modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tiennvcs/bert-large-uncased-finetuned-docvqa
8bf070f2d2c46e3423869d4988b8a9310fdf731a
2021-10-23T17:43:43.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/bert-large-uncased-finetuned-docvqa
3
null
transformers
21,800
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-docvqa results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-docvqa This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.5228 | 0.05 | 1000 | 2.6645 | | 2.4909 | 0.1 | 2000 | 2.8985 | | 2.1679 | 0.16 | 3000 | 2.3551 | | 1.9451 | 0.21 | 4000 | 2.2226 | | 1.6814 | 0.26 | 5000 | 2.1590 | | 1.8868 | 0.31 | 6000 | 2.6197 | | 1.6618 | 0.36 | 7000 | 2.3632 | | 1.8313 | 0.41 | 8000 | 2.4519 | | 1.7017 | 0.47 | 9000 | 2.2682 | | 1.8169 | 0.52 | 10000 | 2.4486 | | 1.7074 | 0.57 | 11000 | 2.3862 | | 1.7674 | 0.62 | 12000 | 2.1801 | | 1.8134 | 0.67 | 13000 | 2.3032 | | 1.8334 | 0.73 | 14000 | 2.4205 | | 1.6819 | 0.78 | 15000 | 2.2398 | | 1.5846 | 0.83 | 16000 | 2.3834 | | 1.6758 | 0.88 | 17000 | 1.9683 | | 1.6303 | 0.93 | 18000 | 2.3297 | | 1.5652 | 0.98 | 19000 | 2.0581 | | 1.3045 | 1.04 | 20000 | 2.4950 | | 1.2393 | 1.09 | 21000 | 2.6622 | | 1.1526 | 1.14 | 22000 | 2.3749 | | 1.2631 | 1.19 | 23000 | 2.3915 | | 1.1846 | 1.24 | 24000 | 2.2592 | | 1.2731 | 1.3 | 25000 | 2.4239 | | 1.3057 | 1.35 | 26000 | 2.2920 | | 1.134 | 1.4 | 27000 | 2.3107 | | 1.2017 | 1.45 | 28000 | 2.4271 | | 1.2202 | 1.5 | 29000 | 2.1814 | | 1.2179 | 1.56 | 30000 | 2.3365 | | 1.2359 | 1.61 | 31000 | 2.1256 | | 1.1964 | 1.66 | 32000 | 2.1720 | | 1.269 | 1.71 | 33000 | 2.4363 | | 1.1812 | 1.76 | 34000 | 2.2372 | | 1.2187 | 1.81 | 35000 | 2.2318 | | 1.1805 | 1.87 | 36000 | 2.3693 | | 1.1458 | 1.92 | 37000 | 2.5128 | | 1.1958 | 1.97 | 38000 | 2.1311 | | 0.8924 | 2.02 | 39000 | 2.4635 | | 0.869 | 2.07 | 40000 | 2.8231 | | 0.8333 | 2.13 | 41000 | 2.6762 | | 0.9194 | 2.18 | 42000 | 2.4588 | | 0.8089 | 2.23 | 43000 | 2.6443 | | 0.8612 | 2.28 | 44000 | 2.4300 | | 0.7981 | 2.33 | 45000 | 2.7418 | | 0.9765 | 2.38 | 46000 | 2.6543 | | 0.8646 | 2.44 | 47000 | 2.5990 | | 1.0316 | 2.49 | 48000 | 2.4625 | | 0.9862 | 2.54 | 49000 | 2.4691 | | 1.027 | 2.59 | 50000 | 2.4156 | | 0.9412 | 2.64 | 51000 | 2.4204 | | 0.9353 | 2.7 | 52000 | 2.4933 | | 0.9509 | 2.75 | 53000 | 2.4708 | | 0.9351 | 2.8 | 54000 | 2.5351 | | 0.9968 | 2.85 | 55000 | 2.2506 | | 1.025 | 2.9 | 56000 | 2.6317 | | 1.627 | 2.95 | 57000 | 2.7843 | | 0.9294 | 3.01 | 58000 | 2.9396 | | 0.6043 | 3.06 | 59000 | 3.1560 | | 0.7903 | 3.11 | 60000 | 2.8330 | | 0.7373 | 3.16 | 61000 | 2.9422 | | 0.6499 | 3.21 | 62000 | 3.0948 | | 0.6411 | 3.27 | 63000 | 2.7900 | | 0.625 | 3.32 | 64000 | 2.5268 | | 0.6264 | 3.37 | 65000 | 2.8701 | | 0.6143 | 3.42 | 66000 | 3.2544 | | 0.6286 | 3.47 | 67000 | 2.6208 | | 0.739 | 3.53 | 68000 | 2.8107 | | 0.5981 | 3.58 | 69000 | 2.8073 | | 0.6502 | 3.63 | 70000 | 2.6293 | | 0.6548 | 3.68 | 71000 | 2.9501 | | 0.7243 | 3.73 | 72000 | 2.7917 | | 0.598 | 3.78 | 73000 | 2.9341 | | 0.6159 | 3.84 | 74000 | 2.7629 | | 0.5905 | 3.89 | 75000 | 2.6441 | | 0.6393 | 3.94 | 76000 | 2.6660 | | 0.677 | 3.99 | 77000 | 2.7616 | | 0.3281 | 4.04 | 78000 | 3.6873 | | 0.4524 | 4.1 | 79000 | 3.3441 | | 0.3994 | 4.15 | 80000 | 3.3129 | | 0.4686 | 4.2 | 81000 | 3.1813 | | 0.5293 | 4.25 | 82000 | 2.9088 | | 0.3961 | 4.3 | 83000 | 3.0765 | | 0.4406 | 4.35 | 84000 | 3.1254 | | 0.401 | 4.41 | 85000 | 3.2415 | | 0.4594 | 4.46 | 86000 | 3.0691 | | 0.4523 | 4.51 | 87000 | 3.0493 | | 0.4719 | 4.56 | 88000 | 3.1352 | | 0.4895 | 4.61 | 89000 | 2.8991 | | 0.423 | 4.67 | 90000 | 3.1738 | | 0.3984 | 4.72 | 91000 | 3.1862 | | 0.4206 | 4.77 | 92000 | 3.1213 | | 0.4587 | 4.82 | 93000 | 3.0030 | | 0.381 | 4.87 | 94000 | 3.3218 | | 0.4138 | 4.92 | 95000 | 3.1529 | | 0.4003 | 4.98 | 96000 | 3.1375 | | 0.2098 | 5.03 | 97000 | 3.7443 | | 0.2334 | 5.08 | 98000 | 3.7359 | | 0.2534 | 5.13 | 99000 | 3.7814 | | 0.3067 | 5.18 | 100000 | 3.7128 | | 0.2363 | 5.24 | 101000 | 3.6091 | | 0.2652 | 5.29 | 102000 | 3.4015 | | 0.3311 | 5.34 | 103000 | 3.4793 | | 0.2344 | 5.39 | 104000 | 3.6792 | | 0.2741 | 5.44 | 105000 | 3.5385 | | 0.2896 | 5.5 | 106000 | 3.8118 | | 0.2071 | 5.55 | 107000 | 3.8690 | | 0.3023 | 5.6 | 108000 | 3.7087 | | 0.3299 | 5.65 | 109000 | 3.4925 | | 0.1943 | 5.7 | 110000 | 3.6739 | | 0.2488 | 5.75 | 111000 | 3.7614 | | 0.3138 | 5.81 | 112000 | 3.5156 | | 0.2555 | 5.86 | 113000 | 3.6056 | | 0.2918 | 5.91 | 114000 | 3.6533 | | 0.2751 | 5.96 | 115000 | 3.6367 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.8.0+cu101 - Datasets 1.11.0 - Tokenizers 0.10.3
tillfurger/twitter-sent
9349c56b1aba326fc30a63597ef057f95c7c0078
2021-05-20T07:50:40.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
tillfurger
null
tillfurger/twitter-sent
3
null
transformers
21,801
Entry not found
tkesonia/xlm-roberta-base-finetuned-marc-en
37dcdbc3194c002ef60f487d287fb860638c2dd2
2021-11-08T08:53:12.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
tkesonia
null
tkesonia/xlm-roberta-base-finetuned-marc-en
3
null
transformers
21,802
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9211 - Mae: 0.5122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1436 | 1.0 | 235 | 1.0181 | 0.5366 | | 0.9756 | 2.0 | 470 | 0.9211 | 0.5122 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
tkwoo/electra-small-discriminator
301bbc2670c7654a418be48bb33c20227446cb70
2020-06-04T08:01:53.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
tkwoo
null
tkwoo/electra-small-discriminator
3
null
transformers
21,803
Entry not found
toanparadox/test_nlp
723bbaa8ccf5f85609c53ca23dadf57a9f6ed604
2021-10-28T08:03:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
toanparadox
null
toanparadox/test_nlp
3
null
transformers
21,804
Entry not found
toasthans/Facebook_and_Twitter_Ohne_HPS
11be27e2f2bd1ed3e62ba7364574cdf0c947ef26
2021-12-23T14:55:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasthans
null
toasthans/Facebook_and_Twitter_Ohne_HPS
3
null
transformers
21,805
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_and_Twitter_Ohne_HPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_and_Twitter_Ohne_HPS This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9218 - Accuracy: 0.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4364 | 1.0 | 713 | 0.4107 | 0.8302 | | 0.2843 | 2.0 | 1426 | 0.4316 | 0.8495 | | 0.0869 | 3.0 | 2139 | 0.7700 | 0.8558 | | 0.0443 | 4.0 | 2852 | 0.9218 | 0.8512 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toastynews/electra-hongkongese-large-discriminator
f064067a43fbda6859f6a8e0b20467c103fb6078
2020-07-07T17:56:12.000Z
[ "pytorch", "tf", "electra", "pretraining", "yue", "transformers", "license:apache-2.0" ]
null
false
toastynews
null
toastynews/electra-hongkongese-large-discriminator
3
null
transformers
21,806
--- language: yue license: apache-2.0 metrics: - DRCD - openrice-senti - lihkg-cat - wordshk-sem --- # ELECTRA Hongkongese Large ## Model description ELECTRA trained exclusively with data from Hong Kong. A signaficant amount of Hongkongese/Cantonese/Yue is included in the training data. ## Intended uses & limitations This model is an alternative to Chinese models. It may offer better performance for tasks catering to the langauge usage of Hong Kongers. Yue Wikipedia is used which is much smaller than Chinese Wikipedia; this model will lack the breath of knowledge compared to other Chinese models. #### How to use This is the large model trained from the official repo. Further finetuning will be needed for use on downstream tasks. Other model sizes are also available. #### Limitations and bias The training data consists of mostly news articles and blogs. There is probably a bias towards formal language usage. ## Training data The following is the list of data sources. Total characters is about 507M. | Data | % | | ------------------------------------------------- | --: | | News Articles / Blogs | 58% | | Yue Wikipedia / EVCHK | 18% | | Restaurant Reviews | 12% | | Forum Threads | 12% | | Online Fiction | 1% | The following is the distribution of different languages within the corpus. | Language | % | | ------------------------------------------------- | --: | | Standard Chinese | 62% | | Hongkongese | 30% | | English | 8% | ## Training procedure Model was trained on a single TPUv3 from the official repo with the default parameters. | Parameter | Value | | ------------------------------------------------ | ----: | | Batch Size | 96 | | Max Sequence Size | 512 | | Mask Prob | 0.25 | | Learning Rate | 2e-4 | | Vocab Size | 30000 | *Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC)* ## Eval results Average evaluation task results over 10 runs. Comparison using the original repo model and code. Chinese models are available from [Joint Laboratory of HIT and iFLYTEK Research (HFL)](https://huggingface.co/hfl) | Model | DRCD (EM/F1) | openrice-senti | lihkg-cat | wordshk-sem | |:-----------:|:------------:|:--------------:|:---------:|:-----------:| | Chinese | 88.8 / 93.6 | 79.8 | 70.4 | 90.4 | | Hongkongese | 84.7 / 90.9 | 79.7 | 69.9 | 91.5 |
tobiaslee/roberta-base-defteval-t6-st3
f2a46818c064d321d7ab62e954d066179c078d19
2021-06-23T07:46:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
tobiaslee
null
tobiaslee/roberta-base-defteval-t6-st3
3
null
transformers
21,807
Entry not found
tobiaslee/roberta-large-defteval-t6-st3
e83c37466383bcaa0e6908b685c64a91bcf11c5b
2021-06-23T07:39:30.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
tobiaslee
null
tobiaslee/roberta-large-defteval-t6-st3
3
null
transformers
21,808
Entry not found
tomato/sentiment_analysis
cb0a9bb83cf585e23bf1ab7d5d8965e34080a2e9
2021-06-03T18:55:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
tomato
null
tomato/sentiment_analysis
3
null
transformers
21,809
Entry not found
tommy19970714/wav2vec2-base-960h
c8a9eeb4e0adbe64aff0d10d63285a2443f48cd4
2021-11-04T16:09:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "audio", "license:apache-2.0" ]
automatic-speech-recognition
false
tommy19970714
null
tommy19970714/wav2vec2-base-960h
3
null
transformers
21,810
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac --- # Wav2Vec2-Base-960h This repository is a reimplementation of [official Facebook’s wav2vec](https://huggingface.co/facebook/wav2vec2-base-960h). There is no description of converting the wav2vec [pretrain model](https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20) to a pytorch.bin file. We are rebuilding pytorch.bin from the pretrain model. Here is the conversion method. ```bash pip install transformers[sentencepiece] pip install fairseq -U git clone https://github.com/huggingface/transformers.git cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py . wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small_960h.pt -O ./wav2vec_small_960h.pt mkdir dict wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt mkdir outputs python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./wav2vec_small_960h.pt --dict_path ./dict ``` # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and tokenizer tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") # define function to read in sound file def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) # tokenize input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer import soundfile as sf import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.4 | 8.6 | # Reference [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) [Facebook's huggingface Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) [Paper](https://arxiv.org/abs/2006.11477)
tr3cks/SentimentAnalysis_BETO
11332e451d17954b84f46fdf3347d1673273c693
2021-05-20T08:03:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
tr3cks
null
tr3cks/SentimentAnalysis_BETO
3
null
transformers
21,811
Entry not found
transfaeries/DialoGPT-small-Discord-1.0
d29459ffd3cfd290b7344f961505c5f52abcfcae
2021-08-31T20:15:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
transfaeries
null
transfaeries/DialoGPT-small-Discord-1.0
3
null
transformers
21,812
--- tags: - conversational --- # Discord Model
transformersbook/xlm-roberta-base-finetuned-panx-de-fr
85d2a32862b91dcf97af53e85136cd558b7baed5
2022-02-05T17:08:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
transformersbook
null
transformersbook/xlm-roberta-base-finetuned-panx-de-fr
3
null
transformers
21,813
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.1616 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2855 | 1.0 | 715 | 0.1944 | 0.8178 | | 0.1485 | 2.0 | 1430 | 0.1679 | 0.8469 | | 0.0966 | 3.0 | 2145 | 0.1616 | 0.8590 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
ttajun/bert_nm30k_posneg01
076b29e48bd8ef4d9b7b352733a80a7e8f8ddb23
2021-12-14T01:36:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ttajun
null
ttajun/bert_nm30k_posneg01
3
null
transformers
21,814
Entry not found
ttajun/bert_nm50k_posneg01
9735d594e3fdc04eb7d8e1714f872dcbe9338222
2021-12-14T06:36:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ttajun
null
ttajun/bert_nm50k_posneg01
3
null
transformers
21,815
Entry not found
ttajun/bert_nm70k_posneg01
750a9ea78ed251f45f886e82d87e4efc905d715f
2021-12-22T02:09:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ttajun
null
ttajun/bert_nm70k_posneg01
3
null
transformers
21,816
Entry not found
ttajun/nsmc_klue_01
d44a3e60ac4f2dad45b249c545d044b4f6322f5e
2021-11-23T01:49:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ttajun
null
ttajun/nsmc_klue_01
3
null
transformers
21,817
Entry not found
tuanle/GPT2_Poet
7249294d9015de959f140701496eb6d2060c12b1
2022-02-26T11:32:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
tuanle
null
tuanle/GPT2_Poet
3
null
transformers
21,818
# GPT-2 Fine-tuning With Vietnamese Six Eight Poems ## Model description This is a Vietnamese GPT-2 Six Eight Poet Model which is trained on the 10mb of Six Eight poems dataset, based on the Vietnamese Wiki GPT2 pretrained model (https://huggingface.co/danghuy1999/gpt2-viwiki) ## Purpose This model was made only for fun and experimental study ## Dataset The dataset is about 10k lines of Vietnamese Six Eight poems ## Result - Train Loss: 2.7 - Val loss: 4.5 ## How to use You can use this model to generate Six Eight poems given any starting words ## Example ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained("tuanle/GPT2_Poet") model = AutoModelForCausalLM.from_pretrained("tuanle/GPT2_Poet").to(device) text = "hỏi rằng nàng" input_ids = tokenizer.encode(text, return_tensors='pt').to(device) min_length = 60 max_length = 100 sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id, do_sample=True, max_length=max_length, min_length=min_length, # temperature = .8, # top_k= 100, top_p = 0.8, num_beams= 10, # early_stopping=True, no_repeat_ngram_size= 2, num_return_sequences= 3) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist(), skip_special_tokens=True))) print('\n---') ``` ## Demo - Input: "hỏi rằng nàng" - Output: hỏi rằng nàng đã nói ra\ cớ sao nàng lại hỏi han sự tình\ vân tiên nói lại những lời\ thưa rằng ở chốn am mây một mình\ từ đây mới biết rõ ràng\ ở đây cũng gặp một người ở đây\ hai người gặp lại gặp nhau\ thấy lời nàng mới hỏi tra việc này\ nguyệt nga hỏi việc bấy lâu\ khen rằng đạo sĩ ở đầu cửa thiền
uclanlp/plbart-multi_task-java
71738be2ce75c6a356895240fe1d537a0404043f
2022-03-02T07:30:20.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-java
3
null
transformers
21,819
Entry not found
uclanlp/plbart-multi_task-js
88e012e9cc679417b070aceb2e23607cd1a93383
2022-03-02T07:36:12.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-js
3
null
transformers
21,820
Entry not found
uclanlp/plbart-multi_task-php
6395d2f96578813278e779175c528c3079459a0f
2022-03-02T07:35:07.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-php
3
null
transformers
21,821
Entry not found
uclanlp/plbart-refine-java-medium
983c1893a59368d197c76e9e6853d20aec502a15
2021-11-09T17:09:39.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-refine-java-medium
3
null
transformers
21,822
Entry not found
uclanlp/plbart-single_task-compiled-generation
317f0835a07250d20628e4533d6f5ff3a248d2a7
2022-03-02T07:14:36.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-compiled-generation
3
null
transformers
21,823
Entry not found
uclanlp/plbart-single_task-static-generation
5d23be3ecdb7d6060397b4ba716c1f9366eae5c2
2022-03-02T07:24:25.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-static-generation
3
null
transformers
21,824
Entry not found
uer/chinese_roberta_L-10_H-256
9f86193333a3e81ec9805f9233cdc38335149995
2022-07-15T08:14:52.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-10_H-256
3
null
transformers
21,825
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v1
e92ded294cbc84ba142cdff396f50847f18b3c1c
2022-01-05T21:29:59.000Z
[ "pytorch", "xlm-roberta", "text-classification", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "miniLM", "tensorflow", "pt-br", "license:mit" ]
text-classification
false
unicamp-dl
null
unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v1
3
1
transformers
21,826
--- language: pt license: mit tags: - msmarco - miniLM - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mMiniLM-L6-v2 Reranker finetuned on mMARCO ## Introduction mMiniLM-L6-v2-en-pt-msmarco-v1 is a multilingual miniLM-based model finetuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import AutoTokenizer, AutoModel model_name = 'unicamp-dl/mMiniLM-L6-v2-en-pt-msmarco-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` # Citation If you use mMiniLM-L6-v2-en-pt-msmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/mt5-base-en-msmarco
05c873465556bfeef72477d3488d12fc63bcc8ce
2022-01-05T21:30:58.000Z
[ "pytorch", "mt5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "t5", "tensorflow", "en", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/mt5-base-en-msmarco
3
null
transformers
21,827
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - en datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on MS MARCO ## Introduction mT5-base-en-msmarco-v1 is a mT5-based model finetuned on English MS MARCO passage dataset. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-msmarco' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mT5-base-en-msmarco, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
valeriazen/ruT5-base-finetuned-plenka-chatbot
40bb5fd3f448f1ba5c97ec0f0814d2a42b4ceef7
2022-01-18T20:12:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
valeriazen
null
valeriazen/ruT5-base-finetuned-plenka-chatbot
3
null
transformers
21,828
Entry not found
valhalla/awesome-model_v3
fbf3c3e6f82fc507ad7c37f3b65bce790f55d80b
2022-02-01T16:42:00.000Z
[ "pytorch", "awesome", "transformers" ]
null
false
valhalla
null
valhalla/awesome-model_v3
3
null
transformers
21,829
Entry not found
valhalla/distilt5-qg-hl-12-6
16c582cf90d9ad1284d606edba4d0efa50da1621
2021-09-23T16:42:49.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squad", "transformers", "question-generation", "distilt5", "distilt5-qg", "license:mit", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/distilt5-qg-hl-12-6
3
null
transformers
21,830
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: <hl> 42 <hl> is the answer to life, the universe and everything. </s> - text: Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s> - text: Although <hl> practicality <hl> beats purity </s> license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-base-qg-hl](https://huggingface.co/valhalla/t5-base-qg-hl) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-base-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens. For example `<hl> 42 <hl> is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("question-generation", model="valhalla/distilt5-qg-hl-12-6") nlp("42 is the answer to life, universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] ```
valhalla/s2t_librispeech_medium
95bdd43322652d60eb2af39f9abab7bf3fdecea7
2021-02-26T14:24:39.000Z
[ "pytorch", "speech_to_text_transformer", "text2text-generation", "en", "dataset:librispeech_asr", "transformers", "audio", "automatic-speech-recognition", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/s2t_librispeech_medium
3
null
transformers
21,831
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- TODO: [To be filled] ## Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer import soundfile as sf from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_medium").to("cuda") tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_medium", do_upper_case=True) def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.5 | 7.8 |
valhalla/t5-base-cnn-fp6-test
f5cd2b7cd9c1ff7d848b0cc5f02c908c0fc4d5a7
2021-01-08T16:02:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/t5-base-cnn-fp6-test
3
null
transformers
21,832
This model is uploaded for testing purpose
valurank/distilbert-allsides
66f40ec76aca1233fd16fb2c7e2f0d5996e111e2
2022-06-08T20:21:18.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/distilbert-allsides
3
null
transformers
21,833
--- license: other tags: - generated_from_trainer model-index: - name: distilbert-allsides results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-allsides This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9138 - Acc: 0.7094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7667 | 1.0 | 822 | 0.7003 | 0.6820 | | 0.6893 | 2.0 | 1644 | 0.6619 | 0.6981 | | 0.6177 | 3.0 | 2466 | 0.6736 | 0.7064 | | 0.595 | 4.0 | 3288 | 0.6642 | 0.7091 | | 0.5179 | 5.0 | 4110 | 0.6936 | 0.7121 | | 0.4698 | 6.0 | 4932 | 0.7670 | 0.7106 | | 0.463 | 7.0 | 5754 | 0.8537 | 0.7121 | | 0.4345 | 8.0 | 6576 | 0.9138 | 0.7094 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
vasudevgupta/bigbird-base-trivia-itc
5eeeba15d560c949ab582514256d7d62f6a659de
2021-04-30T07:35:44.000Z
[ "pytorch", "big_bird", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
vasudevgupta
null
vasudevgupta/bigbird-base-trivia-itc
3
null
transformers
21,834
Moved here: https://huggingface.co/google/bigbird-base-trivia-itc
vasudevgupta/dl-hack-distilgpt2
47667f83e258d896f6f9a1e9cc678e019fae3b23
2021-05-23T13:29:37.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
vasudevgupta
null
vasudevgupta/dl-hack-distilgpt2
3
null
transformers
21,835
DL research papers **Title -> abstract** **Using this model** ```python from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("vasudevgupta/dl-hack-distilgpt2") model = GPT2LMHeadModel.from_pretrained("vasudevgupta/dl-hack-distilgpt2") agent = pipeline("text-generation", model=model, tokenizer=tokenizer) print(agent("An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", max_length=200)) ```
vasudevgupta/dl-hack-pegasus-large
d518c6e46d6c319417344f67b9459498a4b787dd
2021-04-30T07:33:27.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vasudevgupta
null
vasudevgupta/dl-hack-pegasus-large
3
null
transformers
21,836
Deep Learning research papers **Title -> abstract**
vennify/t5-example-upload
1d51385df5f128b2bc05c41c1a6fb9d3e0ace283
2021-08-16T20:58:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vennify
null
vennify/t5-example-upload
3
null
transformers
21,837
Entry not found
vesteinn/IceBERT-finetuned-iec-sentence-bs16
bd258f4674116cea83b7639860de49920fad4368
2021-11-05T20:49:21.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index" ]
text-classification
false
vesteinn
null
vesteinn/IceBERT-finetuned-iec-sentence-bs16
3
null
transformers
21,838
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: IceBERT-finetuned-iec-sentence-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-iec-sentence-bs16 This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2508 - Matthews Correlation: 0.8169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.5278 | 1.0 | 3640 | 0.4777 | 0.5396 | | 0.4648 | 2.0 | 7280 | 0.3886 | 0.6437 | | 0.3807 | 3.0 | 10920 | 0.3478 | 0.7060 | | 0.3061 | 4.0 | 14560 | 0.2523 | 0.8083 | | 0.2477 | 5.0 | 18200 | 0.2508 | 0.8169 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.0 - Datasets 1.15.1 - Tokenizers 0.10.3
vesteinn/icelandic-weather-summarization
31a5a71b53a63876eaad873a08eea2ba01ceb2af
2021-11-28T11:56:15.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vesteinn
null
vesteinn/icelandic-weather-summarization
3
null
transformers
21,839
Temporary upload - student project
vidhur2k/mBERT-Italian-Mono
af0584b6fcfa80a1f4f300d99f838eef72f9c856
2021-12-03T18:31:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-Italian-Mono
3
null
transformers
21,840
Entry not found
vinaydngowda/Robertabase_Ana4
5d7d0e2351d3b8b029edf616f51910ec867e65a3
2022-01-12T20:12:16.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:vinaydngowda/autonlp-data-case-classify-xlnet", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
vinaydngowda
null
vinaydngowda/Robertabase_Ana4
3
null
transformers
21,841
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - vinaydngowda/autonlp-data-case-classify-xlnet co2_eq_emissions: 19.964760910364927 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 496213536 - CO2 Emissions (in grams): 19.964760910364927 ## Validation Metrics - Loss: 0.7149562835693359 - Accuracy: 0.8092592592592592 - Macro F1: 0.8085189591849891 - Micro F1: 0.8092592592592593 - Weighted F1: 0.8085189591849888 - Macro Precision: 0.8137745564384112 - Micro Precision: 0.8092592592592592 - Weighted Precision: 0.8137745564384112 - Macro Recall: 0.8092592592592592 - Micro Recall: 0.8092592592592592 - Weighted Recall: 0.8092592592592592 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/vinaydngowda/autonlp-case-classify-xlnet-496213536 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vinaydngowda/autonlp-case-classify-xlnet-496213536", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vinaydngowda/autonlp-case-classify-xlnet-496213536", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
viniaraujoo/bert_transparencia_brasil
d3bc4d02767a3ec5a9e5d63fac3d8685b144d5bc
2021-07-15T22:23:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
viniaraujoo
null
viniaraujoo/bert_transparencia_brasil
3
null
transformers
21,842
Entry not found
viniaraujoo/transparencia_brasil_binario
7dc21926c350fd35fd2317dd17dca468f3ac6d5f
2021-08-02T17:11:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
viniaraujoo
null
viniaraujoo/transparencia_brasil_binario
3
null
transformers
21,843
Entry not found
violentometro/violentometro-model
df01854ae31096ff657e0343e452a2080e89c871
2021-09-21T04:29:32.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
violentometro
null
violentometro/violentometro-model
3
null
transformers
21,844
Entry not found
vishalz/paraphrase_model2
7eab498d5bcaaba839f16f602edb4e83100b57ba
2021-09-23T13:54:55.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vishalz
null
vishalz/paraphrase_model2
3
null
transformers
21,845
Entry not found
vittoriomaggio/bert-base-msmarco-fiqa
3627461a730ff51d1ca3ff33b3fba9ddb47a16f1
2022-02-13T09:15:27.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vittoriomaggio
null
vittoriomaggio/bert-base-msmarco-fiqa
3
null
transformers
21,846
Entry not found
vittoriomaggio/msmarco-distilbert-base-v2-fiqa
b59d94bb76dbdb197cbfdae1795ca241689a112c
2022-02-11T11:47:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vittoriomaggio
null
vittoriomaggio/msmarco-distilbert-base-v2-fiqa
3
null
transformers
21,847
Entry not found
vmicheli/lm-butlers-gpt
9e163dbbc07381228097edc8411bf97843f372b0
2021-05-23T13:37:59.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "arxiv:2104.07972", "transformers" ]
text-generation
false
vmicheli
null
vmicheli/lm-butlers-gpt
3
null
transformers
21,848
GPT model developed in [Language Models are Few-Shot Butlers](https://arxiv.org/abs/2104.07972).
voidful/bart_base_squad_ca_q
3d5a00e1665c72c3a96d7a28075b43dc6e322cbf
2021-07-04T16:29:48.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/bart_base_squad_ca_q
3
null
transformers
21,849
Entry not found
voidful/tts_hubert_m2m100
8976b4ea99c91e8d4a2b728de9aaed6c75c6b57d
2021-12-02T10:05:18.000Z
[ "pytorch", "m2m_100", "feature-extraction", "transformers" ]
feature-extraction
false
voidful
null
voidful/tts_hubert_m2m100
3
null
transformers
21,850
Entry not found
w11wo/javanese-bert-small
45a3d2fe25d194d3103b326557f618dddaf44d95
2022-02-14T16:19:09.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "jv", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "javanese-bert-small", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/javanese-bert-small
3
null
transformers
21,851
--- language: jv tags: - javanese-bert-small license: mit datasets: - wikipedia widget: - text: "Aku mangan sate ing [MASK] bareng konco-konco" --- ## Javanese BERT Small Javanese BERT Small is a masked language model based on the [BERT model](https://arxiv.org/abs/1810.04805). It was trained on the latest (late December 2020) Javanese Wikipedia articles. The model was originally HuggingFace's pretrained [English BERT model](https://huggingface.co/bert-base-uncased) and is later fine-tuned on the Javanese dataset. It achieved a perplexity of 22.00 on the validation dataset (20% of the articles). Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), and [fine-tuning tutorial notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) written by [Pierre Guillou](https://huggingface.co/pierreguillou). Hugging Face's [Transformers](https://huggingface.co/transformers) library was used to train the model -- utilizing the base BERT model and their `Trainer` class. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |-----------------------|----------|----------------|-------------------------------------| | `javanese-bert-small` | 110M | BERT Small | Javanese Wikipedia (319 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|------------| | 3.116 | 3.091 | 22.00 | 2:7:42 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-bert-small" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Aku mangan sate ing [MASK] bareng konco-konco") ``` ### Feature Extraction in PyTorch ```python from transformers import BertModel, BertTokenizerFast pretrained_name = "w11wo/javanese-bert-small" model = BertModel.from_pretrained(pretrained_name) tokenizer = BertTokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do remember that although the dataset originated from Wikipedia, the model may not always generate factual texts. Additionally, the biases which came from the Wikipedia articles may be carried over into the results of this model. ## Author Javanese BERT Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/javanese-gpt2-small-imdb-classifier
92bb533334b3dbba65564e65a0dfbcc4a04e5579
2022-02-14T16:18:19.000Z
[ "pytorch", "tf", "gpt2", "text-classification", "jv", "dataset:w11wo/imdb-javanese", "transformers", "javanese-gpt2-small-imdb-classifier", "license:mit" ]
text-classification
false
w11wo
null
w11wo/javanese-gpt2-small-imdb-classifier
3
null
transformers
21,852
--- language: jv tags: - javanese-gpt2-small-imdb-classifier license: mit datasets: - w11wo/imdb-javanese widget: - text: "Film sing apik banget!" --- ## Javanese GPT-2 Small IMDB Classifier Javanese GPT-2 Small IMDB Classifier is a movie-classification model based on the [GPT-2 model](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). It was trained on Javanese IMDB movie reviews. The model was originally [`w11wo/javanese-gpt2-small-imdb`](https://huggingface.co/w11wo/javanese-gpt2-small-imdb) which is then fine-tuned on the [`w11wo/imdb-javanese`](https://huggingface.co/datasets/w11wo/imdb-javanese) dataset consisting of Javanese IMDB movie reviews. It achieved an accuracy of 76.70% on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/text_classification.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |---------------------------------------|----------|-----------------|---------------------------------| | `javanese-gpt2-small-imdb-classifier` | 124M | GPT-2 Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | accuracy | total time | |------------|------------|------------|-------------| | 0.324 | 0.574 | 0.767 | 2:0:14 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "w11wo/javanese-gpt2-small-imdb-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Film sing apik banget!") ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese GPT-2 Small IMDB Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/javanese-roberta-small-imdb-classifier
e5218bb8a88a270b1ff8b28cd1857bb60a8ec1ef
2022-02-14T16:19:37.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "jv", "dataset:w11wo/imdb-javanese", "arxiv:1907.11692", "transformers", "javanese-roberta-small-imdb-classifier", "license:mit" ]
text-classification
false
w11wo
null
w11wo/javanese-roberta-small-imdb-classifier
3
null
transformers
21,853
--- language: jv tags: - javanese-roberta-small-imdb-classifier license: mit datasets: - w11wo/imdb-javanese widget: - text: "Aku bakal menehi rating film iki 1 bintang." --- ## Javanese RoBERTa Small IMDB Classifier Javanese RoBERTa Small IMDB Classifier is a movie-classification model based on the [RoBERTa model](https://arxiv.org/abs/1907.11692). It was trained on Javanese IMDB movie reviews. The model was originally [`w11wo/javanese-roberta-small-imdb`](https://huggingface.co/w11wo/javanese-roberta-small-imdb) which is then fine-tuned on the [`w11wo/imdb-javanese`](https://huggingface.co/datasets/w11wo/imdb-javanese) dataset consisting of Javanese IMDB movie reviews. It achieved an accuracy of 77.70% on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/text_classification.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |------------------------------------------|---------|------------------|---------------------------------| | `javanese-roberta-small-imdb-classifier` | 124M | RoBERTa Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | accuracy | total time | |------------|------------|------------|-------------| | 0.281 | 0.593 | 0.777 | 1:48:31 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "w11wo/javanese-roberta-small-imdb-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Film sing apik banget!") ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese RoBERTa Small IMDB Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/javanese-roberta-small-imdb
6eebc1eafad67f04403e55e15098a63ef84a9e4c
2022-02-14T16:17:51.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "jv", "dataset:w11wo/imdb-javanese", "arxiv:1907.11692", "transformers", "javanese-roberta-small-imdb", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/javanese-roberta-small-imdb
3
null
transformers
21,854
--- language: jv tags: - javanese-roberta-small-imdb license: mit datasets: - w11wo/imdb-javanese widget: - text: "Aku bakal menehi rating film iki 5 <mask>." --- ## Javanese RoBERTa Small IMDB Javanese RoBERTa Small IMDB is a masked language model based on the [RoBERTa model](https://arxiv.org/abs/1907.11692). It was trained on Javanese IMDB movie reviews. The model was originally the pretrained [Javanese RoBERTa Small model](https://huggingface.co/w11wo/javanese-roberta-small) and is later fine-tuned on the Javanese IMDB movie review dataset. It achieved a perplexity of 20.83 on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |-------------------------------|----------|-------------------|---------------------------------| | `javanese-roberta-small-imdb` | 124M | RoBERTa Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|-------------| | 3.140 | 3.036 | 20.83 | 2:59:28 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-roberta-small-imdb" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Aku mangan sate ing <mask> bareng konco-konco") ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "w11wo/javanese-roberta-small-imdb" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese RoBERTa Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/sundanese-bert-base-emotion-classifier
1559848cfe7e72ee1e1b767dab3d4d7971b607d9
2022-02-26T13:15:42.000Z
[ "pytorch", "tf", "bert", "text-classification", "su", "arxiv:1810.04805", "transformers", "sundanese-bert-base-emotion-classifier", "license:mit" ]
text-classification
false
w11wo
null
w11wo/sundanese-bert-base-emotion-classifier
3
null
transformers
21,855
--- language: su tags: - sundanese-bert-base-emotion-classifier license: mit widget: - text: "Punten ini akurat ga ya sieun ihh daerah aku masuk zona merah" --- ## Sundanese BERT Base Emotion Classifier Sundanese BERT Base Emotion Classifier is an emotion-text-classification model based on the [BERT](https://arxiv.org/abs/1810.04805) model. The model was originally the pre-trained [Sundanese BERT Base Uncased](https://hf.co/luche/bert-base-sundanese-uncased) model trained by [`@luche`](https://hf.co/luche), which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 96.82% and F1-macro of 96.75%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ---------------------------------------- | ------- | --------- | ------------------------------- | | `sundanese-bert-base-emotion-classifier` | 110M | BERT Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.759800 | 0.263913 | 0.924603 | 0.925042 | 0.928426 | 0.926130 | | 2 | 0.213100 | 0.456022 | 0.908730 | 0.906732 | 0.924141 | 0.907846 | | 3 | 0.091900 | 0.204323 | 0.956349 | 0.955896 | 0.956226 | 0.956248 | | 4 | 0.043800 | 0.219143 | 0.956349 | 0.955705 | 0.955848 | 0.956392 | | 5 | 0.013700 | 0.247289 | 0.960317 | 0.959734 | 0.959477 | 0.960782 | | 6 | 0.004800 | 0.286636 | 0.956349 | 0.955540 | 0.956519 | 0.956615 | | 7 | 0.000200 | 0.243408 | 0.960317 | 0.959085 | 0.959145 | 0.959310 | | 8 | 0.001500 | 0.232138 | 0.960317 | 0.959451 | 0.959427 | 0.959997 | | 9 | 0.000100 | 0.215523 | 0.968254 | 0.967556 | 0.967192 | 0.968330 | | 10 | 0.000100 | 0.216533 | 0.968254 | 0.967556 | 0.967192 | 0.968330 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-bert-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Punten ini akurat ga ya sieun ihh daerah aku masuk zona merah") ``` ## Disclaimer Do consider the biases which come from both the pre-trained BERT model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese BERT Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
weizhen/prophetnet-large-uncased-squad-qg
1dc2b39111484cf90d0306c46740180af7a41958
2020-10-20T18:25:13.000Z
[ "pytorch", "prophetnet", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
weizhen
null
weizhen/prophetnet-large-uncased-squad-qg
3
null
transformers
21,856
Entry not found
wesam266/wav2vec2-xls-r-300m_all_ds_v1
64ad8a5d8ecf863581476aa5747a4bf7c4764fa5
2022-01-22T11:44:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
wesam266
null
wesam266/wav2vec2-xls-r-300m_all_ds_v1
3
null
transformers
21,857
Entry not found
wilsontam/bert-base-uncased-dstc10-kb-title-body-validate
f934fcc86884bca07f18c14f98f41c32cb88f48e
2021-12-26T04:16:02.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "dstc10", "knowledge title-body validation" ]
text-classification
false
wilsontam
null
wilsontam/bert-base-uncased-dstc10-kb-title-body-validate
3
null
transformers
21,858
--- language: "en" tags: - dstc10 - knowledge title-body validation widget: - text: "Can you accommodate large groups? It does not offer free WiFi." - text: "Is there a gym on site? It does not have an onsite fitness center." --- This is the model used for knowledge clustering where we feed title-body pair and the classifier predicts if the pair is valid or not. For further information, please refer to https://github.com/yctam/dstc10_track2_task2 for the Github repository. Credit: Jiakai Zou, Wilson Tam --- ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification def single_test(tokenizer, title_body_pair): result = tokenizer([title_body_pair], return_tensors="pt") model.eval() outputs = model(**result) predictions = outputs.logits.argmax(dim=-1) # There was a mistake in flipping the labels. return True if predictions == 0 else False if __name__ == '__main__': model_name = "wilsontam/bert-base-uncased-dstc10-kb-title-body-validate" config = AutoConfig.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForSequenceClassification.from_pretrained(".") sentence = "Can I check in anytime?" body = "Yes, 24 Hours Front Desk Avaliable." print(single_test((sentence, body))) # Expect: True ```
woolee/fine_tuned_example_model
a62c70ff1bfb06f32b779f60e3ff63c3ee8813a2
2021-11-04T08:02:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
woolee
null
woolee/fine_tuned_example_model
3
null
transformers
21,859
Entry not found
xhyi/PT_GPTNEO1300_Delish_v6
55e8ba2cc0879c4a188fb5b670f8569da9e8aa87
2021-09-02T22:29:48.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
xhyi
null
xhyi/PT_GPTNEO1300_Delish_v6
3
null
transformers
21,860
# Delish v6 (GPT-Neo 1.3B) This model is from the DelishBot project.
yazdipour/text-to-sparql-t5-base-2021-10-17_23-40
dd15c54db1ba75e4ae96568ab7df9d9a0a67d5fc
2021-10-18T02:23:08.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
yazdipour
null
yazdipour/text-to-sparql-t5-base-2021-10-17_23-40
3
null
transformers
21,861
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-base-2021-10-17_23-40 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2649857699871063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-17_23-40 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2645 - Gen Len: 19.0 - P: 0.5125 - R: 0.0382 - F1: 0.2650 - Score: 5.1404 - Bleu-precisions: [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] - Bleu-bp: 0.0707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3513 | 1.0 | 4807 | 0.2645 | 19.0 | 0.5125 | 0.0382 | 0.2650 | 5.1404 | [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] | 0.0707 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yerevann/m3-gen-only-generator
38877cfbb8817ebe235ba33bb2148c395c4b37ee
2020-05-04T13:37:40.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
yerevann
null
yerevann/m3-gen-only-generator
3
null
transformers
21,862
Entry not found
yhavinga/t5-base-dutch
d7a21f82598ac5f282101c433438393435209dbb
2022-06-14T10:28:36.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "nl", "dataset:yhavinga/mc4_nl_cleaned", "arxiv:1910.10683", "arxiv:2109.10686", "transformers", "seq2seq", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
yhavinga
null
yhavinga/t5-base-dutch
3
null
transformers
21,863
--- language: - nl datasets: - yhavinga/mc4_nl_cleaned tags: - t5 - seq2seq inference: false license: apache-2.0 --- # t5-base-dutch Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/) & [Dat Nguyen](https://www.linkedin.com/in/dat-nguyen-49a641138/) during the [Hugging Face community week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google, for the project [Pre-train T5 from scratch in Dutch](https://discuss.huggingface.co/t/pretrain-t5-from-scratch-in-dutch/8109). See also the fine-tuned [t5-base-dutch-demo](https://huggingface.co/flax-community/t5-base-dutch-demo) model, and the demo application **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)**, that are based on this model. **5 jan 2022: Model updated. Evaluation accuracy increased from 0.64 to 0.70.** **11 jan 2022: See also [yhavinga/t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) with eval acc 0.78** This **t5** model has **222M** parameters. It was pre-trained with the masked language modeling objective on the dataset `mc4_nl_cleaned` config `full` for **1** epoch(s) and a duration of **2d9h**, with a sequence length of **512**, batch size **128** and **527500** total steps (**35B** tokens). Pre-training evaluation loss and accuracy are **1,38** and **0,70**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. * Pre-trained T5 models need to be finetuned before they can be used for downstream tasks, therefore the inference widget on the right has been turned off. * For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer 📰](https://huggingface.co/spaces/flax-community/netherformer)** example application! Please refer to the original T5 papers and Scale Efficiently papers for more information about the T5 architecture and configs, though it must be noted that this model (t5-base-dutch) is unrelated to these projects and not an 'official' checkpoint. * **[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)** by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*. * **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch mc4 with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been evaluated on summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) The next two sections provide more information on how the evaluation was performed. ## Evaluation on summarization The models below have been evaluated for summarization on 50K samples from the CNN Dailymail dataset. All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 1e-3 after a warmup of 32 steps, with a label smoothing factor of 0.05. Article and summary token lengths were set to 1024 and 142. NB: the evaluation checkpoints are not saved, since they were trained for comparison of pre-trained models only. The numbers reported are the Rouge scores on 1000 documents from the test split. The rouge1 score is visualized in the | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | ## Evaluation on translation The models below have been evaluated for English to Dutch translation on 50K samples from the CCMatrix dataset. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 5e-5 after a warmup of 32 steps, with a label smoothing factor of 0.1 and maximum sequence length of 128 tokens. The numbers reported are the Bleu scores on 1000 documents from the test split. NB: the evaluation checkpoints are not saved, since they were trained for comparison of pre-trained models only. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace 🤗 ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
yokonav/xlm-roberta-base-finetuned-marc-en
f8294fdfde1abcbcc0fa6476e1611fc3632d7bc2
2021-10-22T13:36:59.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
yokonav
null
yokonav/xlm-roberta-base-finetuned-marc-en
3
null
transformers
21,864
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9177 - Mae: 0.4756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.136 | 1.0 | 235 | 0.9515 | 0.4756 | | 0.9724 | 2.0 | 470 | 0.9177 | 0.4756 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
yoshitomo-matsubara/bert-base-uncased-mnli_from_bert-large-uncased-mnli
eca7edf0862d0a745e2029cde6a43a24736b9d67
2021-06-03T05:02:16.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:mnli", "dataset:ax", "transformers", "mnli", "ax", "glue", "kd", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-mnli_from_bert-large-uncased-mnli
3
null
transformers
21,865
--- language: en tags: - bert - mnli - ax - glue - kd - torchdistill license: apache-2.0 datasets: - mnli - ax metrics: - accuracy --- `bert-base-uncased` fine-tuned on MNLI dataset, using fine-tuned `bert-large-uncased` as a teacher model, [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_kd_and_submission.ipynb) for knowledge distillation. The training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/mnli/kd/bert_base_uncased_from_bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **78.9**.
yoshitomo-matsubara/bert-large-uncased-qqp
d62bf3d71b6e402c1b1c307982763ea4bcbd0850
2021-05-29T21:33:37.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:qqp", "transformers", "qqp", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-large-uncased-qqp
3
null
transformers
21,866
--- language: en tags: - bert - qqp - glue - torchdistill license: apache-2.0 datasets: - qqp metrics: - f1 - accuracy --- `bert-large-uncased` fine-tuned on QQP dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/qqp/ce/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
youngfan918/bert_cn_finetuning
2f761306fb4b2be56feeb413ebe8dace13ea2c81
2021-05-20T09:33:15.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
youngfan918
null
youngfan918/bert_cn_finetuning
3
null
transformers
21,867
Entry not found
youngfan918/bert_finetuning_test
424629521b5887749ce0a18a6e6d52d2cae029df
2021-05-20T09:34:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
youngfan918
null
youngfan918/bert_finetuning_test
3
null
transformers
21,868
Entry not found
ytlin/16l3xf7a_1
7c1fe62a60955cfc8a50fd4602d76f5970efee78
2021-05-23T13:47:19.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ytlin
null
ytlin/16l3xf7a_1
3
null
transformers
21,869
Entry not found
ytlin/18ygyqcn_4
d759b90378b7d4342641218a8b068153d0c0b46f
2021-05-23T13:48:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ytlin
null
ytlin/18ygyqcn_4
3
null
transformers
21,870
Entry not found
ytlin/2sk5p244
5e7cb3a6bbd8e4684e474fe9827fe57ddc2e80eb
2020-10-06T06:38:22.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ytlin
null
ytlin/2sk5p244
3
null
transformers
21,871
Entry not found
ytlin/31r11ahz_2
bd8a5617990e8385529bf1b46a3667828b2d419e
2020-10-04T10:44:59.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ytlin
null
ytlin/31r11ahz_2
3
null
transformers
21,872
Entry not found
yxchar/tlm-imdb-large-scale
d1d97e4b66c6a42842e53c10be563ec6958b47be
2021-11-04T10:08:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-imdb-large-scale
3
null
transformers
21,873
Entry not found
yxchar/tlm-sciie-small-scale
c3786965383c66a33d3de50b248da88ef7e621cd
2021-11-04T17:27:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yxchar
null
yxchar/tlm-sciie-small-scale
3
null
transformers
21,874
Entry not found
zharry29/goal_benchmark_bert
7b9b669435ea00252ba1c693202e09a67197e846
2021-05-20T09:42:25.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/goal_benchmark_bert
3
null
transformers
21,875
Entry not found
zharry29/intent_enwh_rl
f89f1b1f4cf6ba0c6bc02c20e46dcca9a2274b54
2020-09-16T20:10:41.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_enwh_rl
3
null
transformers
21,876
Entry not found
zharry29/intent_fb-en_id_rl
155cd162f8c087c3c8db69fe2f6bddb0831496cf
2021-05-20T23:27:13.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_fb-en_id_rl
3
null
transformers
21,877
Entry not found
zharry29/intent_fb-es_wh_id
0650003d4616e0dd46c3fd3b932065add01afa16
2020-09-16T20:15:03.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_fb-es_wh_id
3
null
transformers
21,878
Entry not found
zharry29/intent_fb-th_enwh_id
98d7571c63b2591150ed6e22cc905644bc9ee6d3
2020-09-16T20:15:38.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_fb-th_enwh_id
3
null
transformers
21,879
Entry not found
zharry29/step_benchmark_bert
120d6fc3940fb7b273379b569bf087a3ef8a4c17
2021-05-20T09:44:40.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/step_benchmark_bert
3
null
transformers
21,880
Entry not found
zharry29/step_benchmark_roberta
fea72463b57d4d73f5352c1dccec5522785b31ac
2021-05-20T23:52:30.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/step_benchmark_roberta
3
null
transformers
21,881
Entry not found
zhuqing/bert-base-uncased-mumsnet-first-classification-t
8ce49546883879389c4bf39434504b8f6bcddbae
2021-08-11T14:09:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
zhuqing
null
zhuqing/bert-base-uncased-mumsnet-first-classification-t
3
null
transformers
21,882
Entry not found
zhuqing/bert-base-uncased-mumsnet-first-classification
5ecfd13c956af85c5cfea0686964d08b68c3aef8
2021-08-11T10:37:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
zhuqing
null
zhuqing/bert-base-uncased-mumsnet-first-classification
3
null
transformers
21,883
Entry not found
zhuqing/bert-base-uncased-mumsnet-pf-all_classification
4c47c05c54284a9315f79e8fb68c17c107bad557
2021-08-14T18:38:55.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
zhuqing
null
zhuqing/bert-base-uncased-mumsnet-pf-all_classification
3
null
transformers
21,884
Entry not found
zhuqing/bert-large-whole-uncased-exp2-feminist
801c8f25de05eb0ec0f9b4c9f00da54141d7d763
2021-08-29T09:12:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-large-whole-uncased-exp2-feminist
3
null
transformers
21,885
Entry not found
zhuqing/bert-large-whole-uncased-exp3-parent-nointersection
d5371b54536d6030ed131612f342528730226259
2021-08-29T14:09:49.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-large-whole-uncased-exp3-parent-nointersection
3
null
transformers
21,886
Entry not found
zhuqing/distilbert-base-uncased-netmums-parent
ab2ecdc0a88fb4ab4982217d0b8910be5b0a8e07
2021-08-20T06:46:05.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/distilbert-base-uncased-netmums-parent
3
null
transformers
21,887
Entry not found
zhuqing/roberta-base-uncased-netmums-classification-intersection-2
5f34d5eaf7ad47170bc44924d667e9093ce66141
2021-08-23T18:59:52.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
zhuqing
null
zhuqing/roberta-base-uncased-netmums-classification-intersection-2
3
null
transformers
21,888
Entry not found
zhuqing/roberta-base-uncased-parent-intersection
b4e552ebd7afed9f2a1eec92c8ad25ac7eea837f
2021-08-23T06:48:09.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/roberta-base-uncased-parent-intersection
3
null
transformers
21,889
Entry not found
zloelias/bert-base-uncased-kinopoisk-reviews-finetuned-clf
f188c61772e1d3db4ffcbe0d39dcf7c8f6327583
2021-12-01T16:29:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
zloelias
null
zloelias/bert-base-uncased-kinopoisk-reviews-finetuned-clf
3
null
transformers
21,890
Entry not found
zqf03118/bert_cn_finetuning
0a634bdffc7ae503a327c2219782cf5ac538709a
2021-05-20T09:55:48.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zqf03118
null
zqf03118/bert_cn_finetuning
3
null
transformers
21,891
Entry not found
wietsedv/xlm-roberta-base-ft-udpos28-ca
8861408789d83268eb4c11673f2e5278a9d98e63
2022-02-25T09:58:08.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ca", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-ca
3
null
transformers
21,892
--- language: - ca license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ca results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 86.3 - type: accuracy name: Dutch Test accuracy value: 87.2 - type: accuracy name: German Test accuracy value: 79.2 - type: accuracy name: Italian Test accuracy value: 90.2 - type: accuracy name: French Test accuracy value: 90.7 - type: accuracy name: Spanish Test accuracy value: 94.8 - type: accuracy name: Russian Test accuracy value: 89.1 - type: accuracy name: Swedish Test accuracy value: 89.5 - type: accuracy name: Norwegian Test accuracy value: 84.7 - type: accuracy name: Danish Test accuracy value: 89.3 - type: accuracy name: Low Saxon Test accuracy value: 53.3 - type: accuracy name: Akkadian Test accuracy value: 41.0 - type: accuracy name: Armenian Test accuracy value: 84.7 - type: accuracy name: Welsh Test accuracy value: 66.0 - type: accuracy name: Old East Slavic Test accuracy value: 77.4 - type: accuracy name: Albanian Test accuracy value: 79.2 - type: accuracy name: Slovenian Test accuracy value: 79.1 - type: accuracy name: Guajajara Test accuracy value: 32.9 - type: accuracy name: Kurmanji Test accuracy value: 78.2 - type: accuracy name: Turkish Test accuracy value: 76.2 - type: accuracy name: Finnish Test accuracy value: 84.7 - type: accuracy name: Indonesian Test accuracy value: 84.5 - type: accuracy name: Ukrainian Test accuracy value: 87.5 - type: accuracy name: Polish Test accuracy value: 87.4 - type: accuracy name: Portuguese Test accuracy value: 91.4 - type: accuracy name: Kazakh Test accuracy value: 80.6 - type: accuracy name: Latin Test accuracy value: 79.3 - type: accuracy name: Old French Test accuracy value: 66.5 - type: accuracy name: Buryat Test accuracy value: 62.8 - type: accuracy name: Kaapor Test accuracy value: 27.5 - type: accuracy name: Korean Test accuracy value: 61.6 - type: accuracy name: Estonian Test accuracy value: 87.2 - type: accuracy name: Croatian Test accuracy value: 88.8 - type: accuracy name: Gothic Test accuracy value: 29.1 - type: accuracy name: Swiss German Test accuracy value: 42.1 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 41.0 - type: accuracy name: Naija Test accuracy value: 40.3 - type: accuracy name: Latvian Test accuracy value: 85.0 - type: accuracy name: Chinese Test accuracy value: 32.3 - type: accuracy name: Tagalog Test accuracy value: 72.5 - type: accuracy name: Bambara Test accuracy value: 29.8 - type: accuracy name: Lithuanian Test accuracy value: 84.1 - type: accuracy name: Galician Test accuracy value: 88.8 - type: accuracy name: Vietnamese Test accuracy value: 65.2 - type: accuracy name: Greek Test accuracy value: 85.9 - type: accuracy name: Catalan Test accuracy value: 98.7 - type: accuracy name: Czech Test accuracy value: 89.3 - type: accuracy name: Erzya Test accuracy value: 50.9 - type: accuracy name: Bhojpuri Test accuracy value: 49.7 - type: accuracy name: Thai Test accuracy value: 43.4 - type: accuracy name: Marathi Test accuracy value: 82.2 - type: accuracy name: Basque Test accuracy value: 74.9 - type: accuracy name: Slovak Test accuracy value: 89.6 - type: accuracy name: Kiche Test accuracy value: 39.2 - type: accuracy name: Yoruba Test accuracy value: 28.8 - type: accuracy name: Warlpiri Test accuracy value: 36.4 - type: accuracy name: Tamil Test accuracy value: 82.2 - type: accuracy name: Maltese Test accuracy value: 36.2 - type: accuracy name: Ancient Greek Test accuracy value: 62.0 - type: accuracy name: Icelandic Test accuracy value: 83.2 - type: accuracy name: Mbya Guarani Test accuracy value: 32.6 - type: accuracy name: Urdu Test accuracy value: 65.2 - type: accuracy name: Romanian Test accuracy value: 84.8 - type: accuracy name: Persian Test accuracy value: 76.7 - type: accuracy name: Apurina Test accuracy value: 37.3 - type: accuracy name: Japanese Test accuracy value: 19.9 - type: accuracy name: Hungarian Test accuracy value: 87.2 - type: accuracy name: Hindi Test accuracy value: 68.8 - type: accuracy name: Classical Chinese Test accuracy value: 19.2 - type: accuracy name: Komi Permyak Test accuracy value: 52.6 - type: accuracy name: Faroese Test accuracy value: 76.4 - type: accuracy name: Sanskrit Test accuracy value: 38.4 - type: accuracy name: Livvi Test accuracy value: 64.0 - type: accuracy name: Arabic Test accuracy value: 79.2 - type: accuracy name: Wolof Test accuracy value: 38.2 - type: accuracy name: Bulgarian Test accuracy value: 89.9 - type: accuracy name: Akuntsu Test accuracy value: 43.4 - type: accuracy name: Makurap Test accuracy value: 23.3 - type: accuracy name: Kangri Test accuracy value: 44.9 - type: accuracy name: Breton Test accuracy value: 63.5 - type: accuracy name: Telugu Test accuracy value: 85.0 - type: accuracy name: Cantonese Test accuracy value: 40.5 - type: accuracy name: Old Church Slavonic Test accuracy value: 57.8 - type: accuracy name: Karelian Test accuracy value: 73.3 - type: accuracy name: Upper Sorbian Test accuracy value: 75.8 - type: accuracy name: South Levantine Arabic Test accuracy value: 64.0 - type: accuracy name: Komi Zyrian Test accuracy value: 44.2 - type: accuracy name: Irish Test accuracy value: 67.2 - type: accuracy name: Nayini Test accuracy value: 50.0 - type: accuracy name: Munduruku Test accuracy value: 28.8 - type: accuracy name: Manx Test accuracy value: 35.3 - type: accuracy name: Skolt Sami Test accuracy value: 41.3 - type: accuracy name: Afrikaans Test accuracy value: 86.0 - type: accuracy name: Old Turkish Test accuracy value: 45.7 - type: accuracy name: Tupinamba Test accuracy value: 36.6 - type: accuracy name: Belarusian Test accuracy value: 86.0 - type: accuracy name: Serbian Test accuracy value: 90.4 - type: accuracy name: Moksha Test accuracy value: 47.7 - type: accuracy name: Western Armenian Test accuracy value: 78.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 54.8 - type: accuracy name: Khunsari Test accuracy value: 47.3 - type: accuracy name: Hebrew Test accuracy value: 91.7 - type: accuracy name: Uyghur Test accuracy value: 75.4 - type: accuracy name: Chukchi Test accuracy value: 34.9 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Catalan This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ca") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ca") ```
wietsedv/xlm-roberta-base-ft-udpos28-de
eb3863c6e22a68188b8f48107a6ef8adbb5dca13
2022-02-25T09:58:16.000Z
[ "pytorch", "xlm-roberta", "token-classification", "de", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-de
3
null
transformers
21,893
--- language: - de license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-de results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 87.0 - type: accuracy name: Dutch Test accuracy value: 89.6 - type: accuracy name: German Test accuracy value: 97.2 - type: accuracy name: Italian Test accuracy value: 85.6 - type: accuracy name: French Test accuracy value: 84.8 - type: accuracy name: Spanish Test accuracy value: 88.4 - type: accuracy name: Russian Test accuracy value: 89.4 - type: accuracy name: Swedish Test accuracy value: 92.3 - type: accuracy name: Norwegian Test accuracy value: 87.7 - type: accuracy name: Danish Test accuracy value: 88.9 - type: accuracy name: Low Saxon Test accuracy value: 44.3 - type: accuracy name: Akkadian Test accuracy value: 21.4 - type: accuracy name: Armenian Test accuracy value: 85.6 - type: accuracy name: Welsh Test accuracy value: 69.0 - type: accuracy name: Old East Slavic Test accuracy value: 67.7 - type: accuracy name: Albanian Test accuracy value: 84.6 - type: accuracy name: Slovenian Test accuracy value: 76.5 - type: accuracy name: Guajajara Test accuracy value: 18.1 - type: accuracy name: Kurmanji Test accuracy value: 74.1 - type: accuracy name: Turkish Test accuracy value: 75.6 - type: accuracy name: Finnish Test accuracy value: 83.8 - type: accuracy name: Indonesian Test accuracy value: 82.2 - type: accuracy name: Ukrainian Test accuracy value: 89.0 - type: accuracy name: Polish Test accuracy value: 86.6 - type: accuracy name: Portuguese Test accuracy value: 87.8 - type: accuracy name: Kazakh Test accuracy value: 80.6 - type: accuracy name: Latin Test accuracy value: 75.8 - type: accuracy name: Old French Test accuracy value: 36.3 - type: accuracy name: Buryat Test accuracy value: 49.8 - type: accuracy name: Kaapor Test accuracy value: 11.7 - type: accuracy name: Korean Test accuracy value: 61.4 - type: accuracy name: Estonian Test accuracy value: 86.6 - type: accuracy name: Croatian Test accuracy value: 88.8 - type: accuracy name: Gothic Test accuracy value: 8.1 - type: accuracy name: Swiss German Test accuracy value: 54.4 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 25.0 - type: accuracy name: Naija Test accuracy value: 28.2 - type: accuracy name: Latvian Test accuracy value: 83.9 - type: accuracy name: Chinese Test accuracy value: 52.6 - type: accuracy name: Tagalog Test accuracy value: 72.1 - type: accuracy name: Bambara Test accuracy value: 17.5 - type: accuracy name: Lithuanian Test accuracy value: 82.6 - type: accuracy name: Galician Test accuracy value: 85.2 - type: accuracy name: Vietnamese Test accuracy value: 60.8 - type: accuracy name: Greek Test accuracy value: 88.7 - type: accuracy name: Catalan Test accuracy value: 86.8 - type: accuracy name: Czech Test accuracy value: 87.4 - type: accuracy name: Erzya Test accuracy value: 33.6 - type: accuracy name: Bhojpuri Test accuracy value: 46.5 - type: accuracy name: Thai Test accuracy value: 62.4 - type: accuracy name: Marathi Test accuracy value: 86.5 - type: accuracy name: Basque Test accuracy value: 77.3 - type: accuracy name: Slovak Test accuracy value: 87.6 - type: accuracy name: Kiche Test accuracy value: 21.6 - type: accuracy name: Yoruba Test accuracy value: 16.6 - type: accuracy name: Warlpiri Test accuracy value: 21.5 - type: accuracy name: Tamil Test accuracy value: 84.2 - type: accuracy name: Maltese Test accuracy value: 15.3 - type: accuracy name: Ancient Greek Test accuracy value: 62.0 - type: accuracy name: Icelandic Test accuracy value: 84.1 - type: accuracy name: Mbya Guarani Test accuracy value: 20.5 - type: accuracy name: Urdu Test accuracy value: 68.0 - type: accuracy name: Romanian Test accuracy value: 83.5 - type: accuracy name: Persian Test accuracy value: 76.0 - type: accuracy name: Apurina Test accuracy value: 22.2 - type: accuracy name: Japanese Test accuracy value: 36.2 - type: accuracy name: Hungarian Test accuracy value: 86.7 - type: accuracy name: Hindi Test accuracy value: 73.0 - type: accuracy name: Classical Chinese Test accuracy value: 28.6 - type: accuracy name: Komi Permyak Test accuracy value: 34.9 - type: accuracy name: Faroese Test accuracy value: 76.6 - type: accuracy name: Sanskrit Test accuracy value: 9.4 - type: accuracy name: Livvi Test accuracy value: 50.9 - type: accuracy name: Arabic Test accuracy value: 79.4 - type: accuracy name: Wolof Test accuracy value: 21.1 - type: accuracy name: Bulgarian Test accuracy value: 91.1 - type: accuracy name: Akuntsu Test accuracy value: 14.4 - type: accuracy name: Makurap Test accuracy value: 1.4 - type: accuracy name: Kangri Test accuracy value: 40.5 - type: accuracy name: Breton Test accuracy value: 60.0 - type: accuracy name: Telugu Test accuracy value: 83.2 - type: accuracy name: Cantonese Test accuracy value: 48.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 38.7 - type: accuracy name: Karelian Test accuracy value: 64.4 - type: accuracy name: Upper Sorbian Test accuracy value: 65.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.8 - type: accuracy name: Komi Zyrian Test accuracy value: 28.4 - type: accuracy name: Irish Test accuracy value: 66.3 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 8.0 - type: accuracy name: Manx Test accuracy value: 20.6 - type: accuracy name: Skolt Sami Test accuracy value: 25.8 - type: accuracy name: Afrikaans Test accuracy value: 88.9 - type: accuracy name: Old Turkish Test accuracy value: 31.7 - type: accuracy name: Tupinamba Test accuracy value: 20.9 - type: accuracy name: Belarusian Test accuracy value: 89.5 - type: accuracy name: Serbian Test accuracy value: 89.8 - type: accuracy name: Moksha Test accuracy value: 31.3 - type: accuracy name: Western Armenian Test accuracy value: 77.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.5 - type: accuracy name: Khunsari Test accuracy value: 35.1 - type: accuracy name: Hebrew Test accuracy value: 91.7 - type: accuracy name: Uyghur Test accuracy value: 71.5 - type: accuracy name: Chukchi Test accuracy value: 29.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: German This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de") ```
wietsedv/xlm-roberta-base-ft-udpos28-fro
2fb7641edbd96ddacac82bb3d5dcff3b05ca2769
2022-02-25T09:58:31.000Z
[ "pytorch", "xlm-roberta", "token-classification", "fro", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-fro
3
null
transformers
21,894
--- language: - fro license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-fro results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 73.4 - type: accuracy name: Dutch Test accuracy value: 73.1 - type: accuracy name: German Test accuracy value: 70.7 - type: accuracy name: Italian Test accuracy value: 72.6 - type: accuracy name: French Test accuracy value: 79.3 - type: accuracy name: Spanish Test accuracy value: 78.0 - type: accuracy name: Russian Test accuracy value: 68.8 - type: accuracy name: Swedish Test accuracy value: 76.8 - type: accuracy name: Norwegian Test accuracy value: 69.6 - type: accuracy name: Danish Test accuracy value: 74.2 - type: accuracy name: Low Saxon Test accuracy value: 40.3 - type: accuracy name: Akkadian Test accuracy value: 38.3 - type: accuracy name: Armenian Test accuracy value: 64.7 - type: accuracy name: Welsh Test accuracy value: 56.3 - type: accuracy name: Old East Slavic Test accuracy value: 67.5 - type: accuracy name: Albanian Test accuracy value: 66.5 - type: accuracy name: Slovenian Test accuracy value: 64.2 - type: accuracy name: Guajajara Test accuracy value: 15.0 - type: accuracy name: Kurmanji Test accuracy value: 59.9 - type: accuracy name: Turkish Test accuracy value: 57.2 - type: accuracy name: Finnish Test accuracy value: 66.3 - type: accuracy name: Indonesian Test accuracy value: 66.9 - type: accuracy name: Ukrainian Test accuracy value: 66.7 - type: accuracy name: Polish Test accuracy value: 67.3 - type: accuracy name: Portuguese Test accuracy value: 73.1 - type: accuracy name: Kazakh Test accuracy value: 58.5 - type: accuracy name: Latin Test accuracy value: 65.3 - type: accuracy name: Old French Test accuracy value: 93.3 - type: accuracy name: Buryat Test accuracy value: 43.2 - type: accuracy name: Kaapor Test accuracy value: 25.8 - type: accuracy name: Korean Test accuracy value: 50.3 - type: accuracy name: Estonian Test accuracy value: 66.1 - type: accuracy name: Croatian Test accuracy value: 72.0 - type: accuracy name: Gothic Test accuracy value: 38.1 - type: accuracy name: Swiss German Test accuracy value: 34.6 - type: accuracy name: Assyrian Test accuracy value: 8.2 - type: accuracy name: North Sami Test accuracy value: 23.0 - type: accuracy name: Naija Test accuracy value: 40.4 - type: accuracy name: Latvian Test accuracy value: 65.2 - type: accuracy name: Chinese Test accuracy value: 36.4 - type: accuracy name: Tagalog Test accuracy value: 53.3 - type: accuracy name: Bambara Test accuracy value: 13.4 - type: accuracy name: Lithuanian Test accuracy value: 64.1 - type: accuracy name: Galician Test accuracy value: 71.6 - type: accuracy name: Vietnamese Test accuracy value: 46.7 - type: accuracy name: Greek Test accuracy value: 72.9 - type: accuracy name: Catalan Test accuracy value: 76.9 - type: accuracy name: Czech Test accuracy value: 68.8 - type: accuracy name: Erzya Test accuracy value: 25.4 - type: accuracy name: Bhojpuri Test accuracy value: 41.2 - type: accuracy name: Thai Test accuracy value: 52.2 - type: accuracy name: Marathi Test accuracy value: 51.5 - type: accuracy name: Basque Test accuracy value: 59.6 - type: accuracy name: Slovak Test accuracy value: 70.7 - type: accuracy name: Kiche Test accuracy value: 19.7 - type: accuracy name: Yoruba Test accuracy value: 18.3 - type: accuracy name: Warlpiri Test accuracy value: 15.8 - type: accuracy name: Tamil Test accuracy value: 62.0 - type: accuracy name: Maltese Test accuracy value: 28.1 - type: accuracy name: Ancient Greek Test accuracy value: 56.3 - type: accuracy name: Icelandic Test accuracy value: 70.6 - type: accuracy name: Mbya Guarani Test accuracy value: 16.8 - type: accuracy name: Urdu Test accuracy value: 54.2 - type: accuracy name: Romanian Test accuracy value: 69.1 - type: accuracy name: Persian Test accuracy value: 65.4 - type: accuracy name: Apurina Test accuracy value: 24.5 - type: accuracy name: Japanese Test accuracy value: 31.0 - type: accuracy name: Hungarian Test accuracy value: 62.5 - type: accuracy name: Hindi Test accuracy value: 58.3 - type: accuracy name: Classical Chinese Test accuracy value: 41.9 - type: accuracy name: Komi Permyak Test accuracy value: 30.3 - type: accuracy name: Faroese Test accuracy value: 62.5 - type: accuracy name: Sanskrit Test accuracy value: 37.8 - type: accuracy name: Livvi Test accuracy value: 40.2 - type: accuracy name: Arabic Test accuracy value: 66.2 - type: accuracy name: Wolof Test accuracy value: 26.8 - type: accuracy name: Bulgarian Test accuracy value: 72.5 - type: accuracy name: Akuntsu Test accuracy value: 24.2 - type: accuracy name: Makurap Test accuracy value: 19.2 - type: accuracy name: Kangri Test accuracy value: 36.4 - type: accuracy name: Breton Test accuracy value: 47.3 - type: accuracy name: Telugu Test accuracy value: 58.4 - type: accuracy name: Cantonese Test accuracy value: 33.5 - type: accuracy name: Old Church Slavonic Test accuracy value: 57.3 - type: accuracy name: Karelian Test accuracy value: 49.4 - type: accuracy name: Upper Sorbian Test accuracy value: 52.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 48.3 - type: accuracy name: Komi Zyrian Test accuracy value: 26.6 - type: accuracy name: Irish Test accuracy value: 46.7 - type: accuracy name: Nayini Test accuracy value: 41.0 - type: accuracy name: Munduruku Test accuracy value: 15.6 - type: accuracy name: Manx Test accuracy value: 16.1 - type: accuracy name: Skolt Sami Test accuracy value: 20.0 - type: accuracy name: Afrikaans Test accuracy value: 77.0 - type: accuracy name: Old Turkish Test accuracy value: 2.7 - type: accuracy name: Tupinamba Test accuracy value: 23.5 - type: accuracy name: Belarusian Test accuracy value: 67.8 - type: accuracy name: Serbian Test accuracy value: 74.1 - type: accuracy name: Moksha Test accuracy value: 27.3 - type: accuracy name: Western Armenian Test accuracy value: 61.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 42.8 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 62.5 - type: accuracy name: Uyghur Test accuracy value: 55.0 - type: accuracy name: Chukchi Test accuracy value: 20.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Old French This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fro") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fro") ```
wietsedv/xlm-roberta-base-ft-udpos28-la
41fa99ec6490bae56b50aa06ef652ff4edd4a28a
2022-02-25T09:58:58.000Z
[ "pytorch", "xlm-roberta", "token-classification", "la", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-la
3
null
transformers
21,895
--- language: - la license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-la results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 81.5 - type: accuracy name: Dutch Test accuracy value: 79.6 - type: accuracy name: German Test accuracy value: 78.2 - type: accuracy name: Italian Test accuracy value: 78.0 - type: accuracy name: French Test accuracy value: 78.1 - type: accuracy name: Spanish Test accuracy value: 79.8 - type: accuracy name: Russian Test accuracy value: 89.8 - type: accuracy name: Swedish Test accuracy value: 86.0 - type: accuracy name: Norwegian Test accuracy value: 81.5 - type: accuracy name: Danish Test accuracy value: 85.7 - type: accuracy name: Low Saxon Test accuracy value: 56.6 - type: accuracy name: Akkadian Test accuracy value: 44.7 - type: accuracy name: Armenian Test accuracy value: 86.4 - type: accuracy name: Welsh Test accuracy value: 65.1 - type: accuracy name: Old East Slavic Test accuracy value: 79.8 - type: accuracy name: Albanian Test accuracy value: 74.9 - type: accuracy name: Slovenian Test accuracy value: 77.4 - type: accuracy name: Guajajara Test accuracy value: 35.8 - type: accuracy name: Kurmanji Test accuracy value: 77.7 - type: accuracy name: Turkish Test accuracy value: 76.9 - type: accuracy name: Finnish Test accuracy value: 84.9 - type: accuracy name: Indonesian Test accuracy value: 82.0 - type: accuracy name: Ukrainian Test accuracy value: 87.8 - type: accuracy name: Polish Test accuracy value: 88.0 - type: accuracy name: Portuguese Test accuracy value: 82.3 - type: accuracy name: Kazakh Test accuracy value: 83.2 - type: accuracy name: Latin Test accuracy value: 92.9 - type: accuracy name: Old French Test accuracy value: 61.2 - type: accuracy name: Buryat Test accuracy value: 64.7 - type: accuracy name: Kaapor Test accuracy value: 34.2 - type: accuracy name: Korean Test accuracy value: 63.0 - type: accuracy name: Estonian Test accuracy value: 85.5 - type: accuracy name: Croatian Test accuracy value: 86.3 - type: accuracy name: Gothic Test accuracy value: 36.5 - type: accuracy name: Swiss German Test accuracy value: 47.8 - type: accuracy name: Assyrian Test accuracy value: 15.5 - type: accuracy name: North Sami Test accuracy value: 41.4 - type: accuracy name: Naija Test accuracy value: 41.9 - type: accuracy name: Latvian Test accuracy value: 89.1 - type: accuracy name: Chinese Test accuracy value: 44.3 - type: accuracy name: Tagalog Test accuracy value: 73.7 - type: accuracy name: Bambara Test accuracy value: 27.9 - type: accuracy name: Lithuanian Test accuracy value: 88.3 - type: accuracy name: Galician Test accuracy value: 81.7 - type: accuracy name: Vietnamese Test accuracy value: 68.0 - type: accuracy name: Greek Test accuracy value: 74.9 - type: accuracy name: Catalan Test accuracy value: 76.2 - type: accuracy name: Czech Test accuracy value: 86.3 - type: accuracy name: Erzya Test accuracy value: 50.8 - type: accuracy name: Bhojpuri Test accuracy value: 52.5 - type: accuracy name: Thai Test accuracy value: 61.6 - type: accuracy name: Marathi Test accuracy value: 88.3 - type: accuracy name: Basque Test accuracy value: 79.0 - type: accuracy name: Slovak Test accuracy value: 85.9 - type: accuracy name: Kiche Test accuracy value: 39.3 - type: accuracy name: Yoruba Test accuracy value: 29.9 - type: accuracy name: Warlpiri Test accuracy value: 40.9 - type: accuracy name: Tamil Test accuracy value: 85.7 - type: accuracy name: Maltese Test accuracy value: 32.8 - type: accuracy name: Ancient Greek Test accuracy value: 70.5 - type: accuracy name: Icelandic Test accuracy value: 81.6 - type: accuracy name: Mbya Guarani Test accuracy value: 33.1 - type: accuracy name: Urdu Test accuracy value: 61.3 - type: accuracy name: Romanian Test accuracy value: 83.1 - type: accuracy name: Persian Test accuracy value: 75.7 - type: accuracy name: Apurina Test accuracy value: 43.5 - type: accuracy name: Japanese Test accuracy value: 36.5 - type: accuracy name: Hungarian Test accuracy value: 74.5 - type: accuracy name: Hindi Test accuracy value: 67.0 - type: accuracy name: Classical Chinese Test accuracy value: 38.2 - type: accuracy name: Komi Permyak Test accuracy value: 52.2 - type: accuracy name: Faroese Test accuracy value: 75.6 - type: accuracy name: Sanskrit Test accuracy value: 43.5 - type: accuracy name: Livvi Test accuracy value: 66.1 - type: accuracy name: Arabic Test accuracy value: 81.3 - type: accuracy name: Wolof Test accuracy value: 39.1 - type: accuracy name: Bulgarian Test accuracy value: 87.7 - type: accuracy name: Akuntsu Test accuracy value: 35.5 - type: accuracy name: Makurap Test accuracy value: 28.8 - type: accuracy name: Kangri Test accuracy value: 49.8 - type: accuracy name: Breton Test accuracy value: 59.8 - type: accuracy name: Telugu Test accuracy value: 84.3 - type: accuracy name: Cantonese Test accuracy value: 50.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 55.7 - type: accuracy name: Karelian Test accuracy value: 73.0 - type: accuracy name: Upper Sorbian Test accuracy value: 76.0 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.8 - type: accuracy name: Komi Zyrian Test accuracy value: 46.3 - type: accuracy name: Irish Test accuracy value: 64.1 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 24.1 - type: accuracy name: Manx Test accuracy value: 39.3 - type: accuracy name: Skolt Sami Test accuracy value: 43.5 - type: accuracy name: Afrikaans Test accuracy value: 74.8 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 45.2 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 87.2 - type: accuracy name: Moksha Test accuracy value: 47.3 - type: accuracy name: Western Armenian Test accuracy value: 81.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 55.3 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 89.6 - type: accuracy name: Uyghur Test accuracy value: 76.8 - type: accuracy name: Chukchi Test accuracy value: 36.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Latin This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-la") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-la") ```
inovex/multi2convai-corona-fr-bert
244944e9a31a9042ac45f4fb73a47293c131a645
2022-04-15T17:09:57.000Z
[ "pytorch", "bert", "text-classification", "fr", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-corona-fr-bert
3
null
transformers
21,896
--- tags: - text-classification widget: - text: "Dois-je porter un masque?" license: mit language: fr --- # Multi2ConvAI-Corona: finetuned Bert for French This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Corona (more details about our use cases: ([en](https://multi2conv.ai/en/blog/use-cases), [de](https://multi2conv.ai/en/blog/use-cases))) - language: French (fr) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-fr-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-fr-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
inovex/multi2convai-corona-it-bert
e942c6cb58779ffebdc3215d86ca48cce3592620
2022-03-01T09:20:35.000Z
[ "pytorch", "bert", "text-classification", "it", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-corona-it-bert
3
null
transformers
21,897
--- tags: - text-classification widget: - text: "Devo indossare una maschera?" license: mit language: it --- # Multi2ConvAI-Corona: finetuned Bert for Italian This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Corona (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: Italian (it) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-it-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-it-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
inovex/multi2convai-logistics-hr-bert
e77be6de312152b5cd49bd28d889b15ada4de072
2022-03-01T09:22:15.000Z
[ "pytorch", "bert", "text-classification", "hr", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-logistics-hr-bert
3
null
transformers
21,898
--- tags: - text-classification widget: - text: "gdje mogu staviti paket?" license: mit language: hr --- # Multi2ConvAI-Logistics: finetuned Bert for Croatian This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Logistics (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: Croatian (hr) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-hr-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-hr-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
Rattana/wav2vec2-thai-ASR
bcfe042eceaa204c93d63db2aea4e856aa8460e6
2022-02-25T02:08:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Rattana
null
Rattana/wav2vec2-thai-ASR
3
null
transformers
21,899
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-thai-ASR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-thai-ASR This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6108 - Wer: 0.5636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.1123 | 2.65 | 400 | 3.3946 | 1.0002 | | 1.5734 | 5.3 | 800 | 0.6881 | 0.7290 | | 0.5934 | 7.94 | 1200 | 0.5789 | 0.6402 | | 0.4059 | 10.59 | 1600 | 0.5496 | 0.5976 | | 0.3136 | 13.24 | 2000 | 0.6109 | 0.5863 | | 0.2546 | 15.89 | 2400 | 0.6113 | 0.5865 | | 0.2184 | 18.54 | 2800 | 0.6108 | 0.5636 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0