_seq_length 384 \ --doc_stride 128 \ --seed 1984 \ --lr_scheduler_type linear \ --loss_scaling 64 \ --weight_decay 0.01 \ --warmup_ratio 0.2 \ --logging_steps 1 \ --save_steps -1 \ --dataloader_num_workers 64 \ --output_dir roberta-base-squad2 \ --overwrite_output_dir \ --push_to_hub ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 1984 - distributed_type: IPU - total_train_batch_size: 256 - total_eval_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** epoch = 3.0 train_loss = 0.9982 train_runtime = 0:04:44.21 train_samples = 131823 train_samples_per_second = 1391.43 train_steps_per_second = 5.425 ***** eval metrics ***** epoch = 3.0 eval_HasAns_exact = 78.1208 eval_HasAns_f1 = 84.6569 eval_HasAns_total = 5928 eval_NoAns_exact = 82.0353 eval_NoAns_f1 = 82.0353 eval_NoAns_total = 5945 eval_best_exact = 80.0809 eval_best_exact_thresh = 0.0 eval_best_f1 = 83.3442 eval_best_f1_thresh = 0.0 eval_exact = 80.0809 eval_f1 = 83.3442 eval_samples = 12165 eval_total = 11873 ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
groversakshi1998/vul_cwe
8952bcd469cb5946795792a0c3617c3a4de6156c
2022-03-23T13:45:24.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
groversakshi1998
null
groversakshi1998/vul_cwe
3
null
transformers
22,065
Entry not found
PSW/ut_del_n_per_each_ver1_2epoch
301847c236ac908c2269817bc0b174d7d9210782
2022-03-23T17:11:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_n_per_each_ver1_2epoch
3
null
transformers
22,066
Entry not found
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-5
211a3a936d1afa7debc41820dc9f674819258c74
2022-03-24T04:48:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-5
3
null
transformers
22,067
Entry not found
rurupang/roberta-base-finetuned-sts-accuracy
bda5f611aed4b3bffbf2250346c6e0581b4686ea
2022-03-24T07:31:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
rurupang
null
rurupang/roberta-base-finetuned-sts-accuracy
3
null
transformers
22,068
Entry not found
yy642/bert-base-uncased-finetuned-rte-max-length-512-epoch-5
f52a3bb7daf4c8f95de08d6736aa35e8f5795555
2022-03-24T05:04:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-rte-max-length-512-epoch-5
3
null
transformers
22,069
Entry not found
rurupang/roberta-base-finetuned-sts-pearsonr_
72198f48bd1dd1b380107b056598b0c347bd48fb
2022-03-24T14:09:46.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
rurupang
null
rurupang/roberta-base-finetuned-sts-pearsonr_
3
null
transformers
22,070
Entry not found
Helsinki-NLP/opus-mt-tc-big-zle-fr
6a234a4b0aa1de076411b6a7573bfc1878cfb253
2022-06-01T13:09:33.000Z
[ "pytorch", "marian", "text2text-generation", "be", "fr", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-fr
3
null
transformers
22,071
--- language: - be - fr - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-fr results: - task: name: Translation bel-fra type: translation args: bel-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: bel-fra metrics: - name: BLEU type: bleu value: 46.4 - task: name: Translation multi-fra type: translation args: multi-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: multi-fra metrics: - name: BLEU type: bleu value: 52.4 - task: name: Translation rus-fra type: translation args: rus-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: rus-fra metrics: - name: BLEU type: bleu value: 51.8 - task: name: Translation ukr-fra type: translation args: ukr-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: ukr-fra metrics: - name: BLEU type: bleu value: 50.7 - task: name: Translation rus-fra type: translation args: rus-fra dataset: name: newstest2012 type: wmt-2012-news args: rus-fra metrics: - name: BLEU type: bleu value: 25.3 - task: name: Translation rus-fra type: translation args: rus-fra dataset: name: newstest2013 type: wmt-2013-news args: rus-fra metrics: - name: BLEU type: bleu value: 29.7 --- # opus-mt-tc-big-zle-fr Neural machine translation model for translating from East Slavic languages (zle) to French (fr). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rus ukr * target language(s): fra * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fra/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-fra README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-fra/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Подавай блюдо на тарелке.", "Операція не може чекати." ] model_name = "pytorch-models/opus-mt-tc-big-zle-fr" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Servez le plat dans l'assiette. # L'opération ne peut pas attendre. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-fr") print(pipe("Подавай блюдо на тарелке.")) # expected output: Servez le plat dans l'assiette. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fra/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fra/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.65415 | 46.4 | 283 | 2005 | | multi-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.68422 | 52.4 | 10000 | 66671 | | rus-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.68699 | 51.8 | 11490 | 80573 | | ukr-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.67887 | 50.7 | 10035 | 63222 | | rus-fra | newstest2012 | 0.53679 | 25.3 | 3003 | 78011 | | rus-fra | newstest2013 | 0.56211 | 29.7 | 3000 | 70037 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 22:45:20 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-pt
af6ba1dfd8770924e304c76a4b255a9759af936d
2022-06-01T13:07:53.000Z
[ "pytorch", "marian", "text2text-generation", "pt", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-pt
3
null
transformers
22,072
--- language: - pt - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-pt results: - task: name: Translation rus-por type: translation args: rus-por dataset: name: flores101-devtest type: flores_101 args: rus por devtest metrics: - name: BLEU type: bleu value: 31.9 - task: name: Translation ukr-por type: translation args: ukr-por dataset: name: flores101-devtest type: flores_101 args: ukr por devtest metrics: - name: BLEU type: bleu value: 33.6 - task: name: Translation rus-por type: translation args: rus-por dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-por metrics: - name: BLEU type: bleu value: 42.8 - task: name: Translation ukr-por type: translation args: ukr-por dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-por metrics: - name: BLEU type: bleu value: 45.2 --- # opus-mt-tc-big-zle-pt Neural machine translation model for translating from East Slavic languages (zle) to Portuguese (pt). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): rus ukr * target language(s): por * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-por/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-por README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-por/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>por<< Я маленькая.", ">>por<< Я войду первым." ] model_name = "pytorch-models/opus-mt-tc-big-zle-pt" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Sou pequena. # Eu entro primeiro. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-pt") print(pipe(">>por<< Я маленькая.")) # expected output: Sou pequena. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-por/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-por/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | rus-por | tatoeba-test-v2021-08-07 | 0.63749 | 42.8 | 10000 | 74713 | | ukr-por | tatoeba-test-v2021-08-07 | 0.65288 | 45.2 | 3372 | 21315 | | bel-por | flores101-devtest | 0.48481 | 16.2 | 1012 | 26519 | | rus-por | flores101-devtest | 0.58567 | 31.9 | 1012 | 26519 | | ukr-por | flores101-devtest | 0.59378 | 33.6 | 1012 | 26519 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 23:45:22 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-zls
f594ac529d02042db4f283494507b50a56e7dbd9
2022-06-01T13:09:15.000Z
[ "pytorch", "marian", "text2text-generation", "be", "bg", "hr", "ru", "sh", "sl", "sr_Cyrl", "sr_Latn", "uk", "zle", "zls", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-zls
3
null
transformers
22,073
--- language: - be - bg - hr - ru - sh - sl - sr_Cyrl - sr_Latn - uk - zle - zls tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-zls results: - task: name: Translation rus-bul type: translation args: rus-bul dataset: name: flores101-devtest type: flores_101 args: rus bul devtest metrics: - name: BLEU type: bleu value: 28.9 - task: name: Translation rus-hrv type: translation args: rus-hrv dataset: name: flores101-devtest type: flores_101 args: rus hrv devtest metrics: - name: BLEU type: bleu value: 23.2 - task: name: Translation rus-mkd type: translation args: rus-mkd dataset: name: flores101-devtest type: flores_101 args: rus mkd devtest metrics: - name: BLEU type: bleu value: 24.3 - task: name: Translation rus-slv type: translation args: rus-slv dataset: name: flores101-devtest type: flores_101 args: rus slv devtest metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation rus-srp_Cyrl type: translation args: rus-srp_Cyrl dataset: name: flores101-devtest type: flores_101 args: rus srp_Cyrl devtest metrics: - name: BLEU type: bleu value: 24.1 - task: name: Translation ukr-bul type: translation args: ukr-bul dataset: name: flores101-devtest type: flores_101 args: ukr bul devtest metrics: - name: BLEU type: bleu value: 30.8 - task: name: Translation ukr-hrv type: translation args: ukr-hrv dataset: name: flores101-devtest type: flores_101 args: ukr hrv devtest metrics: - name: BLEU type: bleu value: 24.6 - task: name: Translation ukr-mkd type: translation args: ukr-mkd dataset: name: flores101-devtest type: flores_101 args: ukr mkd devtest metrics: - name: BLEU type: bleu value: 26.2 - task: name: Translation ukr-slv type: translation args: ukr-slv dataset: name: flores101-devtest type: flores_101 args: ukr slv devtest metrics: - name: BLEU type: bleu value: 24.2 - task: name: Translation ukr-srp_Cyrl type: translation args: ukr-srp_Cyrl dataset: name: flores101-devtest type: flores_101 args: ukr srp_Cyrl devtest metrics: - name: BLEU type: bleu value: 26.2 - task: name: Translation rus-bul type: translation args: rus-bul dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-bul metrics: - name: BLEU type: bleu value: 53.7 - task: name: Translation rus-hbs type: translation args: rus-hbs dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-hbs metrics: - name: BLEU type: bleu value: 49.4 - task: name: Translation rus-slv type: translation args: rus-slv dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-slv metrics: - name: BLEU type: bleu value: 21.5 - task: name: Translation rus-srp_Cyrl type: translation args: rus-srp_Cyrl dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-srp_Cyrl metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation rus-srp_Latn type: translation args: rus-srp_Latn dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-srp_Latn metrics: - name: BLEU type: bleu value: 51.7 - task: name: Translation ukr-bul type: translation args: ukr-bul dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-bul metrics: - name: BLEU type: bleu value: 61.3 - task: name: Translation ukr-hbs type: translation args: ukr-hbs dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-hbs metrics: - name: BLEU type: bleu value: 52.1 - task: name: Translation ukr-hrv type: translation args: ukr-hrv dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-hrv metrics: - name: BLEU type: bleu value: 50.1 - task: name: Translation ukr-srp_Cyrl type: translation args: ukr-srp_Cyrl dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-srp_Cyrl metrics: - name: BLEU type: bleu value: 54.7 - task: name: Translation ukr-srp_Latn type: translation args: ukr-srp_Latn dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-srp_Latn metrics: - name: BLEU type: bleu value: 53.4 --- # opus-mt-tc-big-zle-zls Neural machine translation model for translating from East Slavic languages (zle) to South Slavic languages (zls). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rus ukr * target language(s): bul hbs hrv slv srp_Cyrl srp_Latn * valid target language labels: >>bul<< >>hbs<< >>hrv<< >>slv<< >>srp_Cyrl<< >>srp_Latn<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-zls README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zls/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bul<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>bul<< Новы каранавірус вельмі заразны.", ">>srp_Latn<< Моє ім'я — Саллі." ] model_name = "pytorch-models/opus-mt-tc-big-zle-zls" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Короната е силно заразна. # Zovem se Sali. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zls") print(pipe(">>bul<< Новы каранавірус вельмі заразны.")) # expected output: Короната е силно заразна. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | rus-bul | tatoeba-test-v2021-08-07 | 0.71515 | 53.7 | 1247 | 8272 | | rus-hbs | tatoeba-test-v2021-08-07 | 0.69192 | 49.4 | 2500 | 14736 | | rus-slv | tatoeba-test-v2021-08-07 | 0.38051 | 21.5 | 657 | 3969 | | rus-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.66622 | 46.1 | 881 | 5407 | | rus-srp_Latn | tatoeba-test-v2021-08-07 | 0.70990 | 51.7 | 1483 | 8552 | | ukr-bul | tatoeba-test-v2021-08-07 | 0.77283 | 61.3 | 1020 | 5181 | | ukr-hbs | tatoeba-test-v2021-08-07 | 0.69401 | 52.1 | 942 | 5130 | | ukr-hrv | tatoeba-test-v2021-08-07 | 0.67202 | 50.1 | 389 | 2302 | | ukr-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.70064 | 54.7 | 205 | 1112 | | ukr-srp_Latn | tatoeba-test-v2021-08-07 | 0.72405 | 53.4 | 348 | 1716 | | bel-bul | flores101-devtest | 0.49528 | 16.1 | 1012 | 24700 | | bel-hrv | flores101-devtest | 0.46308 | 12.4 | 1012 | 22423 | | bel-mkd | flores101-devtest | 0.48608 | 13.5 | 1012 | 24314 | | bel-slv | flores101-devtest | 0.44452 | 12.2 | 1012 | 23425 | | bel-srp_Cyrl | flores101-devtest | 0.44424 | 12.6 | 1012 | 23456 | | rus-bul | flores101-devtest | 0.58653 | 28.9 | 1012 | 24700 | | rus-hrv | flores101-devtest | 0.53494 | 23.2 | 1012 | 22423 | | rus-mkd | flores101-devtest | 0.55184 | 24.3 | 1012 | 24314 | | rus-slv | flores101-devtest | 0.52201 | 23.1 | 1012 | 23425 | | rus-srp_Cyrl | flores101-devtest | 0.53038 | 24.1 | 1012 | 23456 | | ukr-bul | flores101-devtest | 0.59625 | 30.8 | 1012 | 24700 | | ukr-hrv | flores101-devtest | 0.54530 | 24.6 | 1012 | 22423 | | ukr-mkd | flores101-devtest | 0.56822 | 26.2 | 1012 | 24314 | | ukr-slv | flores101-devtest | 0.53092 | 24.2 | 1012 | 23425 | | ukr-srp_Cyrl | flores101-devtest | 0.54618 | 26.2 | 1012 | 23456 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:46:26 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-zlw
ddb3434ec84147e0b03c663e9de130f589107914
2022-06-01T13:08:06.000Z
[ "pytorch", "marian", "text2text-generation", "be", "cs", "pl", "ru", "uk", "zle", "zlw", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-zlw
3
null
transformers
22,074
--- language: - be - cs - pl - ru - uk - zle - zlw tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-zlw results: - task: name: Translation rus-ces type: translation args: rus-ces dataset: name: flores101-devtest type: flores_101 args: rus ces devtest metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation ukr-ces type: translation args: ukr-ces dataset: name: flores101-devtest type: flores_101 args: ukr ces devtest metrics: - name: BLEU type: bleu value: 25.1 - task: name: Translation bel-pol type: translation args: bel-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-pol metrics: - name: BLEU type: bleu value: 47.1 - task: name: Translation rus-ces type: translation args: rus-ces dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-ces metrics: - name: BLEU type: bleu value: 53.4 - task: name: Translation rus-pol type: translation args: rus-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-pol metrics: - name: BLEU type: bleu value: 53.7 - task: name: Translation ukr-ces type: translation args: ukr-ces dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-ces metrics: - name: BLEU type: bleu value: 58.0 - task: name: Translation ukr-pol type: translation args: ukr-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-pol metrics: - name: BLEU type: bleu value: 57.0 - task: name: Translation rus-ces type: translation args: rus-ces dataset: name: newstest2013 type: wmt-2013-news args: rus-ces metrics: - name: BLEU type: bleu value: 26.0 --- # opus-mt-tc-big-zle-zlw Neural machine translation model for translating from East Slavic languages (zle) to West Slavic languages (zlw). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rus ukr * target language(s): ces pol * valid target language labels: >>ces<< >>pol<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zlw/opusTCv20210807+bt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-zlw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zlw/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>ces<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>pol<< Это метафора.", ">>pol<< Что вы делали?" ] model_name = "pytorch-models/opus-mt-tc-big-zle-zlw" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # To metafora. # Co robiliście? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zlw") print(pipe(">>pol<< Это метафора.")) # expected output: To metafora. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zlw/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zlw/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-pol | tatoeba-test-v2021-08-07 | 0.65517 | 47.1 | 287 | 1706 | | rus-ces | tatoeba-test-v2021-08-07 | 0.69695 | 53.4 | 2934 | 16831 | | rus-pol | tatoeba-test-v2021-08-07 | 0.72176 | 53.7 | 3543 | 21505 | | ukr-ces | tatoeba-test-v2021-08-07 | 0.73149 | 58.0 | 1787 | 8550 | | ukr-pol | tatoeba-test-v2021-08-07 | 0.74649 | 57.0 | 2519 | 13201 | | bel-ces | flores101-devtest | 0.41248 | 11.1 | 1012 | 22101 | | bel-pol | flores101-devtest | 0.42240 | 10.2 | 1012 | 22520 | | rus-ces | flores101-devtest | 0.50971 | 23.1 | 1012 | 22101 | | rus-pol | flores101-devtest | 0.48672 | 18.4 | 1012 | 22520 | | ukr-ces | flores101-devtest | 0.52482 | 25.1 | 1012 | 22101 | | ukr-pol | flores101-devtest | 0.48790 | 18.8 | 1012 | 22520 | | rus-ces | newstest2012 | 0.45834 | 18.8 | 3003 | 65456 | | rus-ces | newstest2013 | 0.52364 | 26.0 | 3000 | 57250 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:50:29 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-gmq-zle
ccd7a6cf94e0f8bb143ec00baf448f36f2847e93
2022-06-01T13:08:28.000Z
[ "pytorch", "marian", "text2text-generation", "tc", "big", "gmq", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-gmq-zle
3
null
transformers
22,075
--- language: - da - gmq - is - nb - false - ru - sv - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-gmq-zle results: - task: name: Translation dan-rus type: translation args: dan-rus dataset: name: flores101-devtest type: flores_101 args: dan rus devtest metrics: - name: BLEU type: bleu value: 25.6 - task: name: Translation dan-ukr type: translation args: dan-ukr dataset: name: flores101-devtest type: flores_101 args: dan ukr devtest metrics: - name: BLEU type: bleu value: 25.5 - task: name: Translation nob-rus type: translation args: nob-rus dataset: name: flores101-devtest type: flores_101 args: nob rus devtest metrics: - name: BLEU type: bleu value: 22.1 - task: name: Translation nob-ukr type: translation args: nob-ukr dataset: name: flores101-devtest type: flores_101 args: nob ukr devtest metrics: - name: BLEU type: bleu value: 21.6 - task: name: Translation swe-rus type: translation args: swe-rus dataset: name: flores101-devtest type: flores_101 args: swe rus devtest metrics: - name: BLEU type: bleu value: 25.8 - task: name: Translation swe-ukr type: translation args: swe-ukr dataset: name: flores101-devtest type: flores_101 args: swe ukr devtest metrics: - name: BLEU type: bleu value: 25.7 - task: name: Translation dan-rus type: translation args: dan-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: dan-rus metrics: - name: BLEU type: bleu value: 53.9 - task: name: Translation nob-rus type: translation args: nob-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-rus metrics: - name: BLEU type: bleu value: 45.8 - task: name: Translation swe-rus type: translation args: swe-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: swe-rus metrics: - name: BLEU type: bleu value: 45.9 --- # opus-mt-tc-big-gmq-zle Neural machine translation model for translating from North Germanic languages (gmq) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): dan isl nob nor swe * target language(s): rus ukr * valid target language labels: >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pbt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zle/opusTCv20210807+pbt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT gmq-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>rus<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>bel<< Det er allerede torsdag i morgen.", ">>ukr<< Tom lekte katt och råtta med Mary." ] model_name = "pytorch-models/opus-mt-tc-big-gmq-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Гэта ўжо чацвер заўтра. # Том грав кішку і щура з Марією. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-zle") print(pipe(">>bel<< Det er allerede torsdag i morgen.")) # expected output: Гэта ўжо чацвер заўтра. ``` ## Benchmarks * test set translations: [opusTCv20210807+pbt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zle/opusTCv20210807+pbt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+pbt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zle/opusTCv20210807+pbt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-rus | tatoeba-test-v2021-08-07 | 0.72627 | 53.9 | 1713 | 10480 | | nob-rus | tatoeba-test-v2021-08-07 | 0.66881 | 45.8 | 1277 | 10659 | | swe-rus | tatoeba-test-v2021-08-07 | 0.66248 | 45.9 | 1282 | 7659 | | dan-rus | flores101-devtest | 0.53271 | 25.6 | 1012 | 23295 | | dan-ukr | flores101-devtest | 0.54273 | 25.5 | 1012 | 22810 | | nob-rus | flores101-devtest | 0.50426 | 22.1 | 1012 | 23295 | | nob-ukr | flores101-devtest | 0.51156 | 21.6 | 1012 | 22810 | | swe-rus | flores101-devtest | 0.53226 | 25.8 | 1012 | 23295 | | swe-ukr | flores101-devtest | 0.54257 | 25.7 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 02:08:53 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-pt-zle
c6cc16bcc2ef18fbe47c4b9cabcba106307af0bf
2022-06-01T13:04:47.000Z
[ "pytorch", "marian", "text2text-generation", "pt", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-pt-zle
3
null
transformers
22,076
--- language: - pt - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-pt-zle results: - task: name: Translation por-rus type: translation args: por-rus dataset: name: flores101-devtest type: flores_101 args: por rus devtest metrics: - name: BLEU type: bleu value: 26.8 - task: name: Translation por-ukr type: translation args: por-ukr dataset: name: flores101-devtest type: flores_101 args: por ukr devtest metrics: - name: BLEU type: bleu value: 25.1 - task: name: Translation por-rus type: translation args: por-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: por-rus metrics: - name: BLEU type: bleu value: 47.6 - task: name: Translation por-ukr type: translation args: por-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: por-ukr metrics: - name: BLEU type: bleu value: 44.7 --- # opus-mt-tc-big-pt-zle Neural machine translation model for translating from Portuguese (pt) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): por * target language(s): rus ukr * valid target language labels: >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/por-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT por-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/por-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>rus<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ukr<< Esse é o meu lugar.", ">>rus<< Tom tem problemas de saúde." ] model_name = "pytorch-models/opus-mt-tc-big-pt-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Це моє місце. # У Тома проблемы со здоровьем. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-pt-zle") print(pipe(">>ukr<< Esse é o meu lugar.")) # expected output: Це моє місце. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/por-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/por-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | por-rus | tatoeba-test-v2021-08-07 | 0.67980 | 47.6 | 10000 | 65326 | | por-ukr | tatoeba-test-v2021-08-07 | 0.65867 | 44.7 | 3372 | 18933 | | por-rus | flores101-devtest | 0.54675 | 26.8 | 1012 | 23295 | | por-ukr | flores101-devtest | 0.53690 | 25.1 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 03:20:20 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-es-zle
37bf43a8b98a85d2693a80926f0092e8a3b0698d
2022-06-01T13:04:35.000Z
[ "pytorch", "marian", "text2text-generation", "be", "es", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-es-zle
3
null
transformers
22,077
--- language: - be - es - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-es-zle results: - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: flores101-devtest type: flores_101 args: spa rus devtest metrics: - name: BLEU type: bleu value: 20.2 - task: name: Translation spa-bel type: translation args: spa-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-bel metrics: - name: BLEU type: bleu value: 27.5 - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-rus metrics: - name: BLEU type: bleu value: 49.0 - task: name: Translation spa-ukr type: translation args: spa-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-ukr metrics: - name: BLEU type: bleu value: 42.3 - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: newstest2012 type: wmt-2012-news args: spa-rus metrics: - name: BLEU type: bleu value: 24.6 - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: newstest2013 type: wmt-2013-news args: spa-rus metrics: - name: BLEU type: bleu value: 26.9 --- # opus-mt-tc-big-es-zle Neural machine translation model for translating from Spanish (es) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): spa * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT spa-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Su novela se vendió bien.", ">>ukr<< Quiero ir a Corea del Norte." ] model_name = "pytorch-models/opus-mt-tc-big-es-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Его роман хорошо продавался. # Я хочу поїхати до Північної Кореї. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-es-zle") print(pipe(">>rus<< Su novela se vendió bien.")) # expected output: Его роман хорошо продавался. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | spa-bel | tatoeba-test-v2021-08-07 | 0.54506 | 27.5 | 205 | 1259 | | spa-rus | tatoeba-test-v2021-08-07 | 0.68523 | 49.0 | 10506 | 69242 | | spa-ukr | tatoeba-test-v2021-08-07 | 0.63502 | 42.3 | 10115 | 54544 | | spa-rus | flores101-devtest | 0.49913 | 20.2 | 1012 | 23295 | | spa-ukr | flores101-devtest | 0.47772 | 17.4 | 1012 | 22810 | | spa-rus | newstest2012 | 0.52436 | 24.6 | 3003 | 64790 | | spa-rus | newstest2013 | 0.54249 | 26.9 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 03:35:13 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zlw-zle
308095a5a21cae82c8b1acd65410451c88f80af2
2022-06-01T13:02:31.000Z
[ "pytorch", "marian", "text2text-generation", "be", "cs", "dsb", "hsb", "pl", "ru", "uk", "zle", "zlw", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zlw-zle
3
null
transformers
22,078
--- language: - be - cs - dsb - hsb - pl - ru - uk - zle - zlw tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zlw-zle results: - task: name: Translation ces-rus type: translation args: ces-rus dataset: name: flores101-devtest type: flores_101 args: ces rus devtest metrics: - name: BLEU type: bleu value: 24.2 - task: name: Translation ces-ukr type: translation args: ces-ukr dataset: name: flores101-devtest type: flores_101 args: ces ukr devtest metrics: - name: BLEU type: bleu value: 22.9 - task: name: Translation pol-rus type: translation args: pol-rus dataset: name: flores101-devtest type: flores_101 args: pol rus devtest metrics: - name: BLEU type: bleu value: 20.1 - task: name: Translation ces-rus type: translation args: ces-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ces-rus metrics: - name: BLEU type: bleu value: 56.4 - task: name: Translation ces-ukr type: translation args: ces-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ces-ukr metrics: - name: BLEU type: bleu value: 53.0 - task: name: Translation pol-bel type: translation args: pol-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: pol-bel metrics: - name: BLEU type: bleu value: 29.4 - task: name: Translation pol-rus type: translation args: pol-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: pol-rus metrics: - name: BLEU type: bleu value: 55.3 - task: name: Translation pol-ukr type: translation args: pol-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: pol-ukr metrics: - name: BLEU type: bleu value: 48.6 - task: name: Translation ces-rus type: translation args: ces-rus dataset: name: newstest2012 type: wmt-2012-news args: ces-rus metrics: - name: BLEU type: bleu value: 21.0 - task: name: Translation ces-rus type: translation args: ces-rus dataset: name: newstest2013 type: wmt-2013-news args: ces-rus metrics: - name: BLEU type: bleu value: 27.2 --- # opus-mt-tc-big-zlw-zle Neural machine translation model for translating from West Slavic languages (zlw) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-19 * source language(s): ces dsb hsb pol * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-19.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zle/opusTCv20210807+bt_transformer-big_2022-03-19.zip) * more information released models: [OPUS-MT zlw-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Je vystudovaný právník.", ">>rus<< Gdzie jest moja książka ?" ] model_name = "pytorch-models/opus-mt-tc-big-zlw-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Он дипломированный юрист. # Где моя книга? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zlw-zle") print(pipe(">>rus<< Je vystudovaný právník.")) # expected output: Он дипломированный юрист. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-19.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zle/opusTCv20210807+bt_transformer-big_2022-03-19.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-19.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zle/opusTCv20210807+bt_transformer-big_2022-03-19.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ces-rus | tatoeba-test-v2021-08-07 | 0.73154 | 56.4 | 2934 | 17790 | | ces-ukr | tatoeba-test-v2021-08-07 | 0.69934 | 53.0 | 1787 | 8891 | | pol-bel | tatoeba-test-v2021-08-07 | 0.51039 | 29.4 | 287 | 1730 | | pol-rus | tatoeba-test-v2021-08-07 | 0.73156 | 55.3 | 3543 | 22067 | | pol-ukr | tatoeba-test-v2021-08-07 | 0.68247 | 48.6 | 2519 | 13535 | | ces-rus | flores101-devtest | 0.52316 | 24.2 | 1012 | 23295 | | ces-ukr | flores101-devtest | 0.52261 | 22.9 | 1012 | 22810 | | pol-rus | flores101-devtest | 0.49414 | 20.1 | 1012 | 23295 | | pol-ukr | flores101-devtest | 0.48250 | 18.3 | 1012 | 22810 | | ces-rus | newstest2012 | 0.49469 | 21.0 | 3003 | 64790 | | ces-rus | newstest2013 | 0.54197 | 27.2 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 04:13:23 EET 2022 * port machine: LM0-400-22516.local
huggingtweets/melindagates
ac24a3e0836d808d23bc4505c0680d710892c406
2022-03-24T13:28:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/melindagates
3
null
transformers
22,079
--- language: en thumbnail: http://www.huggingtweets.com/melindagates/1648128524647/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1054713372845862912/1SR434Pr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Melinda French Gates</div> <div style="text-align: center; font-size: 14px;">@melindagates</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Melinda French Gates. | Data | Melinda French Gates | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 231 | | Short tweets | 2 | | Tweets kept | 3017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39nn0ehw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melindagates's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xcx4bfy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xcx4bfy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/melindagates') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
socialmediaie/bertweet-base_wnut17_ner
1e8a9b197911a2c8a36fd960dc312809d0c108bd
2022-04-01T16:30:20.000Z
[ "pytorch", "roberta", "token-classification", "dataset:wnut_17", "transformers", "generated_from_trainer", "named-entity-recognition", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
socialmediaie
null
socialmediaie/bertweet-base_wnut17_ner
3
null
transformers
22,080
--- license: apache-2.0 tags: - generated_from_trainer - named-entity-recognition - token-classification datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: fine_tune_bertweet-base-lp-ft results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: semval metrics: - name: Precision type: precision value: 0.6154830454254638 - name: Recall type: recall value: 0.49844559585492226 - name: F1 type: f1 value: 0.5508159175493844 - name: Accuracy type: accuracy value: 0.9499198834668608 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bertweet-base finetuned on wnut17_ner This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the [wnut_17](https://huggingface.co/datasets/wnut_17) dataset. It achieves the following results on the evaluation set: - Loss: 0.3376 - Overall Precision: 0.6803 - Overall Recall: 0.6096 - Overall F1: 0.6430 - Overall Accuracy: 0.9509 - Corporation F1: 0.2975 - Creative-work F1: 0.4436 - Group F1: 0.3624 - Location F1: 0.6834 - Person F1: 0.7902 - Product F1: 0.3887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Corporation F1 | Creative-work F1 | Group F1 | Location F1 | Person F1 | Product F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:--------:|:-----------:|:---------:|:----------:| | 0.0215 | 1.0 | 213 | 0.2913 | 0.7026 | 0.5905 | 0.6417 | 0.9507 | 0.2832 | 0.4444 | 0.2975 | 0.6854 | 0.7788 | 0.4015 | | 0.0213 | 2.0 | 426 | 0.3052 | 0.6774 | 0.5772 | 0.6233 | 0.9495 | 0.2830 | 0.3483 | 0.3231 | 0.6857 | 0.7728 | 0.3794 | | 0.0288 | 3.0 | 639 | 0.3378 | 0.7061 | 0.5507 | 0.6188 | 0.9467 | 0.3077 | 0.4184 | 0.3529 | 0.6222 | 0.7532 | 0.3910 | | 0.0124 | 4.0 | 852 | 0.2712 | 0.6574 | 0.6121 | 0.6340 | 0.9502 | 0.3077 | 0.4842 | 0.3167 | 0.6809 | 0.7735 | 0.3986 | | 0.0208 | 5.0 | 1065 | 0.2905 | 0.7108 | 0.6063 | 0.6544 | 0.9518 | 0.3063 | 0.4286 | 0.3419 | 0.7052 | 0.7913 | 0.4223 | | 0.0071 | 6.0 | 1278 | 0.3189 | 0.6756 | 0.5847 | 0.6269 | 0.9494 | 0.2759 | 0.4380 | 0.3256 | 0.6744 | 0.7781 | 0.3779 | | 0.0073 | 7.0 | 1491 | 0.3593 | 0.7330 | 0.5540 | 0.6310 | 0.9476 | 0.3061 | 0.4388 | 0.3784 | 0.6946 | 0.7631 | 0.3374 | | 0.0135 | 8.0 | 1704 | 0.3564 | 0.6875 | 0.5482 | 0.6100 | 0.9471 | 0.34 | 0.4179 | 0.3088 | 0.6632 | 0.7486 | 0.3695 | | 0.0097 | 9.0 | 1917 | 0.3085 | 0.6598 | 0.6395 | 0.6495 | 0.9516 | 0.3111 | 0.4609 | 0.3836 | 0.7090 | 0.7906 | 0.4083 | | 0.0108 | 10.0 | 2130 | 0.3045 | 0.6605 | 0.6478 | 0.6541 | 0.9509 | 0.3529 | 0.4580 | 0.3649 | 0.6897 | 0.7843 | 0.4387 | | 0.013 | 11.0 | 2343 | 0.3383 | 0.6788 | 0.6179 | 0.6470 | 0.9507 | 0.2783 | 0.4248 | 0.3358 | 0.7368 | 0.7958 | 0.3655 | | 0.0076 | 12.0 | 2556 | 0.3617 | 0.6920 | 0.5523 | 0.6143 | 0.9474 | 0.2708 | 0.3985 | 0.3333 | 0.6740 | 0.7566 | 0.3525 | | 0.0042 | 13.0 | 2769 | 0.3747 | 0.6896 | 0.5664 | 0.6220 | 0.9473 | 0.2478 | 0.3915 | 0.3521 | 0.6561 | 0.7742 | 0.3539 | | 0.0049 | 14.0 | 2982 | 0.3376 | 0.6803 | 0.6096 | 0.6430 | 0.9509 | 0.2975 | 0.4436 | 0.3624 | 0.6834 | 0.7902 | 0.3887 | ### Overall results | metric_type | train | validation | test | |:-------------------|-----------:|-----------:|-----------:| | loss | 0.012030 | 0.271155 | 0.273943 | | runtime | 16.292400 | 5.068800 | 8.596800 | | samples_per_second | 208.318000 | 199.060000 | 149.707000 | | steps_per_second | 13.074000 | 12.626000 | 9.422000 | | corporation_f1 | 0.936877 | 0.307692 | 0.368627 | | person_f1 | 0.984252 | 0.773455 | 0.689826 | | product_f1 | 0.893246 | 0.398625 | 0.270423 | | creative-work_f1 | 0.880562 | 0.484211 | 0.415274 | | group_f1 | 0.975547 | 0.316667 | 0.411348 | | location_f1 | 0.978887 | 0.680851 | 0.638695 | | overall_accuracy | 0.997709 | 0.950244 | 0.949920 | | overall_f1 | 0.961113 | 0.633978 | 0.550816 | | overall_precision | 0.956337 | 0.657449 | 0.615483 | | overall_recall | 0.965938 | 0.612126 | 0.498446 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-10
1b078217e13aec72dd93a1d0a2d69f1c69ad1d99
2022-03-25T07:13:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-10
3
null
transformers
22,081
Entry not found
eliasws/openApiT5-distilled-description-v3
7d9b64aaa539e7a1e30c247941a1e0674010d53f
2022-03-25T09:30:37.000Z
[ "pytorch", "t5", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
eliasws
null
eliasws/openApiT5-distilled-description-v3
3
null
sentence-transformers
22,082
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5547 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1109, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
eliasws/openApiT5-to-json-v3
d1cf4b2968aed2bb60499409f26378b719b9fece
2022-03-25T10:33:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eliasws
null
eliasws/openApiT5-to-json-v3
3
null
transformers
22,083
Entry not found
mimicheng/codeparrot-ds-sample-2ep
c634224178285444b1f1985b042a241c39990cef
2022-03-26T12:51:09.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mimicheng
null
mimicheng/codeparrot-ds-sample-2ep
3
null
transformers
22,084
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-2ep This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2562 | 1.86 | 5000 | 1.3782 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
yy642/bert-base-uncased-finetuned-mnli-512-5
e3e8f6197a40ae78eef90e293a6b3f8b4450f7b6
2022-03-26T09:17:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-512-5
3
null
transformers
22,085
Entry not found
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1
c39376acbfd8be0d86c44b12a0f67597fb604d55
2022-03-27T17:07:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1
3
null
transformers
22,086
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augment_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augment_0.1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4658 - Wer: 0.5037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.447 | 1.05 | 250 | 3.3799 | 1.0 | | 3.089 | 2.1 | 500 | 3.4868 | 1.0 | | 3.063 | 3.15 | 750 | 3.3155 | 1.0 | | 2.4008 | 4.2 | 1000 | 1.2934 | 0.8919 | | 1.618 | 5.25 | 1250 | 0.7847 | 0.7338 | | 1.3038 | 6.3 | 1500 | 0.6459 | 0.6712 | | 1.2074 | 7.35 | 1750 | 0.5705 | 0.6269 | | 1.1062 | 8.4 | 2000 | 0.5267 | 0.5843 | | 1.026 | 9.45 | 2250 | 0.5108 | 0.5683 | | 0.9505 | 10.5 | 2500 | 0.5066 | 0.5568 | | 0.893 | 11.55 | 2750 | 0.5161 | 0.5532 | | 0.8535 | 12.6 | 3000 | 0.4994 | 0.5341 | | 0.8462 | 13.65 | 3250 | 0.4626 | 0.5262 | | 0.8334 | 14.7 | 3500 | 0.4593 | 0.5197 | | 0.842 | 15.75 | 3750 | 0.4651 | 0.5126 | | 0.7678 | 16.81 | 4000 | 0.4687 | 0.5120 | | 0.7873 | 17.86 | 4250 | 0.4716 | 0.5070 | | 0.7486 | 18.91 | 4500 | 0.4657 | 0.5033 | | 0.7073 | 19.96 | 4750 | 0.4658 | 0.5037 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
KamrusSamad/tiny2
703424eafd43916f718b12cca869d565b686ddd3
2022-03-25T20:03:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KamrusSamad
null
KamrusSamad/tiny2
3
null
transformers
22,087
Entry not found
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-10-v2
5d992be3cdd2ee4c6a544e6dcf44af1607759ece
2022-03-26T22:08:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-10-v2
3
null
transformers
22,088
Entry not found
l3cube-pune/hing-roberta-mixed
edcf1253eb98eae8b0774a281443ba9d0ee06290
2022-06-26T15:12:30.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "hi", "en", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "transformers", "codemix", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
l3cube-pune
null
l3cube-pune/hing-roberta-mixed
3
null
transformers
22,089
--- license: cc-by-4.0 language: - hi - en tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingRoBERTa-Mixed HingRoBERTa-Mixed is a Hindi-English code-mixed BERT model trained on roman + devanagari text. It is a xlm-RoBERTa model fine-tuned on mixed script L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) ``` @InProceedings{nayak-joshi:2022:WILDRE6, author = {Nayak, Ravindra and Joshi, Raviraj}, title = {L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and BERT Language Models}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {7--12} } ```
scasutt/wav2vec2-base_toy_train_data_augmented
ffd44ac28a9c9938b2514a123856dd44a400548b
2022-03-26T10:09:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_augmented
3
null
transformers
22,090
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_augmented This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0238 - Wer: 0.6969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.12 | 1.05 | 250 | 3.3998 | 0.9982 | | 3.0727 | 2.1 | 500 | 3.1261 | 0.9982 | | 1.9729 | 3.15 | 750 | 1.4868 | 0.9464 | | 1.3213 | 4.2 | 1000 | 1.2598 | 0.8833 | | 1.0508 | 5.25 | 1250 | 1.0014 | 0.8102 | | 0.8483 | 6.3 | 1500 | 0.9475 | 0.7944 | | 0.7192 | 7.35 | 1750 | 0.9493 | 0.7686 | | 0.6447 | 8.4 | 2000 | 0.9872 | 0.7573 | | 0.6064 | 9.45 | 2250 | 0.9587 | 0.7447 | | 0.5384 | 10.5 | 2500 | 0.9332 | 0.7320 | | 0.4985 | 11.55 | 2750 | 0.9926 | 0.7315 | | 0.4643 | 12.6 | 3000 | 1.0008 | 0.7292 | | 0.4565 | 13.65 | 3250 | 0.9522 | 0.7171 | | 0.449 | 14.7 | 3500 | 0.9685 | 0.7140 | | 0.4307 | 15.75 | 3750 | 1.0080 | 0.7077 | | 0.4239 | 16.81 | 4000 | 0.9950 | 0.7023 | | 0.389 | 17.86 | 4250 | 1.0260 | 0.7007 | | 0.3471 | 18.91 | 4500 | 1.0012 | 0.6966 | | 0.3276 | 19.96 | 4750 | 1.0238 | 0.6969 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
qc7/shad_ml2_transformer
068eb5c84043aff2c08a51d5401b57d9360d21db
2022-03-27T09:52:48.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:unlicense" ]
text-classification
false
qc7
null
qc7/shad_ml2_transformer
3
null
transformers
22,091
--- license: unlicense ---
eliasws/openApiT5-labeled-v2
a570b2c1b99ec65bc16b7c0896c28b23702a271b
2022-03-26T15:41:46.000Z
[ "pytorch", "t5", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
eliasws
null
eliasws/openApiT5-labeled-v2
3
null
sentence-transformers
22,092
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 20250 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 8100, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Jiexing/sparc_relation_t5_3b-2112
5d60d47872fc9d5bb40161db8b780dfe6b895705
2022-03-27T14:09:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Jiexing
null
Jiexing/sparc_relation_t5_3b-2112
3
null
transformers
22,093
Entry not found
sebastian-hofstaetter/uni-colberter-128-1-msmarco
6d34d2501d18c2d23d53de928ff9016d2d63bc74
2022-03-27T15:21:06.000Z
[ "pytorch", "ColBERT", "en", "dataset:ms_marco", "arxiv:2203.13088", "transformers", "bag-of-words", "dense-passage-retrieval", "knowledge-distillation", "license:apache-2.0" ]
null
false
sebastian-hofstaetter
null
sebastian-hofstaetter/uni-colberter-128-1-msmarco
3
null
transformers
22,094
--- license: apache-2.0 language: "en" tags: - bag-of-words - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # Uni-ColBERTer (Dim: 1) for Passage Retrieval If you want to know more about our (Uni-)ColBERTer architecture check out our paper: https://arxiv.org/abs/2203.13088 🎉 For more information, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/colberter ## Limitations & Bias - The model is only trained on english text. - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @article{Hofstaetter2022_colberter, author = {Sebastian Hofst{\"a}tter and Omar Khattab and Sophia Althammer and Mete Sertkan and Allan Hanbury}, title = {Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction}, publisher = {arXiv}, url = {https://arxiv.org/abs/2203.13088}, doi = {10.48550/ARXIV.2203.13088}, year = {2022}, } ```
jkooup/title_model
60b4a43b3f9bfd8c12b256dcc080e02774c3f98d
2022-03-28T10:05:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jkooup
null
jkooup/title_model
3
null
transformers
22,095
Entry not found
ludoviciarraga/bert-finetuned-ner
c2ae97751eee71f5fbde0df83f4226d4a810e943
2022-03-28T14:19:32.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ludoviciarraga
null
ludoviciarraga/bert-finetuned-ner
3
null
transformers
22,096
Entry not found
Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm
80013bda1298959a5746c61495b998e31b4e51d1
2022-05-26T12:53:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Finnish-NLP
null
Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm
3
null
transformers
22,097
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 5.65 - name: Test CER type: cer value: 1.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs args: fi_fi metrics: - name: Test WER type: wer value: 20.34 - name: Test CER type: cer value: 6.97 --- # Wav2vec2-xls-r-1b for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [aapot/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm) model so that model has just been copied/moved to this `Finnish-NLP` Hugging Face organization. **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [Common Voice 9.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) and with the [FLEURS ASR Finnish test split](https://huggingface.co/datasets/google/fleurs). This model's training data includes the training splits of Common Voice 7.0 but our newer `Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned` and `Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish` models include the Common Voice 9.0 so we ran tests for both Common Voice versions. Note: Common Voice doesn't seem to fully preserve the test split as fixed between the dataset versions so it is possible that some of the training examples of Common Voice 9.0 are in the test split of the Common Voice 7.0 and vice versa. Thus, Common Voice test result comparisons are not fully accurate between the models trained with different Common Voice versions but the comparison should still be meaningful enough. ### Common Voice 7.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the fourth row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.85 |13.52 |1.35 |2.44 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |**9.66** |0.90 |1.66 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |8.16 |17.92 |1.97 |3.36 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.65 |13.11 |1.20 |2.23 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**4.09** |9.73 |**0.88** |**1.65** | ### Common Voice 9.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm --dataset mozilla-foundation/common_voice_9_0 --config fi --split test ``` This model (the fourth row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.93 |14.08 |1.40 |2.59 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |9.83 |0.92 |1.71 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |7.42 |16.45 |1.79 |3.07 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.35 |13.00 |1.14 |2.20 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**3.72** |**8.96** |**0.80** |**1.52** | ### FLEURS ASR testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm --dataset google/fleurs --config fi_fi --split test ``` This model (the fourth row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |13.99 |17.16 |6.07 |6.61 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |12.44 |**14.63** |5.77 |6.22 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |17.72 |23.30 |6.78 |7.67 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |20.34 |16.67 |6.97 |6.35 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**12.11** |14.89 |**5.65** |**6.06** | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v2
cfb365f33e7393e0df36479cab8f819f7ba90529
2022-03-28T19:04:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v2
3
null
transformers
22,098
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-sentiment-mesd-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-sentiment-mesd-v2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7213 - Accuracy: 0.3923 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 64 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.7961 | 0.1462 | | 1.9685 | 1.86 | 6 | 1.7932 | 0.1692 | | 1.9685 | 2.86 | 9 | 1.7891 | 0.2 | | 2.1386 | 3.86 | 12 | 1.7820 | 0.2923 | | 1.9492 | 4.86 | 15 | 1.7750 | 0.2923 | | 1.9492 | 5.86 | 18 | 1.7684 | 0.2846 | | 2.1143 | 6.86 | 21 | 1.7624 | 0.3231 | | 2.1143 | 7.86 | 24 | 1.7561 | 0.3308 | | 2.0945 | 8.86 | 27 | 1.7500 | 0.3462 | | 1.9121 | 9.86 | 30 | 1.7443 | 0.3385 | | 1.9121 | 10.86 | 33 | 1.7386 | 0.3231 | | 2.0682 | 11.86 | 36 | 1.7328 | 0.3231 | | 2.0682 | 12.86 | 39 | 1.7272 | 0.3769 | | 2.0527 | 13.86 | 42 | 1.7213 | 0.3923 | | 1.8705 | 14.86 | 45 | 1.7154 | 0.3846 | | 1.8705 | 15.86 | 48 | 1.7112 | 0.3846 | | 2.0263 | 16.86 | 51 | 1.7082 | 0.3769 | | 2.0263 | 17.86 | 54 | 1.7044 | 0.3846 | | 2.0136 | 18.86 | 57 | 1.7021 | 0.3846 | | 1.8429 | 19.86 | 60 | 1.7013 | 0.3846 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
gayanin/bart-med-term-conditional-masking-0
50924a4dde25b8d15a390781ca79156a8dad8ae1
2022-03-29T12:03:56.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/bart-med-term-conditional-masking-0
3
null
transformers
22,099
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-med-term-conditional-masking-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5041 - Rouge2 Precision: 0.7497 - Rouge2 Recall: 0.5246 - Rouge2 Fmeasure: 0.5986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6381 | 1.0 | 13915 | 0.5595 | 0.734 | 0.5152 | 0.5873 | | 0.5429 | 2.0 | 27830 | 0.5243 | 0.7441 | 0.5225 | 0.5956 | | 0.5002 | 3.0 | 41745 | 0.5078 | 0.7482 | 0.5238 | 0.5976 | | 0.4607 | 4.0 | 55660 | 0.5041 | 0.7497 | 0.5246 | 0.5986 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6